OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell' Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.36 (2004) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4163

Title: Propagation versus constancy of support in the degenerate parabolic equation $u_t=f(u)\Delta u$
Authors: Winkler, Michael
Keywords: Degenerate diffusion
support evolution
Issue Date: 2004
Publisher: Università degli Studi di Trieste. Dipartimento di Matematica e Informatica
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
36 (2004)
Abstract: A weak solution concept for the Dirichlet problem in bounded domains for the degenerate parabolic equation $u_t = f(u)\Delta u$ is presented. It is shown that if $\int_0^1 \frac{ds}{f(s)}<\infty$ then each nontrivial nonnegative weak solution eventually becomes positive, while if $\int_0^1 \frac{ds}{f(s)} = \infty$ then all weak solutions have their support constant in time.
URI: http://hdl.handle.net/10077/4163
ISSN: 0049-4704
MS Classification: 35K65
35K55
Appears in Collections:Rendiconti dell' Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.36 (2004)

Files in This Item:

File Description SizeFormat
WinklerRendMat36.pdf143.87 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.