OpenstarTs >
Ricerca >
Tesi di dottorato >
Ingegneria industriale e dell'informazione >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4520

Title: Machine learning in engineering applications
Other Titles: Ingegnerizzazione di Algoritmi di Machine Learning
Authors: Davanzo, Giorgio
Supervisor/Tutor: Bartoli, Alberto
Co-supervisor: Medvet, Eric
Issue Date: 31-Mar-2011
Publisher: Università degli studi di Trieste
Abstract: Nowadays the available computing and information-storage resources grew up to a level that allows to easily collect and preserve huge amount of data. However, several organizations are still lacking the knowledge or the tools to process these data into useful informations. In this thesis work we will investigate several issues that can be solved effectively by means of machine learning techniques, ranging from web defacement detection to electricity prices forecasting, from Support Vector Machines to Genetic Programming. We will investigate a framework for web defacement detection meant to allow any organization to join the service by simply providing the URLs of the resources to be monitored along with the contact point of an administrator. Our approach is based on anomaly detection and allows monitoring the integrity of many remote web resources automatically while remaining fully decoupled from them, in particular, without requiring any prior knowledge about those resources—thus being an unsupervised system. Furthermore, we will test several machine learning algorithms normally used for anomaly detection on the web defacement detection problem. We will present a scrolling system to be used on mobile devices to provide a more natural and effective user experience on small screens. We detect device motion by analyzing the video stream generated by the camera and then we transform the motion in a scrolling of the content rendered on the screen. This way, the user experiences the device screen like a small movable window on a larger virtual view, without requiring any dedicated motion-detection hardware. As regards information retrieval, we will present an approach for information extraction for multi-page printed document; the approach is designed for scenarios in which the set of possible document classes, i.e., document sharing similar content and layout, is large and may evolve over time. Our approach is based on probability: we derived a general form for the probability that a sequence of blocks contains the searched information. A key step in the understanding of printed documents is their classification based on the nature of information they contain and their layout; we will consider both a static and a dynamic scenario, in which document classes are/are not known a priori and new classes can/can not appear at any time. Finally, we will move to the edge of machine learning: Genetic Programming. The electric power market is increasingly relying on competitive mechanisms taking the form of day-ahead auctions, in which buyers and sellers submit their bids in terms of prices and quantities for each hour of the next day. We propose a novel forecasting method based on Genetic Programming; key feature of our proposal is the handling of outliers, i.e., regions of the input space rarely seen during the learning.
Oggigiorno le risorse disponibili in termini computazionali e di archiviazione sono cresciute ad un livello tale da permettere facilmente di raccogliere e conservare enormi quantità di dati. Comunque, molte organizzazioni mancano ancora della conoscenza o degli strumenti necessari a processare tali dati in informazioni utili. In questo lavoro di tesi si investigheranno svariati problemi che possono essere efficacemente risolti attraverso strumenti di machine learning, spaziando dalla rilevazione di web defacement alla previsione dei prezzi della corrente elettrica, dalle Support Vector Machine al Genetic Programming. Si investigherà una infrastruttura per la rilevazione dei defacement studiata per permettere ad una organizzazione di sottoscrivere il servizio in modo semplice, fornendo l'URL da monitorare ed un contatto dell'amministratore. L'approccio presentato si basa sull'anomaly detection e permette di monitorare l'integrità di molte risorse web remote in modo automatico e sconnesso da esse, senza richiedere alcuna conoscenza a priori di tali risorse---ovvero, realizzando un sistema non supervisionato. A questo scopo verranno anche testati vari algoritmi di machine learning solitamente usati per la rilevazione di anomalie. Si presenterà poi un sistema di scorrimento da usare su dispositivi mobili capace di fornire una interfaccia naturale ed efficace anche su piccoli schermi. Il sistema rileva il movimento del dispositivo analizzando il flusso video generato dalla macchina fotografica integrata, trasformando lo spostamento rilevato in uno scorrimento del contenuto visualizzato sullo schermo. In questo modo, all'utente sembrerà che il proprio dispositivo sia una piccola finestra spostabile su una vista virtuale più ampia, senza che sia richiesto alcun dispositivo dedicato esclusivamente alla rilevazione dello spostamento. Verrà anche proposto un sistema per l'estrazione di informazioni da documenti stampati multi pagina; l'approccio è studiato per scenari in cui l'insieme di possibili classi di documenti (simili per contenuto ed organizzazione del testo) è ampio e può evolvere nel tempo. L'approccio si basa sulla probabilità: è stata studiata la probabilità che una sequenza di blocchi contenga l'informazione cercata. Un elemento chiave nel comprendere i documenti stampati è la loro classificazione in base alla natura delle informazioni che contengono e la loro posizione nel documento; verranno considerati sia uno scenario statico che uno dinamico, in cui il numero di classi di documenti è/non è noto a priori e nuove classi possono/non possono apparire nel tempo. Infine, ci si muoverà verso i confini del machine learning: il Genetic Programming. Il mercato della corrente elettrica si basa sempre più su aste in cui ogni giorno venditori ed acquirenti fanno delle offerte per l'acquisto di lotti di energia per il giorno successivo, con una granularità oraria della fornitura. Verrà proposto un nuovo metodo di previsione basato sul Genetic Programming; l'elemento chiave della soluzione qui presentata è la capacità di gestire i valori anomali, ovvero valori raramente osservati durante il processo di apprendimento.
PhD cycle: XXIII Ciclo
PhD programme: SCUOLA DI DOTTORATO DI RICERCA DI INGEGNERIA DELL'INFORMAZIONE
Description: 2009/2010
Keywords: Machine Learning
Defacement Detection
Rilevazione Defacement
Genetic Programming
Main language of document: en
Type: Tesi di dottorato
Doctoral Thesis
Scientific-educational field: ING-INF/05 SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
NBN: urn:nbn:it:units-8999
Appears in Collections:Ingegneria industriale e dell'informazione

Files in This Item:

File Description SizeFormat
Davanzo-phd.pdfPhd Thesis3.45 MBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.