OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell' Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.39 (2007) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4120

Title: On Hyperbolic $\pi-Orbifolds$ with Arbitrary many Singular Components
Authors: Vesnin, Andrei
Keywords: Hyperbolic 3-Manifolds
Hyperelliptic Involution
$\pi-Orbifolds$
Issue Date: 2007
Publisher: EUT Edizioni Università di Trieste
Citation: Andrei Vesnin, "On Hyperbolic $\pi-Orbifolds$ with Arbitrary many Singular Components”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 39 (2007), pp. 375–386.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
39 (2007)
Abstract: We construct a family of (n + 1)-component links $\mathcal{L}_n$ which are closures of rational 3-string braids $(\sigma_1^{-1/2}\sigma_2^2)^n$ and show that for n \geq 3 they arise as singular sets of hyperbolic $\pi-orbifolds$. Moreover, their 2-fold branched coverings are described by Dehn surgeries.
URI: http://hdl.handle.net/10077/4120
ISSN: 0049-4704
MS Classification: 57M25
Appears in Collections:Rendiconti dell' Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.39 (2007)

Files in This Item:

File Description SizeFormat
VesninRendMat39.pdf289.03 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.