OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.29 (1997) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4372

Title: White Noise Perturbation of the Equations of Linear Parabolic Viscoelasticity
Authors: Clément, Ph.
Da Prato, G.
Prüss, J.
Keywords: Linear viscoelasticity
parabolicity
stochastic convolution
fractional derivatives
Volterra equations
Issue Date: 1997
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: Ph. Clément, G. Da Prato, J. Prüss, "White Noise Perturbation of the Equations of Linear Parabolic Viscoelasticity", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 29 (1997), pp. 207-219.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
29 (1997)
Abstract: Evolutionary integral equations as appearing in the theory of linear parabolic viscoelasticity are studied in the presence of white noise. It is shown that the stochastic convolution leads to regular solutions, and that under suitable assumptions the samples are Hölder-continuous. These results are put in a wider perspective by consideration of equations with fractional derivatives which are also studied in this paper. This way, known results are recovered and put into broader perspective.
URI: http://hdl.handle.net/10077/4372
ISSN: 0049-4704
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.29 (1997)

Files in This Item:

File Description SizeFormat
ClementDaPratoPrussRendMat29.pdf225.88 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.