OpenstarTs >
EUT-Periodici >
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics >
Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.09 (1977) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/6482

Title: Oscillatory and asymptotic characterization of the solutions of higher order forced differential equations generated by deviating arguments
Authors: Chen, Lu San
Yeh, Cheh Chih
Issue Date: 1977
Publisher: Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Citation: Lu San Chen, Cheh Chih Yeh, "Oscillatory and asymptotic characterization of the solutions of higher order forced differential equations generated by deviating arguments", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 9 (1977), pp. 70-82.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
9 (1977)
Abstract: In questo lavoro si classificano tutte le soluzioni dell'equazione differenziale non lineare forzata con argomenti devianti: \[ X^{(n)}(t)+\overset{m}{\underset{i=1}{\sum}f_{i}(t},x[g_{i1}(t)],\ldots,x[g_{ir}(t)])=\Phi(t) \] con riguardo al loro comportamento per $t\rightarrow\infty$e al loro carattere oscillatorio.
In this paper we classify all solutions of the nonlinear forced diffrential equation with deviating arguments: \[ X^{(n)}(t)+\overset{m}{\underset{i=1}{\sum}f_{i}(t},x[g_{i1}(t)],\ldots,x[g_{ir}(t)])=\Phi(t) \] with respect to their behavior as $t\rightarrow\infty$ and to their oscillatory character.
URI: http://hdl.handle.net/10077/6482
ISSN: 0049-4704
Appears in Collections:Rendiconti dell‘ Istituto di matematica dell‘ Università di Trieste: an International Journal of Mathematics vol.09 (1977)

Files in This Item:

File Description SizeFormat
ChenYehRendMat09.pdf643.09 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.