OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.31 (1999) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4326

Title: Everywhere regularity for a class of elliptic systems with p, q growth conditions
Authors: Migliorini, Anna Paola
Keywords: Elliptic Systems
Regularity
Calculus of Variations
General Growth Conditions
Issue Date: 1999
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: Anna Paolo Migliorini, "Everywhere regularity for a class of elliptic systems with p, q growth conditions", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 31 (1999), pp. 203-234.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
31 (1999)
Abstract: We shall prove everywhere regularity for weak solutions of elliptic systems of the form \[ \sum\frac{\partial}{\partial x_{i}}a\left(x,\mid Du\mid\right)u_{x_{i}}^{\alpha}=0 \] under general p, q growth conditions and in particular for minimizers of a class of variational integrals, both degenerate and non degenerate ones, whose models are \[ \begin{array}{c} I_{1}\left(u\right)\quad=\quad\int_{\Omega}a\left(x\right)\mid Du\mid^{b\left(x\right)}dx,\\ I_{2}\left(u\right)\quad=\quad\int_{\Omega}a\left(x\right)\left(1+\mid Du\mid^{2}\right)^{\frac{b\left(x\right)}{2}}dx. \end{array} \]
URI: http://hdl.handle.net/10077/4326
ISSN: 0049-4704
MS Classification: 35J50
49N60
351345
35D10
49J45
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.31 (1999)

Files in This Item:

File Description SizeFormat
MiglioriniRendMat31.pdf284.34 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.