Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/21598
Title: | Veronesean almost binomial almost complete intersections | Authors: | Kahle, Thomas Wagner, André |
Keywords: | Veronese; complete intersection; binomial ideal; multigrading | Issue Date: | 2018 | Publisher: | EUT Edizioni Università di Trieste | Source: | Thomas Kahle, André Wagner, "Veronesean almost binomial almost complete intersections", in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 50 (2018)", Trieste, EUT Edizioni Università di Trieste, 2018, pp. 65-79 | Abstract: | The second Veronese ideal I$_{n}$ contains a natural complete intersection J$_{n}$ of the same height, generated by the principal 2-minors of a symmetric (n x n)-matrix. We determine subintersections of the primary decomposition of J$_{n}$ where one intersectand is omitted. If I$_{n}$ is omitted, the result is a direct link in the sense of complete intersection liaison. These subintersections also yield interesting insights into binomial ideals and multigraded algebra. For example, if n is even, I$_{n}$ is a Gorenstein ideal and the intersection of the remaining primary components of J$_{n}$ equals J$_{n}$+ 〈f〉 for an explicit polynomial f constructed from the fibers of the Veronese grading map. |
Type: | Article | URI: | http://hdl.handle.net/10077/21598 | ISSN: | 0049-4704 | eISSN: | 2464-8728 | DOI: | 10.13137/2464-8728/21598 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 Internazionale |
Appears in Collections: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.50 (2018) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
KahleWag.pdf | 324.53 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s)
264
checked on May 27, 2022
Download(s)
57
checked on May 27, 2022
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License