OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.28 (1996) s. >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4426

Title: Carleman estimates and exact boundary controllabilty for a system of coupled non-conservative Schödinger Equations
Authors: Triggiani, Roberto
Issue Date: 1996
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: Roberto Triggiani, "Carleman estimates and exact boundary controllabilty for a system of coupled non-conservative Schödinger Equations", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 28 (1996) suppl., pp. 453-504.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
28 (1996) s.
Abstract: We consider a system of 2 (or more) coupled Schródinger equations in the difficult situation where the equations have first-order, lower-order terms, as well as first-order coupling in all space variables. By using a general differential multiplier we give a `friendly’ proof of earleman estimates. Under more restrictive intrinsic conditions mostly on the coupling operators, we obtain eaact controllability results for the coupled system, under various combinations of boundary controls: Dirichlet/Dirichlet; Dirichlet/Neumann; Neumann/Neumann. The controls are active on a suitable portion of the boundary. These results cannot be obtained by standard multipliers.
URI: http://hdl.handle.net/10077/4426
ISSN: 0049-4704
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.28 (1996) s.

Files in This Item:

File Description SizeFormat
TriggianiRendMat28s.pdf387.78 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.