OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell' Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.35 (2003) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4192

Title: Isomorphism of Commutative Group Algebras over all Fields
Authors: Danchev, Peter V.
Issue Date: 2003
Publisher: Università degli Studi di Trieste. Dipartimento di Matematica e Informatica
Citation: Peter V. Danchev, "Isomorphism of Commutative Group Algebras over all Fields", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 35 (2003), pp. 147–164.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
35 (2003)
Abstract: It is argued that the commutative group algebra over each field determines up to an isomorphism its group basis for any of the following group classes: • Direct sums of cocyclic groups • Splitting countable modulo torsion groups whose torsion parts are direct sums of cyclics; • Splitting groups whose torsion parts are separable countable • Groups whose torsion parts are algebraically compact • Algebraically compact groups These give a partial positive answer to the R.Brauer’s classical problem.
URI: http://hdl.handle.net/10077/4192
ISSN: 0049-4704
MS Classification: 20C07
20K21
16S34
Appears in Collections:Rendiconti dell' Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.35 (2003)

Files in This Item:

File Description SizeFormat
DanchevRendMat35.pdf143.43 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.