OpenstarTs >
EUT-Libri >
Atti di convegni >
Tools for Identifying Biodiversity: Progress and Problems >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/3782

Title: VeSTIS: A Versatile Semi- Automatic Taxon Identification System from Digital Images
Authors: Nikolaou, Nikos
Sampaziotis, Pantelis
Aplikioti, Marilena
Drakos, Andreas
Kirmitzoglou, Ioannis
Argyrou, Marina
Papamarkos, Nikos
Promponas, Vasilis J.
Keywords: digital image analysis
open source
semi-automatic taxon identification
Issue Date: 2010
Publisher: EUT Edizioni Università di Trieste
Citation: Nikos Nikolaou [et al.], VeSTIS: A Versatile Semi- Automatic Taxon Identification System from Digital Images, in Pier Luigi Nimis and Régine Vignes Lebbe (eds.): “Tools for Identifying Biodiversity: Progress and Problems. Proceedings of the International Congress, Paris, September 20-22, 2010”, Trieste, EUT Edizioni Università di Trieste, 2010, pp. 231-236.
Abstract: In this work we present a flexible Open Source software platform for training classifiers capable of identifying the taxonomy of a specimen from digital images. We demonstrate the performance of our system in a pilot study, building a feed-forward artificial neural network to effectively classify five different species of marine annelid worms of the class Polychaeta. We also discuss on the extensibility of the system, and its potential uses either as a research tool or in assisting routine taxon identification procedures.
URI: http://hdl.handle.net/10077/3782
ISBN: 978-88-8303-295-0
Appears in Collections:Tools for Identifying Biodiversity: Progress and Problems

Files in This Item:

File Description SizeFormat
Nicolaou et al, bioidentify.pdf500.46 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.