OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.31 (2000) s2 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4275

Title: Life-Span of solutions to nonlinear dissipative evolution equations: a singular perturbation approach
Authors: Milani, Albert
Issue Date: 2000
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: Albert Milani, "Life-Span of solutions to nonlinear dissipative evolution equations: a singular perturbation approach", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 31 (2000) suppl.2, pp. 189-208.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
31 (2000) suppl.2
Abstract: We investigate the large time behavior of solutions to nonlinear dissipative wave equations of the general form \[ \varepsilon u_{tt}+u_{t}-\Delta u=F\left(x,t,u,D_{x}u,D_{x}^{2}u\right); \] in particular, we study the dependence of the solutions $u=u^{\varepsilon}$ and of their life span $T_{\varepsilon}$ on the (small'' parameter $\varepsilon$. We are interested in the behavior of $u^{\varepsilon}$ and $T_{\varepsilon}$ as $\varepsilon\rightarrow0$, and in their relations with the solution v, and its life span T$_{p}$ , of the corresponding limit equation when $\varepsilon=0$, which is of parabolic type. We look for conditions under which either $T_{\varepsilon}=+\infty,\: or\: T_{\varepsilon}\rightarrow T_{p}\leq+\infty$ as $\varepsilon=0$.
URI: http://hdl.handle.net/10077/4275
ISSN: 0049-4704
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.31 (2000) s2

Files in This Item:

File Description SizeFormat
MilaniRendMat31s2.pdf268.92 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.