OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.30 (1999) s. >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4343

Title: Fuzziness in Chang's fuzzy topological spaces
Authors: Gregori, Valentín
Vidal, Anna
Keywords: fuzzy topology
gradation of openness
fuzzy point
Issue Date: 1999
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: Valentín Gregori and Anna Vidal, "Fuzziness in Chang's fuzzy topological spaces", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 30 (1999) suppl., pp. 111-121.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
30 (1999) suppl.
Abstract: It is known that fuzziness within the concept of openness of a fuzzy set in a Chang's fuzzy topological space (fts) is absent. In this paper we introduce a gradation of openness for the open sets of a Chang jts (X, $\mathcal{T}$) by means of a map $\sigma\;:\; I^{x}\longrightarrow I\left(I=\left[0,1\right]\right)$, which is at the same time a fuzzy topology on X in Shostak 's sense. Then, we will be able to avoid the fuzzy point concept, and to introduce an adeguate theory for $\alpha$-neighbourhoods and $\alpha-T_{i}$ separation axioms which extend the usual ones in General Topology. In particular, our $\alpha$-Hausdorff fuzzy space agrees with $\alpha${*} -Rodabaugh Hausdorff fuzzy space when (X, $\mathcal{T}$) is interpreservative or $\alpha$-locally minimal.
URI: http://hdl.handle.net/10077/4343
ISSN: 0049-4704
MS Classification: 54A40
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.30 (1999) s.

Files in This Item:

File Description SizeFormat
GregoriVidalRendMat30s.pdf234.01 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.