OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.30 (1999) s. >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4334

Title: Recurrent points of continuous functions on connected linearly ordered spaces
Authors: Alcaraz, D.
Sanchis, M.
Keywords: linearly ordered space
periodic point
recurrent point
non-wandering point
center of a function
depth of the center
Issue Date: 1999
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: D. Alcaraz and M. Sanchis, "Recurrent points of continuous functions on connected linearly ordered spaces", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 30 (1999) suppl., pp. 1-9.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
30 (1999) suppl.
Abstract: Let L be a connected linearly ordered topological space and let f be a continuous function from L into itself. if P (f) and R(f) denote the set of periodic points and the set of recurrent points of f respectively, we show that the center of f is $cl_{L}P(f)$ and the depth of the center is at most 2. Furthermore we have $cl_{L}P(f)=cl_{L}R(f)$.
URI: http://hdl.handle.net/10077/4334
ISSN: 0049-4704
MS Classification: 54F05
54H20
58F03
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.30 (1999) s.

Files in This Item:

File Description SizeFormat
AlcarazSanchisRendMat30s.pdf205.55 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.