OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.42 (2010) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/3886

Title: Gauge theory: form Physics to Geometry
Authors: Bruzzo, Ugo
Keywords: Gauge Theory
Instantons
Moduli Spaces
Instanton Counting
Issue Date: 2010
Publisher: EUT Edizioni Università di Trieste
Citation: Ugo Bruzzo, "Gauge theory: form Physics to Geometry", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 42 (2010), pp. 103-128.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics;42 (2010)
Abstract: Maxwell theory may be regarded as a prototype of gauge theory and generalized to nonabelian gauge theory. We briefly sketch the history of gauge theories, from Maxwell to Yang-Mills theory, and the identification of gauge fields with connections on fibre bundles. We introduce the notion of instanton and consider the moduli spaces of such objects. Finally, we discuss some modern techniques for studying the topology of these moduli spaces.
URI: http://hdl.handle.net/10077/3886
ISSN: 0049-4704
MS Classification 2000: 14D20
81T45
14D21
70S15
14J60
58D27
32G13
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.42 (2010)

Files in This Item:

File Description SizeFormat
Bruzzo RendMat42.pdf500.93 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.