OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.32 (2000) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4260

Title: Existence and uniqueness of periodic solutions for a quasilinear parabolic problem
Authors: Badii, Maurizio
Issue Date: 2000
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: Maurizio Badii, "Existence and uniqueness of periodic solutions for a quasilinear parabolic problem", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2000), pp. 123-138.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 (2000)
Abstract: We are concerned with the existence and uniqueness of the nonnegative periodic weak solution to a quasilinear parabolic problem of degenerate type, which describes a mathematical model in petroleum engineering. The existence of periodic solutions is established by means of the Schauder fixed point Theorem applied to the Poincaré map. Instead, the uniqueness of the periodic solution is proved under the assumption that $b(\varphi^-1)$ is Hölder continuous of order 1/2, adapting a technique utilized in the study of nonlinear hyperbolic equations.
URI: http://hdl.handle.net/10077/4260
ISSN: 0049-4704
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.32 (2000)

Files in This Item:

File Description SizeFormat
BadiiRendMat32.pdf209.24 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.