XXVI CICLO DEL DOTTORATO DI RICERCA IN
NEUROSCIENZE E SCIENZE COGNITIVE
Indirizzo: Neurobiologia

CORRELATI ANATOMICI, NEUROCHIMICI E FUNZIONALI
DI EVENTI NEURODEGENERATIVI NEL RATTO
Settore Scientifico-Disciplinare: BIO-09

DOTTORANDA:
Margherita Riggi

COORDINATORE DELLA SCUOLA:
Chiar.mo Prof. Piero Paolo Battaglini

SUPERVISORE:
Chiar.mo Prof. Giampiero Leanza

ANNO ACCADEMICO 2012/2013
“Si deve incominciare a perdere la memoria,
anche solo brandelli di ricordi,
per capire che in essa consiste la nostra vita.
Senza memoria la vita non è vita.
La nostra memoria è la nostra coerenza,
la nostra ragione,
il nostro sentimento,
persino il nostro agire.
Senza di essa non siamo nulla.”

(Luis Buñuel)
Indice

INDICE..1

ABBREVIAZIONI..5

1. INTRODUZIONE...7

1.1 LE MALATTIE NEURODEGENERATIVE...7

 1.1.1 Aspetti in comune tra AD e PD...8
 1.1.1.1 LA DEMENZA...8
 1.1.1.2 LE PROTEINOPATIE...9
 1.1.1.3 LA DEGENERAZIONE DEL LOCUS COERULEUS...17

 1.1.2 La malattia di Alzheimer..18
 1.1.2.1 FISIOPATOLOGIA...18
 1.1.2.2 MODELLI ANIMALI DI AD...26
 1.1.2.3 APPROCCI TERAPEUTICI..30

 1.1.3 La malattia di Parkinson..31
 1.1.3.1 FISIOPATOLOGIA...31
 1.1.3.2 MODELLI ANIMALI DI PD..34
 1.1.3.3 APPROCCI TERAPEUTICI..37

1.2 IL SUBSTRATO ANATOMICO DELLA MEMORIA...38

 1.2.1 L’ippocampo..39

 1.2.2 La corteccia prefrontale..40

 1.2.3 I sistemi di neuromodulazione presi in esame...41
 1.2.3.1 IL SISTEMA COLINERGICO DEL PROSENCEFALO DI BASE (BF)...41
 1.2.3.2 IL SISTEMA DOPAMINERGICO DELL’AREA TEGMENTALE VENTRALE (VTA)....................43
 1.2.3.3 IL SISTEMA NORADRENERGICO DEL LOCUS COERULEUS (LC)..46

2. SCOPI DELLA TESI..51

3. MATERIALI E METODI..53

 3.1 ANIMALI E CONDIZIONI DI ALLEVAMENTO..53

 3.2 DESING SPERIMENTALE..53
 3.2.1 Disfunzione della regolazione monoaminergica nel ratto..54
3.2.2 Effetti neuropatologici indotti da deplezione colinergica ed infusione ippocampale di beta-amiloide pre-aggregata nel ratto..55

3.3 SOSTANZE..56

3.3.1 Immunotossine..56
 3.3.1.1 192-IgG-saporina..56
 3.3.1.2 anti-DBH-saporina...57

3.3.2 Neurotossine..57
 3.3.2.1 6-idrossidopamina...57

3.3.3 Beta-amiloide 25-35 pre-aggregata..57

3.3.4 Altre sostanze utilizzate..57

3.4 PROCEDURE IN VIVO..58

3.4.1 Procedure di microchirurgia..58
 3.4.1.1 LESIONI NEONATALI...58
 3.4.1.2 LESIONI IN ADULTO..59

3.4.2 Test comportamentali...62
 3.4.2.1 IL MORRIS WATER MAZE..62
 3.4.2.2 LO SPATIAL PROBE TRIAL..64
 3.4.2.3 IL RADIAL ARM WATER MAZE...65

3.5 PROCEDURE EX VIVO..66

3.5.1 Sacrifici e processamento dei tessuti..66

3.5.2 Procedure istologiche...67
 3.5.2.1 COLORAZIONE ISTOCHIMICA PER LA RILEVAZIONE DELLE FIBRE ACHE-POSITIVE...67
 3.5.2.2 COLORAZIONE DI NISSL CON CRESEL VIOLETTO..................................67
 3.5.2.3 IMMUNOISTOCHIMICA..68

3.5.3 Analisi microscopiche...69

3.5.4 Analisi con Western Blot...69
 3.5.4.1 PREPARAZIONE DEI TESSUTI...70
 3.5.4.2 SEPARAZIONE DELLE PROTEINE MEDIANTE ELETTROFORESI SU SDS-PAGE....70
 3.5.4.3 BLOTTING IN CAMERA DI TRASFERIMENTO..71
 3.5.4.4 RICONOSCIMENTO DEGLI ANTIGENI E SVILUPPO DELLE LASTRE...............71
 3.5.4.5 ANALISI DENSITOMETRICHE...72
3.5.5 Analisi statistiche...72

4. RISULTATI..73

4.1 DISFUNZIONE DELLA REGOLAZIONE MONOAMINERGICA NEL RATTO........73

 4.1.1 Analisi funzionali...73
 4.1.1.1 REFERENCE MEMORY..73
 4.1.1.2 ACCURATEZZA DELL’APPRENDIMENTO.......................................75
 4.1.1.3 WORKING MEMORY...76

 4.1.2 Analisi istologiche...79
 4.1.2.1 EFFETTI ANATOMICI DELLE LESIONI..79

4.2 EFFETTI NEUROPATHOLOGICI INDOTTI DA DEPLEZIONE COLINERGICA ED INFUSIONE IPPOCAMPALE DI BETA-AMILIOIDE PRE-AGGREGATA NEL RATTO........82

 4.2.1 Osservazioni generali...82

 4.2.2 Analisi funzionali...82
 4.2.2.1 REFERENCE MEMORY..82
 4.2.2.2 ACCURATEZZA DELL’APPRENDIMENTO.......................................84
 4.2.2.3 WORKING MEMORY...85

 4.2.3 Analisi istologiche..88
 4.2.3.1 IL SISTEMA COLINERGICO..88
 4.2.3.2 BETA-AMILIOIDE 25-35...91
 4.2.3.3 TAU-FOSFORILATA..92
 4.2.3.4 TDP-43...94

 4.2.4 Analisi del contenuto proteico dell’ippocampo.....................................95
 4.2.4.1 APP..95
 4.2.4.2 TAU TOTALE...96
 4.2.4.3 TAU-FOSFORILATA...97
 4.2.4.4 TDP-43...98

5. DISCUSSIONE...100

5.1 DISFUNZIONE DELLA REGOLAZIONE MONOAMINERGICA NEL RATTO.......101

5.2 EFFETTI NEUROPATHOLOGICI INDOTTI DA DEPLEZIONE COLINERGICA ED INFUSIONE IPPOCAMPALE DI BETA-AMILIOIDE PRE-AGGREGATA NEL RATTO......105

5.3 CONCLUSIONI...110
6. BIBLIOGRAFÍA

112
Abbreviazioni

<table>
<thead>
<tr>
<th>Abbreviazione</th>
<th>Definizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>192-IgG-sap</td>
<td>192-Immunoglobulina G-saporina</td>
</tr>
<tr>
<td>6-OHDA</td>
<td>6-idrossidopamina</td>
</tr>
<tr>
<td>AChE</td>
<td>acetilcolinesterasi</td>
</tr>
<tr>
<td>ACh</td>
<td>acetilcolina</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer's disease - malattia di Alzheimer</td>
</tr>
<tr>
<td>anti-DBH-sap</td>
<td>anti-dopamina beta-idrossilasi-saporina</td>
</tr>
<tr>
<td>AP</td>
<td>antero-posteriore</td>
</tr>
<tr>
<td>APOE</td>
<td>apolipoproteina E</td>
</tr>
<tr>
<td>APP</td>
<td>proteina precursore dell'amilioide</td>
</tr>
<tr>
<td>beta-A</td>
<td>beta-amiloide</td>
</tr>
<tr>
<td>BF</td>
<td>Basal Forebrain – prosencefalo di base</td>
</tr>
<tr>
<td>CA1</td>
<td>corno d'Ammone 1</td>
</tr>
<tr>
<td>CA3</td>
<td>corno d'Ammone 3</td>
</tr>
<tr>
<td>ChAT</td>
<td>colina-acetiltransferasi</td>
</tr>
<tr>
<td>CTX FR</td>
<td>corteccia frontale</td>
</tr>
<tr>
<td>DA</td>
<td>dipamina</td>
</tr>
<tr>
<td>DBB</td>
<td>banda diagonale di Broca</td>
</tr>
<tr>
<td>DBH</td>
<td>dopamina beta-idrossilasi</td>
</tr>
<tr>
<td>DG</td>
<td>giro dentato</td>
</tr>
<tr>
<td>GSK-3</td>
<td>glycogen synthase kinasi-3</td>
</tr>
<tr>
<td>hDBB</td>
<td>branca orizzontale della banda diagonale di Broca</td>
</tr>
<tr>
<td>i.c.v.</td>
<td>intracerebroventricolare</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneale</td>
</tr>
<tr>
<td>L</td>
<td>Laterale</td>
</tr>
<tr>
<td>LBD</td>
<td>demenza con corpi di Lewy</td>
</tr>
<tr>
<td>LC</td>
<td>Locus Coeruleus</td>
</tr>
<tr>
<td>L-DOPA</td>
<td>L-diidrossifenilalanina</td>
</tr>
<tr>
<td>LTD</td>
<td>Long Term Depression – depressione a lungo termine</td>
</tr>
<tr>
<td>LTP</td>
<td>Long Term Potentation – potenziamento a lungo termine</td>
</tr>
<tr>
<td>MAPT</td>
<td>microtubule associated protein tau</td>
</tr>
<tr>
<td>MAPs</td>
<td>proteine associate ai microtubuli</td>
</tr>
<tr>
<td>MS</td>
<td>setto mediale</td>
</tr>
<tr>
<td>MWM</td>
<td>Morris Water Maze</td>
</tr>
<tr>
<td>NA</td>
<td>noradrenalina</td>
</tr>
<tr>
<td>Abbreviazioni</td>
<td>Definizione</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NES</td>
<td>segnale di esportazione nucleare</td>
</tr>
<tr>
<td>NBM</td>
<td>nucleo basale magnocellulare</td>
</tr>
<tr>
<td>NFT</td>
<td>Neurofibrillary tangles – grovigli neurofibrillari</td>
</tr>
<tr>
<td>NGF</td>
<td>Nerve Growth Factor – fattore di crescita neuronale</td>
</tr>
<tr>
<td>NLS</td>
<td>segnale di localizzazione nucleare</td>
</tr>
<tr>
<td>P</td>
<td>giorno di vita post-natale</td>
</tr>
<tr>
<td>p75NTR</td>
<td>recettore a bassa affinità per NGF</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s disease – malattia di Parkinson</td>
</tr>
<tr>
<td>PFA</td>
<td>paraformaldeide</td>
</tr>
<tr>
<td>PS</td>
<td>presenilina</td>
</tr>
<tr>
<td>RAWM</td>
<td>Radial Arm Water Maze</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature - temperatura ambiente</td>
</tr>
<tr>
<td>SD</td>
<td>Sprague Dawley</td>
</tr>
<tr>
<td>SDS</td>
<td>sodio-dodecil-solfato</td>
</tr>
<tr>
<td>SLA</td>
<td>sclerosi laterale amiotrofica</td>
</tr>
<tr>
<td>SNC</td>
<td>sistema nervoso centrale</td>
</tr>
<tr>
<td>SubC</td>
<td>Sub Coeruleus</td>
</tr>
<tr>
<td>TAU-P</td>
<td>tau-fosforilata</td>
</tr>
<tr>
<td>TDP-43</td>
<td>transactive response DNA-binding protein di 43 kDa</td>
</tr>
<tr>
<td>TH</td>
<td>tirosina idrossilasi</td>
</tr>
<tr>
<td>V</td>
<td>verticale</td>
</tr>
<tr>
<td>vDBB</td>
<td>branca verticale della banda diagonale di Broca</td>
</tr>
<tr>
<td>VTA</td>
<td>Ventral Tegmental Area – area tegmentale ventrale</td>
</tr>
</tbody>
</table>
1. Introduzione

1.1 LE MALATTIE NEURODEGENERATIVE

Le malattie neurodegenerative sono caratterizzate dalla progressiva disfunzione e morte di una o più popolazioni neuronali, con conseguente atrofia delle strutture coinvolte e graduale declino delle funzioni associate. Queste patologie possono essere ereditarie o sporadiche, e tra queste si possono annoverare: la malattia di Alzheimer (AD), quella di Parkinson (PD), la sclerosi multipla (SM), la sclerosi laterale amiotrofica (SLA), la malattia di Huntington e vari tipi di demenza (come ad esempio la demenza dei lobi fronto-temporali o FTLD).

Attualmente, per alcune di queste, sono disponibili degli approcci terapeutici che ne rallentano il decorso, tuttavia non esiste ancora alcuna cura o trattamento che riesca a far regredire o ad arrestare la loro progressione. [Kim e De Vellis, 2009] Per questo motivo, capire le basi patofisiologiche di queste malattie e sviluppare delle terapie mirate, è una delle più importanti sfide della medicina odierna.

In particolare, in questa tesi, prenderemo in considerazione i deficit cognitivi e gli aspetti neuropatologici che sono associati a due tra le più comuni malattie neurodegenerative: la malattia di Alzheimer e la malattia di Parkinson.

AD e PD appartengono ad una famiglia di patologie neurologiche, caratterizzate da neurodegenerazione, i cui deficit funzionali (motori, sensitivi o psicologici) sono progressivi, e la cui insorgenza si presenta tipicamente dopo la quinta o la sesta decade di vita. [Langston, 1998] Diversi studi ipotizzano che queste malattie potrebbero essere la diversa manifestazione di uno stesso processo disfunzionale (Fig. 1.1) [Appel, 1981; Eisen e Calne, 1992; Marien et al, 2004], poiché presentano vari elementi in comune, come la concomitante degenerazione dei neuroni appartenenti ai sistemi di neuromodulazione (colinergico, dopaminergico, noradrenergico e serotoninergico) [Zarow et al, 2003], ed anche la presenza, nei tessuti coinvolti, di aggregati di proteine con alterata conformazione in sede intra- od extracellulare. [Taylor et al, 2002]

![Fig. 1.1: Alla base della malattia di Alzheimer (AD) e della malattia di Parkinson (PD) potrebbero esserci gli stessi meccanismi neurodegenerativi che vengono scatenati da fattori eziologici diversi. [Perl et al, 1998] Infatti, come si vede in figura [modificata da Dunnett e Bjorklund, 1999], da eziologie multiple si possono ottenere gli stessi fenotipi clinici, dove AD e PD rappresentano gli estremi di una dimensione comprensiva di malattie intermedie o sindromi miste.](image-url)
1.1.1 Aspetti in comune tra AD e PD

1.1.1.1 LA DEMENZA

Nei pazienti affetti da malattia di Alzheimer o da malattia di Parkinson c’è spesso una sovrapposizione di sintomi clinici. In entrambe le patologie si nota ad esempio la presenza di demenza.

Il termine demenza, che deriva dal latino *dementia* ("privo di mente"), non designa univocamente una patologia, ma viene usato per definire una compromissione globale delle funzioni cerebrali superiori, in assenza di disturbi di vigilanza. Le funzioni superiori includono abilità cognitive come la memoria, l’attenzione, le capacità esecutive (pianificazione, organizzazione) e visuospatiali, le prassie (abilità di eseguire gesti in assenza di deficit motori), il linguaggio e l’elaborazione degli stati emozionali.

Per definizione, la condizione di demenza implica la perdita di abilità precedentemente acquisite, in opposizione a quella di *oligofrenia*, che definisce invece una carenza delle stesse abilità a causa di uno sviluppo deficitario.

Le forme di *demenza* possono essere classificate in base alla progressione della malattia e all’eziologia. Esistono infatti *demenze reversibili* ed *irreversibili*. Quelle reversibili rappresentano una piccola percentuale, e sono secondarie a malattie o disturbi a carico di altri organi o apparati. Ne sono un esempio le demenze distiroidee e carenziali. Le forme irreversibili invece costituiscono la maggior parte dei casi e possono essere suddivise ulteriormente in forme primarie e secondarie. Nelle forme primarie, la causa principale è indicata in processi degenerativi cronici, e ne fanno parte la malattia di Alzheimer (AD), la demenza con corpi di Lewy (DLB), la demenza fronto-temporale (FTD), la demenza associata a malattia di Parkinson (PDD) e la degenerazione cortico-basale (CBD). Le forme secondarie sono invece conseguenza di diversi processi patologici ed includono ad esempio la demenza vascolare (VAD), l’idrocefalo normoteso (NPH), le forme post-traumatiche (PTD), la demenza da atrofia cerebrale paracarcinomatosa, la demenza da ipossia cerebrale protratta, le demenze post-infettive (incluse quelle da infezione prionica o da HIV). [Finkel, 2001]

L’AD è la forma più comune di *demenza* e costituisce circa il 60-80% di tutti i casi [Larson et al, 1992]; mentre l’incidenza di *demenza* nei pazienti affetti da PD è sei volte maggiore in confronto a controlli sani della stessa età, inoltre la sua comparsa non è correlata a bradicinesia, depressione o ai farmaci usati come trattamento. [Celesia e Wanamaker, 1972; Hakim e Mathieson, 1979]
1.1.1.2 LE PROTEINOPATIE

Il termine *proteinopatie* viene usato per indicare delle malattie neurodegenerative che sono caratterizzate dall’accumulo e dall’aggregazione di specifiche proteine all’interno dei neuroni o nel parenchima cerebrale.

La malattia di Alzheimer e quella di Parkinson sono degli esempi tipici di *proteinopatie*. Altre patologie che sottostanno a questa definizione sono: la malattia associata a corpi di Lewy (LBD), le malattie prioniche, la taupatie, la sclerosi laterale amiotrofica (SLA), la degenerazione dei lobi fronto-temporali e la leucoencefalopatia (CADASIL). Questa lista esula dell’essere completa, ma riflette l’eterogeneità delle diverse *proteinopatie*. [Bayer, 2013]

In un cervello sano le proteine, che svolgono dei ruoli fisiologici, hanno struttura monomerica, mentre in condizioni patologiche subiscono dei cambiamenti conformazionali che, favorendone l’associazione, portano alla formazione di oligomeri, i quali eventualmente possono anche aggregarsi in strutture di ordine superiore. Questi aggregati proteici solitamente precipitano in diverse aree cerebrali. Le proteine in questo stato possono acquisire attività tossica oppure perdere la loro normale funzione fisiologica.

Dato che gli aggregati di proteine sono caratteristiche neuropatologiche comuni a tutte le *proteinopatie*, ciò potrebbe suggerire che queste malattie neurodegenerative derivino dalla disfunzione di meccanismi molecolari simili. E’ noto ad esempio che questi aggregati proteici possono essere causati da problemi di smaltimento (clearance) e di sovrapproduzione oppure da modificazioni post-trasduzionali che vanno ad alterare la conformazione nativa delle proteine. [Viscomi e D’Amelio, 2012]

Solitamente il quadro clinico di ogni malattia è determinato sulla base di quale popolazione neuronale risulta più vulnerabile, e viene definito dalla combinazione delle caratteristiche cliniche, patologiche e biochimiche. [Dickson, 2009]

Alcune *proteinopatie* sono caratterizzate da un unico tipo di aggregato proteico, mentre altre ne possono contenere diversi. Molto spesso le *proteinopatie* sono miste, cioè contengono delle caratteristiche patologiche che appartengono anche ad altre malattie, e questo rende difficile una loro diagnosi e terapia. Un esempio di ciò è la presenza nei cervelli di molti pazienti affetti da AD (dal 20 al 55% dei casi), di aggregati neurofibrillari e placche di beta-amiloide, caratteristiche neuropatologiche proprie della malattia di Alzheimer, in concomitanza con accumuli di alfa-sinucleina, tipici invece della malattia a corpi di Lewy e di degenerazione della *substantia nigra*, peculiarità della malattia di Parkinson. [Leverenz e Sumi, 1986; Ditter e Mirra, 1987; Duyckaerts et al, 2009] Inoltre, alcuni lavori riportano la
presenza di inclusioni neuronali e gliali di TDP-43 (TAR DNA-binding protein di 43 kDa) in più del 25-30% di casi di AD sporadico, o del 14% nei casi di AD familiare o sindrome di Down [Bigio, 2008; Wilson et al, 2011] Nel 42-97% dei casi di PD invece, è stata riscontrata la presenza, in ippocampo e corteccia cerebrale, di placche senili e aggregati neurofibrillari, con una prevalenza di 5-6 volte più elevata rispetto a dei controlli normali. [Hakim e Mathieson, 1979; Boller et al, 1980; Gaspar e Gray, 1984]

Di seguito vengono riportate alcune delle proteine che si trovano più frequentemente sotto forma di aggregati nelle proteinopatie.

BETA-AMIOLOIDE:

La beta-amiloide è un peptide che viene prodotto a partire dal taglio proteolitico della proteina precursores dell’amiloide (APP), una glicoproteina integrale di membrana espressa in maniera ubiquitaria, con livelli particolarmente alti nel sistema nervoso. [Selkoe, 1994] A partire da questa proteina hanno origine diversi frammenti che svolgono compiti differenti [Hardy e Selkoe, 2002; Zhang et al, 2011]

La funzione fisiologica della APP è ancora in gran parte indeterminata, ma è stato ipotizzato che potrebbe avere un ruolo importante nella crescita dei neuriti, nella sinaptogenesi, nel traffico assonale delle proteine neuronal e nella trasduzione del segnale transmembranale. [Zheng e Koo, 2006, Priller et al, 2006; Dong et al, 2012]

La APP è codificata a partire da un gene localizzato sul cromosoma 21, la cui presenza in copie multiple è peculiare della sindrome di Down, e la cui mutazione porta allo sviluppo di forme familiari di AD. [Waring e Rosemberg, 2008]

Una parte della APP viene internalizzata e degradata nei lisosomi [Sisodia et al, 1990], mentre un’altra piccola frazione raggiunge la membrana plasmatica e viene sottoposta a taglio proteolitico da parte di enzimi con attività secretasica (alfa-, beta- e gamma-secretasi) che danno origine ad una via amiloidogenica ed ad una non-amiloidogenica. (Fig. 1.2)

La via non-amiloidogenica prevede il taglio della APP da parte di una alfa-secretasi, da cui derivano un frammento N-terminale solubile (sAPP-alfa) ed un frammento C-terminale che rimane ancorato alla membrana (mAPP-alfa o C83) [Weidemann et al., 1989; Haas et al., 1992].

La via amiloidogenica invece comporta prima l’intervento di una beta-secretasi che taglia la APP in un frammento solubile (sAPP-beta), che viene rilasciato nello spazio extracellulare, lasciando un frammento C-terminale di 99 amminoacidi ancorato alla membrana (mAPP-beta o C99) [Seubert et al., 1993]; ed in seguito il processamento di quest’ultimo ad opera di una gamma-secretasi, che porta alla formazione del peptide di beta-amiloide e di un dominio C-terminale intracellulare della APP (AICD) [Anderson et al, 1992; Selkoe, 1994; Dong et al, 2012]. La gamma-secretasi può agire su due diversi siti di C99 e dare così origine a due

![Fig. 1.2: Rappresentazione schematica del processamento di APP (Gandy, 2005)](image)

Inoltre, tramite studi di biochimica, è stato osservato che la beta-amiloide viene anche modificata post-traduzionalmente attraverso i processi di isomerizzazione e di racemizzazione. [Mori et al, 1994; Kuo et al, 1998] Entrambe queste modificazioni
comportano un'accelerazione nell'aggregazione del peptide e nella formazione di fibrille. [Tomiyama et al, 1994]

La beta-amiloide, oltre ad essere neurotossica, ha anche effetti pro-infiammatori, infatti la sua deposizione in vivo attiva macrofagi e neutrofili. [Mattson et al, 1993; Simard et al, 2006]

Per gli esperimenti esposti in questa tesi è stato utilizzato il frammento 25-35 del peptide di beta-amiloide. Questa porzione in particolare è responsabile degli effetti neurotossici della beta-amiloide [Tran et al, 2002], inoltre da studi in vitro condotti su neuroni differenziati è stato visto che questo frammento causa la retrazione dendritica ed assonale, seguita da morte cellulare. La beta-amiloide 25-35 è in grado di aggregare e di dare origine a strutture fibrillari e protofibrillari che hanno effetto citotossico e che possono contribuire alla formazione delle placche senili [Delobette et al, 1997] (Fig. 1.3)

Fig. 1.3: Assemblamenti oligomerici e protofibrillari del peptide beta-amiloide 25-35 pre-aggregato, fotografati al microscopio a forza atomica (AFM) a bassa(A) ed elevata(B) risoluzione. In particolare in (B) si può notare la tipica struttura a foglietto-beta delle protofibrille. [Antonini et al, 2011]
TAU:

La proteina Tau viene codificata a partire da un unico gene (MAPT o microtubule associated protein tau) sito sul cromosoma 17. Nel cervello umano è espressa in sei diverse isoforme, che derivano dallo splicing alternativo del suo mRNA. [Iqbal et al, 2009] Fa parte della famiglia delle MAPs (microtubule associated proteins) e svolge un ruolo importante nell’organizzazione dei microtubuli: promuove il loro assemblamento a partire dalle subunità di tubulina e li stabilizza. [Weingarten et al, 1975; Drubin e Kirschner, 1986; Brandt e Lee, 1993; Panda et al, 1995]

Questa proteina nei neuroni immaturi ha un’espressione ubiquitaria, mentre nei neuroni maturi si trova principalmente nel compartimento assonale. [Kosik et al, 1986; Mandelkow e Mandelkow, 2012] La corretta localizzazione di Tau negli assoni è importante perché la sua presenza nel compartimento somato-dendritico è stata vista essere riconducibile ad uno dei primi segni di neurodegenerazione. [Braak et al, 2006]

La fosforilazione comunque non è l’unica modificazione post-traduzionale che può subire Tau, è stato visto infatti che anche altre alterazioni possono condurla ad aggregare, tra queste sono incluse: la glicosilazione, la glicazione, la prolil-isomerizzazione, il clivaggio o la troncazione, la nitrazione, la poliaminazione, l’ubiquitinazione, la sumoilazione e l’ossidazione. [Chen et al, 2004; Gong et al, 2005; Ballatore et al, 2007; Martin et al, 2011]

Quello che è ancora argomento di dibattito è se l’alterazione di Tau è una causa od una conseguenza del processo patologico; anche se nel caso della malattia di Alzheimer sembra sia chiaramente un effetto dovuto alla precedente aggregazione della beta-amiloide. [Hass e Selkoe, 2007] (Fig. 1.4)

I grovigli neurofibrillari di Tau sono solitamente intracellulari, agiscono danneggiando le funzioni citoplasmatiche ed interferendo con il normale trasporto assonale; ma recentemente è stato visto che Tau può avere anche effetti deleteri agendo a livello extracellulare. Infatti, dopo la morte neuronale Tau fuoriesce dalle cellule, e legandosi ai recettori muscarinici (M1 ed M3), provoca l’aumento del calcio intracellulare, il quale tramite effetto eccitotossico può danneggiare i neuroni ed i circuiti coinvolti. [Gomez-Ramos et al, 2008; Gomez-Ramos et al, 2009; Avila et al, 2013]
L’aggregazione di Tau nei neuroni e nelle cellule gliali è chiaramente correlata a disfunzioni cognitive e a morte neuronale. [Lu e Wood, 1993; Forst et al, 2009]

Fig. 1.4: Placche positive per beta-amiloide (A) e aggregati neurofibrillari positivi alla tau iperfosforilata (B) in un caso di AD. [Bayer, 2013]

ALFA-SINUCLEINA:

L’alfa-sinucleina è membro di una famiglia di proteine che ha funzioni pleiotropiche e nella quale sono comprese anche la beta-sinucleina e la gamma-sinucleina. [Clayton e George, 1998] E’ stata originariamente scoperta come componente non-amiloide delle placche senili nell’AD. [Iwai et al, 1996; Masliah et al, 1996b]

Diverse modificazioni post-traduzionali dell’alfa-sinucleina sono state associate allo sviluppo di patologie neurodegenerative, tra queste alterazioni si possono annoverare: la fosforilazione, l’ubiquitinazione, la nitrazione e la troncazione. [Oueslati et al, 2010; Beyer e Ariza, 2012]

E’ stato visto che l’alfa-sinucleina reagisce con i prodotti di degradazione enzimatica della dopamina (DA), in particolare il metabolita 3,4-diidrossifenilacetaldeide (DOPAL) risulta tossico, perché ne promuove l’aggregazione sia in vivo che in vitro. [Li et al, 2001; Burke et al, 2008]

TDP-43 (transactive response DNA-binding protein di 43 kDa):

TDP-43 è una proteina di 43 kDa costituita da 414 amminoacidi e codificata a partire dal gene TARDBP. Questo gene è sito sul cromosoma 1, è composto da 6 esoni e può andare incontro a 11 diverse forme di splicing alternativo. [Buratti e Baralle, 2008; Nishimoto et al, 2010]
Fig. 1.5: Rappresentazione schematica della struttura della proteina TDP-43 (parte alta della figura) e della sua localizzazione cellulare in condizioni fisiologiche (parte mediale della figura). In condizioni normali TDP-43 passa continuamente dal nucleo al citoplasma e viceversa, pur trovandosi prevalentemente nel compartimento nucleare. Negli stati patologici invece è ubiquitinata, clivata, fosforilata e forma aggregati insolubili nel citoplasma. Nella parte inferiore della figura sono mostrati diversi tipi di meccanismi patologici (da acquisto o perdita di funzione) che possono condurre a perdita neuronale. [Buratti e Baralle, 2010]
TDP-43 fa parte della famiglia delle ribonucleoproteine (hnRNP), è altamente conservata, è espressa in molti tessuti (tra i quali sono compresi il midollo spinale ed il cervello), ed in condizioni fisiologiche è localizzata prevalentemente nel nucleo. [Buratti et al, 2001; Bigio, 2008; Wang et al, 2008]

E' coinvolta in diversi processi, quali: la stabilizzazione dell’mRNA, la biogenesi dei microRNA, la trascrizione genica, la replicazione e la riparazione del DNA, la divisione cellulare e la regolazione della plasticità neuronale. [Strong et al, 2007; Buratti e Baralle, 2010]

L’aberrante accumulazione, l’errata localizzazione e l’iperfosforilazione possono essere la conseguenza di diverse mutazioni che possono incorrere nel gene TARDBP. In particolare, la maggior parte di queste è stata vista essere localizzata nell’esone 6 codificante per il dominio C-terminale di TDP-43, che quindi è stato ipotizzato essere il responsabile dell’effetto neurotossico di TDP-43. [Gendron et al, 2011]

Oltre a queste mutazioni geniche, TDP-43 può incorrere anche ad errato clivaggio, che porta alla generazione di frammenti C-terminali di 35 e 25 kDA, ubiquinati e fosforilati, in cui manca il segnale di indirizzamento nucleare. [Zhang et al, 2009]
I meccanismi molecolari che provocano l'aggregazione delle proteine nel citoplasma non sono ancora noti, e non si sa neppure se questa è causa o conseguenza del processo patologico. Si ipotizza che la neurodegenerazione potrebbe essere causata dall'alterazione del metabolismo degli RNA a livelli differenti (come nel processo di splicing dei pre-mRNA, nel trasporto degli mRNA e nella stabilizzazione dei microRNA). [Neumann, 2009; Budini e Buratti, 2011] Queste alterazioni potrebbero risultare in una perdita di funzioni di TDP-43 nel nucleo, a causa ad esempio dell'inibizione della sua produzione ad opera di meccanismi di feed-back (effetto da perdita di funzione), oppure in un'alterata localizzazione, o ancora nel rilascio nel citoplasma di frammenti C-terminali potenzialmente citotossici (effetto da acquisto di funzione). [Buratti e Baralle, 2010] (Fig. 1.5)

1.1.1.3 LA DEGENERAZIONE DEL LOCUS COERULEUS

del LC potrebbero derivare da un primario coinvolgimento del LC nelle fasi iniziali della patogenesi di AD e PD. [Mann et al, 1982; Hoogendijk et al, 1995]

1.1.2 La malattia di Alzheimer

La malattia di Alzheimer (AD) è una patologia neurodegenerativa progressiva di eziologia ignota che colpisce prevalentemente le persone sopra i 60 anni di età. E’ caratterizzata da un declino graduale delle funzioni cognitive (quali la memoria per eventi recenti e remoti, il linguaggio, la capacità di giudizio, l’attenzione) ed esecutive (quali la pianificazione e l’organizzazione). [Marien et al, 2004] Al mondo ci sono circa 35 milioni di persone affette da AD e si prevede che nel 2030 il loro numero aumenterà fino a raggiungere i 70 milioni [Dartigues, 2009].

Questa malattia prende il nome dallo psichiatra tedesco Alois Alzheimer, il quale nel 1906, durante un convegno a Monaco, presentò per la prima volta la sindrome clinico-patologica riscontrata su una donna cinquantenne (Auguste D.). Questa paziente presentava problemi progressivi alla memoria, al linguaggio e nel comportamento. Quando morì, il dottor Alzheimer ne esaminò il cervello ed identificò delle modificazioni interessanti del tessuto, quali: atrofia cerebrale, dense deposizioni di beta-amiloide attorno alle cellule nervose (le placche neuritiche) ed intracellularmente dei grovigli di fibre costituiti dalla proteina Tau iperfosforilata (gli accumuli neurofibrillari). [Watson e Seiden, 1984; Jellinger, 2009]

Sebbene questa patologia sia stata identificata più di 100 anni fa, l’interesse della ricerca verso sintomi, le cause, i fattori di rischio che la caratterizzano ed i possibili trattamenti è sbocciato solo negli ultimi 30 anni. Attualmente le cause che conducono allo sviluppo di questa patologia sono ancora ignote e l’indagine sulle cure da adottare sta procedendo lentamente anche per la mancanza di un animale modello completo con cui poter studiare l’AD.

1.1.2.1 FISIOPATOLOGIA

In base all’età d’insorgenza ed alla familiarità è possibile distinguere due diversi tipi di AD:

- *AD familiare (Familiar AD - FAD)*
• *AD ad insorgenza tardiva (Late Onset AD – LOAD).*

La forma familiare è caratterizzata da un’insorgenza precoce (prima dei 60 anni), da una trasmissione mendeliana autosomica dominante e rappresenta l’1% di tutti i casi di AD. [Goate et al, 1991] La FAD è causata principalmente dalla mutazione di tre geni che codificano rispettivamente per: la presenilina 1 (PSEN1, sul cromosoma 14), la presenilina 2 (PSEN2, sul cromosoma 1) e la proteina precursorescursore della beta-amiloloide (APP, sul cromosoma 21). [Crook et al, 1998; Williamson et al, 2009]

Il LOAD invece è caratterizzato da un’insorgenza più tardiva (oltre i 60 anni) e un pattern molto complesso. Si è visto che l’apoliporoteina E (APOE, sul cromosoma 19) è un fattore di suscettibilità per lo sviluppo del LOAD. [Ertekin-Taner et al, 2007]

Nonostante le diverse cause d’insorgenza, queste forme di AD presentano le stesse caratteristiche patologiche, sia a livello microscopico (placche di beta-amiloloide, perdita di neuroni colinergici, grovigli neurofibrillari) che macroscopico (atrofia corticale e sottocorticale). [Apostolova e Thompson, 2008; Apostolova et al, 2011]

In entrambe queste forme i sintomi si aggravano con il passare del tempo, perciò è possibile identificare diversi stadi di AD che vengono così ripartiti:

- **Nello stadio preclinico** i pazienti non presentano sintomi comportamentali, ma si può già notare l’accumulo di placche di beta-amiloloide e di Tau nel cervello, con conseguente disfunzione e morte neuronale.

- **Nell’AD lieve** (durata media 2-4 anni) i primi sintomi a comparire sono: la perdita di memoria, la difficoltà nel trovare le parole, la compromissione della visione e della percezione dello spazio, deficit di giudizio e di ragionamento, cambiamenti d’umore e personalità. In questa fase viene spesso diagnosticato l’AD.

- **Nell’AD moderato** (durata media 2-10 anni) si riscontrano danni a livello delle aree cerebrali che controllano il linguaggio, il ragionamento, i processi sensoriali ed il pensiero cosciente. I pazienti iniziano ad avere problemi a riconoscere i familiari e gli amici ed ad imparare cose nuove, inoltre sono affetti da allucinazioni, sentimenti di delusione e paranoia.

- **L’ AD grave** (durata media 3 anni) è caratterizzato da critiche condizioni generali del paziente, egli infatti non può più comunicare ed è completamente dipendente dalle cure degli altri. In questo stadio le placche ed i grovigli neurofibrillari si trovano sparsi per tutto cervello ed il tessuto risulta essere molto atrofizzato. Anche le abilità motorie del paziente sono compromesse, ed i processi basilari come la digestione, la respirazione e l’escrezione risultano rallentati.

Il meccanismo fisiopatologico che porta all’insorgenza della malattia di Alzheimer è tutt’ora ignoto, però a riguardo sono state formulate una moltitudine di ipotesi sulla sua eziogenesi e patogenesi, tra le quali troviamo il coinvolgimento di fattori genetici e vascolari, dello stress.
ossidativo, della disfunzione dell’omeostasi del calcio, di squilibri ormonali, di processi infiammatori e reazioni immunitarie, dell’alterazione del ciclo cellulare e della disfunzione neurotrasmettitoriale. Fin’ora tra le più accreditate troviamo l’ipotesi colinergica, l’ipotesi della cascata della beta-amiloide e l’ipotesi della Tau-iperfosforilata, che vengono esposte qui di seguito. [Mohandas et al, 2009]

L’IPOTESI COLINERGICA:

L’AD viene spesso catalogato come una patologia che coinvolge l’innervazione colinergica [Bartus et al, 1982; Coyle et al, 1983], poichè da analisi autoptiche di pazienti risulta esserci una grave deplezione (60-90%) nella corteccia e nell’ippocampo dell’enzima che sintetizza l’acetilcolina, cioè la colina acetiltransferasi (ChAT) [Perry et al, 1977]; ed una riduzione del 30-90% nel numero dei neuroni colinergici presenti nel nucleo basale di Meynert (nbM). [Davies e Maloney, 1976; Perry, 1980; Whitehouse et al, 1982]

Inoltre, da studi post-mortem, dall’analisi delle conseguenze comportamentali dei farmaci colinomimetici e di lesioni colinergiche, è stato visto che il grado di deplezione colinergica o della sua disfunzione neurotrasmettitoriale correla positivamente con la gravità dei deficit cognitivi. [Wilcock et al, 1982; DeKosky et al, 1992; Francis et al, 1999]

Inoltre, studi farmacologici effettuati sull’uomo hanno mostrato come tali sostanze impediscano la formazione di nuove memorie senza influenzare il recupero di eventi remoti. [Hasselmo, 2006] Al contrario, sostanze ad azione colinomimetica promuovono l’acquisizione di nuove tracce di memoria sia nell’uomo che nei modelli animali. [Buccafusco et al, 2005]

Questo dimostra quanto l’attivazione dei recettori colinergici possa essere una componente importante nel processo di consolidamento della memoria. [Power et al., 2003]

Al giorno d’oggi è chiaro che il sistema colinergico è cruciale per i processi di apprendimento e memoria [Auld et al, 2002], anche se le disfunzioni che lo coinvolgono potrebbero causare deficit cognitivi in modo indiretto, ad esempio interferendo con i processi attentivi. [Francis et al, 1999] Il suo ruolo nella regolazione di questi processi è perciò ancora ampiamente dibattuto, poiché è difficile assegnare la piena responsabilità di meccanismi tanto complessi ad un unico sistema neurale o ad una singola area cerebrale. [Dunnett et al, 1991; Chappell et al, 1998]

L’IPOTESI AMILOIDE:

Grazie all’innovazione delle tecniche di biologia molecolare, nel 1991 la beta-amiloide venne introdotta tra le ipotesi che cercano di spiegare l’origine dell’AD. Infatti, il ritrovamento di placche senili nei cervelli dei pazienti affetti da questa malattia, fu considerato da quel momento uno dei tratti distintivi per la diagnosi differenziale di AD. Inoltre si ipotizzò che la presenza di questi depositi di beta-amiloide fosse una delle principali cause di sviluppo di tale patologia neurodegenerativa. [Hardy e Allsop, 1991]

Questa ipotesi si focalizza in particolare sulla disfunzione dei meccanismi di produzione, smaltimento ed accumulo extra-cellulare della beta-amiloide [Hardy e Selkoe, 2002], e di come le placche senili svolgano degli effetti citotossici nel tessuto cerebrale in cui si depositano. Come descritto in precedenza, queste placche sono costituite da aggregati filamentosi di beta-amiloide (prevalentemente 1-42), peptide che viene prodotto dalla proteolisi della proteina precursore dell’amiloide (APP). [Jarrett et al, 1993]

non siano condotti necessariamente alla morte, subiscono modificazioni tali da indurre dei deficit cognitivi e mnemonici riconducibili all’AD. [Selkoe, 2002]

Ed un’ulteriore evidenza del ruolo centrale della beta-amiloide nell’insorgenza della malattia è data dal fatto che la presenza dell’apolipoproteina E-4 (APOE-4), nota per essere associata ad una maggior probabilità di sviluppare l’AD, determina una più rapida deposizione delle placche amiloidi [Butterfield et al, 2002]

Alla luce di queste evidenze è possibile concludere che la perdita di regolazione nel processamento di APP e nell’accumulo di beta-amiloide nel cervello, potrebbe contribuire direttamente al danno neuronale e sinaptico, quindi alla patogenesi della malattia di Alzheimer. [Zheng e Koo, 2006]

L’IPOTESI TAU-FOSFORILATA:

Per descrivere il ruolo della proteina Tau nell’AD, è stata introdotta l’ipotesi della Tau fosforilata: un’eccessiva o anormale fosforilazione di Tau risulta nell’aggregazione di Tau in filamenti accoppiati ad elica (PHF-Tau) ed in grovigli neurofibrillari (NTFs), la cui deposizione correla positivamente con la progressione dell’AD per quanto riguarda sia il declino cognitivo che la neurodegenerazione. [Honson e Kuret, 2008].

Si è visto che mutazioni che alterano la funzione e l’espressione delle isoforme di Tau portano alla sua iperfosforilazione. Questo stato impedisce a Tau di legarsi alla tubulina, di promuovere l’assemblamento dei microtubuli, la conducono ad auto-aggregarsi in filamenti accoppiati ad elica ed a sequestrare le altre proteine normalmente associate ad i microtubuli (MAPs). [Iqbal et al, 2009] Inoltre in questa forma Tau risulta insolubile, danneggiando le funzioni citoplasmatiche ed il trasporto assonale, conducendo quindi a morte neuronale.
Si sa che la proteina Tau è substrato di diverse proteine kinasi, quali la kinasi glicogeno sintetasi-3 (GSK-3), la proteina kinasi dipendente dalla ciclina-5 (cdk-5), la proteina kinasi A (PKA) ed altre; ma non è ancora noto come venga generata la Tau iperfosforilata. Lavori in vitro ed in vivo fin’ora hanno dimostrato che la GSK-3 potrebbe svolgere un ruolo considerevole in questo processo, poiché presenta un impatto notevole sulla regolazione delle isoforme di Tau [Voss e Gamblin, 2009], aumenta la produzione di beta-amiloide e nell’AD la sua attività risulta aumentata. [Hooper et al, 2008]

L’ipotesi della Tau-fosforilata è stata quindi formulata perché si sono viste delle correlazione tra i livelli di lesioni neurofibrillari ed il grado di neurodegenereazione, ma ancora ad oggi molti dei meccanismi che regolano la sua iperfosforilazione, aggregazione e tossicità sono da chiarire, per questo motivo sarebbero necessari dei modelli di malattia più accurati e validi.

ALTRE IPOTESI:

L’AD è una malattia davvero complessa, che sembra causata dall’interazione di diversi fattori, in cui l’accumulo di beta-amiloide e la deplezione colinergica rappresentano solo un particolare aspetto della malattia. Per questo motivo esistono molte altre ipotesi che cercano di spiegare la sua eziogenesi e patogenesi. Tra queste troviamo:

- L’ipotesi infiammatoria, che supporta l’idea che l’AD può essere determinato da processi infiammatori che coinvolgono la microglia, gli astrocti ed i neuroni. L’invecchiamento è accompagnato infatti da una progressiva alterazione del sistema immunitario, in particolare è presente un continuo stato infiammatorio che può portare ad una disfunzione degli organi. [Fulop et al, 2005; Fulop et al, 2013] Si è visto inoltre che le citochine pro-infiammatorie controllano l’attivitò del gene APP, incrementandola. [Wright et al, 2013]

- L’ipotesi eccitotossica da glutammato, è basata sull’osservazione di iper-attività glutammatergica nei malati di AD. La disfunzione nel trasportatore del glutammato, sia nei neuroni che negli astrocti, provocherebbe infatti un eccesso di questo neurotrasmettitore nello spazio sinaptico, che causerebbe eccitotossicità e danno neuronale. [Masliah et al, 1996a; Li et al, 1997]

- L’ipotesi dello stress ossidativo afferma che l’attività delle specie reattive dell’ossigeno (ROS o radicali liberi) potrebbero provocare danno ossidativo nelle cellule e causarne la morte.
• **L’ipotesi vascolare** propone uno sviluppo dell’AD correlato all’aumento dei fattori di rischio vascolari. In molti casi clinici di AD si notano infatti delle alterazioni nelle arterie dei pazienti, ma potrebbero essere semplicemente casi di demenza mista, tra AD e demenza vascolare. [Maksimovich, 2012]

• **L’ipotesi del colesterolo**, in cui è coinvolta l’apoproteina E (ApoE), essenziale per il catabalismo delle lipoproteine costituenti i trigliceridi, che sembra cruciale anche nell’influenzare l’insorgenza dell’AD e la deposizione delle placche di beta-amiloide.

• **L’ipotesi dei metalli**, formulata dopo il ritrovamento nelle placche di beta-amiloide di alte concentrazioni degli ioni rame, ferro e zinco. Si sa inoltre che sia la beta-amiloide che l’APP presentano nella loro struttura dei siti di legame per questi ioni metallici.

• **L’ipotesi prionica**, assume che una proteina prionica potrebbe essere l’agente eziologico dell’AD. Infatti, da studi su roditori si è visto che se nel cervello di questi vengono inoculati dei preparati a base di materia cerebrale umana colpita da AD, essi sviluppano la malattia dopo circa 3 anni e mezzo. Oppure, in un altro studio si è visto che, iniettando nel parenchima cerebrale dei topi delle proteine Tau mutate, queste formano aggregati dopo circa un anno. Questo fornisce la dimostrazione che la malattia è trasmissibile, molto probabilmente tramite un agente prionico. [Castellani et al, 2004]

esempio Heneka e collaboratori sono stati i primi ad ossevare che effettuando una deplezione del sistema noradrenergico simultaneamente all’infusione in corteccia di bata-amiloide 1-42 preaggregata, veniva indotto un notevole aumento della risposta infiammatoria mediata dalla beta-amiloide. [Heneka et al, 2002] Inoltre, in animali transgenici che recano la forma mutata dell’APP umana, lesioni simili provano un considerevole aumento della risposta infiammatoria, della deposizione di placche amiloidi, della neurodegenerazione in corteccia ed ippocampo, ed un peggioramento delle funzioni cognitive. [Heneka et al, 2006] Resta tuttavia da chiarire se sia la degenerazione dei neuroni noradrnergici a determinare un aumento della deposizione di placche amiloidi o viceversa. Da diversi lavori emerge come la neurodegenerazione a carico del LC sia almeno contemporanea alla deposizione degli aggregati amiloidi. Inoltre, come è già stato detto, è stato osservato che in pazienti affetti da AD si ha una precoce degenerazione dei neuroni noradrnergici, forse dovuta alla presenza nel LC di numerosi ammassi neurofibrillari. [Grudzien et al, 2007] Si pensa che la rimozione dell’innervazione noradrenergica porti da un lato all’inibizione della neprilisina, un enzima metalloproteasi zinco-dipendente coinvolto nella degradazione del beta-amiloide, come si osserva negli animali lesionati con DSP-4, e dall’altro alla mancata fagocitosi del beta-amiloide; infatti, studi in vitro, hanno dimostrato come la noradrenalina stimoli la fagocitosi del la beta-amiloide 1-42 da parte della microglia. [Kalinin et al, 2007] In conclusione è stato ipotizzato che la perdita di cellule nel LC è un aspetto specifico del processo patologico della malattia di Alzheimer, piuttosto che essere solamente una conseguenza indiscriminata del danno cerebrale che risulta nella demenza, anche perché si è visto che pazienti con demenza da infarti multipli non mostrano una simile perdita neuronale. [Mann et al, 1982] Invece, per quanto riguarda il coinvolgimento del sistema dopaminergico mesocorticolimbico nello sviluppo dell’AD, si è visto che c’è una diminuzione nella concentrazione di dopamina, sia a livello pre- che post-sinaptico, nella corteccia temporale e nell’ippocampo, di pazienti con questa malattia. [Re nikainen et al, 1990] Inoltre, sembra che la disfunzione di questo sistema, assieme a quella del sistema colinergico, influenzi l’aumento dei depositi di beta-amiloide nel cervello [Itoh et al, 1996] e contribuisca quindi a creare anche deficit di tipo cognitivo. È importante notare che, in casi di AD, è stato visto che il danno neuronale maggiore è a carico delle cellule dopaminergiche della VTA, mentre quelle della SN risultano meno intaccate. Questa disparità di degenerazione può essere spiegata andando a guardare le regioni che queste strutture innervano. Infatti, la VTA manda efferenza
alle aree corticali prefrontali ed alle strutture limbiche, che come si sa sono quelle in cui le placche senili ed i grovigli neurofibrillari sono presenti in quantità più elevate. Quindi, il danno dei neuroni dopaminergici appartenenti al circuito mesocorticolimbico potrebbe cominciare nelle zone terminali di questi, per poi propagarsi retrogradamente fino al soma. [Mann et al, 1987]

1.1.2.2 MODELLI ANIMALI DI AD

I modelli animali sono essenziali per lo studio delle malattie neurodegenerative, sia per capirne meglio le cause, che per testare e sviluppare nuove strategie terapeutiche. Nel caso dell’AD non esiste ancora un modello che presenti tutte le caratteristiche funzionali e istopatologiche tipiche di questa malattia. Tutti i modelli studiati fino ad ora hanno evidenziato delle limitazioni, ma nel loro insieme, ciascuno di essi ha dato un grande contributo alla ricerca sull’AD.

Poche specie animali al mondo sviluppano spontaneamente i disturbi cognitivi ed i sintomi neuropatologici simili a quelli dell’AD nell’uomo, perciò è stato necessario adeguare dei modelli a riprodurre le caratteristiche patologiche della malattia. Ad oggi sono stati introdotti in ricerca modelli di AD basati sul trattamento con farmaci anticolinergici, sull’impiego di lesioni cerebrali chirurgiche o chimiche più o meno selettive ed animali transgenici presentanti le mutazioni che si riscontrano più frequentemente nei pazienti umani. [Dunnett e Barth, 1991]

Di seguito vengono riportati i principali modelli animali studiati fino ad ora.

MODELLI FARMACOLOGICI:

I primi modelli di AD che sono stati sviluppati si sono ispirati all’ipotesi colinergica [Bartus et al, 1982] ed erano atti a bloccare l’azione dell’acetilcolina (ACh) in ippocampo e in corteccia cerebrale, attraverso la somministrazione di farmaci anti-colinergici, quali ad esempio la scopolamina o l’atropina (che agiscono sui recettori muscarinici inibendo l’azione colinergica), in soggetti sani. [Bartus, 2000] Questi studi, effettuati su modelli murini, scimmie e primati non umani, hanno dimostrato che la somministrazione di antagonisti muscarinici determina deficit di memoria spaziale, associabili a quelli descritti nelle fasi precoci dell’AD [Murphy e Boast, 1985], in numerosi test comportamentali, quali ad esempio il Radial Arm Maze ed il Morris Water Maze [Buresova et al, 1986]. E’ da notare però, che secondo alcune interpretazioni, gli anti-muscarinici non agirebbero direttamente sulla memoria bensi ridurrebbero l’attenzione o la discriminazione degli stimoli, alterando i processi sensoriali, od ancora potrebbero avere effetti sul controllo dei movimenti. [Kirk et al, 1988] Inoltre, i recettori muscarinici sono ampiamente distribuiti in tutto il SNC, per cui è presumibile che inibendoli si intervenga su un ampio spettro di funzioni anatomicamente
poco definibili. E’ stato visto, ad esempio che la forma metilata della scopolamina, la quale non passa attraverso la barriera emato-encefalica, appare ridurre comunque le performance in test cognitivi. [Auld et al, 2002]

Attualmente i modelli farmacologici sono stati un pò accantonati ed al giorno d’oggi vengono impiegati per lo più nello sviluppo e nello studio di sostanze candidate ad essere incluse nella famiglia dei farmaci dei *cognitive enhancers*.

MODELLI LESIVI:

Questa molecola è formata da una proteina di origine vegetale, la saporina (dal nome della pianta che la produce: la *Saponaria Officinalis*), coniugata ad un anticorpo monoclonale diretto contro il recettore p75NTR (l’immunoglobulina 192). La saporina fa parte della famiglia delle proteine inattivanti i ribosomi di tipo I (RIP-I) ed è in grado di determinare rapida morte cellulare legandosi alla subunità ribosomiale 60s ed inibendo in maniera irreversibile la sintesi proteica. [Stirpe et al, 1992; Contestabile e Stirpe, 1993] La saporina di per sé non ha un elevato grado di tossicità, in quanto non è in grado di attraversare la
membrana fosfolipidica cellulare. Se però viene somministrata coniugata con l’anticorpo 192-IgG, selettivo per il recettore p75NTR, è in grado di penetrare nella cellula grazie al legame risultante tra anticorpo-recettore e l’internalizzazione di questo complesso nella cellula. Questo complesso viene poi trasportato per via retrograda al soma, dove la saporina viene liberata determinando il blocco ribosomiale e la conseguente morte neuronale. [Thomas et al, 1991; Wiley, 1991] (Fig. 1.6)

![Fig. 1.6: Meccanismo d’azione delle immunotossine coniugate a saporina. L’anticorpo si lega in modo specifico ad un antigene espresso sulla superficie cellulare, il complesso viene internalizzato e la tossina inibisce la sintesi proteica provocando la morte cellulare.]

Numerosi studi condotti in ratto riportano come tale composto, somministrato direttamente nel parenchima cerebrale, riconosce in maniera selettiva le cellule colinergiche del prosencefalo basale [Torres et al, 1994], mentre se somministrato via intracerebroventricolare (ICV) determina anche una discreta perdita nel numero di cellule del Purkinje nel cervelletto, in quanto nel ratto adulto esprimono anch’esse il recettore p75NTR. [Pioro e Cuello, 1988; Leanza et al, 1995; Waite et al, 1995] Ad ogni modo, la somministrazione intraventricolare della tossina non influenza sui neuroni non colinergici contigui alle zone di iniezione [Leanza et al, 1995 e 1996], né tantomeno sui neuroni colinergici che proiettano all’amigdala, in quanto questi non esprimono il recettore p75NTR. [Heckers et al, 1994]

Nei numerosi studi che hanno utilizzato quest’immunotossina, è stato osservato che la perdita selettiva e dose-dipendente dei neuroni colinergici del MS e NBM, si associava ad una massiva deafferenzazione colinergica delle regioni target, quali la neocorteccia e la formazione ippocampale. I deficit indotti in test di apprendimento e memoria invece sono

A questo scopo, nel corso degli anni, sono state introdotte altre immunotossine, come ad esempio l’anti-dopamina beta-idrossilasi saporina (anti-DBH-sap), che agisce selettivamente sui neuroni noradrenergici del complesso Locus Coeruleus e Sub-Coeruleus (LC/SubC). [Milstein et al, 2007] Questi neuroni infatti esprimono selettivamente l’enzima dopamina-beta-idrossilasi, che è implicato nella produzione di noradrenalina. Questo enzima (DBH) si può trovare sia nel citoplasma che sulla membrana cellulare. [Sabban et al, 1983] In particolare, l’enzima viene esposto nell’ambiente extracellulare quando le cellule sono in attività e liberano noradrenalina. [Weinshilboum e Axelrod, 1971], permettendo in questo modo il legame con la parte anticorpale dell’immunotossina in questione. L’anti-DBH-sap infatti, come la 192-IgG-sap, è costituita da un anticorpo (in questo caso un anticorpo monoclonale anti-DBH) e dalla saporina (una proteina inattivante i ribosomi di tipo I), ed appena l’anticorpo si lega alla forma dell’enzima DBH esposta in membrana il complesso risultante viene endocitato e trasportato fino al corpo cellulare, dove la saporina esercita la sua funzione tossica [Silver e Jacobowitz, 1979]. Il suo meccanismo d’azione è quindi identico a quello della 192-IgG-sap che è stato precedentemente descritto. (Fig. 1.6)

MODELLI TRANSGENICI:

I principali modelli trangenici di AD presentano come base di partenza l’ipotesi amiloide oppure quella della tau-fosforilata. Infatti, nel genoma di questi animali vengono inseriti dei costrutti che determinano la sovra-espressione di APP oppure delle mutazioni, analoghe a quelle che nell’uomo provocano FAD, nei geni codificanti per le preseniline 1 e 2
(PS1 e PS2) [Duyckaerts et al, 2008], od ancora mutazioni a carico del gene MAPT (codificante per la proteina Tau). [Lewis et al, 2000 e 2001; Oddo et al, 2003] Sebbene questi modelli riescano a sviluppare delle caratteristiche patologiche che possono essere ricondotte all’AD (quali depositi di beta-amiloide, strutture simili ai grovigli neurofibrillari, astrocitosi e microglosi reattiva), non sempre queste sono associate a perdita neuronale o a deficit cognitivi. [Frautschy et al, 1998]

Un altro modello di studio prende in considerazione l’importanza del fattore di crescita neuronale (NGF) nello sviluppo dell’AD. In particolare è stato sviluppato un animale transgenico che esprime un anticorpo ricombinante che neutralizza l’NGF. Qualche tempo dopo la nascita in questi animali si nota una degenerazione colinergica progressiva, dovuta alla mancata esposizione dei neuroni colinergici all’NGF, da cui dipende la loro crescita ed innervazione. Inoltre, in questi animali è osservabile un deterioramento cognitivo simile a quello presente nei pazienti affetti da AD. [Capsoni et al, 2000]

1.1.2.3 APPROCCI TERAPEUTICI

Nonostante l’AD sia una delle patologie più studiate, al momento non esistono cure per questa malattia ed i trattamenti farmacologici sperimentati fino ad ora riescono ad ottenere solo dei modesti miglioramenti sintomatici. Questo molto probabilmente è dovuto al fatto che ad oggi il processo patogenetico di questa malattia non è del tutto compreso.

I farmaci che sono attualmente in commercio possono essere distinti in base ai differenti target su cui vanno ad agire, per lo più sono mirati al rallentamento della progressione della degenerazione neuronale oppure al miglioramento delle prestazioni cognitive.

In particolare, i farmaci che hanno come obiettivo il rallentamento della progressione della malattia cercano d’intervenire sulla presunta tossicità della beta-amiloide (tentando di inibirne la produzione, aumentarne la degradazione o impedirne l’aggregazione) [Kisilevsky et al, 2004; Wang et al, 2004], oppure sugli effetti dello stress ossidativo (incrementando l’assunzione di vitamine), od ancora cercando di ridurre l’eccitossicità da glutammato (utilizzando antagonisti glutammatergici quali la memantina) [van Marum, 2008] ed i processi infiammatori tipici dell’AD. [Cummings, 2004] Nessuno di questi trattamenti però, una volta introdotto nella sperimentazione clinica, ha portato a dei risultati efficienti.

L’altro gruppo di farmaci, che cerca di migliorare i sintomi cognitivi, si basa per lo più sull’utilizzo degli inibitori dell’acetilcolinesterasi, l’enzima responsabile della degradazione della acetilcolina, in modo da prolungare la disponibilità di questo neurotransmettitore e la sua azione sinaptica. I farmaci appartenenti a questa categoria che vengono usati maggiormente nella pratica clinica sono la tacrina, il donepezil, la rivastigmina e la galantamina [Cummings, 2004; van Marum, 2008]; ma nonostante la loro grande diffusione
queste sostanze sono solo modestamente efficaci (molto probabilmente perché prendono in considerazione solamente uno dei tanti sistemi coinvolti in questa patologia) ed inoltre non sono prive di effetti collaterali.

1.1.3 La malattia di Parkinson

La malattia di Parkinson (PD) è una malattia neurodegenerativa idiopatica, non-ereditaria, cronica e progressiva, che colpisce l’1% della popolazione mondiale sopra i 60 anni. [von Campenhausen et al, 2005]

Fu descritta per la prima volta nel 1817 dal dottor James Parkinson e clinicamente è caratterizzata da tremori a riposo, bradicinesia (lentezza nell'esecuzione dei movimenti), acinesia (difficoltà nell'iniziare i movimenti), rigidità e squilibrio posturale. La presenza di questi sintomi motori è il risultato della perdita della trasmissione dopaminergica nello striato, in seguito alla progressiva degenerazione dei neuroni dopaminergici presenti nella substantia nigra (SN). [Fahn et al, 1971]

Oltre ai sintomi motori nel PD ci può essere anche la concomitante presenza di sintomi non-motori, quali: depressione, ansietà, deficit cognitivi, disturbi neuropsichiatrici, disfunzioni del sistema autonomo, disturbi del sonno e sintomi sensoriali. [Borek et al, 2006] La causa di questi sintomi è ancora ampiamente da indagare.

1.1.3.1 Fisiopatologia

Come è stato accennato, il PD è caratterizzato prevalentemente dalla perdita dei neuroni dopaminergici nella substantia nigra, e dalle rispettive efferenze nigro-striatali. Quando il contenuto di DA nello striato è ridotto dell’80% e viene perso il 50-60% dei corpi cellulari dopaminergici iniziano a comparire i sintomi motori tipici della patologia. [Agid, 1991]

Oltre alla perdita dei neuroni dopaminergici nigrali, un’altra caratteristica tipica del PD è costituita dalla presenza di aggregati di alfa-sinucleina (a-syn) nelle inclusioni intracitoplasmatiche chiamate corpi di Lewy (LB), e la cui presenza è stata trovata anche nei neuriti di Lewy (LN) dei processi distrofici. [Spillantini et al, 1997; Baba et al, 1998]

Nel 2003, Braak e collaboratori hanno descritto il processo patologico che associa la deposizione di aggregati di alfa-sinucleina con la progressione del PD, notando che questi accumuli di proteine appaiono inizialmente nel nucleo vagale motorio dorsale del tronco encefalico, per poi progredire verso le strutture limbiche del mesencefalo, fino a raggiungere le aree corticali durante gli ultimi stadi della malattia. [Braak et al, 2003 e 2004] Questi aggregati proteici sono associati all'aumento di morte cellulare che coinvolge prevalentemente i neuroni dopaminergici del mesencefalo. [Mosharov et al, 2009]
Benchè la maggior parte dei pazienti presenta un PD idiopatico non-ereditario, in una minoranza (il 5% dei casi) sono state trovate delle mutazioni associabili all’ezioogenesi della malattia. Tra questi geni mutati troviamo in particolare: quello che codifica per l’alfa-sinucleina (SNCA), quello della parkina (PRKN), quello dardarina (LRRK2), quello della kinasi-1 putativa indotta da PTEN (PINK1) e quello di DJ-1. [Lesage e Brice, 2009]

L’IPOTESI DOPAMINERGICA:

Lo striato fa parte, anatomicamente e funzionalmente, del circuito cortico-striato-pallido-talamo-corticale, in cui il nucleo caudato riceve le proiezioni provenienti dalla parte dorso-laterale della corteccia prefrontale (PFC), una regione cerebrale implicata nelle funzioni esecutive e nella cognizione, e che proietta a sua volta al globo pallido. Questa area proietta al talamo, il quale manda efferenze di ritorno alla PFC. [Alexander et al, 1986] La perdita di neuroni dopaminergici nella SN, che proiettano allo striato, potrebbe quindi andare ad intaccare il circuito fronto-striatale, provocando danni a livello delle funzioni esecutive. E’ stato visto anche da studi sperimentali che l’ipofunzione dopaminergica dello striato causa
deficit cognitivi, in particolare per quanto riguarda la memoria verbale e visiva, ma non invece in compiti attentivi. [Jokinen et al, 2009]

La deplezione dell'innervazione dopaminergica nella corteccia, risultante dalla perdita di neuroni dopaminergici nella VTA, può anch'essa distruggere il circuito prefrontale dorso-laterale e causare deficit in test cognitivi, come si è visto attraverso studi di imaging con risonanza magnetica funzionale in pazienti di PD. [Mattay et al, 2002]

Un'altra evidenza a supporto dell'importanza dell'integrità della trasmissione dopaminergica nei processi di cognizione è stata fornita da studi sulla funzionalità dopaminergica della corteccia cingolata anteriore, dello striato ventrale (due regioni che ricevono input dopaminergici sia dalla VTA che dalla SN mediale) e del nucleo caudato in pazienti affetti da PD con demenza e senza. Si è visto infatti che il declino di funzionalità di queste aree è associato alla comparsa di demenza. [Ito et al, 2002]

Alcune capacità cognitive invece sembrano essere indipendenti dal sistema dopaminergico, come ad esempio la memoria a breve termine, l'attenzione selettiva visiva o la pianificazione; poiché queste rimangono deficitarie anche dopo che ai pazienti di PD viene somministrata la levodopa (il precursore della dopamina). [Pascual-Sedano et al, 2008] Questo suggerisce che parte delle disfunzioni cognitive del PD potrebbero coinvolgere meccanismi non-dopaminergici. [Bosboon et al, 2004]

L'IPOTESI COLINERGICA:

Altre evidenze della presenza di una disfunzione che coinvolge il sistema colinergico anche in pazienti affetti da PD, sono date dall'analisi dei livelli corticali di ChAT e di acetilcolina esterasi (AChE), che in questi casi risultano ridotti. [Dubois et al, 1983] In particolare, da uno studio post-mortem, si è visto che c'è un decremento maggiore nei livelli di AChE nelle cortece frontali di pazienti di PD con demenza (-68%) rispetto a quelli nondementi (-35%) [Ruberg et al, 1986], rafforzando l'idea di un coinvolgimento colinergico nello sviluppo dei sintomi non-motori di questa malattia.
In casi di PD, oltre alla perdita degli enzimi caratteristici dell’attività colinergica, si è notata anche la riduzione dei recettori muscarinici e nicotinici nella substantia nigra pars compacta, nell’ippocampo e nella neocorteccia. [Ruberg et al, 1982; Lange et al, 1993]

In conclusione, a seguito di tutte queste osservazioni, sembra chiaro che la degenerazione del sistema colinergico del prosencefalo di base, svolge un ruolo importante nel declino cognitivo riscontrato in pazienti affetti da PD. [Korcyn, 2001]

L’IPOTESI NORADRENERGICA:

Questa ipotesi ritiene che l’integrità del Locus Coeruleus possa essere importante per facilitare o mantenere l’attività delle vie dopaminergiche nigrostriatali e mesolimbiche. Si basa su studi anatomici, elettrofisiologici, neurochimici e comportamentali condotti in animali modello, tramite i quali è stato visto che la perturbazione del sistema noradrenergico va nel contempo ad alterare anche diversi indici della neurotrasmissione dopaminergica. [Marien et al, 2004] Infatti, quando il sistema dopaminergico risulta danneggiato, si è visto che il sistema noradrenergico cerca di compensare questa disfunzione aumentando la sua attività. [Delaville et al, 2011] Tuttavia in pazienti di PD con demenza si è osservata una drastica diminuzione dei neuroni noradrenergici e della concentrazione di noradrenalina (-80%) nel cervello [Chan-Palay e Asan, 1989; Gaspar et al, 1991] In questi casi, la perdita di entrambi i tipi di innervazione (sia dopaminergica che noradrenergica) nelle strutture limbiche, è associata a problemi comportamentali e cognitivi, tra cui la comparsa di demenza, e deficit di attenzione. [Riekkinen et al, 1998]

1.1.3.2 MODELLI ANIMALI DI PD

I modelli in vivo di PD cercano di comprendere quanti più aspetti della malattia possibili e nel corso degli anni ne sono stati usati di diversi tipi. Esistono modelli farmacologici, lesivi o genetici di PD, ma nessuno di questi riesce a riprodurre collettivamente ed appieno tutte le caratteristiche cliniche (sintomi come acinesia, rigidità), patofisiologiche (danno da stress ossidativo, infiammazione, inibizione del complesso I, ubiquitinazione del proteosoma), morfologiche (degenerazione del tratto nigro-striatal e deposizione di corpi di Lewy) e biochimiche (riduzione della dopamina striatale) di questa patologia. [Jackson-Lewis et al, 2012]
Ogni modello va quindi selezionato in base a quali aspetti della malattia ci si pone d’indagare. In particolare agli scopi di questo lavoro di tesi abbiamo scelto un modello che ne riproducesse i sintomi cognitivi. Qui di seguito invece vengono ricapitolati alcuni esempi di modelli animali usati fino ad ora nell’indagine scientifica nell’ambito della malattia di Parkinson.

MODELLI FARMACOLOGICI:

Tra i più noti modelli farmacologici di PD usati in ricerca troviamo quelli che si basano sulla somministrazione della reserpina o dell’aloperidolo in roditore. Gli animali trattati con queste sostanze infatti mostrano alcuni disturbi motori peculiari del PD, (quali tremore, rigidità ed ipocinesia), che possono essere revertiti dal trattamento con L-DOPA. [Duty e Jenner, 2011]

In particolare, la reserpina blocca l’immagazzinamento delle amine biogene (dopamina, noradrenalina e serotonina) nelle vescicole sinaptiche, andando ad alterare la trasmissione monoaminergica ed inducendo i sintomi motori della malattia, ma al contempo non produce effetti sul versante della degenerazione dei neuroni dopaminergici. [Colpaert, 1987]

L’aloperidolo invece agisce come antagonista dei recettori dopaminergici D2, ed in minor estensione anche di quelli D1, espressi sui neuroni che costituiscono la via diretta ed indiretta del circuito motorio. Il blocco della trasmissione dopaminergica striatale risulta in una diminuzione del firing dei circuiti dei gangli della base e provoca rigidità motoria e catalessi. [Sanberg, 1980]

Altri modelli sviluppati comprendono quelli che utilizzano gli inibitori del proteosoma (PSI) oppure composti che provocano infiammazione tipo il lipopolisaccaride (LPS). [Dutta et al, 2008]

Nonostante questi modelli abbiano avuto grande importanza per la scoperta di nuovi farmaci sintomatici per il PD, presentano però delle limitazioni. Ad esempio i loro effetti sono temporanei e ciò limita molto la loro utilità per studiare gli effetti di sostanze nel lungo termine; inoltre non possono essere utilizzati per indagare nuove strategie di neuroprotezione o di riparazione cellulare.

MODELLI LESIVI:

A questo gruppo appartengono i modelli animali di PD più usati e studiati. Attraverso l’uso di specifiche tossine è infatti possibile riprodurre una delle principali caratteristiche anatomiche e patologiche della malattia di PD, che consiste nella degenerazione dei neuroni dopaminergici.

Le tecniche di lesione che fin’ora hanno dato i migliori risultati sono state ottenute in roditore e consistono nell’iniezione stereotassica unilaterale in SN o nella *banda mediale del...*
prosencefalo della neurotossina 6-idrossidopamina (6-OHDA), in modo da riprodurre un modello emi-parkinsoniano in cui la via dopaminergica nigro-striatale viene distrutta [Silverman, 1993], e nella somministrazione sistemica del composto 1-metil-4-fenil-1,2,3,6-tetraidropiridina (MPTP), inibitore del complesso I mitocondriale, che causa la morte dei neuroni dopaminergici. [Langston e Ballard, 1984; Langston, 1987]

Fig. 1.7: La disfunzione mitocondriale ed il danno ossidativo rappresentano i due principali meccanismi attraverso cui le neurotossine inducono la morte dei neuroni dopaminergici.

Nello specifico, la 6-OHDA viene portata all'interno della cellula tramite il trasportatore della dopamina ed una volta dentro genera radicali liberi. Il MPTP invece è convertito dalla monoamina ossidasi B (MAOB) a MPP+ (1-metil-4-fenilpiridinum), che attraverso il trasportatore della dopamina si accumula nei mitocondri andando ad inibire il complesso I e causando apoptosi. Lo stesso identico effetto è causato anche dal rotenone. Inoltre, si è visto che entrambi questi composti aumentano l'espressione dell'alfa-sinucleina, che a sua volta contribuisce alla formazione dei corpi di Lewy, caratteristica peculiare del PD. [Beal, 2001]

La tossina 6-OHDA provoca danno neuronale inducendo processi di stress ossidativo e causando la morte delle cellule dopaminergiche in maniera dose-dipendente. [Ungerstedt, 1971] Questa tossina infatti presenta una struttura analoga a quella della dopamina, ed un'elevata affinità per il trasportatore di questa monoamina, il quale rappresenta quindi la via d'ingresso preferenziale di questa sostanza nei neuroni. Una volta entrata nelle cellule, la 6-OHDA si accumula nel citoplasma e va incontro ad auto-ossidazione, con concomitante formazione di radicali liberi. [Schober, 2004] Gli animali lesionati con questa neurotossina mostrano assimetria posturale (tendono a girare in senso ipsilaterale rispetto al lato
lesionato), discinesia e deficit cognitivi, specialmente nei compiti in cui è richiesto l’impiego della working memory. [Perez et al, 2009]

Altri modelli, che si basano sulla degenerazione del tratto nigro-striatale, includono quelli in cui vengono somministrati in modo sistemico pesticidi, quali il rotenone ed il paraquato, poiché si pensa che questi possano aumentare il rischio di sviluppare il PD. [Dawson et al, 2002; Duty e Jenner, 2011] (Fig. 1.7)

Molti di questi modelli sono stati utili per capire alcuni aspetti della patogenesi del PD, tuttavia non sono adatti per lo studio di terapie farmacologiche atte a curare la malattia.

MODELLI TRANSGENICI:

Dato che il 10% dei casi di PD possono essere associati a cause genetiche, sono stati sviluppati dei modelli animali che riproducono alcune delle maggiori mutazioni riscontrate nei pazienti umani.

In particolare, si è andati ad agire sull’espressione dell’alfa-sinucleina (principale componente dei LB trovati nel tessuto cerebrale di PD) [Chesselet, 2008; Blandini e Armentero, 2012] e sono state effettuate delle alterazioni nei geni coinvolti nella via di ubiquitinazione del proteosoma (come ad esempio quelli codificanti per parkina e DJ-1). [McNaught et al, 2002]

Tuttora però, nonostante sia stata fatta più chiarezza sulle vie biochimiche su cui intervengono tali mutazioni, non si è riusciti a comprendere se la presenza degli aberranti aggregati proteici che ne conseguono, sia la causa o l’effetto del processo neurodegenerativo che caratterizza la malattia di Parkinson. [Blandini e Armentero, 2012] Anche perché, pur esprimendo le inclusioni proteiche, nessuno di questi modelli transgenici presenta neurodegenerazione.

1.1.3.3 APPROCCI TERAPEUTICI

Nonostante l’estenuante ricerca associata al PD, ad oggi non esistono ancora cure per questa malattia. Il miglior trattamento disponibile è costituito dalla terapia dopaminergica di replacement, che però è in grado soltanto di alleviare i sintomi motori. Questa strategia
terapeutica è basata essenzialmente sull’assunzione di farmaci, come la levodopa (L-DOPA, precursore della DA) o gli agonisti dopaminergici, o gli inibitori degli enzimi di degradazione di questa monamina, che cercano di correggere la deficienza dopaminergica. [Katzenschlager e Lees, 2002; Smith et al, 2012]

1.2 IL SUBSTRATO ANATOMICOC DELLA MEMORIA

Il cervello è una struttura fisiologica complessa e costituisce la sede dove hanno luogo le funzioni cognitive. Fa parte del sistema nervoso centrale (SNC) ed è costituito da cellule nervose interconnesse tra loro in reti, coinvolte negli scambi d’informazioni necessari per l’attuazione delle funzioni comportamentali.

Studiando l’attività dei neuroni, si è notato che, ad ogni diversa facoltà cognitiva e locomotoria, corrisponde un incremento di attività in particolari aree del cervello. Da ciò è derivata l’ipotesi che il cervello abbia una struttura modulare e che ogni modulo sia specializzato per un certo tipo di attività. Oggi sappiamo che gruppi di neuroni differenti assolvono ruoli funzionali diversi, e che le diverse aree cerebralì sono tra loro interconnesse in modo da formare sistemi di ordine superiore più complessi. [Gazzaniga et al, 2005]

Studi di anatomia comparata sono stati molto importanti per capire le basi di come determinate strutture e funzioni cerebralì sono correlate alle abilità di apprendimento e memoria. Infatti, anche se i sistemi nervosi delle varie specie animali presentano tra loro grandi differenze, la maggior parte di ciò che sappiamo per quanto riguarda le basi neuralì delle funzioni cognitive deriva proprio da studi sugli animalì piuttosto che da quelli sugli umani. Ciò è stato possibile poiché molti aspetti del cervello di un ratto, o di una scimmia, o persino di un insetto, sono sufficientemente simili a quello umano da poterne fare dei correlati.

Tra le aree che sono state viste essere coinvolte nel processamento e nella regolazione dell’apprendimento e della memoria si possono annoverare:

- parte del sistema limbico (come la formazione ippocampale e l’amigdala);
- la corteccia prefrontale;
- il prosencefalo basale;
- i nuclei monaminergici del mesencefalo.

Riuscire a capire l’interazione tra questi sistemi neurali potrebbe avere implicazioni terapeutiche per tutte quelle malattie che ne presentano disfunzione, come è il caso ad esempio del PD e dell’AD. [Levin, 2006]
1.2.1 L’ippocampo

L’ippocampo è una delle strutture anatomiche più importanti in ambito di memoria. Fa parte del sistema limbico, i cui componenti si trovano all’interno del lobo temporale, a livello sottocorticale del prosencefalo e delle aree mesencefaliche. Numerosi studi hanno dimostrato che l’ippocampo è la sede d’interazione tra i sistemi di percezione e di memoria, con un ruolo particolare nella memoria spaziale. Esiste una sorta di lateralizzazione delle funzioni e delle risposte a livello degli ippocampi, in particolare: l’ippocampo destro si attiva nei processi di apprendimento ambientale; mentre l’ippocampo sinistro è connesso con la memoria verbale. Inoltre, è una struttura cerebrale strettamente connessa al consolidamento delle informazioni.

E’ sede di importanti fenomeni di plasticità sinaptica legati all’apprendimento e alla memoria, come la Long Term Potentiation (LTP) [Whitlock et al, 2006] e la Long Term Depression (LTD). [Malenka, 1994]

Al suo interno si possono identificare quattro aree: CA1, CA2 e CA3 (dove CA sta per Corno Ammone) ed il giro dentato (DG). Le cellule del giro dentato (DG) assieme a quelle delle aree CA1 e CA3 sono coinvolte nel loop trisinaptico, che rappresenta il maggior circuito ippocampale. (Fig. 1.8)

Fig. 1.8: Rappresentazione schematica del loop trisinaptico ippocampale nel ratto. [Moser, 2011]

L’informazione entra nell’ippocampo mediante il tratto perforante, un fascio di fibre che attraversa lo spazio compreso tra il subiculum ed il giro dentato, i cui assoni originano da
neuroni glutammatergici che si trovano nel secondo strato della *corteccia entorinale* (EC) e fanno sinapsi a livello dello strato molecolare del DG. Quindi le cellule granulari del DG prendono contatto attraverso le fibre muscoidi (*mossy fibers*) con le cellule piramidali del CA3, i cui assoni proiettano ai dendriti delle cellule in CA1 grazie al fascio collaterale di Schaffer. Dall’area CA1 si dipartono altre fibre che raggiungono il *subiculum*, che è responsabile di tutta l’afferenza all’ippocampo e di tutte le efferenze che escono da questa struttura, inviando assoni alla EC ed ai *corpi mammillari* attraverso il *fornice*, chiudendo quindi il *loop*.

1.2.2 La corteccia prefrontale

Le memorie dopo essere state consolidate vengono depositate nella neocorteccia. Le zone della neocorteccia che sono specializzate nella conservazione a lungo termine delle cognizioni episodiche sono le aree associative dei lobi frontali, in modo particolare la *corteccia prefrontale* (PFC). Soggetti con lesioni in queste aree tendono a dimenticare il modo con cui una certa nozione è stata appresa (amnesia delle origini).

La PFC include quelle regioni della *corteccia frontale* che si estendono anteriormente alle regioni motorie e premotorie dei lobi frontali. [Uylings e van Eden, 1990] Consiste in una rete di interconnessioni di sotto-regioni che mandano e ricevono proiezioni da tutti i sistemi sensitivi e motori, ed anche di alcune strutture sottocorticali. Le porzioni laterali e medio-dorsali della PFC sono associate al processamento delle informazioni sensoriali [Goldman-Rakic e Schwartz, 1982], mentre la PFC mediale è connessa con le strutture limbiche critiche per la memoria ed il processamento degli stati interiori, quali la motivazione e l’affetto [Amaral e Price, 1984] e sembra essere anche coinvolta nel processo dell’inibizione comportamentale. La PFC ventro-laterale svolge un ruolo nel processamento della percezione dei volti e degli stimoli provenienti da oggetti visivi, inoltre integra le informazioni mnemoniche provenienti dalle regioni limbiche [Miller, 2000] ed è importante per il mantenimento dell’attenzione. [Fuster, 2000] La PFC dorso-laterale è invece connessa alle strutture motorie (come le aree supplementari motorie, il cervelletto ed il collicolo superiore) [Lu et al, 1994], regola i comportamenti riflessi [Fuster, 2000] ed è implicata in diversi compiti *working memory*-dipendenti e nella localizzazione di oggetti nello spazio. [Chafee and Goldman-Rakic, 1998]

La PFC inoltre è coinvolta in molte azioni esecutive, che comprendono la *working memory*, l’inibizione comportamentale, l’attenzione e la pianificazione di azioni future.
1.2.3 I sistemi di neuromodulazione presi in esame

I sistemi di neuromodulazione sono costituiti da relativamente piccoli gruppi di neuroni che inviano una moltitudine di assoni a quasi tutte le aree cerebrali. Queste efferenze rilasciano delle sostanze chiamate neuromodulatori, che alterano l’attività neuronale, modulandola, ad esempio agendo sul numero di recettori post-sinaptici disponibili.

Molte malattie umane, tra le quali l’AD e il PD, sembrano coinvolgere un declino generale di questi sistemi di neuromodulazione. [Francis et al, 1999; Marien, 2004] Qui di seguito vengono descritti quelli presi in esame per questa tesi.

1.2.3.1 IL SISTEMA COLINERGICO DEL PROSENCEFALO DI BASE (BF)

ANATOMIA:

Il principale sistema colinergico del sistema nervoso centrale fa parte di una struttura anatomico-funzionale denominata prosencefalo di base (BF) che innerva la neocorteccia e le regioni ippocampali.

Nel ratto il prosencefalo di base è situato nella parte mediale e ventrale degli emisferi cerebrali ed è composto da diversi nuclei neuronali, quali:

- il setto mediale (MS)
- le branche orizzontali e verticali della banda diagonale di broca (hDBB e vDBB)
- il nucleo basale magnocellulare (NBM), omologo al nucleo basale di Meynert dei primati. [Zaborszky et al, 1997]

Queste aree sono composte da diversi sottotipi neuronali, fra i quali si trovano neuroni colinergici, GABAergici e glutamatergici.

L’insieme dei neuroni colinergici appartenenti a questa struttura costituisce il sistema colinergico del prosencefalo di base il quale proietta verso varie strutture limbiche e corticali. [Woolf, 1991] I neuroni del MS rappresentano la parte più rostrale di questo sistema, inviano le loro fibre colinergiche (e GABAergiche) alla corteccia cingolata ed entorinale, zone ritenute fondamentali nei processi di memoria ed attenzione, ed inoltre, attraverso la fimbria ed il fornix dorsale, forniscono le afferenze colinergiche alle zone CA1, CA3 ed al DG dell’ippocampo. [Raisman, 1966; Lewis e Shute, 1967] La via setto-ippocampale si ritiene porti le informazioni integrate del tronco encefalico e del sistema limbico che regolano i fenomeni vegetativi di veglia e attenzione. [Alonso e Kohler, 1984] Alle stesse zone proietta anche la vDBB la quale manda alcune fibre anche all’ipotalamo ed ai bulbi olfattivi, aree innervate anche dall’hDBB. [Mesulam et al, 1983] I neuroni colinergici dei NBM innervano invece in maniera diffusa la neocorteccia e l’amigdala. [Page e Sofroniew, 1996] (Fig. 1.9) E’ da notare che le proiezioni che partono da questa struttura nei primati hanno
un’organizzazione più complessa, probabilmente in relazione alla maggior specializzazione funzionale delle zone da essa innervate.

Il sistema colinergico del prosencefalo di base riceve input da altri sistemi neurotrasmettitori tra i quali è incluso quello noradrenergico. La noradrenalina e le altre monoamine influenzano il funzionamento di tale struttura, modulando l’attività dei suoi neuroni. [Berridge e Waterhouse, 2003]

Fig. 1.9: Rappresentazione schematica delle fibre colinergiche che derivano dal prosencefalo di base (riquadro in rosso) nel ratto. Il setto mediale (MS) e le branche orizzontali e verticali della banda diagonale di Broca (HDB e VDB) innervano la corteccia cingolata ed entorinale, l’ippocampo, i bulbi olfattivi e l’ipotalamo; mentre il nucleo basale magnocellulare (B) innerva la neocorteccia. [Woolf, 1991]

SVILUPPO:

Nel ratto, i neuroni colinergici del prosencefalo di base originano secondo un gradiente caudo-rostrale, fra il dodicesimo (E12) e il sedicesimo (E16) giorno dal concepimento; e tra E13 ed E17 migrano attivamente dalla regione germinativa periventricolare fino alle loro destinazioni finali. [Semba e Fibiger, 1988; Brady et al, 1989]

Giunti nelle strutture che occuperanno nella vita adulta, tali cellule incominciano ad esprimere i marker tipici dell’attività colinergica, ossia l’acetilcolinesterasi (AChE) [Eckenstein e Sofroniew, 1983], la colina acetiltransferasi (ChAT) [Armstrong et al, 1987] ed il recettore a bassa affinità per il fattore di crescita neuronale (p75NTR). [Yan e Johnson, 1988]

INTRODUZIONE

FUNZIONI:

Da studi lesivi in modelli animali è stato visto che, per determinare la comparsa di deficit cognitivi apprezzabili, è necessaria una deplezione di neuroni colinergici nel NBM pari all’80-90%, e conseguente riduzione della stessa entità di fibre colinergiche in corteccia ed ippocampo. [Torres et al, 1994; Leanza et al, 1995] Questi dati rispecchiano perfettamente la perdita neuronale osservata nei tessuti di pazienti affetti da AD in seguito ad analisi post mortem.

La via setto-ippocampale invece sembra svolgere un ruolo più specifico per quanto riguarda la memoria spaziale. Infatti, da studi sul ratto, si è visto che l’apprendimento spaziale di questi animali, durante il test del radial arm maze, è correlato ai livelli di acetilcolina rilasciati nell’ippocampo dalle fibre colinergiche che derivano dal setto mediale. [Fadda et al, 2000]

Oltre che nelle funzioni cognitive, il sistema colinergico del prosencefalo di base sembra essere coinvolto anche nello sviluppo del sistema nervoso centrale (SNC). Infatti, da evidenze sperimentali è emerso che l’acetilcolina svolge un ruolo fondamentale nello stabilire le esatte connessioni sinaptiche all’interno delle reti neurali. [Berger-Sweeney, 1998] Inoltre, un corretto sviluppo temporale dell’innervazione colinergica è fondamentale per la formazione della corteccia cerebrale (in particolare per quanto riguarda la sua citoarchitettura e lo spessore degli strati che la compongono) [Bachman et al, 1994; Ricceri et al, 2002]; anche se non sempre questa alterazione anatomica risulta in deficit cognitivi, poiché ci sono altri sistemi neurotrasmettitoriali, quali ad esempio il noradrenergico ed il dopaminergico, che aumentando la loro attività riescono a compensare queste funzioni. [Leanza et al, 1996]

1.2.3.2 IL SISTEMA DOPAMINERGICO DELL’AREA TEGMENTALE VENTRALE (VTA)

ANATOMIA:

La maggior parte dei neuroni dopaminergici è localizzata nel mesencefalo. Lo studio effettuato nel ratto da Dahlstrom e Fuxe [Dahlstrom e Fuxe, 1964] ha permesso di dividere questi neuroni mesencefali (mes) in tre gruppi principali in base alla loro posizione topografica e di assegnare loro una nomenclatura specifica (dove la lettera “A” sta per aminergico):

- il gruppo A8, corrisponde al campo retrorubrale (RRF),
il gruppo A9, corrisponde alla substantia nigra (SN),
il gruppo A10, corrisponde all’aria tegmentale ventrale (VTA).

In particolare, circa il 95% delle cellule dopaminergiche mesencefaliche sono site nei gruppi A9 e A10. [German e Manaye, 1993] E’ da notare però che queste porzioni anatomiche non contengono solo neuroni dopaminergici, infatti sia la VTA che la SN presentano al loro interno anche neuroni GABAergici (35% e 62% rispettivamente) e glutammatergici (3% ed 1% rispettivamente). [Nair-Roberts et al, 2008]

La VTA anatomicamente si colloca dorsalmente e medialmente alla SN. E’ costituita da poche decine di migliaia di neuroni dopaminergici nei roditori e qualche centinaio di migliaia nei primati. Nel corso degli anni, in base a criteri citoarchitettonici, è stata suddivisa ulteriormente in sette sottoregioni, quali:

- il nucleo interfascicolare (IF),
- il nucleo lineare rostrale (RLi),
- il nucleo lineare centrale (CLi),
- il nucleo parapeduncolare (PaP),
- il nucleo pigmentato parabrachiale (PBP)
- il nucleo paranigrale (PN)
- il nucleo VTA vero e proprio.

Fig. 1.10: Rappresentazione schematica dell’innervazione dopaminergica nel ratto.

Studi comparativi tra ratto e uomo hanno mostrato che in entrambe queste specie la VTA occupa una posizione anatomica simile, anche in riferimento alle strutture vicine; mentre
INTRODUZIONE

differisce per quanto riguarda la grandezza relativa dei corpi cellulari che la costituiscono. [Halliday e Tork, 1986]

Nel SNC dei vertebrati i neuroni dopaminergici mesencefalici controllano tre importanti circuiti neurali. Il primo è costituito dalla via nigrostriatale che origina dalla substantia nigra pars compacta e che innerva prevalentemente lo striato dorsale (conosciuto come caudato-putamen) attraverso la banda del prosencefalo mediale. A seguire c’è quello che è definito dalla via mesolimbica, che consiste invece nella VTA e nelle sue proiezioni che raggiungono lo striato ventrale, il nucleo accumbens, l’amigdala, l’ippocampo, il setto laterale, il tubercolo olfattivo, la corteccia entorinale; mentre i neuroni della VTA che inviano le loro efferenze alle strutture corticali, in particolare alla corteccia prefrontale (PFC), costituiscono la via mesocorticale. [Lindvall et al, 1974] Insieme queste due ultime vie costituiscono il sistema dopaminergico mesocorticolimbico che prenderemo in esame in questa tesi. (Fig. 1.10)

SVILUPPO:

I neuroni dopaminergici mesencefalici sono generati precocemente durante la neurogenesi, in prossimità della giunzione mesencefalo–romboencefalica [Voorn et al, 1988] e successivamente in direzione ventrale, verso le loro posizioni definitive nella flessura mesencefala (la SN, la VTA e il campo retrorubrale).

Mediante analisi di immunocitochimica, è stato possibile dimostrare che cellule tirosina idrossilasi (TH) positive, ovvero esprimenti l’enzima determinante per la biosintesi della dopamina, sono presenti nel mesencefalo di topo già verso il nono giorno dello sviluppo embrionale (E9). Queste cellule allo stadio E10 appaiono in migrazione dall’ependima periventricolare verso il mesencefalo ventrale, inoltre il loro numero aumenta e a E10-E11 la loro distribuzione ricorda quella dei gruppi di cellule A9 ed A10 del topo adulto. [Di Porzio et al, 1990]

Nell’uomo, pur presentando una sequenza di eventi di sviluppo simile a quella dei roditori, la durata dell’intero processo è molto più lunga: le cellule TH+ compaiono nel mesencefalo ventrale, vicino alla zona ventricolare, a circa 6,5 settimane di sviluppo fetale; e la loro migrazione ventrale inizia a 6,7 settimane. I neuriti TH+ nel putamen sono invece identificabili a 9 settimane. [Freeman et al, 1991]
FUNZIONI:
La dopamina (DA) è coinvolta in molteplici funzioni cerebrali, quali ad esempio la motivazione, i fenomeni di dipendenza, il controllo motorio, l'apprendimento, la working memory, l'attenzione, la modulazione degli stati affettivi ed emotivi ed è cruciale meccanismi di ricompensa. [Wise, 2004]

Peculiarità del sistema dopaminergico mesocorticale è quella di influenzare le interazioni con la corteccia prefrontale e l'area visiva, esso è infatti coinvolto nello sviluppo della memoria visiva. [William e Goldman-Rakic, 1995]

Disturbi al sistema dopaminergico mesocorticolimbico sono associati a schizofrenia, stati allucinatori, sindromi depressive, dipendenza da droghe d'abuso e al ADHA (sindrome da deficit di attenzione ed iperattività). [Castellanos e Tannock, 2002]

E' stato osservato che nello sviluppo cerebrale la dopamina regola la neurogenesi [Pendleton et al, 1998], mentre la distruzione del sistema dopaminergico in fase di sviluppo embrionale danneggia la maturazione ed il corretto modellamento SNC. [Lauder, 1988 e 1993]

Inoltre è emerso che è necessario un perfetto bilanciamento nei livelli di dopamina per la corretta funzionalità cognitiva, poiché sia un suo eccessivo aumento che diminuzione nella corteccia prefrontale, provoca dei problemi ad eseguire compiti working memory-dipendenti. [Abi-Dargham et al, 2002]

1.2.3.3 IL SISTEMA NORADRENERGICO DEL LOCUS COERULEUS (LC)
ANATOMIA:
I neuroni noradrenergici all'interno del sistema nervoso centrale (SNC) sono compresi essenzialmente in due strutture:
- il tegmento laterale (LT)
- il Locus Coeruleus (LC).

E vengono classificati topograficamente in sei gruppi (A1, A2, A4-A7). [Dahlstrom e Fuxe, 1964]

Il tegmento laterale viene suddiviso ulteriormente in due parti:
- il tegmento laterale medullare, è compreso nella formazione reticolare laterale e ventrale del bulbo caudale (A1), nel tratto solitario e nel nucleo motorio dorsale del nervo vago (A2).
- il tegmento laterale pontino, è collocato nel ponte e comprende i gruppi A5 ed A7. In particolare il gruppo A7 costituisce la parte più rostrale del sistema noradrenergico e si situa medialmente ed all'interno del nucleo del lemnisco.
INTRODUZIONE

... laterale; mentre il gruppo A5 è posto più ventralmente e contribuisce a formare l’area del SubCoeruleus (SubC).

Le cellule noradrenergiche appartenenti a questa struttura proiettano principalmente verso il midollo spinale, il bulbo e l’ipotalamo.

Il Locus Coeruleus invece è responsabile dell’innervazione noradrenergica del SNC, ed è composto da un gruppo compatto di cellule posizionato nella sostanza grigia laterale dell’istmo del ponte (gruppo A6), e da altri neuroni che si estendono lungo il tegmento dorso-laterale fino ad arrivare al tetto del quarto ventricolo (A4). Inoltre, la parte più ventrale della popolazione cellulare A6, assieme al gruppo A5, costituisce l’area del SubC.

Fig. 1.11: Rappresentazione schematica dell’innervazione noradrenergica che origina dal Locus Coeruleus nel ratto. [Sara, 2009]

In particolare, le fibre discendenti provenienti dal LC vanno ad innervare, nella quasi totalità, il midollo spinale (SC); fornendo l’innervazione noradrenergica alle corna dorsali e ventrali, ed anche ai neuroni spinali della colonna cellulare inter-medio-laterale. [Nygren e Olson, 1977; Westlund et al, 1982 e 1983] Inoltre, vanno ad innervare diverse aree del bulbo, fra cui i nuclei parasimpatici di Edinger-Westphal, il nucleo salvatorio ed il nucleo vagale parasimpatico, i nuclei premotori simpatici (bulbo rostro-ventrale laterale e rafe caudale), il rafe dorsale, il tegmento latero-dorsale e peduncolopontino, ed i nuclei motori (facciale, ippoglosso, trigemino ed oculomotore) e sensoriali (trigemino e cocleare). [Samuels e Szabadi, 2008]

Il LC innerva anche il cervelletto (in particolare la corteccia cerebellare). [Saigal et al, 1980]

L’encefalo presenta una diffusa innervazione noradrenergica proveniente quasi esclusivamente dal LC. Numerose fibre noradrenergiche sono presenti nel talamo, specialmente quello dorsale, nell’ipotalamo, nel prosencefalo di base, nell’amigdala ed in altre...
zone del diencefalo. [Samuels e Szabadi, 2008] Ma le aree encefaliche dove le fibre noradrenergiche provenienti dal LC sono più dense sono: la neocorteccia (in particolare la corteccia frontale e cingolata) e l’ippocampo. [Levitt e Moore, 1979] Il LC, grazie al suo arrangiamento ed all’alto numero di proiezioni assonali, riesce ad innervare la quasi totalità del SNC e a regolare simultaneamente molteplici zone anche distanti tra loro. [Loughlin et al, 1982] (Fig. 1.11)

Il LC a sua volta riceve input da numerose strutture del SNC, quali: la neocorteccia, l’amigdala, l’ipotalamo, il tegmento laterale, il nucleo del rafe, il bulbo, il cervelletto ed il midollo spinale. [Samuels e Szabadi, 2008]

SVILUPPO:

I neuroni noradrenergici hanno un’origine embriologica piuttosto precoce. Nel ratto, si è osservato che essi si originano fra E10 ed E13. A partire da E14, tali cellule iniziano ad esprimere gli enzimi biosintetici monaminegici, in particolare la tirosina idrossilasi (TH), e a produrre noradrenalina. [Lauder e Bloom, 1974].

I neuroni dei primati non umani iniziano a produrre noradrenalina fra la quinta e la sesta settimana di gestazione, mentre l’innervazione noradrenergica che raggiunge la corteccia si sviluppa a partire dall’ottava settimana e si completa verso il secondo anno di vita. Esistono molte evidenze di una diversa funzionalità noradrenergica nel SNC in via di sviluppo rispetto a quello adulto. In particolare si è visto che il sistema noradrenergico nel neonato presenta una differente espressione recettoriale (alfa-2) nell’ippocampo e che gli effetti della stimolazione di questi risultano essere opposti in periodi diversi dello sviluppo. [Murrin et al, 2007]

FUNZIONI:

agiscono in modo relativamente lento, e sono coinvolti prevalentemente nella regolazione tonica dell'eccitabilità cellulare (rallentando o facilitando la trasmissione del segnale), piuttosto che nella trasmissione fasica. Inoltre è da notare che, solo un quinto della noradrenalina prodotta dalle cellule del LC viene rilasciata in sinapsi vere e proprie, mentre la maggior parte viene rilasciata in corrispondenza delle varicosità degli assoni e dei dendriti [Seguela et al., 1990], quindi agendo su siti extrasinaptici, con una modalità denominata trasmissione di volume. [Marien et al., 2004] Questa modalità di trasmissione, tipica dei neuroni neuromodulatori, permette un'influenza più prolungata sulla plasticità sinaptica. [Sara, 2009]

E' stato visto che la noradrenalina ha un ruolo permissivo nella formazione della LTP nell'ippocampo e che modula anche la LTD. [Kemp e Manahan-Vaughan, 2008]

Il sistema noradrenergico oltre ad essere coinvolto nella regolazione dell'eccitabilità cellulare e nei fenomeni di plasticità sinaptica, svolge altre molteplici funzioni. E' implicato ad esempio in vari processi cognitivi, quali il consolidamento ed il recupero (retrival) delle tracce mnemoniche, nell'attenzione e nella percezione; come hanno mostrato diversi studi farmacologici. [Sara, 1985 e 1998; Devauges e Sara, 1991; Tronel et al, 2004]

Inoltre, si è visto che il sistema noradrenergico svolge un ruolo fondamentale nella formazione del SNC, in particolare della corteccia cerebrale, e di conseguenza è importante per il corretto funzionamento dei processi di apprendimento e memoria che sottendono a questa regione anatomica. [Lauder e Bloom, 1974; Sanders et al, 2008] Il suo ruolo determinante nella regolazione dell'apprendimento e della memoria è dimostrato anche dalla ricca innervazione noradrenergica che raggiunge l'ippocampo, sede notoriamente implicata in tali processi [Amaral e Foss, 1975; Becker et al,1980; Everitt et al, 1983; Compton, 1991], e dai disturbi cognitivi che conseguono alla deafferentazione noradrenergica di codesta struttura anatomica. [Marien et al, 2004]

Inoltre, il sistema noradrenergico, tramite le sue proiezioni discendenti, che originano dai neuroni più ventrali del LC e da quelli dell’area del SubC, modula alcuni aspetti dell'attività spinale quali l'attività motoria riflessa ed organizzata in pattern [Marcoux e Rossignol, 2000], la trasmissione degli stimoli nocicettivi [Jones e Gebhart, 1986] e l'aumento dell'eccitabilità motoneuronale. [Hultborn e Kiehn, 1992]

Il LC coordina la velocità e l'efficacia degli stimoli superiori ed, agendo simultaneamente sugli input sensoriali e gli output motori, gestisce sia la ricezione che la risposta agli stimoli ambientali importanti per la sopravvivenza dell’organismo [Berridge e Waterhouse, 2003].

Inoltre, il LC tramite le proiezioni che invia alla colonna cellulare mediolaterale, eccita i neuroni pregangliari simpatici [Lewis e Coote, 1990] ed inibisce i neuroni sacrali parasimpatici. [Yoshimura et al, 1990]

Inoltre esistono evidenze circa un coinvolgimento noradrenergico in alcune patologie neurodegenerative. Per esempio, per quanto riguarda il morbo di Parkinson, diversi studi anatomici, elettrofisiologici, neurochimici e comportamentali indicano che la noradrenalina è importante nel funzionamento della via nigro-striatale; vi è infatti una marcata riduzione dei neuroni noradrenergici nel LC di pazienti affetti da tale patologia. [Zarow et al, 2003] Numerosi dati sperimentali fanno anche supporre un coinvolgimento primario del sistema noradrenergico nella patologia di Alzheimer (AD). [Marien et al, 2004]
2. Scopi della tesi

Tramite il lavoro presentato in questa tesi si sono voluti andare ad indagare alcuni aspetti anatomici, neurochimici e funzionali che sono coinvolti nello sviluppo dei disturbi cognitivi e della demenza associati alle malattie di Alzheimer e di Parkinson.

Da studi presenti in letteratura si è visto che in entrambe queste patologie è presente una massiva neurodegenerazione dei sistemi di neuromodulazione, quali il colinergico, il dopaminergico ed il noradrenergico; e che quest’ultimo in particolare, in rapporto agli altri, è caratterizzato da una percentuale più elevata di perdita neuronale che avviene nelle prime fasi del processo patologico che caratterizza queste malattie. [Zarow et al, 2003]

Partendo da questi presupposti, si è andati a distruggere selettivamente (in maniera singola o combinata) questi sistemi nel ratto, per:

- vedere se la loro lesione è sufficiente ad indurre deficit nella reference e nella working memory,
- capire il contributo che forniscono ai processi di apprendimento e memoria spaziale,
- osservare come la loro interazione influenzi la comparsa o meno di tali disturbi cognitivi.

Altra peculiarità delle malattie neurodegenerative, che si affianca alla deplezione neurotrasmettitoriale, è la presenza di aberranti aggregazioni proteiche in ippocampo e corteccia. Notoriamente le placche extracellulari di beta-amiloide ed i grovigli neurofibrillari intracellulari che includono la proteina tau-iperfosforilata caratterizzano la malattia di Alzheimer. Recentemente però si è visto che anche la proteina TDP-43 risulta essere alterata in questa patologia, in particolare si presenta ubiquinata, fosforilata e tende ad accumularsi nel citoplasma dei neuroni. [Hu et al, 2008; Lippa et al, 2009] Da studi che si propongono di indagare le possibili associazioni che intercorrono tra i diversi elementi patologici dell’AD è stato visto che l’RNA del gene MAPT (che codifica per la proteina tau) è regolato dalla proteina TDP-43, e quindi si è ipotizzato che la perdita di funzione di quest’ultima potrebbe avere conseguenze sulla fosforilazione di tau [Tremblay et al, 2011]; inoltre in topi transgenici (3xTg-AD), che sviluppano declino cognitivo con l’avanzare dell’età ed accumulo di beta-amiloide e tau, si è visto che i livelli di TDP-43 sono correlati significativamente alla presenza degli oligomeri di beta-amiloide. [Caccamo et al, 2010] Nessuno studio fin’ora ha però indagato se esiste una relazione tra l’ipofunzione colinergica e l’accumulo di TDP-43.

Per questo motivo, riproducendo un modello di AD ben caratterizzato nel nostro laboratorio, che consiste nella deplezione del sistema colinergico del prosencefalo di base tramite l’inoculo dell’immunotossina 192-IgG-saporina e l’infusione in ippocampo di beta-amiloide 25-35 pre-aggregata, si è andati ad indagare nel ratto se:
- le conseguenze anatomiche e funzionali di queste lesioni rispecchiano quelle trovate in pazienti di AD;
- ci sono delle alterazioni nell'espressione regionale di APP, TAU, TAU-P e TDP-43 che possono essere associate alle lesioni; e se presenti come variano i livelli di queste proteine tra gli animali che presentano la sola deplezione del sistema colinergico, quelli con la sola infusione del peptide beta-amiloide pre-aggregato e quelli che hanno ricevuto entrambi i trattamenti.
3. Materiali e metodi

3.1 ANIMALI E CONDIZIONI DI ALLEVAMENTO

Sono stati usati ratti neonati ed adulti di ceppo Sprague-Dawley (SD), forniti dallo Stabulario dell’Università degli Studi di Trieste e mantenuti presso la medesima struttura per tutta la durata degli esperimenti. Le cucciolate sono state mantenute con la madre fino al ventunesimo giorno di vita (una cucciolata per gabbia) e dopo lo svezzamento gli animali sono stati divisi per sesso e stabulati a gruppi di 2-4 individui in gabbie di Plexiglass trasparente in condizioni controllate, con un ciclo di luce/buio di 12 ore ed avendo a disposizione cibo e acqua ad libitum.

![Fig. 3.1: Esemplare di ratto Sprague-Dawley adulto.](image)

3.2 DESIGN SPERIMENTALE

Questo lavoro di tesi ha previsto l’indagine di due differenti aspetti comuni alle malattie neurodegenerative:

1) la disfunzione della regolazione monoaminergica e la sua influenza nella comparsa di deficit di apprendimento e memoria spaziale;

2) gli effetti anatomici, neurochimici e funzionali risultanti dalla deplezione colinergica in associazione all’infusione ippocampale di beta-amiloidi 25-35 pre-aggregata.

In particolare, tramite il primo set di esperimenti sono stati caratterizzati i deficit cognitivi che compaiono nel ratto dopo lesione selettiva e combinata dei sistemi di neuromodulazione, quali: il sistema colinergico del prosencefalo di base, il sistema dopaminergico mesocorticicolimbico che si origina dalla VTA ed il sistema noradrenergico ascendente che deriva dal Locus Coeruleus. Oltre all’aspetto funzionale conseguente a queste
disfunzioni è stato analizzato anche quello istologico tramite opportune procedure istochimiche ed immunochimiche.

Il secondo set di esperimenti invece è servito ad indagare se c'è una relazione tra la deplezione colinergica, il deposto di aggregati di beta-amiloide nell'ippocampo, la comparsa di deficit cognitivi e l’alterazione tissutale della proteina TDP-43 e delle altre proteine che nell’AD sono notoriamente sovraespresse, quali: APP, TAU e TAU-P. A tal fine sono stati usati test comportamentali per l’analisi della funzionalità della reference e della working memory, procedure istochimiche ed immunochimiche ad hoc per la rilevazione della morfologia e delle caratteristiche neuropatologiche presenti in questi tessuti ed analisi tramite Western Blot dei livelli delle proteine indagate.

3.2.1 Disfunzione della regolazione monoaminergica nel ratto

Per questo primo set di esperimenti sono stati utilizzati un totale di 80 ratti Sprague-Dawley, che in base alla combinazione delle lesioni ricevute sono stati divisi nei seguenti gruppi:

- **CONTROLLI (CTRL):** questo gruppo è costituito da 4 animali intatti (non trattati), da 3 animali trattati con veicolo (PBS1X sterile), iniettato bilateralmente nei ventricoli laterali durante il quarto giorno post-natale (P4) e da 3 animali infusi da adulti in VTA con il secondo tipo di veicolo (acido ascorbico 0,05%).

- **SINGOLI LESIONATI DA (DA les):** questo gruppo è costituito da 10 animali a cui da adulti (a due mesi di vita) è stata iniettata stereotassicamente la neurotossina 6-idrossidopamina (6-OHDA) nell’area tegmentale ventrale (VTA), in modo da andare a colpire i neuroni dopaminergici presenti in questa regione.

- **SINGOLI LESIONATI ACh (ACh les):** questo gruppo è costituito da 10 animali a cui a P4 è stata iniettata bilateralmente nei ventricoli laterali, l’immunotossina 192-IgG-saporina (192-IgG-sap), che ha come bersaglio i neuroni colinergici del prosencefalo di base (BF).

- **SINGOLI LESIONATI NA (NA les):** questo gruppo è costituito da 10 animali a cui a P4 è stata iniettata bilateralmente nei ventricoli laterali, l’immunotossina anti-DBH-saporina (anti-DBH-sap), selettiva per i neuroni noradrenergici del Locus Coeruleus (LC).

- **DOPPI LESIONATI ACh-NA (ACh-NA les):** questo gruppo è costituito da 10 animali a cui a P4 è stata iniettata bilateralmente nei ventricoli laterali, sia l’immunotossina 192-IgG-sap che l’anti-DBH-sap, andando a ledere sia il sistema colinergico del BF che il sistema noradrenergico ascendente proveniente dal LC.
DOPPI LESIONATI ACh-DA (ACh-DA les): questo gruppo è costituito da 10 animali a cui è stata iniettata l’immunotossina 192-IgG-sap nei ventricoli laterali a P4, e la neurotossina 6-OHDA nella VTA da adulti; causando rispettivamente la deplezione di neuroni colinergici del BF e di quelli dopaminergici che forniscono l’innervazione al sistema mesocorticicolimibico.

DOPPI LESIONATI NA-DA (NA-DA les): questo gruppo è costituito da 10 animali a cui è stata iniettata l’immunotossina anti-DBH-sap nei ventricoli laterali a P4, e la neurotossina 6-OHDA nella VTA da adulti; provocando rispettivamente la deplezione di neuroni noradrenergici e di quelli dopaminergici siti in quella regione.

TRIPLI LESIONATI (TRIPLE les): in questo gruppo sono compresi 10 animali che hanno ricevuto l’infusione delle due immunotossine (192-IgG-sap e anti-DBH-sap) a P4 nei ventricoli laterali, e della neurotossina 6-OHDA nella VTA da adulti. Questi quindi presentano la deplezione a tutti e tre i sistemi neurotrasmettitori presi in esame.

A tre mesi di vita gli animali così trattati sono stati sottoposti ad una batteria di test comportamentali per valutare le loro abilità cognitive, in particolare si è analizzata la loro memoria di riferimento spaziale e quella di lavoro, utilizzando rispettivamente il Morris Water Maze (MWM) ed il Radial Arm Water Maze (RAWM). Alla fine della sessione sperimentale (durata all’incirca tre settimane), gli animali sono stati sacrificati ed il cervello è stato rimosso rapidamente, dissezionando da un emisfero la corteccia prefrontale, quella fronto-parietale e l’ippocampo, conservandoli a -80°C in previsione di analisi future con HPLC (High Performance Liquid Chromotography) o Western Blot; il resto del tessuto cerebrale invece è stato fissato in una soluzione di paraformaldeide 4% (PFA) per essere successivamente tagliato al microtomo ed analizzato tramite analisi istochimiche ed immunochimiche.

3.2.2 Effetti neuropatologici indotti da deplezione colinergica ed infusione ippocampale di beta-amiloide pre-aggregata nel ratto

Per questo secondo set di esperimenti sono stati utilizzati un totale di 32 ratti di ceppo Sprague-Dawley. In base al trattamento ricevuto, questi animali sono stati divisi in quattro gruppi così definiti:

- CONTROLLI (CTRL): questo gruppo è costituito da 4 animali intatti (non trattati) e da 4 animali trattati con veicolo (PBS1X sterile), iniettato bilateralmente in ippocampo, nel nucleo basale magnocellulare (NBM), nel setto mediale (MS) e nella banda diagonale di Broca (DBB).
• SINGOLI LESIONATI (SINGLE les): questo gruppo è costituito da 8 animali a cui è stata iniettata stereotassicamente l’immunotossina 192-IgG-saporina, selettiva per i neuroni colinergici, nel NBM, nel MS e nella DBB.
• SINGOLI AMILOIDE (SINGLE amy): questo gruppo è costituito da 8 animali a cui è stata iniettata bilateralmente in ippocampo la beta-amiloide 25-35 pre-aggregata.
• DOPPI LESIONATI (DOUBLE): questo gruppo è costituito da 8 animali che hanno ricevuto sia l’iniezione dell’immunotossina 192-IgG-sap in NBM, MS e DBB, che l’infusione ippocampale di beta-amiloide 25-35 pre-aggregata.

Al momento delle procedure chirurgiche tutti gli animali pesavano all’incirca 250 g e dopo un mese gli animali sono stati sottoposti ad una batteria di test comportamentali per verificare le loro capacità di apprendimento e memoria spaziale. Sono stati usati in particolare il MWM ed il RAWM, adatti rispettivamente a rilevare deficit nella reference e nella working memory. Gli animali sono stati quindi sacrificati a circa 2 mesi di distanza dalle procedure chirurgiche, e durante le procedure di rimozione del cervello, da un emisfero è stato dissezionato l’ippocampo e mantenuto a -80°C per analizzare il suo contenuto proteico tramite analisi con Western Blot. Il resto tessuto cerebrale è stato fissato in PFA al 4%, tagliato al microtomo ed analizzato tramite procedure di istochimica ed immunochimica.

3.3 SOSTANZE
3.3.1 Immunotossine

Il meccanismo diazione delle immunotossine che sono state utilizzate in questo lavoro di tesi è descritto nella sezione “modelli lesivi” nel capitolo 1.1.2.2 dell’introduzione. (Fig. 1.6)

3.3.1.1 192-IgG-saporina

Questa immunotossina si lega ai recettori p75NTR a bassa affinità per l’NGF, che sono espressi selettivamente dai neuroni colinergici del prosencefalo di base, e dei quali provoca la morte cellulare tramite blocco dell’attività ribosomiale. Viene quindi usata per ottenere la deplezione del sistema colinergico ascendente. La 192-IgG-saporina (Advanced Targeting Systems, CA, USA) viene disciolta in PBS1X sterile e conservata a -80°C.

Per le operazioni neonatali con iniezione nei ventricoli laterali viene utilizzata ad una concentrazione finale di 0,02 ug/ul; mentre per l’infusione locale nel parenchima dell’adulto la concentrazione finale è di 0,13 ug/ul.
3.3.1.2 anti-DBH-saporina

Questa immunotossina riconosce l’enzima dopamina-beta-idrossilasi (DBH) che viene espresso sulla membrana dei neuroni noradrenergici al momento del rilascio della noradrenalina e tramite internalizzazione della saporina provoca la morte cellulare di questi. Viene usata quindi per provocare la deplezione selettiva dei neuroni noradrenergici appartenenti al Locus Coeruleus e perciò di tutta l’innervazione noradrenergica ascendente. L’anti-DBH-sap (Advanced Targeting Systems, CA, USA) viene disiolta in PBS1X sterile e conservata a -80°C fino al momento del suo utilizzo. Nelle operazioni neonatali effettuate per questa tesi è stata utilizzata ad una concentrazione finale di 0,02 ug/uL.

3.3.2 Neurotossine

3.3.2.1 6-idrossidopamina

Per la descrizione del meccanismo d’azione della 6-idrossidopamina (6-OHDA) si rimanda alla sezione “modelli lesivi” del capitolo 1.1.3.2 dell’introduzione di questa tesi. (Fig. 1.7) La 6-OHDA iniettata in VTA va a distruggere selettivamente i neuroni dopaminergici contenuti in quell’area, e di conseguenza anche l’innervazione che da lì diparte per raggiungere le strutture limbiche e la corteccia. La 6-OHDA (Sigma) viene conservata a -20°C e poco prima dell’uso disiolta in acido ascorbico allo 0,05%. La concentrazione finale utilizzata per le iniezioni intracerebrali in ratti adulti corrisponde a 4,5 ug/uL.

3.3.3 Beta-amiloide 25-35 pre-aggregata

Per questa tesi è stato utilizzato il frammento 25-35 del peptide di beta amiloide (Bachem). Si rimanda alla sezione “beta-amiloide” capitolo 1.1.1.2 dell’introduzione per un approfondimento sulla sua funzione. Viene conservato a -20°C e quattro giorni prima del suo utilizzo viene disiolto in PBS1X sterile ad una concentrazione di 5 ug/uL ed incubato a 37°C per permetterne l’aggregazione in oligomeri e proto-fibrille. (Fig. 1.3)

3.3.4 Altre sostanze utilizzate

- Cloralio idrato (Fluka) al 5%, iniettato i.p. ad una dose di 7mL/Kg; usato come anestetico.
- Tramadolo 10% (fornito dal veterinario dello stabulario) iniettato sottocute (1mL/Kg); usato come antidolorifico durante il periodo post-operatorio.
Paraformaldeide (Sigma) al 4% discolta in buffer fosfato (PB); usata per fissare i cervelli.

Saccarosio al 20% discolto in PB; usato come crioprotettore dopo la fissazione dei cervelli.

Antifreeze (soluzione homemade costituita da: glicerolo (Merck) ed etilenglicolo (Fluka) discolti in PB). È usato per criopreservare le sezioni tagliate al microtomo e permettere la loro conservazione a -20°C.

AB Complex Kit (Vector); usato in immunoistochimica per l’amplificazione del segnale tramite sistema avidina-biotina.

3,3 Diaminobenzidina (DAB) (Sigma); è la perossidasi del rafano ed è usata in immunoistochimica per la rilevazione colorimetrica del segnale.

DPX (Distrene, Plasticiser, Xylene) mounting medium (Sigma); resina sintetica utilizzata come montante per i vetrini.

Cresil violetto acetato (Acros); usato per la colorazione di Nissl.

Solfuro d’ammonio al 4% e nitrato d’argento (Acros) allo 0,1%; usati per la rilevazione colorimetrica delle fibre AChE positive.

3.4 PROCEDURE IN VIVO

3.4.1 Procedure di microchirurgia

3.4.1.1 LESIONI NEONATALI

Le lesioni neonatali sono state effettuate il quarto giorno dopo la nascita (P4) in ratti anestetizzati mediante ipotermia. Entrambe le immunotossine (192-IgG-sap e anti-DBH-sap) o il veicolo (PBS1X sterile) sono stati iniettati con una siringa Hamilton (SGE) da 10 uL bilateralmente nei ventricoli laterali (Fig. 3.2) alle seguenti coordinate:

Antero-posteriore (AP): -0,8 mm
Laterale (L): ±0,8 mm
Verticale (V): 2,2 mm

Come punti di riferimento sono stati presi il Bregma e la superficie cutanea craniale. [Leanza et al, 1996]

Per animale è stato iniettato un volume pari a 5+5 uL contenente 2 ug per immunotossina. Dopo le procedure chirurgiche gli animali sono stati riportati alla loro normale temperatura corporea riscaldandoli con una copertina termica, ed in seguito sono stati restituiti alla madre.
3.4.1.2 LESIONI IN ADULTO

Tutte le operazioni chirurgiche in animale adulto sono state effettuate a partire dalla sesta settimana di vita, previa anestesia profonda effettuata i.p. con Cloralio Idrato al 5% (dose: 7 mL/Kg).

Gli animali sono stati fissati su un apparato stereotassico (Kopf), la superficie da incidere è stata disinfettata, il cranio è stato esposto e con un trapano sono state fatti dei buchi alle coordinate d’interesse per permettere l’iniezione delle sostanze tramite siringhe Hamilton (SGE) da 10 uL. Le siringhe sono state introdotte con attenzione nel parenchima cerebrale, ed una volta raggiunto il sito d’iniezione si è atteso un minuto prima di iniettare, in modo da permettere al tessuto di ricompattarsi ed evitare così il reflusso della sostanza. Dopo l’iniezione, effettuata molto lentamente (ad una velocità pari a circa 0,5 uL/min), si è atteso due minuti ed in seguito la siringa è stata rimossa. Le coordinate AP ed L sono state calcolate prendendo il Bregma come punto di riferimento (pari a 0), mentre quelle V sono state calcolate a partire dalla dura basandosi sull’atlante stereotassico di Paxinos e Watson, 1998. Finite le operazioni chirurgiche gli animali hanno ricevuto dei punti di sutura nella zona della cute che è stata incisa, sono stati disinfettati con Betadine e posizionati sotto una lampada riscaldante in modo da ripristinare la loro normale temperatura corporea. Durante il periodo post-operatorio, per due giorni, gli è stato somministrato sottocutaneo un antidolorifico (Tramadolo 10%; ad una dose di 1 mL/Kg) fornito dal veterinario della struttura.

Le operazioni riguardanti il primo set di esperimenti (disfunzione della regolazione monoaminergica nel ratto) hanno previsto l’iniezione della neurotossina 6-OHDA nella zona tegmentale ventrale (VTA) (Fig. 3.3) alle seguenti coordinate:
MATERIALI E METODI

AP: -5,4 mm
L: -1,5 mm
V: -7,2 mm
Il tooth-bar (tb) è stato posizionatato a -2,3 mm e si è iniettato con un angolo d’incidenza pari a +13°.

Per animale sono stati iniettati 2 uL di sostanza contenenti 9 ug di tossina disciolti in acido ascorbico allo 0.05%.

Fig. 3.3: Il punto rosso in figura mostra il sito d’iniezione della 6-OHDA, che corrisponde alla VTA. [Modificata da Paxinos e Watson, 1998]

Invece, per quanto riguarda il secondo set di esperimenti (effetti neuropatologici indotti da deplezione colinergica ed infusione ippocampale di beta-amiloide pre-aggregata nel ratto) l’immunotossina colinergica 192-IgG-sap è stata iniettata in MS, NBM e DBB, mentre il peptide di beta-amiloide 25-35 pre-aggregato in ippocampo. Negli animali di controllo il veicolo (PBS1X) è stato iniettato in tutti e quattro questi siti.

La 192-IgG-sap è stata somministrata ad una concentrazione di 1,3 ug/uL. Le coordinate utilizzate per i diversi siti d’iniezione sono le seguenti:
per raggiungere la DBB ed il MS (Fig. 3.4):
AP: +0,5 mm
L: ±0,6 mm
V: -7,7 mm e poi si è risaliti a -6,1 mm
tb: -3,3 mm

E per lato sono stati iniettati 0,3 uL nel primo sito (DBB) e 0,2 uL nel secondo (MS) di sostanza ad animale.
Fig. 3.4: In rosso sono mostrati i siti di iniezione dell’immunotossina colinergica 192-IgG-sap o del veicolo (PBS1X sterile). Quelli più in alto indicano il MS, mentre quelli più in basso la zona della DBB. [Modificata da Paxinos e Watson, 1998]

Per raggiungere il NBM (Fig. 3.5):

- AP: +1 mm
- L: ±3,3 mm
- V: -7,5 mm
- tb: +5 mm

Per lato sono stati iniettati 0,7 uL di sostanza ad animale.

Fig. 3.5: In rosso sono mostrati i siti di iniezione dell’immunotossina colinergica 192-IgG-sap o del veicolo (PBS1X sterile) corrispondenti al NBM. [Modificata da Paxinos e Watson, 1998]

La beta-amiloide 25-35 pre-aggregata è stata invece iniettata ad una concentrazione pari a 5 ug/uL, inoculando 1 uL di sostanza per ippocampo (Fig. 3.6) ad animale, alle seguenti coordinate:
AP: -3,8 mm
L: ±2,2 mm
V: -3,3 mm
tb: -3,3 mm

Fig. 3.6: In verde sono mostrati i siti di iniezione della beta-amiloid 25-35 pre-aggregata o del veicolo (PBS1X sterile) corrispondenti all’ippocampo. [Modificata da Paxinos e Watson, 1998]

3.4.2 Test comportamentali

Quando gli animali hanno raggiunto i tre mesi di vita sono stati sottoposti ad una serie di test comportamentali. Per prima cosa ci si è assicurati che essi non presentassero disturbi motori o di coordinamento, e poi si è andati ad analizzare le loro prestazioni di apprendimento e memoria spaziale (in particolare riguardanti la reference e la working memory) utilizzando il Morris Water Maze (MWM). Questa procedura è stata introdotta da Morris nel 1984 [Morris, 1984] ed oggi è diventata uno dei test comportamentali d’elezione per lo studio del ruolo dei sistemi neurali nelle funzioni cognitive, in quanto è facile da riprodurre e permette di ottenere dei risultati abbastanza affidabili. Il MWM venne originariamente concepito per lo studio della memoria di riferimento spaziale, ma ad oggi sono state introdotte delle varianti per poter indagare anche altri aspetti della cognizione. In particolare in questa tesi, oltre alla versione classica del test, il MWM appunto, abbiamo utilizzato anche il Radial Arm Water Maze (RAWM), ovvero una di queste varianti creata per poter analizzare la memoria di lavoro (working memory).

La memoria di riferimento e quella di lavoro (che sono state indagate tramite i test comportamentali esposti in questa tesi) possono essere differenziate sulla base della maggiore o minore stabilità delle informazioni che contengono, in quanto la memoria di riferimento contiene tutto quello che l’animale apprende sullo spazio che lo circonda durante il test del MWM, mentre la memoria di lavoro contiene informazioni che gli sono utili solo per
un periodo limitato di tempo. La reference memory è definita come una memoria esplicita a lungo termine, tramite cui sono processate le informazioni che riguardano lo spazio e le relazioni che intercorrono tra le varie posizioni degli oggetti; mentre la working memory è un sistema per il mantenimento temporaneo dell’informazione e per la sua manipolazione allo scopo di eseguire differenti compiti cognitivi [Baddely, 1986]

3.4.2.1 IL MORRIS WATER MAZE

Il Morris Water Maze è utile per ottenere informazioni sulla capacità di orientamento spaziale degli animali e sulla velocità e accuratezza nell’apprendere una determinata posizione basandosi esclusivamente su riferimenti esterni allo spazio di nuoto (extramaze cues).

Durante l’esecuzione del test l’animale viene posto in una vasca riempita d’acqua, situata in un ambiente contenente oggetti (pannelli, luci, disegni), che egli può usare per orientarsi, al fine di localizzare una piattaforma sommersa.

L’animale una volta trovata la piattaforma, identifica gli stimoli spaziali che gli sono utili per orientarsi e ritrovarla durante le successive prove del test.

Un animale normale, con il ripetersi del test, migliora progressivamente sia il tempo trascorso che la distanza percorsa necessari per ritrovare la piattaforma in modo da poter uscire dall’acqua il più velocemente possibile. In presenza di deficit cognitivi alla reference memory invece gli animali non sono in grado di utilizzare i riferimenti spaziali per orientarsi e non riescono a migliorare le loro prestazioni di nuoto.

L’apparato sperimentale che è stato utilizzato per l’esecuzione del MWM test consiste in una vasca circolare di PVC di colore scuro, avente un diametro di 150 cm ed un’altezza di 60 cm, circondata da oggetti di varie forme e colori che possono essere utilizzati come riferimento spaziale dagli animali e che non vengono spostati per tutta la durata della sperimentazione. (Fig. 3.7)

Ai bordi della vasca vengono identificati 4 punti (N, S, W, E) che servono come siti di rilascio degli animali e che suddividono idealmente la vasca in quattro quadranti di uguali dimensioni (SW, NW, NE, SE). Al centro di ciascun quadrante è identificata un’area di circa 15 cm di diametro, denominata annulus, in mezzo alla quale può essere posta una piattaforma.

La vasca viene riempita con acqua a temperatura ambiente (20°C) fino a sommergere la piattaforma (10 cm di diametro per 28 cm di altezza), che viene posta al centro di uno dei quattro annuli (nel nostro caso SW). La piattaforma viene mantenuta sotto il livello dell’acqua di circa 2 cm, in modo che gli animali non la possano vedere, ma possano urtarvi contro nuotando.

La traiettoria di nuoto dell’animale viene registrata da una telecamera posta sul soffitto della stanza ed interfacciata ad un PC mediante un software di videotracking (Anitacker, DGTech).
Questo programma permette di calcolare il tempo (la latenza) in secondi, la distanza in metri e la velocità media che gli animali impiegano a trovare la piattaforma. L'analisi di questi dati invece viene fatta offline dallo sperimentatore.

Fig. 3.7: Rappresentazione schematica dell’apparato sperimentale utilizzato per l’esecuzione del MWM test.

Nei tre giorni precedenti all’inizio del MWM test gli animali vengono addestrati tramite *Cue test* a nuotare nella vasca, orientarsi nello spazio ed identificare una piattaforma contrassegnata da una bandierina, in modo da farli familiarizzare con l’ambiente per ridurre lo stress e capire se presentano deficit di tipo visuo-motori.

Durante il MWM test che dura 7 giorni consecutivi gli animali vengono sottoposti quotidianamente a 4 prove in cui vengono rilasciati, ogni giorno con ordine diverso, dai quattro punti cardinali della vasca, mentre la piattaforma rimane fissa al centro dell’*annulus* del quadrante SW. Ogni prova dura massimo 60 secondi, allo scadere dei quali l’animale, se non è stato in grado di raggiungere autonomamente la piattaforma, viene preso dallo sperimentatore e viene ivi posizionato per permettergli di orientarsi. Tra una prova e l’altra gli animali vengono lasciati riposare sulla piattaforma per circa 20 secondi, in maniera da dargli modo anche di esplorare lo spazio circostante prima di farli partire dal punto successivo.

3.4.2.2 LO SPATIAL PROBE TRIAL

Durante l’ultimo giorno del MWM test, alla fine della quarta prova, la piattaforma viene rimossa dalla vasca e l’animale, rilasciato dal punto opposto in cui questa si trovava, viene fatto nuotare per un minuto. Questo trial viene definito *Spatial Probe Trial* (SPT) e serve a determinare l’accuratezza dell’apprendimento raggiunto dall’animale. In questo test
vengono considerate le percentuali di tempo trascorso e di distanza percorsa in ciascun quadrante ed anche il numero delle collisioni con gli *annuli* che ha effettuato l’animale.

3.4.2.3 IL RADIAL ARM WATER MAZE

Conclusi i 7 giorni di MWM test si è passati a valutare le capacità cognitive riguardanti la memoria di lavoro dei ratti in sperimentazione tramite il *Radial Arm Water Maze* (RAWM) test. Per l’esecuzione di questo test è stato usato un protocollo che dura 5 giorni e prevede l’introduzione nella stessa vasca usata per il MWM test di una serie di setti in plexiglass nero di 50 cm di lunghezza e 40 cm di altezza. I pannelli vengono fissati insieme in modo da creare un angolo di 60° tra loro, e poi incollati alle pareti della vasca così da ottenere sei corridoi simmetrici larghi 20 cm. La piattaforma viene mantenuta 2 cm sotto il livello dell’acqua, posizionata in fondo ad uno dei bracci del labirinto e lasciata fissa per un intero giorno di test, mentre cambia di posizione di giorno in giorno. (Fig. 3.8)

![Fig. 3.8: Rappresentazione schematica della vasca utilizzata per il RAWM test che serve per la valutazione delle capacità di working memory. Dalla figura si possono notare i 6 corridoi simmetrici (in azzurro) che costituiscono il labirinto acquatico e la piattaforma (qui indicata con un cerchio rosso) posizionata all’estremità di un braccio.](image)

I ratti invece ogni giorno vengono rilasciati secondo un ordine casuale prestabili to dall’estremità dei cinque bracci che non contengono la piattaforma, svolgendo quindi 5 trials al giorno. Il loro scopo, come nel MWM classico, è quello di riuscire a trovare la piattaforma nascosta entro un tempo limite di 60 secondi. Quello che cambia è che non viene valutato il loro apprendimento tra i diversi giorni, ma tra i vari trials di uno stesso giorno.

In questo test vengono registrati ed analizzati il tempo che il ratto impiega a trovare la piattaforma e gli errori che compie quando entra in un braccio che non contiene la piattaforma e ne supera con il muso la metà. Quando l’animale non riesce a trovare da solo la piattaforma entro il minuto viene posizionato lì dallo sperimentatore e lo si fa orientare per una ventina di secondi prima di iniziare la prova successiva.

Nel corso dell’esecuzione di questo test l’animale deve elaborare le informazioni che ha acquisito nel tempo (le direttive del compito) per applicarle ad una nuova situazione (ogni giorno la piattaforma cambia posizione); deve pertanto operare un confronto tra le
contingenze attuali (trovare il “nuovo” braccio che contiene la piattaforma) e le azioni compiute di recente (ricordare quali bracci sono già stati visitati) ed adattare di conseguenza le sue risposte (cercare di non entrare dove non c’è la piattaforma). Ciò richiede all’animale un maggiore sforzo cognitivo rispetto ai processi propri della reference memory che fanno riferimento a situazioni che non variano nel corso dei vari trials.

Per l’analisi dei dati ottenuti dal RAWM test, oltre alle differenze relative tra i vari trials per quanto riguarda il tempo e gli errori effettuati, viene anche misurato il miglioramento dell’apprendimento che si ha tra il primo ed il secondo trial. Questo parametro, definito savings è calcolato tramite la seguente formula:

\[
Savings=\frac{(t_1-t_2)}{t_1} \times 100
\]

[Netto et al, 1991]

Dove \(t_1 \) è la media del tempo impiegato dagli animali per trovare la piattaforma durante il primo trial mentre \(t_2 \) è la media del tempo impiegato nel secondo trial.

3.5 PROCEDURE EX VIVO

3.5.1 Sacrifici e processamento dei tessuti

A circa 4 mesi di vita, alla fine del periodo dedicato ad i test comportamentali, gli animali sono stati sacrificati. Sono stati anestetizzati mediante iniezione i.p. di cloralio idrato (Fluka) al 5% usato alla dose di 7 ml/Kg e perfusi per via transcardica con 200 mL di soluzione fisiologica (NaCl 0,9%) tenuta a RT. I cervelli sono stati rapidamente rimossi e sono state asportate le regioni ippocampali e neocorticali d’interesse da un emisfero. Queste sono state congelate in ghiaccio secco e poi conservate a -80°C in attesa di future indagini neurochimiche e di immunoblotting, mentre il resto del tessuto cerebrale è stato fissato per immersione in una soluzione di paraformaldeide (PFA) al 4% in tampone fosfato (PB) per 24h. Il tessuto fissato è stato successivamente passato in una soluzione di saccarosio al 20% discolto in tampone fosfato (PB) 0,1 M per minimo 24 h, e conservato a 4°C fino al momento del taglio.

I cervelli sono stati tagliati in sezioni coronali dello spessore di 30 um utilizzando un microtomo congellatore (Leitz Wetzlar) e sono state mantenute a -20°C in una soluzione di criopreservazione (antifreeze) fino al momento delle colorazioni istochimiche ed immunochimiche.

In seguito alle procedure istologiche descritte nei prossimi capitoli di questa tesi, le sezioni sono state montate su vetrini gelatinizzati, disidratate (tramite passaggio in soluzioni alcoliche di grado crescente) fino ad arrivare ad una soluzione di xilene 100%. A questo
punto i vetrini sono stati coperti tramite coprioggetto, utilizzando il DPX (Sigma) come montante, per poi essere osservati al microscopio.

3.5.2 Procedure istologiche

3.5.2.1 COLORAZIONE ISTOCHIMICA PER LA RILEVAZIONE DELLE FIBRE AChE-POSITIVE

Per valutare gli effetti delle lesioni sull’innervazione colinergica delle regioni corticali ed ippocampali è stato seguito il protocollo di Hedreen [Hedreen et al., 1985] che permette la localizzazione selettiva dell’enzima acetylcolinesterasi (responsabile della degradazione dell’acetilcolina) nei neuroni e nei processi colinergici.

Le sezioni sono state prima lavate con tampone acetato a pH 6.0 e poi incubate con una soluzione di citrato di sodio, ferricianuro di potassio, solfato di rame e acetiltiocolina ioduro (Sigma) in sodio acetato al quale è stato aggiunta dell’etopropaziana (Sigma) per inibire le esterasi aspecifiche. In questo passaggio l’acetylcolinesterasi, grazie alla sua attività enzimatica, trasforma l’acetiltiocolina ioduro in tiocolina che a sua volta riduce il ferrocianuro di potassio, il quale crea un complesso di colore scuro con il rame. Nei successivi passaggi la colorazione viene intensificata mediante incubazioni con ammonio solfuro al 4% e nitrato d’argento al 0,1%.

3.5.2.2 COLORAZIONE DI NISSL CON CRESIL VIOLETTA

Questa tecnica è stata scoperta da Franz Nissl nel 1884, quando ancora studente notò la comparsa di granuli scuri intracellulari in sezioni di cervello trattate con blu di metilene (un colorante cationico basico).

Tale metodo permette di colorare i corpi cellulari dei neuroni, in particolare il reticolo endoplasmatico. Nel corso degli anni sono state introdotte delle variazioni al protocollo originale, utilizzando al posto del blu di metilene altri coloranti cationici basici come ad esempio l’anilina, la tionina, il blu di toluidina ed il cresil violetto. Tutte queste sostanze sono infatti in grado di colorare in blu l’RNA delle cellule (che caratteristicamente è acido, basofilo e caricato negativamente), permettendo in tal modo la visualizzazione del reticolo endoplasmatico ruvido (la sostanza di Nissl) che appare blu scuro a causa della presenza di RNA ribosomiale su di esso. Inoltre, anche il DNA all’interno dell’nucleo assume un colore simile.

Per gli esperimenti di questa tesi abbiamo utilizzato questa procedura istochimica (utilizzando il cresil violetto come colorante) per trattare delle sezioni su cui precedentemente era stato effettuato un processo di immunochimica per la rilevazione degli
antigeni anti-tau-fosforilata, in modo da permettere la mappatura delle cellule presentanti immunoreattività.

3.5.2.2 IMMUNOISTOCHIMICA

Su alcune sezioni, in base alla zona d’interesse e agli aspetti neuropatologici associati alle lesioni che si sono voluti indagare, sono state effettuate diverse colorazioni di immunoistochimica in free-floating utilizzando il complesso Avidina-Biotina-Perossidasi. In particolare, per il primo set d’esperimenti (disfunzione della regolazione monoaminergica nel ratto) sono state allestite delle procedure immunochimiche per la visualizzazione di marker colinergici (colina acetiltransferasi o ChAT), noradrenergici (dopamina beta-idrossilasi o DBH) o dopaminergici (tirosina idrossilasi o TH); mentre per il secondo set sperimentale (effetti neuropatologici indotti da deplezione colinergica ed infusione ippocampale di beta-amiloide pre-aggregata nel ratto) si è andati a valutare la presenza di marcatori associati all’attività colinergica (ChAT) e di antigeni specifici per la Tau-fosforilata in posizione 181 (Tau-P181Thr), la beta-amiloide 25-35 ed il TDP-43.

Il procedimento di immunoistochimica ha previsto per prima cosa l’inattivazione delle perossidasi endogene mediante l’incubazione delle fettine per 10 min in una soluzione di metanolo al 10% e perossido di idrogeno (H2O2) al 3% in tampone potassio fosfato (KPBS) a pH 7,4. Le sezioni sono state poi lavate in KPBS e preincubate per un’ora con del siero decomplementato (derivante dalla stessa specie da cui viene prodotto anche l’anticorpo secondario) al 5% ed il Triton 100X (Sigma) allo 0,3% in KPBS. In seguito sono state esposte all’anticorpo primario diluito in siero al 2%, Triton 100X allo 0,3% e KPBS per 16-18 h a RT. Successivamente, dopo aver rimosso l’anticorpo primario non legato agli antigeni presenti nelle sezioni con del KPBS, queste sono state immerse per 2 h a RT in una soluzione costituita dall’anticorpo secondario biotinilato discoloito in siero al 2%, Triton 100X allo 0,3% e KPBS. Le sezioni sono poi state lavate dall’eccesso di anticorpo secondario con del KPBS ed incubate per un’ora assieme al complesso Avidina-Biotina (ABC kit – Vector) per aumentare il segnale. Alla fine è stata fatta sviluppare per 5 min la reazione tra la 3,3-diaminobenzidina (DAB – Sigma) concentrata allo 0,025% ed il perossido d’idrogeno allo 0,03%, che permette la rilevazione del segnale colorimetrico associato al complesso che si è creato tra gli anticorpi, l’avidina, la biotina e la perossidasi.

Di seguito viene riportata la tabella (Tab. 3.1) con tutti gli anticorpi utilizzati per le procedure di immunoistochimica che sono state effettuate.
<table>
<thead>
<tr>
<th>ANTIGENE</th>
<th>ANTICORPO PRIMARIO</th>
<th>ANTICORPO SECONDARIO</th>
<th>SIERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChAT</td>
<td>ms anti-ChAT [1:1000]</td>
<td>hs anti-ms [1:200]</td>
<td>NHS</td>
</tr>
<tr>
<td>Tau-P181Thr</td>
<td>ms anti-Tau-P181Thr [1:200]</td>
<td>hs anti-ms [1:200]</td>
<td>NHS</td>
</tr>
</tbody>
</table>

Tab. 3.1: In tabella sono riportati gli anticorpi, primari e secondari, ed i sieri utilizzati per le procedure di immunochimica. Dove: ms=topo; hs=cavallo; rb=coniglio; gt=capra; mentre NXS=normal X serum, in cui X rappresenta la specie in cui è stato prodotto il siero (H=cavallo; G=capra). Tutti gli anticorpi secondari utilizzati sono biotinilati.

3.5.3 Analisi microscopiche

Le sezioni così processate sono state osservate tramite microscopio Nikon H550L e fotografate usando una fotocamera digitale ProgRes.

In particolare, per quanto riguarda il primo set di esperimenti (disfunzione della regolazione monoaminergica nel ratto) si è andati ad analizzare gli effetti delle lesioni sull’innervazione corticale ed ipocampale; e sulla sopravvivenza cellulare nei nuclei colinergici del prosencefalo di base (MS, DBB e NBM), nel complesso noradrenergico LC/SubC e dei neuroni dopaminergici della VTA. Per quanto riguarda il secondo set sperimentale (effetti neuropatologici indotti da deplezione colinergica ed infusione ipocampale di beta-amiloide pre-aggregata nel ratto), sono stati ricercati i segni neuropatologici (aumento della forma fosforilata della proteina tau, accumulo di TDP-43 nel citoplasma, presenza di depositi di aggregati di beta-amiloide) indotti dai due tipi di trattamento nelle zone della corteccia frontale e dell’ippocampo, oltre ad osservare gli effetti di questi sull’innervazione colinergica ed i suoi nuclei di origine.

3.5.4 Analisi con Western Blot

Tramite la tecnica del Western Blot è possibile identificare delle proteine all’interno di un tessuto specifico e fare un’analisi semi-quantitativa di esse.
Quindi è stato deciso di usare questa metodica per analizzare il contenuto proteico degli ippocapi prelevati dagli animali lesionati con 192-IgG-sap nei nuclei colinergici del prosencefalo di base e/o inoculati con beta-amilioide 25-35. In particolare è stata indagata la presenza delle seguenti proteine: APP, TAU, TAU-P181 e TDP-43.

Qui di seguito viene riportato il procedimento che è stato utilizzato per la rilevazione degli antigeni e la quantificazione dei livelli di proteine.

3.5.4.1 PREPARAZIONE DEI TESSUTI

I frammenti di tessuto ippocampale, prelevati durante i sacrifici e conservati a-80°C, sono stati immersi in tampone RIPA (costituito da NaCl 150 mM, Tris-HCl 50 mM a pH 7,5, NP-40 all’1%, SDS allo 0,1%, DOC allo 0,5% e EDTA 5Mm), a cui sono stati aggiunti degli inibitori delle proteasi, ed omogeneizzati mediante un omogeneizzatore (Ultra-Turrax). I campioni sono stati poi sonicati per 20 secondi ed infine centrifugati per 15min a 14000 rpm. Il surnatante che ne è risultato è stato prelevato, posto in ghiaccio per 20 minuti ed il contenuto proteico è stato quantificato tramite NanoDrop (misurando l’assorbanza a 280 nm) per essere poi processato tramite immunoblotting.

3.5.4.2 SEPARZIONE DELLE PROTEINE MEDIANTE ELETTROFORESI SU SDS-PAGE

La separazione delle proteine è stata fatta tramite gel di poliacrilamide al 10% preparato in SDS (sodium dodecyl sulfate) 0,1%. Questo gel, posto in verticale, presenta una prima parte chiamata stacking gel dove la miscela proteica viene compattata, ed una seconda parte chiamata running o separating gel in cui avviene la separazione elettroforetica delle proteine in base al loro peso molecolare.

Le aliquote utilizzate per il caricamento dei campioni sul gel, sono state preparate utilizzando un volume corrispondente a 20 mg di proteine a cui è stato aggiunto il buffer di caricamento (loading buffer) per ridurre i legami disolfuro.

I campioni così preparati sono stati denaturati in un blocco riscaldante a 100°C e poi caricati nei diversi pozzetti creati nel gel con un pettinino di plastica. Accanto ai campioni è stato caricato anche un apposito ladder, che costituendo una scala graduata, permette la detenzione del peso molecolare delle diverse proteine che vengono separate con questa tecnica.

La corsa su gel è stata effettuata applicando un campo elettrico e creando una differenza di potenziale di 35 V nella fase stacking del gel, e di 50 V in quella di separating. Le proteine in questo modo migrano dal polo negativo del gel a quello positivo, separandosi in base al loro peso molecolare.
3.5.4.3 BLOTTING IN CAMERA DI TRASFERIMENTO

Dopo la corsa, i gel vengono posizionati nei transfer sandwiches, costituiti esternamente da supporti in plastica all’interno dei quali vengono posti in sequenza: un foglio di spugna, della carta da filtro 3 mm, il gel con le proteine separate, una membrana di nitrocellulosa, di nuovo della carta da filtro 3 mm ed un altro foglio di spugna. I transfer sandwiches così costituiti, vengono quindi immersi nel buffer di trasferimento che si trova dentro la camera di trasferimento che serve per il blotting. A questo punto, creando una differenza di potenziale le proteine (cariche negativamente) tendono a migrare verso il polo positivo, finchè non incontrano la membrana di nitrocellulosa che le blocca e le lega a sè.

3.5.4.4 RICONOSCIMENTO DEGLI ANTIGENI E SVILUPPO DELLE LASTRE

Le membrane che legano le proteine vengono recuperate ed incubate over-night in agitazione a RT in una soluzione di bloking contenente PBS1X, BSA al 3%, TWEEN allo 0,1% ed inibitori delle fosfatasi, per bloccare i siti di legami aspecifici a cui potrebbero legarsi gli anticorpi e per evitare la perdita dei gruppi fosfato associati alle proteine d’interesse. In seguito le membrane vengono esposte per un’ora all’azione dell’anticorpo primario (Tab. 3.2) opportunamente diluito in PBS1X, BSA al 3% e TWEEN allo 0,1%. Poi vengono effettuati tre lavaggi di 5 min ciascuno con PBS1X e TWEEN 0,5% e le membrane vengono messe ad incubare per un’ora con un anticorpo secondario coniugato alla perossidasi del rafano (HRP) (Tab. 3.2) e diluito in PBS1X, BSA al 3% e TWEEN allo 0,1%. Alla fine di questa incubazione le membrane vengono lavate ancora tre volte con PBS1X e TWEEN 0,5% ed infine solo con PBS1X.

A questo punto è possibile visualizzare gli antigeni d’interesse tramite un substrato luminescente: il luminolo, che viene ossidato in condizioni alcaline dalla perossidasi del rafano. Le membrane infatti vengono esposte per 3 minuti ad una soluzione contenente il luminolo (Pierce ECL Western Blotting Substrate – Thermo Scientific), che crea una reazione di chemiluminescenza. Questa, in stanza oscura (dove tutto viene fatto rigorosamente al buio), viene impressa su delle lastre fotografiche (Kodak) con dei tempi d’esposizione variabili. Le lastre vengono poi immerse in una soluzione di sviluppo e poi in una di fissaggio per permetterne lo sviluppo e la detenzione delle bande proteiche.
ANTIGENE	ANTICORPO PRIMARIO	ANTICORPO SECONDARIO
TAU | ms anti-TAU [1:100] | HRP anti-ms [1:2000]
TAU-P181Thr | ms anti-TAU-P181Thr [1:100] | HRP anti-ms [1:2000]

Tab. 3.2: In tabella sono indicati gli anticorpi primari e secondari utilizzati per l’immunoblotting e le rispettive diluizioni di lavoro. La beta-tubulina è una proteina house-keeping che viene utilizzata come controllo.

3.5.4.5 ANALISI DENSITOMETRICHE

Le lastre fotografiche ottenute dai Western Blot sono state scannerizzate (SNAPSCAN 1212u, Agfa) per poi poter valutare la densità delle bande proteiche tramite analisi densitometrica computerizzata (effettuata tramite ImageJ).

3.5.5 Analisi statistiche

I dati ottenuti delle analisi comportamentali e da quelle istochimiche e neurochimiche sono stati valutati mediante un test di analisi della varianza (ANOVA), sia fattoriale (oneway ANOVA) che sia per misure ripetute (repeated measures ANOVA), affiancate, dove risultasse appropriato, da un *Fisher’s PLSD post-hoc test* per confronti appaiati.

L’analisi statistica è stata condotta utilizzando il software Statview 4.0 per Macintosh (JMP, Cary) e le differenze sono state considerate significative per *p* < 0,05.
4. **Risultati**

4.1 **DISFUNZIONE DELLA REGOLAZIONE MONOAMINERGICA NEL RATTO**

4.1.1 **Analisi funzionali**

Nei soggetti lesionati non sono stati rilevati cambiamenti nel peso corporeo rispetto al gruppo dei controlli o altri segni che rilevassero uno stato di sofferenza.

Tramite il Cue-test è stato constatato che nessuno degli animali utilizzati per questo set di esperimenti ha riportato disturbi di tipo visivo o motorio, perciò i deficit che andremo ad analizzare nei prossimi capitoli di questa tesi possono essere associati esclusivamente alle capacità cognitive e non sono dovuti all'influenza di alterazioni di altro tipo.

La velocità natatoria media degli animali è risultata essere abbastanza simile tra i vari gruppi, con valori compresi tra i 0,2-0,3 m/s (dati non presentati).

Gli animali intatti e quelli trattati con veicolo (PBS1X sterile) non hanno mostrato differenze di comportamento in nessuno dei test effettuati, perciò per le analisi sono stati raggruppati in uno stesso gruppo definito "controlli" (CTRL).

4.1.1.1 **REFERENCE MEMORY**

I tempi medi impiegati dagli animali durante l’esecuzione del *Morris Water Maze* (MWM) test per raggiungere la piattaforma nascosta sono mostrati in Fig. 4.1.

Si nota che durante il primo giorno di test gli animali raggiungono il loro target mediamente dopo 25-30 secondi da quando vengono messi in acqua; mentre l’ultimo giorno riescono a trovare la piattaforma anche dopo 5-10 secondi, senza particolari differenze tra i vari gruppi. Quindi, tutti gli animali il settimo giorno di test sono in grado di trovare la piattaforma nel minor tempo possibile. Delle differenze possono essere però osservate durante il processo di apprendimento che intercorre tra il primo ed il quinto giorno di test. Come infatti si vede dai tracciati del grafico della latenza (Fig. 4.1) tutti gli animali migliorano la loro prestazione nel tempo, ma mentre quelli appartenenti al gruppo dei controlli e coloro che hanno ricevuto la lesione dopaminergica (DA les, ACh-DA les, NA-DA les) imparano molto velocemente, dimezzando il tempo tra il primo ed il secondo giorno, e raggiungendo già al quarto il livello di plateau che manterranno fino al settimo; gli animali con lesione colinergica e noradrenergica concomitante (TRIPLE les, ACh-NA les) o singola (ACh les, NA les) raggiungono i valori più bassi di latenza solo dal quinto giorno in poi, e durante i primi tre giorni di test mostrano solo un lieve miglioramento, queste differenze osservate comunque non sono significative in quanto è presente un’ampia variabilità all’interno di tali gruppi.
Fig. 4.1: Analisi funzionale della memoria di riferimento spaziale indagata tramite MWM test in animali che hanno ricevuto dei trattamenti lesivi al sistema dopaminergico e/o colinergico e/o noradrenergico. In figura sono riportati i tracciati che rappresentano il tempo medio (calcolato in secondi) impiegato dagli animali per trovare la piattaforma durante i 7 giorni di test.

Analizzando la distanza percorsa dagli animali per trovare la piattaforma sommersa durante il MWM test si può osservare uno scenario abbastanza simile (Fig. 4.2).

Fig. 4.2: Analisi funzionale della memoria di riferimento spaziale indagata tramite MWM test in animali che hanno ricevuto dei trattamenti lesivi al sistema dopaminergico e/o colinergico e/o noradrenergico. In figura sono riportati i tracciati che rappresentano la distanza media (calcolata in metri) percorsa dagli animali per raggiungere la piattaforma durante i 7 giorni di test.

Tutti gli animali il primo giorno di test nuotano per circa 7 metri prima di trovare la piattaforma, mentre dal quinto giorno in poi ne percorrano in media meno di 2 (metri).
Anche in questo caso si osserva una lentezza nell’apprendimento per quanto riguarda i gruppi NA les, ACH-NA les, ACh les e TRIPLE les durante i primi tre giorni di test, ma già a partire dal quarto giorno le performance si presentano abbastanza simili a quelle degli altri animali, queste differenze comunque non sono significative.

4.1.1.2 ACCURATEZZA DELL’APPRENDIMENTO

Come si può osservare dai tracciati di nuoto (Fig. 4.3) registrati durante lo Spatial Probe Trial (SPT), dopo il settimo giorno di MWM test, gli animali presentano una strategia di ricerca spaziale simile. Tutti quanti hanno infatti raggiunto lo stesso livello di apprendimento, e tendono a nuotare preferibilmente nel quadrante dove era posta la piattaforma durante il MWM test (SW), come si vede dal grafico che rappresenta la percentuale di distanza percorsa nei differenti quadranti in cui è divisa virtualmente la vasca (Fig. 4.4). Inoltre effettuano tutti un numero significativamente maggiore di collisioni con l’annulus corrispondente alla precedente posizione della piattaforma (SW) rispetto agli altri tre, come si osserva in Fig. 4.5.

Fig. 4.3: Tracciati di nuoto (linee blu scuro) rappresentativi per gruppo testato, registrati durante lo SPT. Il cerchio rosso raffigura la posizione della piattaforma durante il MWM test e corrisponde all’annulus all’interno del quadrante di SW della vasca.

Fig. 4.4: Questi istogrammi rappresentano la distanza percentuale media che ogni gruppo ha percorso nei quattro quadranti in cui è suddivisa virtualmente la vasca durante lo SPT della durata di un minuto. Come si vede nel grafico tutti gli animali nuotano prevalentemente nel quadrante di SW, quello in cui durante i precedenti 7 giorni di MWM test era posizionata la piattaforma.
Fig. 4.5: Questi istogrammi rappresentano il numero medio di collisioni effettuate per gruppo testato durante lo SPT. Tutti gli animali, nel minuto a disposizione, tendono a dirigere il loro nuoto verso l’annulus in cui nei trials precedenti veniva posizionata la piattaforma (quello di SW), dimostrando un livello di apprendimento spaziale simile.

4.1.1.3 WORKING MEMORY

La capacità di memoria di lavoro degli animali lesionati al sistema dopaminergico e/o colinergico e/o noradrenergico è stata analizzata tramite il Radial Arm Water Maze (RAWM) test e rapportata alle performance di animali di controllo.

Dall’analisi della latenza è emerso che tutti gli animali sono in grado di migliorare progressivamente dalla prima alla quinta prova del test, impiegando un tempo medio compreso tra i 40 ed i 50 secondi nel primo trial fino ad arrivare a raggiungere la piattaforma tra i 15 ed i 20 secondi nell’ultimo (Fig. 4.6).

Delle differenze significative tra gruppi compaiono però quando si va ad analizzare il modo in cui gli animali imparano a svolgere questo compito. In particolare esiste un’ampia discrepanza tra la velocità d’apprendimento che avviene tra il primo ed il secondo trial. Come si può infatti notare in Fig. 4.6, nel secondo trial tutti i gruppi che presentano la lesione noradrenergica (NA les, ACh-NA les, NA-DA les, TRIPLE les) impiegano più tempo a completare il compito (dai 10 ai 15 secondi in più rispetto ai controlli). Inoltre, come emerge anche dall’analisi dei Savings per la latenza, la percentuale del loro miglioramento in questa fase è significativamente (p<0,05) più bassa rispetto agli altri gruppi, infatti non oltrepassa il 20-30% contro il 50% raggiunto invece dai controlli (Fig. 4.7).
Fig. 4.6: Analisi funzionale della memoria di lavoro indagata tramite RAWM test in animali che hanno ricevuto dei trattamenti lesivi al sistema dopaminergico e/o colinergico e/o noradrenergico. In figura sono riportati i tracciati che rappresentano il tempo medio (calcolato in secondi) impiegato dagli animali per trovare la piattaforma durante i 5 trials che vengono effettuati ogni giorno per 5 giorni.

Fig. 4.7: Questo grafico mostra il risultato dell’analisi dei Savings per quanto riguarda la latenza, cioè la percentuale di miglioramento che i gruppi presentano tra il primo ed il secondo trial. Qui si vede chiaramente come tutti i gruppi che sono stati soggetti a deplezione del sistema noradrenergico presentino dei deficit maggiori ad eseguire il RAWM test, un compito che richiede l’integrità della memoria di lavoro.

(* indica una performance significativamente peggiore rispetto ai controlli, dove p<0,05)

Risultati simili sono stati ottenuti anche dall’analisi degli errori in cui gli animali sono incorsi durante il RAWM test. Tutti gli animali lesionati al sistema noradrenergico (NA les, ACh-NA les, NA-DA les, TRIPLE les) tendono mediamente a fare un errore in più rispetto ai controlli durante il secondo ed il terzo trial del RAWM test (Fig. 4.8), e come si può vedere
dall’analisi dei Savings (Fig. 4.9) il loro miglioramento in termini d’errori tra la prima e la seconda prova è significativamente (p<0,05) minore rispetto ai controlli (20-25% contro 60%). Questi risultati fanno quindi supporre un importante coinvolgimento del sistema noradrenergico nel corretto funzionamento della working memory.

Fig. 4.8: Analisi funzionale della memoria di lavoro indagata tramite RAWM test in animali che hanno ricevuto dei trattamenti lesivi al sistema dopaminergico e/o colinergico e/o noradrenergico. In figura sono riportati i tracciati che rappresentano la media degli errori effettuati dai gruppi durante le 5 prove del test.

Fig. 4.10: Questo grafico evidenzia il risultato ottenuto dall’analisi dei Savings per quanto riguarda gli errori, mostrando la percentuale di miglioramento tra la prima e la seconda prova del test. I gruppi che hanno ricevuto la lesione al sistema noradrenergico migliorano solo del 20-25% contro il 60% raggiunto dai controlli. (* indica una performance significativamente peggio rispetto ai controlli, dove p<0,05)
4.1.2 Analisi istologiche

4.1.2.1 EFFETTI ANATOMICI DELLE LESIONI

Per verificare l'efficacia e la specificità delle lesioni ottenute tramite le due immunotossine, 192-IgG-sap ed anti-DBH-sap, inoculate nei ventricoli laterali di animali neonati e della neurotossina 6-OHDA iniettata localmente nella VTA di animali adulti; sono state fatte una serie di colorazioni istochimiche ed immunochimiche atte a rilevare i marcatori cellulari d'interesse.

I neuroni colinergici del prosencefalo di base sono stati rilevati tramite un'immmunoistochimica anti-ChAT (anti-colina acetiltransferasi), diretta contro l'enzima che catalizza la reazione tra l'acetil coenzima A e la colina per la formazione dell'acetilcolina (ACh). Quest'enzima si trova solamente nel soma dei neuroni colinergici dove viene appunto prodotta l'ACh e quindi costituisce un marker d'elezione per la loro analisi istochimica. Al microscopio sono state poi analizzate le zone delle sezioni cerebrali contenenti il MS e la DBB, e quelle che comprendevano il NBM. In tutte queste zone si è osservata una deplezione pari a circa il 75% dei corpi cellulari colinergici negli animali che avevano ricevuto l'infusione della 192-IgG-sap da neonati (ACh les, ACh-DA les, ACh-NA les, TRIPLE les), mentre questi nuclei rimanevano integri in tutti gli animali trattati con le altre tossine. In Fig. 4.11, nella colonna di sinistra, vengono riportate a scopo esemplificativo solo le sezioni contenenti il MS e la DBB, mentre le foto che riguardano il NBM non sono mostrate.

L'innervazione colinergica ippocampale e corticale è stata invece evidenziata per mezzo di una colorazione istochimica specifica per l'acetilcolinesterasi (AChE), l'enzima addetto alla degradazione dell'ACh nei terminali sinaptici, localizzato principalmente sulle fibre dei neuroni colinergici. La denervazione colinergica così osservata è risultata essere del 70-80% negli animali lesionati con la 192-IgG-sap rispetto a quelli di controllo, mentre non erano presenti danni morfologici evidenziabili negli animali lesionati con le altre due sostanze. In figura 4.11, nella colonna di sinistra, vengono riportati i particolari dell'innervazione colinergica del giro dentato dell'ippocampo appartenenti ai diversi gruppi analizzati. Come si può vedere, solo gli animali lesionati con l'immmunotossina 192-IgG-sap presentano la perdita delle fibre AChE-positive nel DG.

I neuroni dopaminergici appartenenti alla VTA invece sono stati analizzati tramite una colorazione immunoistochimica diretta contro la tirosina idrossilasi (TH), l'enzima che catalizza la trasformazione dell'amminoacido tirosina in L-DOPA (L-di-idrossifenilalanina), precursore in sequenza della dopamina, della noradrenalina e dell'adrenalina, contenuto sia nel soma che nelle parti terminali dei neuroni monoaminergici. [Nagatsu e Levitt, 1964]

In questo modo è stato possibile verificare la corretta localizzazione della lesione, in quanto il nostro intento era quello di “colpire” solo i neuroni dopaminergici della VTA e non quelli della
limitrofa SN. Nella zona di nostro interesse si è quindi osservata una deplezione dopaminergica pari al 40-50% negli animali che hanno ricevuto l’infusione di 6-OHDA singola o in combinazione con la 192-IgG-sap (DA les, ACh-DA les) in confronto ai controlli, mentre la perdita neuronale è risultata più massiva negli animali trattati anche con l’immunotossina noradrenergica anti-DBH-sap, in cui si è visto un decremento del 60% nei doppi (NA-DA les) ed anche del 70% nei tripli lesionati (TRIPLE les). (Fig. 4.11, colonna centrale) La maggiore deplezione dopaminergica osservata in questi ultimi due gruppi potrebbe indicare che la mancanza di fibre noradrenergiche che innervano la VTA renda i neuroni dopaminergici di quest’area più suscettibili all’insulto tossico dato dall’iniezione locale della 6-OHDA. Risultati simili sono stati osservati analizzando al microscopio l’immunoreattività per TH dell’innervazione dopaminergica mesocorticobasica, che raggiunge le aree prefrontali, fronto-parietali e l’ippocampo. In figura 4.11, nella colonna centrale, sono riportati i particolari del DG dell’ippocampo in cui si può vedere un marcato decremento di fibre dopaminergiche in tutti i gruppi di animali trattati con la 6-OHDA.

Gli effetti delle lesioni sui neuroni noradrenergici del complesso LC/SubC e sull’innervazione che da esso diparte sono stati analizzati invece tramite una colorazione immunistochemica anti-DBH (anti-dopamina beta-idrossilasi), cioè diretta contro l’enzima responsabile della conversione della dopamina in noradrenalina, che si localizza sia nei corpi cellulari che nei terminali di questi neuroni. Come si può vedere nella colonna di destra della Fig. 4.11, la somministrazione dell’immunotossina anti-DBH-sap in animali neonati determina una riduzione dell’immunoreattività per questo marcatore noradrenergico del 90-95% rispetto alla condizione degli animali di controllo, sia a livello dei corpi cellulari che delle fibre che raggiungono la corteccia e l’ippocampo (l’effetto sull’innervazione DBH-positiva che raggiunge il DG è mostrato nei particolari della colonna di destra della Fig. 4.11).

E’ da notare che la somministrazione dell’immunotossina 192-IgG-sap singola (gruppo ACh les) o in combinazione con la 6-OHDA (gruppo ACh-DA les), non provoca effetti morfologici e quantitativi nè sui corpi cellulari del LC e nemmeno sull’innervazione noradrenergica che raggiunge il DG in confronto ai controlli, mentre se avviene in concomitanza al trattamento con l’immunotossina anti-DBH-sap (gruppi ACh-NA les e TRIPLE les) provoca la comparsa nell’ippocampo di grosse fibre DBH-positive. (Fig. 4.11, nei particolari della colonna di destra; ed in Fig. 4.12) Questi processi, che non derivano dal Locus Coeruleus, potrebbero provenire dal ganglio cervicale superiore (SCG) ed essere attratti verso l’ippocampo da fattori di crescita locali (quale ad esempio il fattore di crescita neuronale o NGF) resi disponibili in seguito all’attivazione di meccanismi di compensazione indotti dalla perdita di fibre colinergiche (causata dalla lesione con 192-IgG-sap). Questa iperininnervazione noradrenergica ectopica non pare comunque avere effetti sul recupero funzionale, come visto anche in un lavoro di Pappas e collaboratori. [Pappas et al 2000]
Fig. 4.11: Questo pannello rappresenta la caratterizzazione del profilo istologico dei gruppi di animali lesionati con 192-IgG-sap e/o anti-DBH-sap e/o 6-OHDA. (Scale Bar = 100 um) (Nel testo i dettagli)
4.2 EFFETTI NEUROPATOLOGICI INDOTTI DA DEPLEZIONE COLINERGICA ED INFUSIONE IPPOCAMPALE DI BETA-AMINOLOIDE PRE-AGGREGATA NEL RATTO

4.2.1 Osservazioni generali

Gli animali intatti e trattati con veicolo (PBS1X) non hanno mostrato differenze sotto il profilo comportamentale e nemmeno in quello istologico, per questo motivo nelle analisi statistiche sono stati accoppiati in un unico gruppo denominato “controlli” (CTRL). Anche nelle figure di questa tesi ci si riferirà ad essi come gruppo dei controlli (CTRL).

Tutti gli animali testati sono stati sottoposti a test motori e visuo-spaziali preliminari (quali il Cue-test), i quali hanno permesso di escludere problemi di tipo sensoriale-motorio e non hanno rilevato differenze significanti per quanto riguarda velocità di nuoto (compresa in genere tra i 0,2 ed i 0,3 m/s); suggerendo che i trattamenti lesivi somministrati non producono altri effetti collaterali oltre a quelli cognitivi che ci si propone d’indagare.

4.2.2 Analisi funzionali

4.2.2.1 REFERENCE MEMORY

Dall’analisi dei dati ottenuti tramite il MWM test si è visto che tutti gli animali riescono a migliorare la loro prestazione durante i 7 giorni di test, riducendo sia il tempo impiegato per trovare la piattaforma nascosta (Fig. 4.13), che la distanza percorsa per raggiungerla (Fig. 4.14).

Il gruppo degli animali che ha ricevuto sia la lesione al sistema colinergico che l’infusione di beta-amiloide pre-aggregata nell’ippocampo (DOUBLE) presenta però dei deficit significativamente (p<0,05) maggiori nella memoria di riferimento spaziale, sia per quanto riguarda la latenza che la distanza, rispetto agli altri tre gruppi. Infatti, anche durante l’ultimo giorno di test completa il compito con più difficoltà, impiegando in media 30 secondi contro...
gli 8 (secondi) dei controlli (Fig. 4.13), e percorrendo in media 6 metri contro i 2 (metri) di questi ultimi prima di raggiungere il target (Fig. 4.14).

Fig. 4.13: Analisi funzionale della memoria di riferimento spaziale indagata tramite MWM test in animali lesionati al sistema colinergico del prosencefalo di base e/o infusi con beta-amiloide 25-35 pre-aggregata in ippocampo. In figura sono riportati i tracciati che rappresentano il tempo medio (calcolato in secondi) impiegato dagli animali per trovare la piattaforma durante i 7 giorni di test.

Come si può notare dal grafico gli animali appartenenti al gruppo dei DOUBLE apprendono più lentamente rispetto agli altri gruppi ed in particolare, durante l’ultimo giorno di test, raggiungono il target nel triplo del tempo impiegato dal gruppo dei controlli. (* indica una performance significativamente peggiore rispetto ai controlli, dove p<0,05)

Fig. 4.14: Analisi funzionale della memoria di riferimento spaziale indagata tramite MWM test in animali lesionati al sistema colinergico del prosencefalo di base e/o infusi con beta-amiloide 25-35 pre-aggregata in ippocampo. In figura sono riportati i tracciati che rappresentano la distanza media (calcolata in metri) percorsa dagli animali per trovare la piattaforma durante i 7 giorni di test. Come mostra chiaramente il grafico il gruppo dei DOUBLE mostra dei deficit significativi nella reference memory in confronto agli altri gruppi. (* indica una performance significativamente peggiore rispetto ai controlli, dove p<0,05)
I gruppi degli animali che hanno ricevuto i trattamenti singoli (SINGLE Amy e SINGLE Les) invece non mostrano differenze significative in nessuno dei due parametri analizzati in questo test se rapportati ai controlli (CTRL).

4.2.2.2 ACCURATEZZA DELL’APPRENDIMENTO

Alla fine dell’ultimo giorno di MWM test, la piattaforma è stata rimossa dalla vasca e ciascun animale è stato fatto nuotare per 1 minuto. Questa prova è definita Spatial Probe Trial (SPT) e serve per misurare l’accuratezza del processo di apprendimento avvenuto durante il MWM test, verificando l’abilità dell’animale di ritrovare il punto preciso dove la piattaforma era solitamente situata nei sette giorni precedenti. Come si vede dai tracciati di nuoto esemplificativi di ogni gruppo (Fig. 4.15), tutti gli animali si dirigono nel luogo dove erano abituati a trovare la piattaforma e concentrano il loro nuoto nel quadrante di SW (Fig. 4.16), collidendo in maniera maggiore con l’annulus che si trova all’interno di questa zona della vasca (Fig. 4.17); tranne quelli appartenenti al gruppo dei DOUBLE, che invece non mostrano una corretta strategia di ricerca spaziale (Fig. 4.15) e navigano indistintamente in tutti i quadranti della vasca (Fig. 4.16) senza preferire nessun annulus (Fig. 4.17), confermando in questo modo la presenza di una disfunzione a livello dell’apprendimento spaziale.

Fig. 4.15: Esempi di tracciati di nuoto (linee in blu scuro) registrati durante lo SPT da ogni gruppo. Tutti gli animali mostrano una corretta strategia di ricerca della piattaforma (cerchio rosso), tranne quelli che appartengono al gruppo dei DOUBLE, che invece sembrano nuotare a caso.
RISULTATI

Fig. 4.16: Questi istogrammi rappresentano la distanza media, misurata in percentuale, percorsa dai ratti nei vari quadranti della vasca, in cui quello di SW corrisponde alla posizione originaria della piattaforma. Come si vede tutti i gruppi concentrano il loro nuoto in questo quadrante, tranne quelli appartenenti al gruppo dei DOUBLE che invece nuotano indistintamente in tutti e 4 i quadranti senza preferirne nessuno in particolare.

(* indica una performance significativamente peggiore rispetto ai controlli, dove p<0,05)

Fig. 4.17: Anche l’analisi delle collisioni con gli anelli dimostra che gli animali appartenenti al gruppo dei DOUBLE presentano dei deficit a livello dell’apprendimento spaziale, infatti, al contrario degli altri 3 gruppi, cercano la piattaforma in egual modo in tutti e 4 gli anelli invece di concentrarsi solo su quello di SW. (* indica una performance significativamente peggiore rispetto ai controlli, dove p<0,05)

4.2.2.3 WORKING MEMORY

La capacità della memoria di lavoro degli animali viene verificata tramite il *Radial Arm Water Maze* (RAWM). In questo test la vasca è divisa in sei corridoi e la piattaforma viene posizionata in fondo ad uno di questi bracci, cambiando posizione quotidianamente. Quindi gli animali ogni giorno devono imparare entro i 5 trials a disposizione dove si trova la
piattaforma. In questo test vengono valutati il tempo impiegato a raggiungere il target (massimo un minuto) e gli errori effettuati (è considerato errore quando l’animale supera con il muso la metà di un braccio vuoto). Dall’analisi della latenza si evince che in tutti i gruppi c’è un progressivo miglioramento ad effettuare il compito durante i 5 trials giornalieri, passando da una performance media di 35 secondi durante la prima prova fino ad arrivare nell’ultima a raggiungere i 10 secondi per i controlli ed i 17 secondi per gli altri gruppi (Fig. 4.18). La differenza più significativa si registra invece nella percentuale di miglioramento tra il primo ed il secondo trial, evidenziata chiaramente dall’analisi dei Savings (Fig. 4.19), dove gli animali che hanno ricevuto i trattamenti singoli (SINGLE Amy e SINGLE Les) mostrano dei deficit di medio livello nel processo di apprendimento (riducendo la latenza rispettivamente del 35 e del 25% contro il 45% raggiunto dai controlli), mentre negli animali con entrambi i trattamenti (DOUBLE) si osservano delle disfunzioni maggiori nella working memory, infatti questi riescono a migliorare solo dell’8%.

Fig. 4.18: Analisi funzionale della memoria di lavoro indagata tramite RAWM test in animali che hanno ricevuto la lesione al sistema colinergico e/o l’infusione di beta-amiloide pre-aggregata in ippocampo. In figura vengono riportati i tracciati che rappresentano il tempo medio (calcolato in secondi) impiegato dagli animali per trovare la piattaforma durante i 5 trials che vengono effettuati ogni giorno per 5 giorni. La differenza maggiore nel grado di apprendimento si registra tra il primo ed il secondo trial, dove gli animali del gruppo dei DOUBLE presentano dei gravi deficit di working memory, mentre quelli che hanno ricevuto i trattamenti singoli (SINGLE Amy e SINGLE Les) mostrano delle disfunzioni di livello medio rapportati alle performance dei controlli.
Fig. 4.19: Dall’analisi dei Savings per la latenza risulta chiaro che il gruppo dei DOUBLE riesce a migliorare in maniera effimera tra il primo ed il secondo trial rispetto agli altri tre gruppi, in particolare in confronto ai controlli. Inoltre è importante notare che la lesione al solo sistema colinergico provoca dei deficit maggiori nella working memory di quanto invece faccia la sola infusione di beta-amiloide in forma di oligomeri. (* indica una performance significativamente peggiore rispetto ai controlli, dove p<0,05)

Dall’analisi degli errori si ottiene un quadro molto simile a quello visto per la latenza, in cui tutti gli animali migliorano durante i 5 trials del RAWM test (Fig. 4.20), ma mentre i controlli tra il primo ed il secondo trial riducono significativamente il numero degli errori (dimezzandoli), gli animali con le singole lesioni (SINGLE Les e SINGLE Amy) riescono a migliorare di meno (40%) e i DOUBLE in maniera ancora minore (20%). (Fig. 4.21)
RISULTATI

Fig. 4.21: Dall’analisi dei Savings per gli errori risulta chiaro che il gruppo dei DOUBLE riesce a migliorare in maniera effimera tra il primo ed il secondo trial rispetto agli altri tre gruppi, in particolare in confronto ai controlli, presentando dei chiari deficit nella memoria di lavoro. (* indica una performance significativamente peggiore rispetto ai controlli, dove p<0,05)

4.2.3 Analisi istologiche

4.2.3.1 IL SISTEMA COLINERGICO

In Fig. 4.22 viene mostrato l’effetto della lesione con 192-IgG-sap e/o dell’infusione ippocampale di beta-amiloide 25-35 pre-aggregata, nei neuroni colinergici del MS e della DBB, rilevati immunoistochimicamente tramite anticorpo anti-ChAT in sezioni cerebrali coronali processate in free-floating. In queste zone, a due mesi dai trattamenti, si osserva una massiva perdita di neuroni ChAT-positivi negli animali che hanno ricevuto l’iniezione dell’immunotossina 192-IgG-sap nei nuclei colinergici del prosencefalo di base (BF) sia quando questa è stata accoppiata all’infusione degli oligomeri di beta-amiloide nell’ippocampo (DOUBLE) che sia quando è stata somministrata singolarmente (SINGLE Les). La percentuale di perdita neuronale in questi due gruppi è simile. Invece, non ci sono differenze morfologiche e quantitative rilevanti in questi neuroni se si comparano le sezioni del gruppo trattato con la sola beta-amiloide pre-aggregata (SINGLE Amy) con quelle appartenenti al gruppo dei controlli (CTRL). Questo fa assumere che il trattamento con beta-amiloide 25-35 pre-aggregata, iniettata in ippocampo, non provoca effetti sui neuroni colinergici del BF. Identici risultati sono stati trovati analizzando i neuroni colinergici ChAT-positivi contenuti nel NBM, come viene mostrato in Fig. 4.23.
Fig. 4.22: Particolari di sezioni coronali contenenti il setto mediale (MS) e la banda diagonale di Broca (DBB) in cui sono stati colorati immunoistochimicamente i corpi cellulari dei neuroni colinergici che contengono l’enzima colina acetiltransferasi (ChAT).

a) CTRL; b) SINGLE Amy; c) SINGLE Les; d) DOUBLE. (Scale Bar = 500 um)
L’effetto dei trattamenti sull’innervazione colinerica che dai nuclei del prosencefalo di base raggiunge l’ippocampo e la neocorteccia è stata analizzata tramite una colorazione istochimica che evidenzia la presenza dell’enzima acetilcolina esterasi (AChE) su queste fibre. Come si vede dal pannello in Fig. 4.24, gli animali appartenenti al gruppo dei controlli (CTRL) e quelli trattati singolarmente con beta-amiloide 25-35 pre-aggregata (SINGLE Amy) mostrano un’alta concentrazione di queste fibre AChE-positive sia in ippocampo che in corteccia frontale e non differiscono tra loro, mentre si osserva una massiccia denervazione, in entrambe le zone analizzate, negli animali che hanno ricevuto l’iniezione dell’immunotossina 192-IgG-sap nei nuclei colinergici del BF con (DOUBLE) o senza (SINGLE Les) il concomitante inoculo di beta-amiloide. Questi risultati sono in linea con quanto trovato dall’analisi istochimica dei corpi cellulari ChAT-positivi da cui queste fibre dipartono, e conferma il fatto che il trattamento con la beta-amiloide 25-35 pre-aggregata non influenza la degenerazione di questi neuroni colinergici e nemmeno quella dei loro processi.
Fig. 4.24: Sezioni rappresentative di tessuti cerebrali processati tramite colorazione istochimica per la rilevazione dell’enzima AChE. Nella parte superiore del pannello sono mostrati gli ippocampi e le corteccie frontali (nei particolari) di animali appartenenti rispettivamente al gruppo dei controlli (CTRL) ed al gruppo dei trattati con sola infusione di beta-amiloide (SINGLE Amy); si noti come questi due gruppi non mostrino perdita d’innervazione colinergica in tali aree. Nella parte inferiore si trovano invece i particolari delle corteccie frontali e gli ippocampi di animali lesionati ai nuclei colinergici del BF tramite infusione locale dell’immunotossina 192-IgG-sap, sia in modo singolo (SINGLE Les) che combinato con l’inoculo di beta-amiloide pre-aggregata (DOUBLE). In entrambi questi gruppi si osserva la degenerazione quasi totale dell’innervazione colinergica. (CA=corno d’Ammone dell’ippocampo; DG=giro dentato; FR CTX=corteccia frontale) (Scale Bar = 500 um; e 50 um nell’inserto)

4.2.3.2 BETA-AMILIOIDE 25-35

Tramite una colorazione immunoistochimica diretta contro la beta-amiloide 25-35 si è andati a visualizzare la sua localizzazione a due mesi dalla sua iniezione in ippocampo. Come si vede in Fig. 4.25 c’è un evidente accumulo di beta-amiloide 25-35 nel giro dentato degli animali appartenenti ai gruppi SINGLE Amy e DOUBLE (che tende a rimanere confinato in questa zona), mentre non è presente immunoreattività negli ippocampi dei ratti dei gruppi di controllo (CTRL) e lesionati solo con la 192-IgG-sap nei nuclei del BF (SINGLE Les).

Segni coronali rappresentative contenenti l’ippocampo e processate per la rilevazione immunoistochimica del frammento 25-35 della beta-amiloide. Come si vede nelle foto dei gruppi SINGLE AMY e DOUBLE gli aggregati proteici immunoreattivi (indicati dalle frecce) tendono a rimanere localizzati nella zona dove erano stati iniettati 2 mesi prima, e non diffondono in altre regioni. Invece, questi aggregati proteici non sono presenti nel gruppo dei controlli (CTRL), e nemmeno in quello degli animali lesionati con la sola 192-IgG-sap (SINGLE Les). (CA=corno d’Ammone dell’ippocampo; DG=giro dentato) (Scale Bar = 500 um)

4.2.3.3 TAU-FOSFORILATA

Per analizzare in che modo e se la lesione colinergica e l’aggregazione della beta-amiloide influenzino la fosforilazione della proteina Tau alcune sezioni derivanti dai gruppi CTRL, SINGLE LES e DOUBLE sono state processate immunoistochimicamente con un anticorpo primario diretto contro la Tau fosforilata nel residuo di treonina (Thr) 181 (anti-TAU-P181Thr), e successivamente colorate con il Cresil Violetto per vedere in maggior dettaglio la localizzazione della Tau-fosforilata così rilevata.

Le sezioni derivanti dagli animali con singolo trattamento di beta-amiloide non sono state processate per problemi tecnici.

Dall’analisi microscopica delle sezioni è risultato esserci l’accumulo di Tau-fosforilata nella neocorteccia e nell’ippocampo (in particolare nel giro dentato) degli animali appartenenti al gruppo dei DOUBLE e dei SINGLE Les, mentre l’immunoreattività rilevata in queste zone nel gruppo dei controlli (CTRL) era veramente scarsa. (Fig. 4.26)
I depositi di Tau-fosforilata che sono stati osservati erano localizzati prevalentemente a livello peri-nucleare.

Fig. 4.26: Nella colonna di sinistra sono riportate delle sezioni rappresentative di corteccia frontale (FR CTX) ed in quella di destra del giro dentato dell’ippocampo (DG), fotografate ad alto ingrandimento, processate tramite immunoistochemica per la rilevazione della Tau-fosforilata in posizione 181Thr e successivamente trattate con colorazione di Nissl per evidenziare la localizzazione cellulare dei depositi immunoreattivi. Gli accumuli di Tau-fosforilata (indicati in figura dalle frecce), si localizzano prevalentemente nel soma dei neuroni e si osservano sia nella corteccia che nell’ippocampo degli animali appartenenti ai gruppi SINGLE Les e DOUBLE, mentre sono molto scarsi nei tessuti dei controlli (CTRL). (A-B=CTRL; C-D=SINGLE Les; E-F=DOUBLE) (Scale Bar = 50 um)
4.2.3.4 TDP-43

La colorazione immunoistochimica specifica per il rilevamento della proteina TDP-43 nei tessuti ippocampali e corticali degli animali analizzati, ha evidenziato una marcata presenza di immunoreattività in tutti i gruppi. È stato però osservato che, a differenza del gruppo dei controlli (CTRL) in cui TDP-43 è concentrata prevalentemente nel nucleo, nei gruppi SINGLE Les e DOUBLE essa si localizza anche a livello citoplasmatico. Inoltre in questi due gruppi la colorazione a livello nucleare appare più intensa rispetto ai controlli, facendo supporre un aumento del suo livello anche in questo compartimento cellulare. (Fig. 4.27)

Le analisi sul gruppo dei SINGLE Amy non state effettuate per problemi tecnici.

Fig. 4.27: Nella colonna di sinistra sono riportate delle sezioni rappresentative di animali di controllo (A), SINGLE Les (C) e DOUBLE (E), contenenti l’ippocampo, che sono state processate tramite procedura immunoistochimica per rilevare la localizzazione della proteina TDP-43. Nella colonna di destra sono mostrate a più alto ingrandimento le porzioni di DG (riquadrate) degli stessi animali. Come si vede nei particolari la proteina TDP-43 nei CTRL (B) si localizza a livello del nucleo, mentre nei gruppi dei SINGLE Les (D) e dei DOPPI (F) è presente anche nel citoplasma dei neuroni, facendo supporre ad una sua disfunzione. (A-B=CTRL; C-D=SINGLE Les; E-F=DOUBLE) (Scale Bar = 250 um in A, C, E e 50 um in B, D, F)
4.2.4 Analisi del contenuto proteico dell’ippocampo

Tramite analisi densitometrica delle bande immunoreattive per APP, TAU totale (TAU TOT), TAU-fosforilata (TAU-P181Thr) e TDP-43 ottenute tramite Western Blot è stato possibile avere un’idea dell’ammontare di queste proteine nel tessuto ippocampale degli animali lesionati al solo sistema colinergico, o trattati anche con il peptide di beta-amiloide 25-35 pre-aggregato in confronto ad animali di controllo.

Per motivi tecnici non è stato possibile analizzare per TAU TOT, TAU-P181Thr e TDP-43 il contenuto proteico ippocampale degli animali inoculati con la sola beta-amiloide, nei quali comunque non ci si aspettava di trovare grandi differenze rispetto ai controlli; infatti da studi preliminari (non riportati) si è visto che l’espressione degli mRNA che codificano per queste proteine, indagata tramite Real-Time PCR, in questo gruppo non differisce dai livelli degli animali di controllo.

I valori ottenuti dall’analisi delle bande delle varie proteine indagate tramite Western Blot sono stati normalizzati basandosi su quelli ricavati dalla densità delle bande immunoreattive per la beta-tubulina (una proteina house-keeping usata come controllo interno) espressa negli stessi tessuti.

4.2.4.1 APP

A partire da omogenati di tessuto ippocampale appartenente a tutti gli animali dei gruppi sperimentati è stata effettuata un’analisi tramite Western Blot in modo da poter valutare gli effetti dei trattamenti utilizzati sui livelli relativi della proteina precursore dell’amiloide (APP). Questa procedura ha permesso di visualizzare delle bande immunoreattive per APP, che nel ratto hanno un peso molecolare di 120 kDa. (Fig. 4.28.A)

In figura 4.28.B viene invece riportato il risultato dell’analisi densitometrica di queste bande, che permette di farci un’idea sull’ammontare proteico di APP nell’ippocampo di animali singoli lesionati con 192-IgG-sap (SINGLE Les), di quelli a cui è stata iniettata solamente della beta-amiloide pre-aggregata in ippocampo (SINGLE Amy) e di quelli che hanno ricevuto entrambi i trattamenti (DOUBLE). I valori di densità ottenuti sono stati rapportati a quelli ricavati da animali di controllo e normalizzati rispetto al 100% di questi. Come si vede nel grafico (4.28.B) il contenuto proteico di APP nell’ippocampo, rispetto ai controlli (CTRL), risulta maggiore del 50% nel gruppo dei DOUBLE, mentre quello in animali lesionati al solo sistema colinergico (SINGLE Les) o trattati solo con la beta-amiloide (SINGLE Amy) supera in modo moderato il valore di base, rispettivamente del 20% e del 10%. Nonostante si osservi una tendenza crescente di accumulo di questa proteina nell’ippocampo di animali che hanno ricevuto entrambi i trattamenti, questa differenza non risulta però significativa (p>0,05%) rispetto ai valori di controllo.
4.2.4.2 TAU TOTALE

A partire da omogenati di tessuto ippocampale appartenente agli animali dei gruppi CTRL, SINGLE Les e DOUBLE è stata effettuata un’analisi tramite Western Blot in modo da poter valutare gli effetti dei trattamenti utilizzati sui livelli relativi della proteina TAU totale. Come si vede in Fig. 4.29.A, questa proteina nel ratto è costituita da 3 diverse isoforme, che presentano un peso molecolare compreso tra i 52 ed i 68 kDa.

In Fig. 4.29.B viene mostrato quanto trovato dall’analisi densitometrica delle bande immunoreattive per TAU totale (TAU TOT). Gli animali trattati sia con 192-IgG-sap che con beta-amiloide pre-aggregata (DOUBLE) non differiscono dai controlli, mentre gli animali lesionati al sistema colinergico senza infusione di beta-amiloide pre-aggregata (SINGLE Les) mostrano un aumento relativo di questa proteina nell’ippocampo quasi del 50% quando vengono confrontati con i valori ottenuti dagli animali intatti (CTRL), tuttavia la differenza non è significativa (p>0,05).
4.2.4.3 TAU-FOSFORILATA

L’ippocampo di animali appartenenti ai gruppi CTRL, SINGLE Les e DOUBLE è stato omogenizzato ed analizzato tramite Western Blot per valutare gli effetti dei trattamenti utilizzati sui livelli relativi di fosforilazione della proteina TAU, in particolare è stato analizzato il grado di fosforilazione sulla treonina in posizione 181 di questa proteina. Utilizzando un anticorpo primario anti-TAU-P181Thr sono state quindi visualizzate delle bande di altezza pari a 79 kDa. (Fig. 4.30.A) Queste sono state poi analizzate tramite densitometria relativa ed il risultato è mostrato in Fig. 4.30.B. I livelli relativi dell’ammontare del contenuto proteico della proteina TAU-fosforilata (TAU-P181Thr) negli ippocampi di animali che hanno ricevuto la lesione al sistema colinergico (SINGLE Les) o anche l’infusione di beta-amiloide pre-aggregata (DOUBLE) sono stati confrontati e normalizzati con i valori ottenuti da animali di controllo. Come si vede dall’istogramma c’è un
aumento significativo (p<0,05%) dell'80-90% dei livelli relativi di questa forma fosforilata della proteina TAU in entrambi i gruppi di lesionati (SINGLE Les e DOUBLE), che non differiscono tra loro, rispetto a quanto invece trovato negli animali intatti (CTRL).

Quanto trovato è in linea con i risultati ottenuti dall’analisi immunoistochimica per TAU-fosforilata effettuata nelle sezioni ippocampali di questi animali.

![Fig. 4.30: A)](image)

In Fig. 4.31.B si può invece osservare il risultato dell’analisi densitometrica di tali bande, che mette a confronto i livelli relativi di proteina nell'ippocampo degli animali che

4.2.4.4 TDP-43

A partire da omogenati di tessuto ippocampale appartenente ai gruppi CTRL, SINGLE Les e DOUBLE è stata effettuata un’analisi tramite Western Blot in modo da poter valutare gli effetti dei trattamenti utilizzati sui livelli relativi della proteina transactive response DNA-binding protein di 43 kDa (TDP-43). Questa procedura ha permesso di visualizzare delle bande immunoreattive per TDP-43 che sono mostrate in Fig. 4.31.A.
hanno ricevuto l’infusione dell’immunotossina 192-IgG-sap in MS, DBB e NBM (SINGLE Les) e di quelli che sono stati anche inoculati con beta-amiloide 25-35 pre-aggregata (DOUBLE), con quelli trovati in animali di controllo (CTRL). I risultati ottenuti confermano quanto visto tramite analisi immunoistologica, evidenziando un netto e significativo (p<0,05) aumento dei livelli di TDP-43 nei tessuti degli animali lesionati (sia SINGLE Les che DOUBLE); infatti negli ippocampi appartenenti a questi due gruppi la densità relativa risulta essere di 2,5 volte superiore rispetto a quella dei controlli (CTRL). Non si notano invece differenze tra i due gruppi di lesionati.

Fig. 4.31: A) Esempi di bande immunoreattive per TDP-43 ottenute tramite analisi con Western Blot. B) Densità relativa espressa in % del contenuto proteico di TDP-43 nell’ippocampo di animali lesionati al sistema colinergico (SINGLE Les) ed a cui è stata somministrata anche della beta-amiloide pre-aggregata (DOUBLE), confrontati con i valori ottenuti da animali normali (CTRL). Dall’analisi risulta che negli animali lesionati, sia SINGLE Les che DOUBLE, c’è un aumento significativo dei livelli di questa proteina, che superano di 2,5 volte quelli degli animali di controllo (CTRL), mentre non differiscono tra i gruppi di lesionati. (* indica una performance significativamente peggiore rispetto ai controlli, dove p<0,05)
5. Discussione

- il contributo apportato dalla disfunzione del sistema colinergico del prosencefalo di base, di quello dopaminergico mesocorticolimbico e del sistema noradrenergico ascendente, nel determinare la comparsa di disturbi della cognizione. Questa ricerca è stata effettuata usando il ratto come animale modello, in cui, attraverso l’iniezione neonatale di due immunotossine (192-IgG-saporina e anti-DBH-
DISCUSSIONE

saporina) e di una neurotossina (6-OHDA) in età adulta, è stato possibile osservare le conseguenze funzionali ed anatomiche della deplezione dei corrispettivi sistemi (colinergico, noradrenergico e dopaminergico), lesionati in modo singolo o combinato, tramite l’utilizzo di appropriati test comportamentali e procedure istochimiche.

- gli effetti derivanti dalla deplezione del sistema colinergico del **prosencefalo di base** con o senza l’aggiunta dell’infusione di beta-amiloide 25-35 pre-aggregata in ippocampo, sull’apprendimento e la memoria spaziale dei ratti così trattati e le conseguenze neurochimiche sui tessuti prelevati da questi post-mortem, soprattutto per quanto riguarda le alterazioni del metabolismo delle proteine APP, TAU e TDP-43, indagate tramite tecniche istologiche specifiche ed analisi con Western Blot.

5.1 DISFUNZIONE DELLA REGOLAZIONE MONOAMINERGICA NEL RATTO

Diverse ipotesi sono state formulate per cercare di spiegare in che modo la disfunzione di questi sistemi possa concorrere alla patogenesi di queste malattie (per approfondimento vedere i capitoli 1.1.2.1 e 1.1.3.1 dell’introduzione di questa tesi), ma nessun lavoro fin’ora ha esaminato gli effetti della loro deplezione selettiva, singola o combinata, sulla cognizione. Per questo, usando il ratto come animale modello, e sfruttando
l’efficacia e la selettività delle immunotossine 192-IgG-sap e anti-DBH-sap, rispettivamente sul sistema colinergico e noradrenergico, ed andando a “colpire” i neuroni dopaminergici della VTA in loco con l’iniezione stereotassica della neurotossina monoaminergica 6-OHDA, abbiamo analizzato le conseguenze di varie combinazioni lesive sull’apprendimento e la memoria spaziale degli animali così trattati. In particolare abbiamo indagato gli effetti di questi trattamenti sulla reference memory con il Morris Water Maze (MWM) test e quelli sulla working memory con il Radial Arm Water Maze (RAWM) test.

Gli animali in test sensoriali-motori preliminari (quali il Cue-test) non hanno evidenziato disturbi nelle capacità visive e natatorie, la velocità media dei vari gruppi è risultata essere simile (tra i 0,2-0,3 m/s), quindi abbiamo assunto che tutte le differenze che sono state rilevate nei test successivi fossero dovute esclusivamente a disfunzioni di tipo cognitivo.

Da quanto è emerso dai dati ottenuti tramite MWM test non risultano esserci differenze significative nelle capacità di memoria di riferimento spaziale dei vari gruppi analizzati e nemmeno nella loro strategia di ricerca della piattaforma, anche quando si è andati a ledere in contemporanea tutti e tre i sistemi presi in esame (TRIPLE Les). Tutti gli animali infatti sono stati in grado di eseguire questo compito senza apparenti difficoltà, riducendo progressivamente sia la distanza che il tempo impiegato per raggiungere il target, e dimostrando durante lo Spatial Probe Trial (SPT) di concentrare il loro nuoto esclusivamente nel quadrante SW della vasca, dove era posizionata la piattaforma durante i precedenti 7 giorni di MWM test.

Invece è stata evidenziata la presenza di importanti deficit nella memoria di lavoro in tutti i gruppi che hanno subito la lesione al sistema noradrenergico, singola o combinata a quella del sistema colinergico e/o dopaminergico, quando si è andati ad analizzare la percentuale di miglioramento di questi gruppi tra la prestazione effettuata nella prima e nella seconda prova del RAWM test, confrontandola con quella di animali di controllo.

Durante il RAWM test gli animali si ritrovano a dover processare delle informazioni ottenute nel breve termine ed a doverle elaborare in modo rapido per poter concludere il test in maniera efficiente. Questo compito, che è ippocampo-dipendente, è più complicato rispetto al semplice orientamento ed apprendimento spaziale richiesto durante il MWM test, che coinvolge invece l’attivazione di meccanismi di memoria a lungo termine e di consolidamento, che sottostanno prevalentemente al funzionamento dei sistemi neurali presenti in corteccia frontale e prefrontale. Infatti, durante l’esecuzione del RAWM test l’animale deve dimostrare di apprendere, comprendere e ragionare, ponendo attenzione e mettendo a confronto le informazioni ottenute nelle prove precedenti con quelle relative al trial in corso. [Baddeley, 1986]
DISCUSSIONE

Quindi, dai risultati ottenuti nei test comportamentali non siamo riusciti a vedere la comparsa di deficit nell'immagazzinamento o nel consolidamento della memoria a medio-lungo termine, che sono basati sulla funzionalità dei circuiti neocorticali (in particolare frontal e prefrontali), in nessuna tipologia o combinazione di lesione, nonostante i risultati istologici effettuati sui tessuti prelevati da questi animali hanno dimostrato un'evidente denervazione corticale a livello delle efferenze di tutti e tre i sistemi neurotrasmettitoriali presi in esame. Mentre, grazie all'analisi delle capacità di working memory di questi animali, è emerso un chiaro ruolo del sistema noradrenergico nel regolare i processi cognitivi che dipendono dall'ippocampo e nel compensare, quando presente, la disfunzione del sistema colinergico e di quello dopaminergico.

Quanto trovato è risultato per alcuni aspetti in contrasto con il lavoro effettuato da Wisman e collaboratori [Wisman et al, 2008], in particolare rispetto agli effetti ottenuti nella reference memory dopo la lesione dei neuroni dopaminergici della VTA con la 6-OHDA in ratti adulti. In questo lavoro infatti, gli animali, a cui è stata somministrata una quantità di tossina pari a quella utilizzata anche da noi durante le procedure chirurgiche, e testati con lo stesso paradigma comportamentale, hanno evidenziato dei deficit nel processo di consolidamento della memoria tra il quinto ed il settimo giorno di MWM test, non rilevati invece dai nostri risultati. I dati ottenuti in questo lavoro sembrano in linea con quanto riportato anche da un altro studio, in cui attraverso il blocco di recettori D1 in corteccia frontale-mediale viene ottenuta l'inibizione della formazione della memoria a lungo termine [Izquierdo et al, 2007]. Quindi, il ruolo della dopamina nel mediare a livello corticale il processo di consolidamento delle informazioni apprese è difficile da confutare. Questa discrepanza non è facile da spiegare nemmeno a livello di efficacia della lesione, in quanto in entrambi i lavori (il nostro e quello di Wisman et al) è presente uno stesso pattern di neurodegenerazione, in cui si osserva nella VTA una deplezione di neuroni dopaminergici TH-positzivi di circa il 45%. Quello che si può assumere è che nel nostro caso ci sia stato l’intervento di qualche sistema di compensazione, diverso dal sistema colinergico e da quello noradrenergico, che è riuscito a supplire funzionalmente alla perdita degli input dopaminergici corticali. Infatti, mentre noi siamo intervenuti chirurgicamente quando gli animali presentavano 2 mesi di età, nel lavoro di Wisman e collaboratori i ratti sono stati lesionati a 3 mesi di vita. Questa differenza temporale potrebbe essere la causa dei diversi risultati ottenuti. Infatti, nel ratto il sistema dopaminergico raggiunge la sua piena attività soltanto durante il terzo mese post-natale, stabilizzandosi poi per i successivi 9 mesi di vita. [Restani et al, 1990] Quindi si potrebbe ipotizzare che a due mesi di vita, le regioni corticali raggiunte dalle efferenze dopaminergiche, siano ancora permissive all’intervento di qualche sistema di compensazione, mentre questa plasticità viene persa a tre mesi, quando il sistema dopaminergico raggiunge la sua piena attività.
I risultati ottenuti dall’analisi delle capacità di *working memory* negli animali lesionati al sistema dopaminergico che origina dalla VTA o al sistema colinergico del BF sono invece in linea con quanto osservato anche da Wisman e collaboratori [Wisman et al, 2008], infatti non vengono rivelati deficit dipendenti dalla disfunzione di questi due sistemi in nessuno dei casi. Mentre, per quanto riguarda gli animali lesionati sia al sistema dopaminergico che a quello colinergico, nel nostro caso vengono rilevati dei lievi deficit nella capacità di memoria di lavoro, mentre appaiono più gravi in quello di Wisman e collaboratori. Anche qui, l’età in cui è stata effettuata la lesione può essere un fattore determinante nel creare questa differenza. Infatti il nostro modello di neurodegenerazione colinergica ha previsto la lesione in età neonatale, che invece è stata eseguita in adulto nel lavoro di Wisman e collaboratori. [Wisman et al, 2008] Lesionare il sistema colinergico in età neonatale, quando l’ambiente cerebrale è più plastico, potrebbe infatti comportare l’intervento di sistemi che possono compensare alle sue funzioni, mentre questo meccanismo può risultare più difficile in età adulta quando i territori cerebrali sono già stati pienamente innervati da connessioni stabili ed in piena attività. Un candidato importante ad avere questo ruolo di supporto potrebbe essere il sistema noradrenergico. E’ stato visto infatti che dopo lesione neonatale con l’immunotossina 192-IgG-saporina c’è un aumento significativo nei livelli cerebrali di noradrenalina [Leanza et al, 1996], inoltre avviene una proliferazione di spesse fibre noradrenergiche nell’ippocampo provenienti dal ganglio cervicale superiore (SCG), come è stato osservato da Pappas e collaboratori [Pappas et al, 1996], che sia da noi attraverso l’analisi immunoistochimica effettuata per la rilevazione dell’enzima DBH nell’innervazione che raggiunge il giro dentato degli animali appartenenti ai gruppi ACh-NA Les e TRIPLE Les.

L’importanza del ruolo del sistema noradrenergico nello svolgimento di compiti ippocampo-dipendenti e nella plasticità sinaptica è apparso evidente quando abbiamo analizzato la latenza e gli errori che sono stati effettuati dagli animali lesionati a tale sistema durante il RAWM test. Infatti, tramite l’analisi dei *Savings*, in questi animali sono stati osservati dei deficit significativi alla memoria di lavoro, che compaiono già quando il sistema noradrenergico viene lesionato singolarmente, e che si aggravano quando la sua deplezione è combinata a quella del sistema colinergico del BF e del sistema dopaminergico che origina dalla VTA.

Diversi studi farmacologici hanno dimostrato che il sistema noradrenergico è implicato in vari fenomeni cognitivi, quali il consolidamento ed il recupero (*retrival*) delle tracce mnemoniche, nell’attenzione e nella percezione. [Sara, 1985 e 1998; Devauges e Sara, 1991; Tronel et al, 2004] Dal nostro lavoro non abbiamo visto effetti sul consolidamento della memoria a medio-lungo termine in seguito alla deplezione di questo sistema, in quanto non sono emerse differenze significative tra le performance di animali trattati con l’immunotossina anti-DBH-saporina rispetto ai controlli durante il MWM test; mentre i deficit
osservati durante il RAWM potrebbero implicare il coinvolgimento di meccanismi di attenzione e di recupero dell'informazione, in quanto attraverso questi processi avviene l'integrazione tra le conoscenze pregresse ed i nuovi stimoli spaziali a cui l'animale è sottoposto durante i diversi trial, risultando quindi essenziali per la corretta funzionalità della working memory. [Tulving e Thompson, 1973]

Gli effetti del ruolo del sistema noradrenergico nei fenomeni di plasticità sinaptica e di riorganizzazione delle reti neurali, specialmente durante le fasi di sviluppo del SNC, sono invece osservabili quando si vanno ad analizzare le interazioni funzionali che presenta con gli altri due sistemi neurotrasmettitori a proiezione diffusa presi in esame. Infatti, i deficit nella memoria di lavoro risultano essere più gravi quando le lesioni di questi sistemi sono combinate insieme, mentre come è stato esposto prima, non producono problemi cognitivi significativi quando vengono effettuate in modo singolo. Si può quindi assumere che il sistema noradrenergico cooperi funzionalmente con il sistema colinergico e con quello dopaminergico durante i processi di apprendimento e memoria spaziale, e riesca a compensare la loro mancanza. Questo è molto importante nel caso ad esempio di patologie neurodegenerative quali la malattia di Alzheimer e quella di Parkinson, in cui tra l'altro da studi clinici è stato visto esserci una massiva degenerazione precoce dei neuroni noradrenergici appartenenti al LC che correla con la gravità dei sintomi cognitivi [Mann et al, 1985; German et al, 1992; Zweig et al, 1993; Zarow et al, 2003], in quanto terapie farmacologiche o ristorative che hanno come target il sistema noradrenergico potrebbero essere utili ad incrementare le capacità cognitive dei pazienti che ne sono affetti.

Attualmente nel nostro laboratorio ci stiamo muovendo in questa direzione, studiando la possibilità di ottenere una reinnervazione noradrenergica, o comunque un recupero di funzione, in animali lesionati da neonati al sistema noradrenergico con l'immunotossina anti-DBH-saporina, e trapiantati da adulti in ippocampo con progenitori neurali derivanti da Locus Coeruleus embrionale.

5.2 EFFETTI NEUROPATOLOGICI INDOTTI DA DEPLEZIONE COLINERGICA ED INFUSIONE IPPOCAMPALE DI BETA-AMILIOIDE PRE-AGGREGATA NEL RATTO

La malattia di Alzheimer, in aggiunta alla degenerazione dei sistemi neurali, è caratterizzata a livello neuropatologico dall'accumulo di placche senili contenenti il peptide beta-amiloide e di aggregati neurofibrillari al cui interno si trova la proteina tau-fosforilata. [Hardy e Allsop, 1991; Braak e Braak, 1991; Brion et al, 1991; Goedert, 1996; Taylor et al, 2002] Recentemente, diversi lavori hanno dimostrato che nei tessuti cerebrali di molti individui affetti da AD sono presenti anche delle anomali inclusioni citoplasmatiche di TDP-

Per questo motivo, riproducendo nel ratto alcune caratteristiche patologiche tipiche dell’AD, quali la perdita di neuroni colinergici nel prosencefalo di base e l’accumulo di beta-amiloide nel territorio ippocampale, in modo singolo o combinato, siamo andati a studiare i loro effetti a livello cognitivo (analizzando in particolare le conseguenze sulla reference e la working memory), a livello anatomico (ricercando immunoistochimicamente la presenza di alterazioni tissutali) ed a livello neurochimico (indagando tramite Western Blot le possibili modificazioni avvenute nel metabolismo delle proteine APP, TAU e TDP-43).

La lesione al sistema colinergico è stata effettuata nei nuclei colinergici del prosencefalo di base (MS, DBB e NBM) di animali adulti tramite infusione per stereotassia dell’immutossina 192-IgG-sap, mentre l’accumulo di beta-amiloide nell’ippocampo è stato sviluppato tramite l’inoculo locale del peptide beta-amiloide 25-35 pre-aggregato. Si è scelto di utilizzare questo particolare frammento peptidico, perché in studi precedenti è stato visto avere, al pari della beta-amiloide 1-42, una notevole capacità di aggregazione, di essere in grado di indurre cambiamenti neurofisiologici nelle cellule coltivate in vitro (ad esempio provoca la retrazione dei dendriti in neuroni differenziati) e di causare un’elevata neurotossicità in vivo. [Pike et al, 1991; Delobette et al, 1997; Tran et al, 2002; Meunier et al, 2006] La lesione con 192-IgG-sap è risultata essere altamente selettiva ed efficace, come si è osservato dall’analisi istochimica dei tessuti processati per la rilevazione di ChAT ed AChE, da cui è emersa una profonda deplezione cellulare e denervazione colinergica nei tessuti degli animali trattati con tale immunotossina (SINGLE Les e DOUBLE). Mentre, gli aggregati di beta-amiloide 25-35, dopo 2 mesi, sono stati ritrovati essere localizzati in ippocampo, la sede dove era avvenuta l’iniezione.

Al livello cognitivo si sono osservati gravi deficit di apprendimento e memoria spaziale nel gruppo di animali che ha ricevuto entrambi i trattamenti (DOUBLE). Questo gruppo infatti ha mostrato maggiori difficoltà rispetto agli altri ad eseguire sia il MWM test che il RAMW test, non mostrando nemmeno di avere una precisa strategia di ricerca spaziale durante lo SPT. Durante il RAWM test, il gruppo dei singoli lesionati al sistema colinergico (SINGLE Les) ha mostrato di avere delle disfunzioni maggiori, anche se non significative, nella
working memory rispetto al gruppo trattato con la sola beta-amiloide 25-35 pre-aggregata (SINGLE Amy). Da quanto osservato possiamo dedurre che a livello funzionale esiste una sinergia tra la disfunzione colinergica e l'accumulo di beta-amiloide, infatti mentre questi trattamenti da soli non hanno praticamente nessun effetto sulla cognizione, quando sono combinati producono dei deficit molto gravi, che correlano con quelli trovati in pazienti affetti da AD.

Quindi, nel nostro caso, la singola iniezione di beta-amiloide nell'ippocampo potrebbe attivare una cascata infiammatoria che a sua volta andrebbe ad indurre l'aumento dell'espressione di APP, ma che grazie all'azione della trasmissione colinergica non produce ulteriore beta-amiloide, riuscendo ad arginare quindi la propagazione dell'effetto tossico. Invece, la lesione singola al sistema colinergico non basta ad indurre una deposizione di beta-amiloide tale da pregiudicare le funzioni cognitive, perchè altri sistemi neuronali possono compensare la sua mancanza (come si è visto dallo studio esposto in precedenza in questa tesi) oppure perchè l'incremento di produzione di APP non viene stimolato dalla sola perdita neuronale. Quando però alla deplezione colinergica viene associata anche la deposizione di beta-amiloide esogena, si crea un processo infiammatorio che aumenta la produzione di APP, e non essendoci più il sistema colinergico ad inibire la produzione di beta-amiloide endogena, quest'ultima potrebbe accumularsi nei tessuti e causare la disfunzione anche di altri sistemi, gli stessi ad esempio che supplivano alle funzioni interdette dalla perdita colinergica, ed in questo modo provocare un peggioramento dei deficit cognitivi.

Sarebbe quindi interessante andare a vedere se effettivamente nel gruppo dei DOUBLE esiste un accumulo di beta-amiloide endogena, quest'indagine infatti non è ancora stata effettuata.

Intanto, per quanto riguarda i livelli relativi di APP in ippocampo, analizzati tramite Western Blot, si è osservato un aumento del 50% di questa proteina nel gruppo dei DOUBLE rispetto ai valori ricavati da animali di controllo, mentre nel gruppo dei SINGLE Amy si è registrato un aumento solo del 10% ed in quello dei SINGLE Les del 20%. Nonostante ci sia una tendenza, queste differenze non sono risultate però abbastanza significative da poter confermare con questi dati la teoria sopra esposta. Molto probabilmente sono necessari più di 2 mesi dopo l'intervento chirurgico per poter rilevare delle differenze significative di
espressione di questa proteina, infatti in altri lavori in cui questa analisi è stata effettuata dopo 6 o 8 mesi si è visto un incremento più marcato dei livelli di questa proteina negli animali lesioni. [Leanza et al, 1998; Lin et al 1998; Aztiria et al, 2009]

La comparsa dei deficit cognitivi sembra quindi precedere la disfunzione di APP, perciò altri fatti potrebbero essere coinvolti nell’interazione funzionale che è stata evidenziata esistere tra la disfunzione colinergica e l’accumulo di beta-amiloide nel modello animale da noi analizzato.

Dall’analisi dei livelli relativi di proteina Tau totale e Tau-fosforilata sulla treonina 181, effettuata tramite Western Blot, non emergono differenze nella quantità totale di proteina Tau presente nell’ippocampo tra i gruppi esaminati, mentre si dimostra un chiaro aumento della fosforilazione di questa in entrambi i gruppi che hanno ricevuto la lesione al sistema colinergico, con o senza l’accumulo di beta-amiloide nel territorio ippocampale; confermando quanto visto già dall’analisi istologica. In entrambi i gruppi di animali lesionati con 192-IgG-sap c’è un aumento simile della quantità di fosforilazione di questa proteina, che supera dell’80-90% i valori ottenuti dai controlli, facendo presupporre che la sola lesione al sistema colinergico sia sufficiente a creare questo incremento di fosforilazione. Anche qui però, come nel caso di APP, si potrebbero venire a creare delle differenze tra i due gruppi di lesionati andando ad effettuare le analisi dopo un tempo di sopravvivenza maggiore (6-8 mesi), in quanto gli effetti dell’accumulo di beta-amiloide esogeno nei tessuti cerebrali potrebbero necessitare di un periodo più ampio di 2 mesi per esplicarsi. Oltre a questo aspetto, rimane poi da chiarire l’effetto su Tau provocato dalla sola infusione di beta-amiloide a livello ippocampale, che per motivi tecnici non siamo ancora riusciti ad indagare.

dell'ippocampo, effettuata tramite analisi densitometrica relativa delle bande ottenute dal Western Blot, si è potuto constatare invece un sostanziale aumento di TDP-43 nei tessuti degli animali lesionati al sistema colinergico, sia in associazione che non all'infusione locale di beta-amiloide pre-aggregata, i cui livelli sono risultati essere superiori di 2,5 volte rispetto a quelli degli animali controllo. Invece, l’espressione di TDP-43 non è apparsa differire tra il gruppo lesionato al solo sistema colinergico (SINGLE Les) e quello a cui è stata inoculata anche della beta-amiloide 25-35 pre-aggregata (DOUBLE), infatti questi mostrano rispettivamente un incremento del 150% e del 130% rispetto ai controlli.

Quindi, da quanto osservato, si potrebbe pensare che la disfunzione al sistema colinergico sia sufficiente di per sè ad alterare il metabolismo di TDP-43 e a provocarne sia la sovraespressione che l'accumulo citoplasmatico, mentre il ruolo della beta-amiloide in questo processo patologico sembrerebbe essere marginale o comunque intervenire in un periodo successivo.

Studi futuri potrebbero indagare maggiormente la relazione che intercorre tra la regolazione colinergica e l’espressione di TDP-43, per cercare di chiarire il meccanismo che sta alla base della loro consequenziale disfunzione. Inoltre, sarebbe interessante valutare gli effetti dell'accumulo degli aggregati di beta-amiloide in tempi più lunghi di sopravvivenza degli animali.

5.3 CONCLUSIONI

In conclusione, alla luce dei risultati ottenuti da questi lavori si può affermare che:

- Il sistema noradrenergico ha un importante ruolo nel corretto funzionamento della working memory.
- La deplezione del sistema colinergico del prosencefalo di base e di quello dopaminergico che origina dall’area tegmentale ventrale, può venire compensata funzionalmente dal sistema noradrenergico ascendente, in particolare per quanto riguarda l’esecuzione di compiti ippocampo-dipendenti.
- I sistemi di neuromodulazione a proiezione diffusa interagiscono funzionalmente tra loro nella regolazione dei processi cognitivi, specialmente in ambito di apprendimento e memoria spaziale.
- I processi di consolidamento delle informazioni nel ratto, che sottostanno alla regolazione dopaminergica mesocorticale, possono venire compensati dall’azione di altri sistemi neurali fino a tre mesi di età.
- I territori cerebrali che sono raggiunti dalle efferenze noradrenergiche provenienti dal Locus Coeruleus potrebbero essere resi più vulnerabili in seguito alla sua degenerazione.
• Terapie che mirano al ripristino funzionale del sistema noradrenergico potrebbero essere utili a potenziare i processi cognitivi dei pazienti affetti da AD e PD.

• L’associazione tra degenerazione colinergica ed infusione ippocampale di beta-amiloide esogena pre-aggregata determina gravi deficit cognitivi, sia nella reference che nella working memory.

• La lesione del sistema colinergico con l’immunotossina 192-IgG-saporina riesce ad indurre di per sé un aumento della fosforilazione della proteina Tau nei neuroni dell’ippocampo ed della corteccia frontale.

• L’accumulo e la dislocalizzazione di TDP-43 nei neuroni ippocampali sono associati alla disfunzione del sistema colinergico.

• Per rilevare gli effetti dell’interazione tra degenerazione colinergica ed infusione di beta-amiloide esogena pre-aggregata sulla sovraespressione di APP potrebbero essere necessari dei tempi di sopravvivenza più lunghi di 2 mesi.
6. Bibliografia

Li S.W., Lin T.S., Minteer S. and Burke W.J. (2001) 3,4-Dihydroxyphenylacetaldehyde and hydrogen peroxide generate a hydroxyl radical: possible role in Parkinson’s disease pathogenesis. *Molecular Brain Research. 93: 1-7*.

BIBLIOGRAFIA

127

Meunier J., Ieni J. and Maurice T. (2006) The anti-amnesic and neuroprotective effects of donepezil against amyloid-beta 25-35 peptide induced toxicity in mice involve an interaction with the sigma1 receptor. *Br. J. Pharmacol. 149(8): 998-1012.*

