Ingegneria civile e architettura

Settori scientifico disciplinari compresi nell'area 8:

  • ICAR/01 IDRAULICA
  • ICAR/02 COSTRUZIONI IDRAULICHE E MARITTIME E IDROLOGIA
  • ICAR/03 INGEGNERIA SANITARIA-AMBIENTALE
  • ICAR/04 STRADE, FERROVIE ED AEROPORTI
  • ICAR/05 TRASPORTI
  • ICAR/06 TOPOGRAFIA E CARTOGRAFIA
  • ICAR/07 GEOTECNICA
  • ICAR/08 SCIENZA DELLE COSTRUZIONI
  • ICAR/09 TECNICA DELLE COSTRUZIONI
  • ICAR/10 ARCHITETTURA TECNICA
  • ICAR/11 PRODUZIONE EDILIZIA
  • ICAR/12 TECNOLOGIA DELL'ARCHITETTURA
  • ICAR/13 DISEGNO INDUSTRIALE
  • ICAR/14 COMPOSIZIONE ARCHITETTONICA E URBANA
  • ICAR/15 ARCHITETTURA DEL PAESAGGIO
  • ICAR/16 ARCHITETTURA DEGLI INTERNI E ALLESTIMENTO
  • ICAR/17 DISEGNO
  • ICAR/18 STORIA DELL'ARCHITETTURA
  • ICAR/19 RESTAURO
  • ICAR/20 TECNICA E PIANIFICAZIONE URBANISTICA
  • ICAR/21 URBANISTICA
  • ICAR/22 ESTIMO

Browse

Recent Submissions

Now showing 1 - 5 of 56
  • Publication
    High Resolution Model to Predict Oil Spill Dispersion in Harbour and Coastal Areas
    (Università degli studi di Trieste, 2015-04-28)
    Zanier, Giulia
    ;
    Petronio, Andrea
    ;
    Armenio, Vincenzo
    Mostriamo un modello allo stato dell’arte, che considera i principali processi fisici che governano il greggio in mare nelle prime ore dopo il rilascio, (Zanier, et al., 2014). Le particelle e i tar sono trattati come particelle lagrangiane, ognuna con la propria densità e il proprio diametro; consideriamo le forze principali che agiscono su di esse ossia: galleggiamento, trascinamento e la forza di Coriolis. Il greggio in forma di film sottile è modellato tramite le equazioni proposte da Nihoul (Nihoul 1983/84). Il modello originale di Nihoul considera le forze principali (ossia gravità, stress indotto da vento e correnti marine) che agiscono sulla macchia e governano il suo trasporto e diffusione, sulla superficie del mare, nelle prime 24 ore dopo il rilascio. Il nostro miglioramento al modello consiste nell’introduzione della forza di Coriolis evitando di utilizzare formulazioni empiriche (Zanier, et al., 2015). Infine i principali processi di weathering che agiscono sulla macchia nelle prime 12-24 ore dopo il rilascio (ossia emulsificazione ed evaporazione) sono considerate in accordo con i modelli presenti in letteratura (Mackay, Peterson, et al., 1980 e Mackay, Buist, et al., 1980, rispettivamente). Per preservare un’accuratezza del secondo ordine del metodo numerico, i termini convettivi, nel modello Euleriano, sono discretizzati usando SMART uno schema numerico upwind del terzo ordine (Gaskell and Lau 1988). Il modello è validato con dei casi test standard. Le correnti marine sono risolte con il modello LES-COAST (IEFLUIDS Università di Trieste), un modello numerico ad alta definizione, adatto per simulare flussi in aree costiere e portuali. Il modello LES-COAST risolve la forma filtrata delle equazioni di Navier-Stokes tridimensionali e non-idrostatiche, assumendo che valga l’approssimazione di Boussinesq; e l’equazione di trasporto degli scalari, salinità e temperatura. Il modello usa l’approccio della large eddy simulation per parametrizzare la turbolenza, le variabili sono filtrate con una funzione filtro, rappresentante la grandezza delle celle. I flussi di sottogriglia (SGS), che appaiono dopo l’operazione di filtraggio delle equazioni, sono parametrizzati con un modello di Smagorinsky anisotropo con due eddy viscosity, per adattare il modello a simulare flussi costieri dove le lunghezze scala orizzontali sono molto più grandi di quelle verticali (Roman et al., 2010 ). Le diffusività di sotto griglia della temperatura e salinità, cioè i numeri di Prandtl e Schmidt, sono imposti come $Pr_{sgs}=Sc_{sgs}=0.8$, assumendo che l’analogia di Reynolds sia valida per entrambi gli scalari. La complessità geometrica che caratterizza le aree costiere, è trattata con una combinazione di griglie curvilinee e il metodo dei contorni immersi (IBM) (Roman, Napoli, et al., 2009). L’azione del vento sulla superficie libera del mare è imposta tramite una formula proposta da Wu (Wu, 1982), nella quale lo stress del vento sul mare è calcolato dalla velocità del vento a 10 m sopra il livello del mare. Allo stress aggiungiamo una varianza del 20% per agevolare la generazione di turbolenza e per tener conto che l’azione del vento non è costante nel tempo e nello spazio. Inoltre vicino agli ostacoli, come moli, navi e frangiflutti, lo stress del vento è ridotto linearmente, per considerare la riduzione del vento che si ha nelle zone di ricircolo. Sui contorni aperti le velocità e le quantità scalari sono ottenute innestando il modello LES-COAST con modelli di larga scala (Petronio, et al., 2013) oppure sono impostati secondo dati rilevati. Vicino ai bordi solidi le velocità sono modellate tramite funzioni parete (Roman, Armenio, et al., 2009). Il modello di rilascio di petrolio e il modello idrodinamico sono stati applicati assieme per simulare degli ipotetici scenari di trasporto e diffusione del greggio in mare nel porto di Barcellona (Mar Mediterraneo Nord-Ovest, Spagna, Galea, et al. 2014) e nella baia di Panzano (Mar Adriatico, Nord, Italia).
      1042  940
  • Publication
    INVERSE TECHNIQUES FOR MODEL IDENTIFICATION OF MASONRY STRUCTURES
    (Università degli studi di Trieste, 2015-04-23)
    Chisari, Corrado
    ;
    Amadio, Claudio
    ;
    Macorini, Lorenzo
    Many old masonry structures still in use need to be assessed considering the safety requirements proposed by current building codes. To this aim, the use of detailed numerical models, allowing the description of complex mechanical phenomena such as anisotropy, softening and crack propagation, could become tremendously beneficial. Although a large number of material models with different degrees of complexity have been recently proposed in the literature, the calibration of the model material parameters, which is critical for an accurate response prediction, has received remarkably less attention. This has resulted in a gap between the potential of these models and their actual use. This thesis is aimed at developing a consistent approach for the calibration of numerical model parameters for masonry structures by means of inverse techniques. After an introduction and a literature review discussing current numerical modelling strategies for masonry structures and the Inverse Problems theory, the optimisation tool utilised in this thesis is described. It makes use of Genetic Algorithms, and it has been previously applied to a number of different problems, from optimal design to the identification of base-isolated bridges. One of the major challenges of Inverse Problems is handling the noisy data and assessing the uncertainty of the results given by the optimisation algorithm. A numerical strategy for choosing the optimal sensor layout is proposed, aimed at minimising the influence of the noise in the calibration. Uncertainty in the calibration has been considered in all numerical and experimental examples studied, leading to an approach based on the use of a set of numerical validation models. This allows a realistic evaluation of the field of applicability of the estimated parameters. The approach has been applied to a novel in-situ test for the calibration of the material parameters for a mesoscale masonry representation. The proposed setup has been designed for low-invasive in-situ experimental static tests on existing structures. In the test, flat-jacks are utilised to apply a specific stress state within a masonry wall. The results, in terms of displacements recorded by LVDTs or optical devices are then analysed by means of inverse techniques in order to estimate the basic parameters of the interface elements simulating the mortar joints. The effectiveness of the test set-up has been studied applying analytical formulations and using the results of numerical simulations. The results of an experimental campaign based on the use of the proposed experimental procedure are then reported and critically discussed. The thesis ends with the conclusions, where it is confirmed that the proposed calibration approach can be effective adopted in the characterization of masonry in existing structures. Finally some directions for the future research related to this work are proposed.
      962  960
  • Publication
    APPLICAZIONE DI TECNICHE INNOVATIVE GNSS/INS PER LA DETERMINAZIONE DEL COMPORTAMENTO DINAMICO DI IMPIANTI FUNIVIARI
    (Università degli studi di Trieste, 2015-04-23)
    Sciuto, Giuliana
    ;
    Cefalo, Raffaela
    Gli impianti funiviari sono soggetti alle normative italiane ed europee (PTS Prescrizioni Tecniche Speciali e Normativa Europea) che regolano il funzionamento dell’infrastruttura, sovrastruttura e delle componenti di sicurezza. Il rispetto dei limiti imposti sono determinanti per la sicurezza dell’impianto stesso e delle persone coinvolte. Non tutti questi parametri però, sono controllati durante le periodiche prove di collaudo, nonostante essi siano decisivi per la sicurezza. Si pensi ad esempio alla valutazione dell’entità delle oscillazioni trasversali e longitudinali al senso di marcia, fenomeno che ha causato l’incidente avvenuto su una seggiovia dell’Appennino toscano (gennaio 2015), dove, a causa di un’interruzione di corrente, l’arresto dell’impianto ha innescato un moto oscillatorio tale da far sobbalzare e precipitare alcuni sciatori. La strumentazione satellitare permetterebbe di conoscere la posizione assoluta dell’oggetto monitorato e se integrate da sensori inerziali, di conoscerne anche l’assetto. A partire da queste considerazioni, sono state analizzate delle metodologie innovative GNSS (Global Navigation Satellite System) e GPS/INS (INertial System), applicate in un settore particolare, quale quello dei trasporti speciali aerei, al fine di caratterizzare in maniera più completa il comportamento dinamico di un veicolo in condizioni critiche (ad esempio a seguito di brusche frenate) e farne un confronto con la normativa vigente. Le componenti hardware del dispositivo GNSS/INS sono state montate all’interno di un contenitore rigido, per facilitarne il trasporto, l’ancoraggio alla seggiola o cabina e per accelerare la fase di rilievo con la Stazione Totale per l’inserimento dei parametri di installazione nel software di elaborazione dati, Applanix POS PAC LV. E’stato quindi implementato un programma ad hoc in ambiente Matlab, per la gestione dei dati, in particolare: per la sincronizzazione fra i vari dispositivi, per la rotostraslazione dei sistemi di riferimento, per l’interpolazione dei dati, per il filtraggio e l’estrazione automatica alcuni particolari eventi. Dai risultati ottenuti è stata dimostrata l’adeguatezza di queste tecniche innovative, con le quali è stato possibile determinare il comportamento dinamico del veicolo, in termini di posizione assoluta (con precisione centimetrica), velocità ed accelerazione effettiva del veicolo (i valori di velocità ed accelerazione visibili sul pulpito di comando della stazione motrice sono riferiti all’argano di trazione e non corrispondono sempre con quelli del veicolo). Implementando le funzioni del programma sviluppato in ambiente Matlab ed ottimizzando alcune procedure,le tecniche GNSS in modalità cinematica interferenziale alle doppie differenze finite e GPS/INS, potrebbero completare le attuali prove di collaudo degli impianti funiviari.
      819  2081
  • Publication
    OPTIMISATION'S TECHNIQUES OF HULL SHAPES USING CFD RANSE SIMULATIONS WITH LOW NUMBER OF CELLS
    (Università degli studi di Trieste, 2015-04-28)
    Agrusta, Andrea Antonio
    ;
    Zotti, Igor
    Negli ultimi anni le tecniche di idrodinamica numerica CFD hanno permesso di effettuare simulazioni al computer riguardanti l’ interazione tra solidi e fluidi. L’utilizzo dei software CFD permette una simulazione assolutamente realistica dei fenomeni idrodinamici, permettendo al progettista/programmatore di analizzare in tempi relativamente brevi molteplici soluzioni, onde sceglierne la migliore e di conseguenza molteplici macro o micro modifiche sulla carena prescelta, per valutarne l’impatto in termini di resistenza al moto, assetto, tenuta al mare, comfort. Negli ultimi anni si è visto un crescente utilizzo di algoritmi matematici di ottimizzazione multiobiettivo associati a modellatori 3d parametrici e successivamente a solutori CFD BEM a potenziale. Tali applicazioni tipicamente consentono di trovare le forme ottimali che, nel rispetto dei vincoli imposti, generino la minima resistenza d’onda ad una o più determinate velocità. Associare un processo di ottimizzazione ad un solutore viscoso RANS consente invece, conoscendo una moltitudine di parametri fisici in più, di ottimizzare seguendo più obiettivi ed in particolar modo la capacità di poter valutare l’effetto dell’attrito consente di poter ottimizzare le forme al fine di ridurre la resistenza totale all’avanzamento. Fino a ieri però un processo di ottimizzazione associato a simulazioni CFD RANS, se pur teoricamente possibile, era di fatto raramente utilizzato in quanto sconveniente a causa dell’enorme mole di calcoli da eseguire per valutare la bontà di centinaia di soluzioni diverse, rendendo troppo lungo ed oneroso il processo. Minimizzando il numero di celle computazionali riducendo così i tempi ei costi di simulazioni in ogni caso risultati adeguati, si dimostra come il modo simulazioni RANS viscosi saranno molto più utili rispetto a potenziali metodi BEM . Scopo infatti di questo lavoro è stato quello di associare un processo di ottimizzazione di carena basato sulla riduzione della RESISTENZA TOTALE ALL’AVANZAMENTO valutata attraverso l’utilizzo di simulazioni CFD RANSE eseguite con un dominio di calcolo a basso numero di celle. Tale dominio di calcolo deriva dall’accurato sviluppo di una procedura standardizzata che permette di eseguire simulazioni RANSE con una griglia standard che garantisce la bontà del risultato anche se “COARSE”. La presente trattazione oltre a fornire una panoramica sullo stato dell’arte in letteratura, presenta lo sviluppo di una metodologia atta ad eseguire simulazioni a basso numero di celle in maniera standardizzata, sviluppando tre tipi di meshatura standard, suddividendo le carene da studiare in tre differenti famiglie raggruppate per similitudine di geometrie e velocità di funzionamento e pertanto accomunate da una similare formazione ondosa : Round Bilge Displacement Hull, Round Bilge and Hard Chine Semiplaning Hull (Single and Multi-Hull), Hard Chine Planing Hull. Si è successivamente passati alla determinazione dei metodi di ottimizzazione investigando le potenzialità ed i limiti dei diversi metodi noti per eseguire ottimizzazioni multi-obiettivo, compreso il metodo „Sherpa“ basato su un robusto algoritmo combinato e progressivo finalizzato al raggiungimento della soluzione ottima riducendo automaticamente il numero di casi da simulare. Il processo di ottimizzazione in oggetto è stato applicato ad una innovativa carena semi-planante a spigolo dotata di bulbo prodiero a lama: si è partiti da una carena di base che soddisfaceva tutti i requisiti di progetto e, nel rispetto dei vincoli imposti, parametrizzata la carena ed impostati i set-up di calcolo, al termine dell’ottimizzazione si è ottenuta la geometria ottimale della stessa al fine della riduzione della resistenza totale a due differenti velocità (crociera e massima). Al termine delle attività si è proceduto con l’esecuzione di test in vasca navale su modello in scala per validare i risultati ottenuti per via numerica. La possibilità di ottenere simulazioni viscose con domini “standardizzati” a basso numero di celle permette l’analisi comparativa di molteplici soluzioni progettuali contenendo tempi e costi e con la certezza che i risultati siano realistici ed affidabili. L’innovativa standardizzazione studiata permette inoltre una riduzione del tempo di preparazione del set-up permettendo all’operatore di lanciare una simulazione su una nuova carena in pochi minuti, senza dover effettuare laboriose meshature ad-hoc e controlli di grid-independence dei risultati. L’utilizzo di queste griglie standard permette inoltre, come spiegato, di utilizzare le simulazioni CFD RANSE anche per eseguire ottimizzazioni multi-obiettivo riguardanti, per esempio, la riduzione della resistenza totale all’avanzamento. Senza griglie di questo tipo, raffinate ottimizzazioni basate su solutori viscosi sarebbero spesso antieconomiche. Difatti i risultati cui il presente lavoro è pervenuto riguardano un sensibile abbattimento dei tempi di calcolo necessari all’esecuzione di un’ottimizzazione morfologica di carena basata sulla minimizzazione della resistenza a due differenti velocità: in meno di 700 ore di calcolo con un tradizionale server a 12 core, ovvero in circa 80 ore utilizzando un centro di calcolo a 100 core, si riescono ad ottenere risultati importanti validi per fare delle valutazioni in senso assoluto sulla potenza necessaria all’imbarcazione per raggiungere le velocità prestabilite. Una procedura di questo tipo permette da una parte la possibilità di lavorare sulla resistenza totale o su altre quantità fisiche espresse dal solutore RANSE, dall’altra per la sua velocità e la sua semplicità d’utilizzo, consente l’avvicinamento alla CFD anche a progettisti di piccole imbarcazioni che fino ad oggi per problematiche di tempo e di budget non potevano approcciare ad una tecnologia così raffinata per progettare le loro carene. Difatti in un prossimo futuro l’utilizzo diffuso di tecniche di ottimizzazione o anche semplicemente di comparazione ed analisi di carene destinate ad imbarcazioni grandi e piccole, potrà contribuire in maniera significativa al risparmio di Potenza motrice installata a bordo (es. Grazie alla riduzione della resistenza totale), consentendo da una parte risparmi economici di carburante e dall’altra, soprattutto, una riduzione delle emissioni nocive in atmosfera.
      922  1918
  • Publication
    Numerical Study of Turbulent Rayleigh-Benard Convection with Cubic confinement
    (Università degli studi di Trieste, 2015-04-28)
    Foroozani, Najmeh
    ;
    Sreenivasan, Katepalli
    ;
    Niemela, Joseph James
    ;
    Armenio, Vincenzo
    Turbulent Rayleigh-Bénard convection (RBC) occurs when a shallow layer of fluid is heated from below. It is a challenging subject in non-linear physics, with many important applications in natural and engineering systems. Because of the complexity of the governing equations, analytical progress in understanding convection has been slow, and laboratory experiments and numerical simulations have assumed increased importance. In regard to numerical work, Large-Eddy Simulation (LES) techniques have proved to be reliable and powerful tool to understand the physics since it provides better coverage for measurements, that are not as easily obtained in physical experiments or the other numerical approaches. This thesis addresses different aspects of Rayleigh-Bénard convection in fully developed turbulent regime through Large Eddy Simulation (LES) to shed light on some important aspect of the geometrical shape of the convection cell. The layout of the thesis is as follows: In Chapter 1, we first introduce Rayleigh-Bénard convection and the equations and parameters that govern it. This is followed by a discussion on different types of boundary conditions used in numerical and theoretical studies of RBC. Subsequently we present various convection states that are observed analytically and experimentally in RBC as a function of Ra and Ʈ. To this end we present a brief survey of the analytical, experimental and numerical works on confined thermal convection. We introduce different regimes and related scaling according to Grossman and Lohse theory. We also present the experimental and numerical results related to the Large Scale Circulation (LSC) within different geometries. In Chapter 2, we present the details of the numerical methods used to solve the governing non-linear equations . In the second part, we provide the details of the solver and the algorithm used to solve the RBC dynamical equations in a Cartesian geometry together with boundary conditions. In Chapter 3, we demonstrate that our numerical method and solver give results consistent with earlier numerical results. Results from the Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) with constant and dynamic subgrid scale Prandtl number (P_sgs) are presented and compared. We observe close agreement with Lagrangian dynamic approaches. In the first part of Chapter 4 we analyse the local fluctuations of turbulent Rayleigh-Bénard convection in a cubic confinement with aspect ratio one for Prandtl number Pr = 0.7 and Rayleigh numbers (Ra) up to 10^9 by means of LES methodology on coarse grids. Our results reveal that the scaling of the root-mean-square density and velocity fluctuations measured in the cell center are in excellent agreement with the unexpected scaling measured in the laboratory experiments of Daya and Ecke (2001) in their square cross-section cell. Moreover we find that the time-averaged spatial distributions of density fluctuations show a fixed inhomogeneity that maintains its own structure when the flow switches from one diagonal to the other. The largest level of rms density fluctuations corresponds to the diagonal opposite that of the Large Scale Circulation (LSC) where we observed strong counter-rotating vortex structures. In the second part we extended our simulations and Ra up to 1011, in order to identify the time periods in which the orientation of LSC is constant. Surprisingly we find that the LSC switches stochastically from one diagonal to the other. In Chapter 5, we study the effect of 3D-roughness on scaling of Nu(Ra) and consequently on the fluctuations of density. Moreover we present the effect of roughness shape when the tip has a wide angle and the other one is smooth. We study two types of elements, one of which is a pyramid and the other is a sinusoidal function spread over the bottom (heated) and top (cooled) plates, in a cubic confinement. However preliminary results suggest that the effect of roughness appears evident at high Ra numbers when the thermal boundary layer is thin enough to shape around the obstacles.
      1066  1106