OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.42 (2010) s. >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/3923

Title: Hyperbolic-Parabolic Singular Perturbation for Kirchhoff Equations with Weak Dissipation
Authors: Ghisi, Marina
Gobbino, Massimo
Keywords: hyperbolic-parabolic singular perturbation
Kirchhoff equations
weak dissipation
quasilinear hyperbolic equations
Issue Date: 2010
Publisher: EUT Edizioni Università di Trieste
Citation: Marina Ghisi, Massimo Gobbino, "Hyperbolic-Parabolic Singular Perturbation for Kirchhoff Equations with Weak Dissipation”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 42 suppl. (2010), pp. 67-88.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics;42 suppl. (2010)
Abstract: We consider Kirchhoff equations with a small parameter $\varepsilon$ in front of the second-order time-derivative, and a dissipative term whose coefficient may tend to $0$ as $t\to +\infty$ (weak dissipation). In this note we present some recent results concerning existence of global solutions, and their asymptotic behavior both as $t\to +\infty$ and as $\varepsilon\to 0^{+}$. Since the limit equation is of parabolic type, this is usually referred to as a hyperbolic-parabolic singular perturbation problem. We show in particular that the equation exhibits hyperbolic or parabolic behavior depending on the values of the parameters.
URI: http://hdl.handle.net/10077/3923
ISSN: 0049-4704
MS Classification 2000: 35B25
35L70
35B40
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.42 (2010) s.

Files in This Item:

File Description SizeFormat
GhisiGobbino1.pdf212.31 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.