OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.30 (1999) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4351

Title: Weierstrass points, inflection points and ramification points of curves
Authors: Ballico, Edoardo
Issue Date: 1999
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: Edoardo Ballico, "Weierstrass points, inflection points and ramification points of curves", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 30 (1999), pp. 141-154.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
30 (1999)
Abstract: Let C be an integral curve of the smooth projective surface S and P $\epsilon$ C. Let $\pi:X\rightarrow C$ be the normalization and $Q\epsilon X$ with $\pi\left(Q\right)=P$. We are interested in the case in which Q is a Weierstrass point of X. We compute the semigroup N(Q, X) of non-gaps of Q when S is a Hirzebruch surface $F_{e}P\epsilon C_{reg}$ and P is a total ramification point of the restriction to C of a ruling $F_{e}\rightarrow P^{1}$. We study also families of pairs (X, Q) such that the first two integers of N( Q, X) are k and d. To do that we study families of pairs (P,C) with C plane curve, deg(C) =d, C has multiplicity d - k at P, C is unibranch at P and a line through P has intersection multiplicity d with C at P.
URI: http://hdl.handle.net/10077/4351
ISSN: 0049-4704
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.30 (1999)

Files in This Item:

File Description SizeFormat
BallicoRendMat30.pdf257 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.