OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.32 (2001) s2 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4287

Title: Unknotting Numbers are not Realized in Minimal Projections for a Class of Rational Knots
Authors: Garity, Dennis J.
Issue Date: 2001
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: Dennis J. Garity, "Unknotting Numbers are not Realized in Minimal Projections for a Class of Rational Knots", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2001) suppl.2, pp. 59–72.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 (2001) suppl.2
Abstract: In previous results, Bleiler and Nakanishi produced an example of a knot where the unknotting number was not realized in a minimal projection of the knot. Bernhard generalied this example to an infi{}nite class of examples with Conway notation $\left(2j+1,1,2j\right)$ with j $\geq$ 2. In this paper we examine the entire class of knots given in Conway notation by (2j + 1, 2k + 1, 2j) where j $\geq$ 1 and k $\geq$ 0 and we determine that a large class of knots of this form have the unknotting number not realized in a minimal projection. We also produce an infi{}nite class of two component links with unknotting number gap arbitrarily large.
URI: http://hdl.handle.net/10077/4287
ISSN: 0049-4704
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.32 (2001) s2

Files in This Item:

File Description SizeFormat
07-garity.pdf153.02 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.