OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.29 (1998) s. >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4366

Title: Decomposition and Extension of Abstract Measures in Riesz Spaces
Authors: Schmidt, Klaus D.
Issue Date: 1998
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: Klaus D. Schmidt, "Decomposition and Extension of Abstract Measures in Riesz Spaces", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 29 (1998) suppl., pp. 135-213.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
29 (1998) s.
Abstract: The aim of these notes is to review some recent developments in the theory of abstract measures taking their values in Riesz space. The terni abstract measure is used were to denote a common abstraction of vector measures and linear operators. The topics considered in this survey are: A common approach to vector measures and linear operators, Jordan and Lebesgue decompositions of abstract measures and their applications to vector measures and linear operators, common extensions of linear operators and of vector measures, and extensions of modular functions. We also propose a number of open problems which may stimulate further research in this area. The material of these notes is based on the monograph by Schmidt [5l], two papers by Schmidt and Waldschaks [55], [56], and the PhD Thesis of Waldschaks [60].
URI: http://hdl.handle.net/10077/4366
ISSN: 0049-4704
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.29 (1998) s.

Files in This Item:

File Description SizeFormat
SchmidtRendMat29s.pdf534.28 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.