OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.32 (2001) s1 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4235

Title: A Code for m-Bipartite Edge-Coloured Graphs
Authors: Casali, Maria Rita
Gagliardi, Carlo
Issue Date: 2001
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: Maria Rita Casali and Carlo Gagliardi, "A Code for m-Bipartite Edge-Coloured Graphs", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2001) suppl.1, pp. 55–76.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 suppl. 1 (2001)
Abstract: An (n + 1)-coloured graph $\left(\Gamma,\gamma\right)$ is said to be $m-bipartite$ if m is the maximum integer so that every m-residue of $\left(\Gamma,\gamma\right)$ (i.e. every connected subgraph whose edges are coloured by only m colours) is bipartite; obviously, every (n + 1)-coloured graph, with n $\geq$ 2, results to be m-bipartite for some m, with 2 $\leq$ m $\leq$ n + 1. In this paper, a numerical $code$ of length (2n \textminus{} m + 1) $\times$ q is assigned to each m-bipartite (n + 1)-coloured graph of order 2q. Then, it is proved that$any\; two\; such\; graphs\; have\; the\; same\; code\; if\; and\; only\; if\; they\; are\; colour-isomorphic$, i.e. if a graph isomorphism exists, which transforms the graphs one into the other, up to permutation of the edge-colouring. More precisely, if H is a given group of permutations on the colour set, we face the problem of algorithmically recognizing H-isomorphic coloured graphs by means of a suitable defi{}nition of H-code.
URI: http://hdl.handle.net/10077/4235
ISSN: 0049-4704
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.32 (2001) s1

Files in This Item:

File Description SizeFormat
CasaliGagliardiRendMat32s.pdf218.95 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.