OpenstarTs >
Ricerca >
Tesi di dottorato >
Scienze matematiche e informatiche >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4468

Title: Computer vision models in surveillance robotics
Authors: Moro, Alessandro
Supervisor/Tutor: Mumolo, Enzo
Issue Date: 31-Mar-2011
Publisher: Università degli studi di Trieste
Abstract: In questa Tesi, abbiamo sviluppato algoritmi che usano l’informazione visiva per eseguire, in tempo reale, individuazione, riconoscimento e classificazione di oggetti in movimento, indipendentemente dalle condizioni ambientali e con l’accurattezza migliore. A tal fine, abbiamo sviluppato diversi concetti di visione artificial, cioè l'identificazione degli oggetti di interesse in tutta la scena visiva (monoculare o stereo), e la loro classificazione. Nel corso della ricerca, sono stati provati diversi approcci, inclusa l’individuazione di possibili candidati tramite la segmentazione di immagini con classificatori deboli e centroidi, algoritmi per la segmentazione di immagini rafforzate tramite informazioni stereo e riduzione del rumore, combinazione di popolari caratteristiche quali quelle invarianti a fattori di scala (SIFT) combinate con informazioni di distanza. Abbiamo sviluppato due grandi categorie di soluzioni associate al tipo di sistema usato. Con camera mobile, abbiamo favorito l’individuazione di oggetti conosciuti tramite scansione dell’immagine; con camera fissa abbiamo anche utilizzato algoritmi per l’individuazione degli oggetti in primo piano ed in movimento (foreground detection). Nel caso di “foreground detection”, il tasso di individuazione e classificazione aumenta se la qualita’ degli oggetti estratti e’ alta. Noi proponiamo metodi per ridurre gli effetti dell’ombra, illuminazione e movimenti ripetitivi prodotti dagli oggetti in movimento. Un aspetto importante studiato e’ la possibilita’ di usare algoritmi per l’individuazione di oggetti in movimento tramite camera mobile. Soluzioni efficienti stanno diventando sempre piu’ complesse, ma anche gli strumenti di calcolo per elaborare gli algoritmi sono piu’ potenti e negli anni recenti, le architetture delle schede video (GPU) offrono un grande potenziale. Abbiamo proposto una soluzione per architettura GPU di una gestione delle immagini di sfondo, al fine di aumentare le prestazioni di individuazione. In questa Tesi abbiamo studiato l’individuazione ed inseguimento di persone for applicazioni come la prevenzione di situazione di rischio (attraversamento delle strade), e conteggio per l’analisi del traffico. Noi abbiamo studiato questi problemi ed esplorato vari aspetti dell’individuazione delle persone, gruppi ed individuazione in scenari affollati. Comunque, in un ambiente generico, e’ impossibile predire la configurazione di oggetti che saranno catturati dalla telecamera. In questi casi, e’ richiesto di “astrarre il concetto” di oggetti. Con questo requisito in mente, abbiamo esplorato le proprieta’ dei metodi stocastici e mostrano che buoni tassi di classificazione possono essere ottenuti a condizione che l’insieme di addestramento sia abbastanza grande. Una struttura flessibile deve essere in grado di individuare le regioni in movimento e riconoscere gli oggetti di interesse. Abbiamo sviluppato una struttura per la gestione dei problemi di individuazione e classificazione. Rispetto ad altri metodi, i metodi proposti offrono una struttura flessibile per l’individuazione e classificazione degli oggetti, e che puo’ essere usata in modo efficiente in diversi ambienti interni ed esterni.
PhD cycle: XXII Ciclo
PhD programme: INGEGNERIA DELL'INFORMAZIONE
Description: 2009/2010
Keywords: Computer Vision
Surveillance
Objects detection
Classification
Main language of document: it
Type: Tesi di dottorato
Doctoral Thesis
Scientific-educational field: ING-INF/05 SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
NBN: urn:nbn:it:units-9028
Appears in Collections:Scienze matematiche e informatiche

Files in This Item:

File Description SizeFormat
Tesi.pdfTesi dottorato6.79 MBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.