OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.42 (2010) s. >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/3924

Title: Kirchhoff Equations in Generalized Gevrey Spaces: Local Existence, Global Existence, Uniqueness
Authors: Ghisi, Marina
Gobbino, Massimo
Keywords: integro-differential hyperbolic equation
degenerate hyperbolic equation
continuity modulus
Kirchhoff equations
Gevrey spaces
derivative loss
local existence
uniqueness
global existence
Issue Date: 2010
Publisher: EUT Edizioni Università di Trieste
Citation: Marina Ghisi, Massimo Gobbino, "Kirchhoff Equations in Generalized Gevrey Spaces: Local Existence, Global Existence, Uniqueness”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 42 suppl. (2010), pp. 89-110.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics;42 suppl. (2010)
Abstract: In this note we present some recent results for Kirchhoff equations in generalized Gevrey spaces. We show that these spaces are the natural framework where classical results can be unified and extended. In particular we focus on existence and uniqueness results for initial data whose regularity depends on the continuity modulus of the nonlinear term, both in the strictly hyperbolic case, and in the degenerate hyperbolic case.
URI: http://hdl.handle.net/10077/3924
ISSN: 0049-4704
MS Classification 2000: 35L70
35L80
35L90
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.42 (2010) s.

Files in This Item:

File Description SizeFormat
GhisiGobbino2.pdf237.85 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.