


History

The journal Rendiconti dell’Istituto di Matematica dell’Università di Trieste
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the same university he worked as a researcher up to 1988 when he became

associate professor at the University of Ancona. Since November 1990 he is full

professor of Mathematical Analysis at the University of Trieste.

His research interests are focused on the qualitative theory of elliptic and

parabolic equations and on inverse problems. In all these topics he has given

several relevant scientific contributions. He is editor of important journals, in

the field of ill-posed and inverse problems. During his career, Giovanni has had

many students and has collaborated with mathematicians from several coun-

tries. All those who know Giovanni appreciate his deep mathematical culture
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Exponential decay of solutions to
initial boundary value problem for
anisotropic visco-elastic systems

Gen Nakamura and Marcos Oliva
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Abstract. The paper concerns the asymptotic behaviour of solutions
of initial boundary value problem for a general anisotropic viscoelas-
tic system in the form of integrodifferential system of equations with
homogeneous mixed boundary condition. We put a usual assumption
on the relaxation tensor and assume that the inhomogeneous term of
the equation and boundary data are zero. Then, by using the energy
method, we show that the solutions decays exponentially with respect to
time as it tends to infinity.
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1. Introduction

In this paper we will study the asymptotic behavior of solutions of the initial
boundary value problem for general anisotropic viscoelastic integrodifferential
system abbreviated by AVIS with homogeneous mixed type boundary condi-
tion. The main objective of this paper is to show the exponential decay of
solutions with respect to time t as t → ∞ of solutions when the initial data
are zero and the relaxation tensor G satisfies a usual asymptotic behavior with
respect to time as it tends to infinity. For this usual asymptotic behavior of G,
see [1]. In many measurement devices such as a clinical diagnosing modality
called the magnetic resonance elastography ([7]) and a rhelogical measurement
device called the pendulum type viscoelastic spectroscopy ([8]) which use time
harmonic vibrations it is important to have a very short transition time be-
tween time harmonic vibrations with different frequencies ω1 and ω2 when the
frequency of vibration changes from ω1 to ω2. This can be ensured if the
solutions decay exponential as t → ∞ (see the argument in [4]).
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In order to formulate the initial boundary value problem let Ω ⊂ Rn, (2 ≤
n ∈ N) be a bounded domain with C

1 smooth boundary ∂Ω. Divide ∂Ω into
∂Ω = ΓD ∪ ΓN , where ΓD, ΓN ⊂ ∂Ω are open and assume that ΓD �= ∅,
ΓD ∩ ΓN = ∅ and if n ≥ 3 then their boundaries ∂ΓD, ∂ΓN are C

1 smooth if
n ≥ 3.

Consider the following initial boundary value problem






ρ∂
2
t u(·, t) = ∇ ·

�
C(·)∇u(·, t)−

� t

0
G(·, t− τ)∇u(·, τ) dτ

�
(t > 0)

u = 0 on ΓD × (0,∞), Tu = 0 on ΓN × (0,∞)

u = 0, ∂tu = f ∈ L
2(Ω) on Ω× {0},

(1)

where ∂t =
∂
∂t , Tu is the traction given by

Tu(·, t) =
�
C(·)∇u(·, t)−

� t

0
G(·, t)∇u(·, τ) dτ

�
ν

with the unit outer normal vector ν of ∂Ω. Here 0 < ρ0 ≤ ρ ∈ L
∞(Ω) with a

positive constant ρ0, C = (Cijk�) and G = (Gijk�) denote the elasticity tensor
and relaxation tensor, respectively. Here we note that it is enough to consider
the initial condition given above due to the Duhamel principle.

We assume the following assumptions on C and G.

(i) C ∈ L
∞(Ω) and G = e

−κt
Ĝ with Ĝ = (Ĝijk�) ∈ L

∞(Ω) and some
constant κ > 0.

(ii) (major symmetry) Cijk�=Ck�ij , Gijk�=Gk�ij a.e. in Ω, 1 ≤ i, j, k, � ≤ n.

(iii) (strong convexity) There exist constants α0 > 0 and β0 > 0 such that for
any n× n symmetric matrix w = (wij)

α0|w|2 ≤ (Cw) : w ≤ β0|w|2, α0|w|2 ≤ (Ĝw) : w ≤ β0|w|2 (2)

where the notation ”:” is defined as (Cw) : w =
�n

i,j,k,�=1 Cijk�wijwk� .

(iv) There exists some constants µ0 > 0, ν0 > 0 such that for any u(·, t) ∈
C

0([0,∞);H1(Ω)),

µ0

�

Ω

��∇u(·, t)
��2dx

≤
�

Ω

��
C(·)−

� ∞

0
G(·, τ) dτ

�
∇u(·, t)

�
: ∇u(·, t) dx

≤ ν0

�

Ω

��∇u(·, t)
��2dx, t ≥ 0.

(3)
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Remark 1.1. The last assumption can be given in the form

µ0

�

Ω
|∇u|2 dx ≤

�

Ω

�
(C − κ

−1
Ĝ)∇u

�
: ∇u dx ≤ ν0

�

Ω
|∇u|2 dx

for any u ∈ H
1(Ω).

Our main result is as follows.

Theorem 1.2 (Main result). The solution u ∈ C
3([0,∞);H1(Ω)) to (1) which

exists provided that the initial data f satisfies the smoothness condition of order
3 will converge to zero exponentially fast in time t.

Remark 1.3. For the definition of the smoothness condition of order 3, see [2].
Also, the existence of u ∈ C

3([0,∞);H1(Ω)) easily follows from Theorem 2.2
therein.

There are several studies on the asymptotic behavior of solutions of AVIS
as follows. Some abstract schemes for an integrodifferential equation were de-
veloped given in [2, 3] and applied showed that solutions of AVIS satisfying
the Dirichlet boundary condition decay to zero as the time tends to infin-
ity. Concerning the decay rate of the solutions, a polynomial order decay was
shown in [6] by the energy method introducing an energy norm which is ef-
fective to analyze the asymptotic behavior of solutions. The first result on
the exponential decay of solution was given in [5]. More precisely the author
studied a special isotropic viscoelastic integrodifferential system with exponen-
tially decaying relaxation function and gave the exponential decay of solutions
satisfying the Dirichlet boundary condition. Our method is based on the afore-
mentioned energy method given in [6] with careful estimates of constants in
energy inequalities.

The rest of this paper is organized as follows. In Section 2 we introduce some
notations and give the strategy of proof. Then we provide some basic identities
and inequalities given in [6] in Section 3. Since we are concerned about the
constants in these identities and inequalities we will give their proofs. Following
the arguments in [6], we carefully carry out the strategy in Section 4. At last
in Section 5, we will give some conclusion and discussion.

Here after for simplicity we will assume ρ = 1.
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2. Notations and strategy of proof

2.1. Notations

We will use the following notations

E(t, u) :=
1

2

��

Ω
|u(·, t)|2 + (G✷∂u)(·, t) dx

+

�

Ω
{(C(·)−

� t

0
G(·, τ) dτ)∇u(·, t)} : ∇u(·, t) dx

�
,

G✷∂u(·, t) :=
� t

0

�
G(·, t− τ)∇

�
u(·, t)− u(·, τ)

��
: ∇

�
u(·, t)− u(·, τ)

�
dτ ,

K(t, u) :=
1

2

�

Ω
|ü|2 dx+

1

2

�

Ω

�
C(·)∇u̇(·, t)

�
: ∇u̇(·, t) dx

−
�

Ω

�
G(·, 0)∇u(·, t)

�
: ∇u̇(·, t) dx+ γ

�

Ω

�
C(·)∇u(·, t)

�
: ∇u̇(·, t) dx

−
�

Ω

�� t

0
F (·, t− τ)∇u(·, τ) dτ

�
: ∇u̇(·, t) dx ,

with F (·, t) := γG(·, t) + Ġ(·, t) ,

I(t, u) :=

�

Ω
ü(·, t)u̇(·, t) dx− 1

2

�

Ω

�
G(·, 0)∇u(·, t)

�
: ∇u(·, t) dx

−1

2

�

Ω

�� t

0
Ġ(·, τ) dτ ∇u(·, t)

�
: ∇u(·, t) dx+

1

2

�

Ω
Ġ✷∂u(·, t) dx ,

L(t, u) := N1E(t, u) +N2E(t, u̇) +K(t, u) + (γ − c)I(t, u) + cp

�

Ω
u̇u dx,

where N1, N2, γ, c, cp are positive constants which will satisfy some condition

given later in Subsection 4.4 and c0 :=
�
supx∈Ω

�∞
0 |G(x, t)| dt

�1/2
and c1 is the

Poincaré constant of u(·, t).

2.2. Strategy of the proof

By basically following the argument in [6], we estimate d
dtL(t, u) from above by

a negative constant times L(t, u) and L(t, u) from below by a positive constant
times the sum

�
Ω |∇u(·, t)|2 dx with some other positive terms depending on u.

By adjusting these constants N1, N2, γ, c, cp, we have

d

dt
L(t, u) ≤ −M1L(t, u), t > 0, (4)
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L(t, u) ≥ M2

�

Ω

�
|ü|2 + |u̇|2 + |∇u̇|2 + |∇u|2

�
dx, t > 0

for some positive constants M1, M2.

3. Basic identities and inequalities

The key to derive estimate (4) is based on some basic identities and inequalities.
In deriving these identities and inequalities, we show each step where we need
the mixed type boundary condition and how constants of inequalities come in.
Henceforth in this paper we assume that u ∈ C

3([0,∞);H1(Ω)) is the solution
to (1) with the initial data f satisfying the smoothness condition of order 3.

3.1. Basic identities

We first simply cite the following lemma given as Lemma 2.1. in [6].

Lemma 3.1. For any v ∈ C
1([0,∞);H1(Ω)) we have

�

Ω

�� t

0
G(·, t− τ)∇v(·, τ) dτ

�
: ∇v̇(·, t) dx =

−1

2

�

Ω

�
d

dt
G✷∂v

�
(·, t) dx+

1

2

�

Ω

�
Ġ✷∂v

�
(·, t) dx

+
1

2

�

Ω

d

dt

�� t

0
G(·, τ) dτ ∇v(·, t)

�
: ∇v(·, t) dx

−
�

Ω

�
G(·, t)∇v(·, t)

�
: ∇v(·, t) dx t > 0.

Lemma 3.2.

d

dt
E(t, u) =

�

Ω

�
G(·, t)∇u(·, t)

�
: ∇u(·, τ) dx+

1

2

�

Ω
Ġ✷∂u(·, x) dx,

d

dt
E(t, u̇) =

�

Ω

�
G(·, t)∇u̇(·, t)

�
: ∇u(·, τ) dx+

1

2

�

Ω
Ġ✷∂u̇(·, x) dx

+

�

Ω

�
G(·, t)∇u(·, 0)) : ∇ü(·, t) dx, t > 0.

Proof. Let us multiply the viscoelastic equation in (1) by u̇(·, x) to get

1

2

d

dt

��

Ω
|u̇(·, t)|2 +

�
C(·)∇u(·, t)

�
: ∇u(·, t) dx

�

=

�

Ω

� � t

0
G(·, t− τ)∇u(·, τ) dτ

�
;∇u̇(·, t) dx
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Using Lemma 3.1 our first assertion holds. To show the second identity, we
take the time derivative of the viscoelastic equation in (1) so that

(3)
u (·, t) +∇

�
−C(·)∇u̇(·, t) +G(·, 0)∇u(·, t) +

� t

0
Ġ(·, t− τ)∇u(·, τ) dτ

�
= 0,

where
(3)
u (·, t) denotes the third order derivtive on u(·, t) with respect to t.

Integrating by parts, this yields

(3)
u (·, t)+∇

�
−C(·)∇u̇(·, t) +

� t

0
G(·, t−τ)∇u̇(·, τ) dτ

�
= −∇

�
G(·, t)∇u(·, 0)

�
.

Finally multiplying this by ü(·, t) and using again Lemma 3.1, we have the
second identity.

Lemma 3.3.

d

dt

�
K(t, u) + (γ − c)I(t, u)

�
=

−c

�

Ω
|ü(·, t)|2 dx+ c

�

Ω

�
C(·)∇u̇(·)

�
: ∇u̇(·, t) dx

−
�

Ω

�
G(·, 0)∇u̇(·, t)

�
: ∇u̇(·, t) dx− (γ−c)

�

Ω

�
Ġ(·, t)∇u(·, t)

�
: ∇u(·, t) dx

+
1

2
(γ − c)

�

Ω
G̈✷∂u(·, t) dx−

�

Ω

�
F (·, t)∇u(·, t)

�
: ∇u̇(·, t) dx

+

�

Ω

�� t

0
Ḟ (·, t− τ)∇

�
u(·, t)− u(·, τ)

�
dτ

�
: ∇u̇(·, t) dx, t > 0.

Proof. First we sum γ the viscoelastic equation and the time derivative of the
viscoelastic equation in (1) to obtain

(3)
u (·, t) + γü(·, t) +∇

�
− C(·)∇u̇(·, t) +G(·, 0)∇u(·, t)

�

= −∇
�� t

0
F (·, t− τ)∇u(·, τ) dτ + γC(·)∇u(·, t)

�
(5)

Hence multiplying by ü(·, t) and integrating in Ω we have

1

2

d

dt

��

Ω
|ü(·, t)|2 + (C(·)∇u̇(·, t)) : ∇u̇(·, t) dx

�

=− γ

�

Ω
|ü(·, t)|2 dx+

�

Ω
(G(·, 0)∇u(·, t)) : ∇ü(·, t) dx

− γ

�

Ω
(C(·)∇u(·, t)) : ∇ü(·, t) dx

+

�

Ω

�� t

0
F (·, t− τ)∇u(·, τ)dτ

�
: ∇ü(·, t) dx.

(6)
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Having in mind (6) and the following identities

d

dt

�

Ω
(G(·, 0)∇u(·, t)) : ∇u̇(·, t) dx

=

�

Ω
(G(·, 0)∇u(·, t)) : ∇ü(·, t) dx +

�

Ω
(G(·, 0)∇u̇(·, t)) : ∇u̇(·, t) dx

(7)

d

dt

�

Ω
(C(·)∇u(·, t)) : ∇u̇(·, t) dx

= γ

�

Ω
(C(·)∇u(·, t)) : ∇ü(·, t) dx + γ

�

Ω
(C(·)∇u̇(·, t)) : ∇u̇(·, t) dx

(8)

d

dt

�

Ω

�� t

0
F (·, t− τ)∇u(·, τ) dτ

�
: ∇u̇(·, t) dx

=

�

Ω

�� t

0
F (·, t− τ)∇u(·, τ) dτ

�
: ∇ü(·, t) dx

+

�

Ω

�� t

0
Ḟ (·, t− τ)∇u(·, τ) dτ

�
: ∇u̇(·, t) dx

+

�

Ω

�
F (·, 0)∇u(·, t)

�
: ∇u̇(·, t) dx

(9)

we obtain

d

dt
K(t, u) =− γ

�

Ω
|ü(·, t)|2 dx −

�

Ω

�
G(·, 0)∇u̇(·, t)

�
: ∇ü(·, t) dx

+ γ

�

Ω

�
C(·)∇u̇(·, t)

�
: ∇u̇(·, t) dx

−
�

Ω

�
F (·, 0)∇u(·, t)

�
: ∇u̇(·, t) dx

−
�

Ω

�� t

0
Ḟ (·, t− τ)∇u(·, τ) dτ

�
: ∇u̇(·, t) dx.

(10)

Now multiplying (5) with γ = 0 by u̇(·, t) and integrating in Ω we have

d

dt

�

Ω
ü(·, t)u̇(·, t) dx =

�

Ω
|ü(·, t)|2 dx−

�

Ω

�
C(·)∇u̇(·, t)

�
: ∇u̇(·, t) dx

+

�

Ω

�
G(·, 0)∇u(·, t)

�
: ∇u̇(·, t) dx

+

�

Ω

�� t

0
Ġ(·, t− τ)∇u(·, τ) dτ

�
: ∇u̇(·, t) dx.

(11)
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Further by the definition of I(t, u), (11) and Lemma 3.1 we have

d

dt
I(t, u) =

�

Ω
|ü(·, t)|2 dx −

�

Ω

�
C(·)∇u̇(·, t)

�
: ∇u̇(·, t) dx

−
�

Ω

�
Ġ(·, t)∇u(·, t)

�
: ∇u(·, t) dx +

1

2

�

Ω
G̈✷∂u dx.

(12)

Finally putting together (10) and (12) the proof is complete.

3.2. Basic inequalities

Lemma 3.4. For any u, v ∈ C
1([0,∞);H1(Ω)) we have

����
�

Ω

�� t

0
G(·, t− τ)(∇u(·, t)−∇u(·, τ))dτ

�
: ∇v(·, t) dx

����

≤ c0

��

Ω
(G✷∂u)(·, t) dx

� 1
2
��

Ω
|∇v(·, t)|2 dx

� 1
2

.

Proof. Using Hölder’s inequality we have
����
�

Ω

�� t

0
G(·, t− τ)(∇u(·, t)−∇u(·, τ))dτ

�
: ∇v(·, t) dx

����

=

����
�

Ω

�� t

0
G

1
2 (·, t− τ)G

1
2 (·, t− τ)(∇u(·, t)−∇u(·, τ))dτ

�
: ∇v(·, t) dx

����

≤ c0

�

Ω

�
(G✷∂u)

1
2 (·, t) |∇v(·, t)| dx

�
dx

≤ c0

��

Ω
(G✷∂u)(·, t) dx

� 1
2
��

Ω
|∇v(·, t)|2 dx

� 1
2

.

Lemma 3.5.

d

dt

�

Ω
u̇(·, t)u(·, t) dx

=

�

Ω
|u̇(·, t)|2 dx−

�

Ω

��
C(·)−

� t

0
G(·, τ) dτ

�
∇u(·, t)

�
: ∇u(·, t) dx

−
�

Ω

�� t

0
G(·, t− τ)∇(u(·, t)− u(·, τ)) dτ

�
: ∇u(·, t) dx

≤ c1

�

Ω
|∇u̇(·, t)|2 dx−

�
µ0 + ακ

−1
e
−κt

� �

Ω
|∇u(·, t)|2 dx

+
c0

2

�
ε

�

Ω
G✷∂u(·, t) dx +

1

ε

�

Ω
|∇u(·, t)|2 dx

�
, t > 0, 0 ≤ ε ≤ 1.
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Proof. Using the viscoelastic equation in (1) and integrating by parts we obtain

d

dt

�

Ω
u̇(·, t)u(·, t) dx =

�

Ω
|u̇(·, t)|2 dx +

�

Ω
ü(·, t)u(·, t) dx

=

�

Ω
|u̇(·, t)|2 dx−

�

Ω

�
C(·)∇u(·, t)

�
: ∇u(·, t) dx

+

�

Ω

�� t

0
G(·, t− τ)∇u(·, τ) dτ

�
: ∇u(·, t) dx

Now if we add and subtract
�
Ω

� � t
0 G(·, τ) dτ ∇u(·, t)

�
: ∇u(·, t)dx we have the

equality in Lemma 3.5, for the inequality we use the Poincaré inequality, (3),
Lemma 3.4, and Young’s inequality.

Lemma 3.6.

����
�

Ω

�� t

0
F (·, t− τ)∇u(·, τ) dτ

�
: ∇u̇(·, t) dx

����

≤ 1

2
c0(γ − κ)

�
ε

�

Ω
G✷∂u(·, t) dx +

1

ε

�

Ω
|∇u̇(·, t)|2 dx

+c0

�
ξ

�

Ω
|∇u(·, t)|2 dx+

1

ξ

�

Ω
|∇u̇(·, t)|2 dx

��

with ε, ξ > 0.

Proof. By the definition of F (·, t) and Ġ(·, t) = −κG(·, t) we have

����
�

Ω

�� t

0
F (·, t− τ)∇u(·, τ) dτ

�
: ∇u̇(·, t) dx

����

≤ (γ − κ)

����
�

Ω

�� t

0
G(·, t− τ)

�
∇u(·, t) −∇u(·, τ)

�
dτ

�
: ∇u̇(·, t) dx

����

+ (γ − κ)

����
�

Ω

�� t

0
G(·, t− τ)dτ ∇u(·, t)

�
: ∇u̇(·, t) dx

����

Now using Lemma 3.4 and Young’s inequality the proof is complete.
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4. Estimates

4.1. d
dtL(t, u) ≤ −M1L(t, u), t ≥ 0

We will bound from above d
dtL(t, u). From Lemma 3.3 and (1) we obtain:

d

dt
L(t, u) = −c

�

Ω
|ü(·, t)|2 dx+ c

�

Ω
(C(·)∇u̇(·, t)) : ∇u̇(·, t) dx

−
�

Ω

�
G(·, 0)∇u̇(·, t)

�
: ∇u̇(·, t) dx+ (γ−c)κ

�

Ω
(G(·, t)∇u(·, t)) : ∇u̇(·, t) dx

+
1

2
(γ − c)κ2

�

Ω
G✷∂u(·, t) dx− (γ − κ)

�

Ω
(G(·, t)∇u(·, t)) : ∇u̇(·, t) dx

− κ(γ − κ)

�

Ω

�� t

0
G(·, t− τ)(∇u(·, t)−∇(·, τ))dτ

�
: ∇u̇(·, t) dx

−N1

�

Ω
(G(·, t)∇u(·, t)) : ∇u(·, t) dx − 1

2
N1κ

�

Ω
G✷∂u(·, t) dx

−N2

�

Ω
(G(·, t)∇u̇(·, t)) : ∇u̇(·, t) dx− N2

2
κ

�

Ω
G✷∂u̇(·, t) dx

+ cp
d

dt

�

Ω
u̇(·, t)u(·, t) dx.

Using (2), (3), Lemma 3.4, Lemma 3.5 and Young’s inequality we have

d

dt
L(t, u) ≤ −c

�

Ω
|ü(·, t)|2 dx+

1

2

��
2(γ − c)κβ0 + (γ − κ)β0 − 2N1α0

−2cpα0κ
−1

�
e
−κt +

cpc0

2η
− cpµ0

��

Ω
|∇u(·, t)|2 dx

+
1

2

��
(γ − κ)β0 − 2N2α0

�
e
−κt + 2cβ0 + 2cpc1

+
c0(γ − κ)κ

ξ
− α0

��

Ω
|∇u̇(·, t)|2 dx

+
1

2

�
(γ − c)κ2 + κ(γ − κ)c0ξ + cpc0η

−N1κ

��

Ω
G✷∂u(·, t) dx− 1

2
N2κ

�

Ω
G✷∂u̇(·, t) dx.
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4.2. Estimating −L(t, u) from below

In this subsection we bound −L(t, u) from below.

−L(t, u) = −1

2

�

Ω
|ü(·, t)|2 dx − 1

2

�

Ω
(C(·)∇u̇(·, t)) : ∇u̇(·, t) dx

+

�

Ω
(G(·, 0)∇u(·, t)) : ∇u̇(·, t) dx− γ

�

Ω
(C(·)∇u(·, t)) : ∇u̇(·, t) dx

+ (γ − κ)

�

Ω

�� t

0
G(·, t− τ)∇u(·, τ)dτ

�
: ∇u̇(·, t) dx

− (γ − c)

�

Ω
ü(·, t)u̇(·, t) dx+

1

2
(γ − c)

�

Ω
(G(·, 0)∇u(·, t)) : ∇u(·, t) dx

+
γ − c

2

�

Ω

��� t

0
Ġ(·, t− τ)dτ

�
∇u(·, t)

�
: ∇u(·, t) dx

− 1

2
(γ − c)

�

Ω
Ġ✷∂u(·, t) dx− 1

2
N1

�

Ω
|u̇(·, t)|2 dx − 1

2
N1

�

Ω
G✷∂u(·, t) dx

− 1

2
N1

�

Ω

��
C(·)−

� t

0
G(·, τ) dτ

�
∇u(·, t)

�
: ∇u(·, t) dx

− 1

2
N2

�

Ω
|ü(·, t)|2 dx− 1

2
N2

�

Ω
G✷∂u̇ dx

−N2

�

Ω

��
C(·)−

� t

0
G(·, τ) dτ

�
∇u̇(·, t)

�
: ∇u̇(·, t) dx

− cp

�

Ω
u̇(·, t)u(·, t) dx.

Using (2), (3), Lemma 3.6, G = e
−κt

Ĝ and Young’s inequality, we have:

−L(t, u) ≥ −1

2

�
1 +N2 + γ − c

��

Ω
|ü(·, t)|2 dx

+
1

2

��
α0(γ − κ)−N1β0κ

−1
�
e
−κt +N1α0κ

−1 −N1β0 − c
2
0(γ − κ)

− cp − (γ + 1)β0

��

Ω
|∇u(·, t)|2 dx

+
1

2

�
− 2N2κ

−1
β0e

−κt + 2N2κ
−1

α0 − 2N2β0 − β0 − c1(γ − c)

− c1N1 − c0(γ − κ)(c0 + 1)− cp − (γ + 1)β0

��

Ω
|∇u̇(·, t)|2 dx

+
1

2

�
(γ − c)κ−N1 − c0(γ − κ)

��

Ω
G✷∂u(·, t) dx

− 1

2
N2

�

Ω
G✷∂u̇(·, t) dx.
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It is easy to see that if we take the constants like in Subsection 4.4 given later,
all the coefficients in both bounds are less than a negative constant and are
bounded. Hence there is a constant M ≥ 0 such that d

dtL(t, u) ≤ −ML(t, u)
for any t ≥ 0.

4.3. Estimating L(t, u) from below

In this section we will bound L(t, u) from below. For this we use (3) to get the
next two inequalities:

N1E(t, u) ≥ 1

2
N1

�

Ω
|u̇(·, t)|2 dx+ 1

2
N1

�

Ω
G✷∂u(·, t) dx+N1µ0

�

Ω
|∇u(·, t)|2 dx,

N2E(t, u̇) ≥ 1

2
N2

�

Ω
|ü(·, t)|2 dx+ 1

2
N2

�

Ω
G✷∂u̇(·, t) dx+N2µ0

�

Ω
|∇u̇(·, t)|2 dx.

We apply (4), Lemma 3.6 with ε = ξ = 1,G = e
−κt

Ĝ and Young inequality
with p = q = 2 to obtain

K(t, u) + (γ − c)I(t, u) ≥ 1

2

��

Ω
|ü(·, t)|2 dx+ α0

�

Ω
|∇u̇(·, t)|2 dx

− β0

��

Ω
|∇u(·, t)|2 dx

�

Ω
|∇u̇(·, t)|2 dx

�

+ γα0

��

Ω
|∇u(·, t)|2 dx+

�

Ω
|∇u̇(·, t)|2 dx

�

− c0(γ − κ)

��

Ω
G✷∂u(·, t) dx+

�

Ω
|∇u̇(·, t)|2 dx

+c0

��

Ω
|∇u(·, t)|2 dx+

�

Ω
|∇u̇(·, t)|2 dx

��

− (γ − c)

��

Ω
|u̇(·, t)|2 dx +

�

Ω
|ü(·, t)|2

�

− β0(γ − c)

�

Ω
|∇u(·, t)|2 dx

−κ(γ − c)

�

Ω
G✷∂u(·, t) dx

�
.

By using Young inequality with p = q = 2 and Poincaré inequality, we have

cp

�

Ω
u̇(·, t)u(·, t) dx ≥ −1

2

��

Ω
|u̇(·, t)|2 dx+ c1

�

Ω
|∇u(·, t)|2 dx

�
.
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Putting together the last four inequalities and the definition of L(t, u) we
obtain:

L(t, u) ≥ 1

2

�
1 +N2 − (γ − c)

� �

Ω
|ü(·, t)|2 dx

+
1

2

�
2N1µ0 + γα0 − β0 − c

2
0(γ−κ)− β0(γ−c)− cpc1

��

Ω
|∇u(·, t)|2 dx

+
1

2

�
2N2µ0 + γα0 + α0 − β0 − c

2
0(γ − κ)− c0(γ − κ)

� �

Ω
|∇u̇(·, t)|2 dx

+
1

2

�
N1 − c0(γ − κ)− κ(γ − c)

� �

Ω
G✷∂u(·, t) dx

+
1

2
N2

�

Ω
G✷∂u̇(·, t) dx+

1

2

�
N1 − (γ − c)− cp

� �

Ω
|u̇(·, t)|2 dx.

Now if we take the constants like in Subsection 4.4 we see that exists M2 ≥ 0
such that

L(t, u) ≥ M2

�

Ω

�
|ü(·, t)|2 + |u̇(·, t)|2 + |∇u̇(·, t)|2 + |∇u(·, t)|2

�
dx, t > 0 .

4.4. Conditions for constants

We summarize the conditions for constants N1, N2, γ, c, cp as follows.

N1 > max
�
2
�
(γ−c)κ− c0(γ−κ)

�
, 2

�
(γ−c)κ+ c0(γ−κ)ξ + c0 cpκ

−1
η
�
,

(β0 − κ
−1

α0)
−1

�
(α0 − c

2
0)(γ − c)− c

2
0(γ − κ)− cp c1 − (γ+1)β0

�
,

1

2µ0

�
β0 − γα0 + c

2
0(γ − κ) + β0(γ − c) + cp c1

�
,

c0(γ − κ) + κ(γ − c), (γ − c) + cp

�
,

N2 > max
�
(γ − c)− 1,

1

2µ0

�
− α0 + β0 − γα0 + c0(c0 + 1)(γ − κ)

��
,

ξ > 6c0(γ−κ)κα−1
0 , c <

α0

6β0
, cp <

α0

6c1
, η >

c0

N0
,

with c0 :=
�
supx∈Ω

�∞
0 |G(x, t)| dt

�1/2
and the Poincaré constant c1 provided

that β0 > κ
−1

α0.
It is easy to see that there are constants N1, N2, γ, c, cp which satisfy these

conditions. Hence, from Subsections 4.1 and 4.3, we have obtained the expo-
nential decay of solution to (1).
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5. Conclusion and discussion

Conclusion
We have shown an exponential decay of solutions of (1) by applying the energy
method given in [6] and carefully concerning the constants which appear in this
method.

Discussion
We will give the following list for some discussion on our result.

1. The case with density can be handled in a similar way.

2. The case with general inhomogeneous data can be handled using the
Duhamel principle.

3. How the exponential decay rate depends on the assumptions and coeffi-
cients is not clear.

4. As a future work, we would like to extend this work to a more general
relaxation tensor.
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[6] J. E. Muñoz Rivera and E. Cabanillas Lapa, Decay rates of solutions of an
anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomially
decaying kernels, Comm. Math. Phys. 177 (1996), no. 3, 583–602.



EXPONENTIAL DECAY FOR VISCO-ELASTIC SYSTEMS 19

[7] R. Muthupillai, D.J. Lomas, P. J. Rossman, J. F. Greenlead, A. Mand-
uca, and R. L. Ehman, Magnetic resonance elastography by direct visualization
of propagating acoustic strain waves, Science 269 (1995), 1854–1857.

[8] Y.-C. Wang, C.-C. Ko, and Siau L.-M., Accurate determination of torsional
and pure bending moment for viscoelastic measurements, Int. J. Mod. Phys. Con-
ference Series 24 (2013).

Authors’ addresses:

Gen Nakamura

Department of Mathematics,

Inha University, Incheon, Republic of Korea

E-mail: nakamuragenn@gmail.com

Marcos Oliva

Department of Mathematics

Universidad Autónoma de Madrid, Madrid, Spain

E-mail: marcos.delaoliva@uam.es

Received August 7, 2015

Accepted November 27, 2015





Rend. Istit. Mat. Univ. Trieste
Volume 48 (2016), 21–47
DOI: 10.13137/2464-8728/13150

A global Riemann-Hilbert problem for

two-dimensional inverse scattering at

fixed energy

Evgeny L. Lakshtanov, Roman G. Novikov
and Boris R. Vainberg

Dedicated to Giovanni Alessandrini on the occasion of his 60th birthday

Abstract. We develop the Riemann-Hilbert problem approach to in-
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tials. In particular, we do not assume that the potential is small or that

Faddeev scattering solutions do not have singularities (i.e. we allow the
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1. Introduction

We consider the two-dimensional Schrödinger equation

(−∆+ v)ψ(x) = Eψ(x), x ∈ R2, E > 0, (1)

where

v is a real-valued sufficiently regular function on R2

with sufficient decay at infinity.
(2)

Actually, in the present work the assumptions (2) are specified in the sense
that v is a real-valued, bounded, compactly supported function on R2.

For equation (1) we consider the classical scattering solutions ψ+(x, k), k ∈
R2, k2 = E, specified by the following asymptotics

ψ+(x, k) = eikx + iπ
√
2πe−iπ/4 ei|k||x|�

|k||x|
f

�
k, |k| x|x|

�
+ o

�
1�
|x|

�
,

|x| → ∞,

(3)
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for some a priori unknown f . Function f = f(k, l) on

ME = {k, l ∈ R2 : k2 = l2 = E} (4)

arising in (3) is the classical scattering amplitude for equation (1).
In order to determine ψ+ and f from v one can use the Lipmann-Schwinger

integral equation (11) and the integral formula (12) in Section 2; see e.g. [19].
In this work we continue, in particular, studies on the following inverse

scattering problem for equation (1) under assumptions (2):

Problem 1.1: Given scattering amplitude f on ME at fixed E > 0, find the
potential v on R2.

When v is compactly supported, that is

supp v ⊂ D, (5)

where D is an open bounded domain in R2, we consider also the Dirichlet-to-
Neumann map Φ(E) for equation (1) in D. We recall that this map is defined
via the relation

∂

∂ν
ψ

����
∂D

= Φ(E) (ψ|∂D) (6)

fulfilled for all sufficiently regular solutions ψ of (1) in D ∪ ∂D, where ν is the
external normal vector to ∂D. Considering Φ(E), we assume also that

E is not a Dirichlet eigenvalue for the operator −∆+ v in D. (7)

It is well known (see [18]) that, under assumptions (2), (5), Problem 1.1
is closely related with the following inverse boundary value problem for equa-
tion (1) in D:

Problem 1.2: Given Φ(E) at fixed E > 0, find v.

Problems 1.1, 1.2 have a long history and there are many important results
on these problems; see [6, 11, 19, 21, 23] and references therein in connection
with Problem 1.1 and [5, 18, 23, 24] in connection with Problem 1.2.

The approach of the present work to Problems 1.1, 1.2 is based, in partic-
ular, on properties of the Faddeev exponentially increasing solutions for equa-
tion (1). We recall that the Faddeev solutions ψ(x, k), k ∈ C2 \ R2, k2 = E, of
equation (1) are specified by

ψ(x, k) = eikx(1 + o(1)), |x| → ∞; (8)

see e.g. [18].
In order to determine ψ from v one can use the Lipmann-Schwinger-Faddeev

integral equation (20) in Section 2.
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In the present work, under assumptions (2), (5), we reduce Problems 1, 2
to some global generalized Riemann-Hilbert-Manakov problem for the classi-
cal scattering solutions ψ+ and the Faddeev solutions ψ for equation (1); see
Problem 3.5 in Section 3. A prototype of this global Riemann-Hilbert-Manakov
problem for the case of equation (1) with E < 0 was considered in Section 8 of
[19].

The term ”global” means, in particular, that the kernels of our Riemann-
Hilbert-Manakov problem have no singularities, even if there are the Faddeev
exceptional points at fixed E. After that we reduce our Riemann-Hilbert prob-
lem to a Fredholm linear integral equation of the second type; see Theorem 4.1
and Proposition 4.2 in Section 4.

As a result we obtain, in particular, a new generic reconstruction method
for Problems 1, 2; see Proposition 4.5 and Remarks 4.6, 4.7 in Section 4.

In particular, our reconstruction from the Faddeev generalized scattering
data is reduced to formulas (58), (60), (64), (65), (70), (83), (84), integral
equations (67)-(69), (85), (86) and formulas (61), (75), (76), (79).

Note that the approach of the present work goes back to the soliton theory,
see [1, 9, 13, 14, 16]. The first applications of this approach to Problems 1, 2
were given in [12, 17, 18, 19]. Actually, the main result of the present work
consists in a globalization of this approach to Problems 1, 2.

The reconstruction method of the present work uses properly generalized
scattering data for small and large values of the complex spectral parameter at
fixed energy and, therefore, is considerably more stable, generically, than the
reconstruction method of [5] based exclusively on properties of some generalized
scattering data for large values of complex spectral parameter. Generically,
stability estimates of [22] obtained using ideas of [2], [5] can be improved using
results of the present work to estimates like in [24], but without the assumptions
that some norm of potential v is sufficiently small in comparison with fixed E.
This issue will be presented in detail elsewhere.

In addition, in contrasts with [5], results of the present work admit applica-
tion to solving the Cauchy problem for the Novikov-Veselov equation ([15, 26])

∂tv = 4�(4∂3
zv + ∂z(vw)− E∂zw),

∂z̄w = −3∂zv, v = v̄, E > 0,

v = v(x, t), w = w(x, t), x = (x1, x2) ∈ R2, t ∈ R,
(9)

with compactly supported v(x, t = 0). Here, we used the following notations:

∂t =
∂

∂t
, ∂z =

1

2

�
∂

∂x1
− i

∂

∂x2

�
, ∂z̄ =

1

2

�
∂

∂x1
+ i

∂

∂x2

�
. (10)

These applications are indicated in Section 6 of the present work and will be
presented in detail elsewhere.
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2. Preliminary results of direct scattering

2.1. Classical scattering functions

We recall that for the classical scattering functions ψ+ and f for equation (1)
the following Lipmann-Schwinger integral equation (11) and the integral for-
mula (12) hold:

ψ+(x, k) = eikx +

�

y∈R2

G+(x− y,
√
E)v(y)ψ+(y, k)dy, (11)

G+(x,
√
E) = − 1

(2π)2

�

R2

eiξxdξ

|ξ|2 − E − i0
= − i

4
H1

0 (|x|
√
E),

f(k, l) =
1

(2π)2

�

R2

e−ilyv(y)ψ+(y, k)dy, (12)

where x, k, l ∈ R2, k2 = l2 = E > 0, H1
0 is the Hankel function of the first type;

see e.g. [19]. In addition, it is known that equation (11) is uniquely solvable
with respect to ψ+(·, k) ∈ L∞(R2) at fixed k, under conditions (2) and, in
particular, under the conditions that

v = v ∈ L∞(R2), supp v ⊂ D, (13)

where D is an open bounded domain in R2; see e.g. [4] for a proof of a similar
result in three dimensions.

Let
S1r = {ζ ∈ R2 : ζ2 = r2}, r > 0, (14)

ΣE = {ζ ∈ C2 : ζ2 = E}, E > 0, (15)

ΣE,ρ = {ζ ∈ ΣE : |�ζ| ≥ ρ}, E > 0, ρ > 0, (16)

and let
χE,ρ be the characteristic function of ΣE,ρ in ΣE . (17)

Note that ME = S1√
E
× S1√

E
, where ME is defined by (4).

It is well known that, under conditions (2), (5),

ψ+(x, k) admits a holomorphic extension in k
from S1√

E
to ΣE at fixed x (18)

and
f(k, l) admits a holomorphic extension in (k, l)

from ME to ΣE × ΣE
(19)

with possible exponential increasing at infinity in complex domain.
As a corollary, f on ME uniquely determines f on ΣE×ΣE , under assump-

tions (2), (5).
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2.2. Faddeev functions

We recall also that the Faddeev solutions ψ(x, k) for (1) satisfy the following
generalized Lipmann-Schwinger integral equation

ψ(x, k) = eikx +

�

y∈R2

G(x− y, k)v(y)ψ(y, k)dy, (20)

G(x, k) = g(x, k)eikx, (21)

g(x, k) = − 1

(2π)2

�

ξ∈R2

eiξx

|ξ|2 + 2kξ
dξ, (22)

where x ∈ R2, k ∈ C2 \ R2, k2 = E > 0; see e.g. [7, 19]. In addition, we
consider (20) as an equation for ψ = eikxµ(x, k), where µ(·, k) ∈ L∞(R2) at
fixed k. Note that equation (20) can be rewritten as

µ(x, k) = 1 +

�

y∈R2

g(x− y, k)v(y)µ(y, k)dy, (23)

where x ∈ R2, k ∈ C2 \ R2, k2 = E > 0; see e.g. [19].
Under assumptions (2) and, in particular, under assumptions (13), equa-

tions (20), (23) are uniquely solvable for µ(·, k) ∈ L∞(R2) at fixed k if k ∈�
ΣE \ S1√

E

�
\ EE , where EE is the set of the Faddeev exceptional points on

ΣE \ S1√
E
; see e.g. [19].

Note also that, due to estimates (3.16)-(3.18) of [19], the following estimates
hold for some constant c0 > 0 :

|G+(x,
√
E)| ≤ c0|x|−1/2E−1/4, (24)

|g(x, k)| ≤ c0|x|−1/2|�k|−1/2, (25)

where G+, g are defined in (11), (21), x ∈ R2, k ∈ C2 \ R2, k2 = E > 0.
In addition, under assumptions (13), as a corollary of (24), (25), in a similar

way to Proposition 4.1 in [19], we have that

�A(k)�L∞(R2)→L∞(R2) ≤ M(�v�L∞(D), D,E, ρ),

k ∈ C2, k2 = E > 0, |�k| = ρ > 0,
(26)

ΣE,ρ ∩ EE = ∅ if ρ > ρ1(�v�L∞(D), D,E), E > 0, (27)

where A(k) is the linear integral operator of equation (23),

M(q,D,E, ρ) =
c0qI1(D)

(E + ρ2)1/4
, (28)
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ρ1(q,D,E) =
�
max([c0qI1(D)]4 − E, 0)

�1/2
,

q ≥ 0, I1(D) = max
x∈R2

�

D

dy

|x− y|1/2
.

(29)

In addition to ψ, we consider also the generalized Faddeev scattering am-
plitude h(k, l) defined by the formula

h(k, l) =
1

(2π)2

�

R2

e−ilyv(y)ψ(y, k)dy, (30)

where (k, l) ∈
�
ΣE \ S1√

E

�
× ΣE ; see e.g. [8, 19]. Here we assume also that

�k = �l if (5) is not assumed.
Note that, under assumption (13),

h is (complex-valued) real-analytic on
��

ΣE \ S1√
E

�
\ EE

�
× ΣE ,

h(k, ·) is holomorphic on ΣE at fixed k.
(31)

We say that a complex-valued function is real-analytic if its real and imaginary
parts are real-analytic.

2.3. ∂-equation on the Faddeev eigenfunctions

We recall that the following isomorphic relations are valid:

ΣE ≈ C \ 0, S1√
E
≈ T = {λ ∈ C : |λ| = 1}. (32)

More precisely:

k = (k1, k2) ∈ ΣE ⇒ λ = λ(k) :=
k1 + ik2√

E
∈ C \ 0,

k = (k1, k2) ∈ S1√
E

⇒ λ(k) ∈ T;
(33)

λ ∈ C \ 0 ⇒ k = k(λ, E) ∈ ΣE , λ ∈ T ⇒ k = k(λ) ∈ S1√
E
, (34)

where

k(λ, E) = (k1(λ, E), k2(λ, E)),

k1 =

�
λ+

1

λ

� √
E

2
, k2 =

�
1

λ
− λ

�
i
√
E

2
.

(35)

Note also that

|�k(λ, E)| =
√
E

2

�
|λ|+ |λ|−1

�
, |�k(λ, E)| =

√
E

2

��|λ|− |λ|−1
�� ,

λ ∈ C \ 0, E > 0.

(36)
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Let
Lp,ν(C) be the function space on C consisting
of the functions u such that u, uν ∈ Lp(D1)
with the norm �u�Lp,ν = �u�Lp(D1) + �uν�Lp(D1),

(37)

where p ≥ 1, ν ≥ 0,
uν(λ) := |λ|−νu(λ−1) , (38)

D1 = {λ ∈ C : |λ| ≤ 1}. (39)

It is known that the function ψ of Subsection 2.2 has, in particular, the fol-
lowing properties, under assumptions (2) and, in particular, under assumptions
(13):

ψ(x, k(λ)) = eik(λ)x(1 + o(1)), if λ → 0 or λ → ∞, (40)

∂

∂λ
ψ(x, k(λ)) =

sgn(|λ|2 − 1)

λ
b(k(λ))ψ

�
x, k

�
− 1

λ

��
,

ψ

�
x, k

�
− 1

λ

��
= ψ(x, (k(λ))), k(λ) ∈

�
ΣE \ S1√

E

�
\ EE ,

(41)

where x ∈ R2, k(λ) = k(λ, E) is defined by (35),

b(k) := h(k,−k), (42)

where h is defined by (30); see e.g. [12, 19].
Note that ∂−equations like (41) go back to [1, 3].

2.4. Some estimates related with ∂−equation (41)

In particular, as a corollary of (40),

ψ(x, (k(λ))) �= 0 if |λ| is sufficiently small
or if |λ| is sufficiently large.

(43)

In addition, under assumptions (13), as a corollary of (26), we have

|µ(x, k(λ))| ≤ (1−M(q,D,E, ρ))−1,

x ∈ R2, k(λ) = k(λ, E) ∈ ΣE,ρ, ρ > ρ1(q,D,E), �v�L∞(D) < q,
(44)

where M is defined by (28), ρ1 is defined by (29).
In connection with equation (41) we consider also

uE,ρ(λ) =
1

λ
χE,ρ(k(λ))b(k(λ)), (45)
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where χE,ρ is defined by (17).
Under assumptions (13), we have:

uE,ρ ∈ Lp,2(C), 2 < p < 4, (46)

where ρ > ρ1(�v�L∞(D), D,E);

�uE,ρ�Lp,2 ≤ qc1(D, p,E)(1−M(q,D,E, ρ))−1, (47)

�uE,ρ�Lp,2 = O (q) as q → 0, (48)

for fixed E > 0, ρ > ρ1(q,D,E), D and p, where �v�L∞(D) ≤ q, M is defined
by (28), c1 is a positive constant, 2 < p < 4;

|λuE,ρ(λ)| ≤ q(2π)−2(1−M(q,D,E, ρ))−1

�

D
dx, λ ∈ C, (49)

where �v�L∞(D) ≤ q, M is defined by (28), ρ > ρ1(�v�L∞(D), D,E); see formu-
las (4.4), (4.12), (4.18), (4.19) of [19]. In connection with (46)-(48) we recall
that Lp,2(C) is defined in (37).

2.5. Final remarks

We recall also that, under the assumptions (7), (13), at fixed E, the scattering
amplitude f uniquely determines the Dirichlet-to-Neumann map Φ and vice
versa; see Proposition 4 in [18].

In turn, Φ(E) uniquely determines h on
��

ΣE \ S1√
E

�
\ EE

�
×ΣE ; see [18].

Note also that f at fixed E uniquely determines h on
��

ΣE \ S1√
E

�
\ EE

�
×

ΣE via a two-dimensional analogue of the construction given in [20].
As a corollary, Problems 1.1, 1.2 of Section 1 are reduced to Problem 3.4 of

Section 3.

3. Global generalized Riemann-Hilbert problem

Let

Λ = ΛE,ρ =
�
λ ∈ C :

√
E
2

��|λ|− |λ|−1
�� < ρ

�
, E > 0, ρ > 0,

and ∂Λ = ∂ΛE,ρ be the boundary of Λ in C
with the standard orientation.

(50)

Note that
ΣE,ρ ≈ C \ ΛE,ρ, (51)

where this isomorphism is given by formulas (33), (34).
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Let

W (λ, ς) =
i

2
sgn(|λ|2 − 1)

�
1

ς
lnw1(λ, ς) + ς lnw2(λ, ς)

�

+

�

|η|=1

1

2(ς − η)
θ

�
sgn(|λ|2 − 1)i

�
|λ|η
λ

− λ

|λ|η

��
|dη| ,

λ, ς ∈ ∂Λ,

(52)

where

w1 =
ς − λ

ς − λ
|λ|

, w2 =
−1
ς − λ

−1
ς − λ

|λ|

,

and θ is the standard Heaviside step function.

Remark 3.1. Note that

| argwi(λ, ς)| < π, λ, ς ∈ ∂Λ, i = 1, 2, (53)

and the logarithms in (52) are well defined by the condition |� lnwi| < π.

In particular, we have

W ∈ Lp(∂Λ× ∂Λ), p ≥ 1, ∂Λ = ∂ΛE,ρ, E > 0, ρ > 0. (54)

Lemma 3.2. Let v satisfy (13) and let ρ ≥ ρ1(�v�L∞(D), D,E), where ρ1 is the

constant in (27). Let ψ+,ψ be the eigenfunctions of Subsections 2.1, 2.2. Then

the following relation holds:

ψ(x, k(λ)) = ψ+(x, k(λ)) +

�

∂Λ
W (λ, ς)h(k(λ), k(ς))ψ+(x, k(ς))dς,

λ ∈ ∂Λ.
(55)

where k(λ) = k(λ, E) is given by (35), W (λ, ς) = W (λ, ς, E) is given by (52),

h is defined by (30) and the integration is taken according to the standard

orientation of the ∂Λ.

Lemma 3.2 is proved in Section 6.
Note that, under assumptions (13), as a corollary of (30), (44), we have

|h(k(λ), k(ς))| ≤ q(2π)−2e2ρL(1−M(q,D,E, ρ))−1

�

D
dx,

λ, ς ∈ ∂Λ = ∂ΛE,ρ, ρ > ρ1(q,D,E), �v�L∞(D) ≤ q,

(56)

where M, ρ1 are defined by (28), (29),

L = max
x∈∂D

|x|. (57)

As a corollary of properties (18), (40), (41), (55) of the functions ψ+ and ψ
(and using (46), (49)), we obtain the following proposition:
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Proposition 3.3. Let v satisfy (13) and let ρ ≥ ρ1(�v�L∞(D), D,E), where ρ1
is the constant in (27). Let ψ,ψ+

be the eigenfunctions of Subsections 2.1, 2.2.

Then at fixed x ∈ R2
:

1. ψ+(x, k(λ)) is holomorphic in λ ∈ Λ and is continuous in λ ∈ Λ ∪ ∂Λ;

2. ψ(x, k(λ)) has the properties (40), (41) for λ ∈ (C \ 0) \ (Λ ∪ ∂Λ) and is

continuous in λ ∈ (C \ 0) \ Λ;

3. ψ+,ψ are related on ∂Λ via (55).

Now we consider the following generalized inverse scattering problem for
equation (1).

Problem 3.4: Given the Faddeev functions h on ∂Λ×∂Λ and b on (C\0)\Λ,
find potential v on D.

The approach of the present work for solving Problems 1.1, 1.2 and 3.4 is
based on the reduction of Problem 3.4 to the following generalized Riemann-
Hilbert problem.

Problem 3.5: Given functions h on ∂Λ×∂Λ and b on (C\0)\Λ, find functions
ψ+ on Λ and ψ on (C \ 0) \ Λ satisfying the properties of the items 1,2,3 of
Proposition 3.3.

Note that in Problems 3.4, 3.5 we consider h, b and ψ+,ψ as

h = h(λ, ζ, E) = h(k(λ), k(ζ)), λ, ζ ∈ ∂Λ, (58)

ψ+ = ψ+(x,λ, E) = ψ+(x, k(λ)), λ ∈ Λ, (59)

ψ = ψ(x,λ, E) = ψ(x, k(λ)), b = b(λ, E) = b(k(λ)), λ ∈ (C \ 0) \ Λ, (60)

where k(λ) = k(λ, E) is defined by (35), Λ = ΛE,ρ, ∂Λ = ∂ΛE,ρ are defined in
(50), h is defined by (30) and b is defined by (42).

In addition, if ψ is the function of Subsections 2.2, 2.3, 2.4, then it deter-
mines the potential easily. Indeed, due to (1), (43), we have

v(x) =
(∆x + E)ψ(x, k(λ))

ψ(x, k(λ))
on R2 if |λ| is sufficiently small
or if |λ| is sufficiently large.

(61)

Prototypes of Problems 3.4, 3.5 for the case of equation (1) with E < 0
were considered in Section 8 of [19].

Generalized Riemann-Hilbert problems like Problem 3.5 go back to [16] and
to [9, 12, 13].

We say that Problem 3.5 is a generalized Riemann-Hilbert-Manakov prob-
lem.

We say that the results of Lemma 3.2 and Proposition 3.3 are global and that
the related Problem 3.5 is global, since these results and problem are formulated
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for general v satisfying (13) and, in particular, without the assumption that
EE = ∅, where EE is the set of Faddeev exceptional points at fixed E. The
reduction of Problem 3.4 to Problem 3.5 follows from Proposition 3.3 and, for
example, from formula (61).

4. Integral equations for solving Problem 3.5

4.1. Formulas and equations

Let

µ+(λ) := e−ik(λ)xψ+(x,λ, E), λ ∈ Λ, (62)

µ(λ) := e−ik(λ)xψ(x,λ, E), λ ∈ C \ Λ, (63)

r(x,λ, E) = ei(−k(λ)+k(−1/λ))x sgn(|λ|2 − 1)

λ
χ(λ)b(λ, E)

= e−2i�k(λ)xu(λ), λ ∈ C \ 0,
(64)

R(x,λ, ζ, E) = ei(k(ζ)−k(λ))xW (λ, ζ, E)h(λ, ζ, E), λ, ζ ∈ ∂Λ, (65)

where ψ+,ψ and h = h(λ, ς, E) = h(k(λ), k(ς)), b = b(λ, E) = b(k(λ)) are the
functions of Problem 3.5, χ(λ) = χE,ρ(k(λ)) is defined via (17), u(λ) = uE,ρ(λ)
is defined via (45), k(λ) = k(λ, E) is defined by (35), W is given by (52),
Λ = ΛE,ρ is defined by (50).

Let

e(λ) = e(x,λ, E), Xj(λ, ζ) = Xj(x,λ, ζ, E), j = 1, 2, λ, ζ ∈ C, (66)

be defined as the solutions of the following linear integral equations:

e(λ) = 1− 1

π

�

C
r(x, ζ, E)e(ζ)

d�ζd�ζ
ζ − λ

, (67)

X1(λ, ζ) +
1

π

�

C
r(x, η, E)X1(η, ζ)

d�ζd�ζ
η − λ

=
1

2(ζ − λ)
, (68)

X2(λ, ζ) +
1

π

�

C
r(x, η, E)X2(η, ζ)

d�ζd�ζ
η − λ

=
1

2i(ζ − λ)
. (69)

In addition, we consider also

Ω1(λ, ζ) := X1(λ, ζ) + iX2(λ, ζ), Ω2(λ, ζ) := X1(λ, ζ)− iX2(λ, ζ),
λ, ζ ∈ C. (70)
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Note that if (46) is fulfilled, then equation (67) for e(·) and equations (68),
(69) for Xj(·, ζ), j = 1, 2, are uniquely solvable in Lq,0(C), p/(p− 1) ≤ q < 2,
where Lp,ν is defined in (37). In addition:

e(·) ∈ C(C ∪∞), e(∞) = 1,
|e(λ)− 1| ≤ c2(r0, p),

(71)

����Ω1(λ, ζ)−
1

ζ − λ

���� < c2(r0, p)
1

2|ζ − λ|2/p
, (72)

|Ω2(λ, ζ)| < c2(r0, p)
1

2|ζ − λ|2/p
, (73)

where

r0 = �r(x, ·, E)�Lp,2 , lim
r0→0

c2(r0, p) = 0. (74)

Note that r0 is independent of x ∈ R2. In connection with the functions
e,X1, X2,Ω1,Ω2 and related results we refer to Chapter 3 of [25] and to Sec-
tion 6 of [19].

We define

ψ�(λ) =

�
ψ+(λ), λ ∈ Λ ∪ ∂Λ,
ψ(λ), λ ∈ (C \ 0) \ Λ, (75)

where ψ+,ψ are the functions of Problem 3.5. In addition, we consider µ�, µ+, µ,
where

ψ�(λ) = eik(λ)xµ�(λ) = eik(λ)x
�

µ+(λ), λ ∈ Λ ∪ ∂Λ,
µ(λ), λ ∈ (C \ 0) \ Λ. (76)

Theorem 4.1. Let the data h and b of Problem 3.5 satisfy the following con-

ditions:

uE,ρ ∈ Lp,2(C), 2 < p < 4, (77)

h(·, ·, E) ∈ C(∂Λ× ∂Λ), (78)

where uE,ρ is defined by (45), W is defined by (52), ∂Λ = ∂ΛE,ρ is defined

in (50), ρ > 0. Let ψ�
be a solution of Problem 3.5. Then for µ�

defined

by (76) the following formula holds:

µ�(λ) = e(λ) +
1

2πi

�

∂Λ
Ω1(λ, ζ)K(ζ)dζ − 1

2πi

�

∂Λ
Ω2(λ, ζ)K(ζ)dζ,

λ ∈ C \ ∂Λ,
(79)

where the integration is taken according to the standard orientation of ∂Λ,

K(λ) := µ+(λ)− µ(λ), λ ∈ ∂Λ. (80)
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In addition, this K = K(x,λ, E) satisfies the following linear integral equation

K(λ) +

�

∂Λ
R(x,λ,λ�, E)

�
e(λ�)+

1

2πi

�

∂Λ
Ω1(λ

�(1− 0(|λ�|− 1)), ζ)K(ζ)dζ

− 1

2πi

�

∂Λ
Ω2(λ

�, ζ)K(ζ)dζ

�
dλ� = 0,

(81)

λ ∈ ∂Λ, where R is defined by (65), Ω1,Ω2 are defined by (70) and the integra-

tions are taken according to the standard orientation of ∂Λ.

Note also that
�

∂Λ
Ω1(λ

�(1− 0(|λ�|− 1)), ζ)K(ζ)dζ

= lim
0<ε→0

�

∂Λ
Ω1

�
λ�(1− ε(|λ�|− 1)), ζ

�
K(ζ)dζ, λ� ∈ ∂Λ.

(82)

Formula (79) is similar to formula (6.7) of [19]. Equation (81) is similar to
equation (6.11) of [19].

Theorem 4.1 is proved in Section 7.
Consider

I(λ) = I(x,λ, E) = −
�

∂Λ
R(x,λ,λ�, E)e(λ�)dλ�, λ ∈ ∂Λ, (83)

A1(λ, ζ) = A1(x,λ, ζ, E)

=
1

2πi

�

∂Λ
R(x,λ,λ�, E)Ω1(λ

�(1− 0(|λ�|− 1)), ζ)dλ�,

A2(λ, ζ) = A2(x,λ, ζ, E)

=
−1

2πi

�

∂Λ
R(x,λ,λ�, E)Ω2(λ

�, ζ)dλ�, λ, ζ ∈ ∂Λ,

(84)

where R, e,Ω1,Ω2 are the functions of (65), (66), (70).

Proposition 4.2. Let the assumptions of Theorem 4.1 be fulfilled and K be

the function of (80), (81). Then K,K satisfy the following system of linear

integral equations

K(λ) +

�

∂Λ
A1(λ, ζ)K(ζ)dζ +

�

∂Λ
A2(λ, ζ)K(ζ)dζ = I(λ), λ ∈ ∂Λ, (85)

K(λ) +

�

∂Λ
A2(λ, ζ)K(ζ)dζ +

�

∂Λ
A1(λ, ζ) K(ζ)dζ = I(λ), λ ∈ ∂Λ, (86)
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where I, A1, A2 are defined by (83), (84). In addition,

I ∈ L2(∂Λ), Aj ∈ L2(∂Λ× ∂Λ), j = 1, 2, (87)

�Aj�L2 → 0 for �h�C → 0, r0 ≤ rfixed, j = 1, 2, (88)

where |x| < c for fixed c > 0, r0 is defined in (74)

Proposition 4.2 is proved in Section 6.

4.2. Analysis of equations

Due to estimates (87), the system (85), (86) can be considered as a Fredholm
linear integral equation of the second type for the vector-function (K,K) ∈
L2(∂Λ,C2) with parameters x ∈ R2 and E > 0.

The modified Fredholm determinant detA for system (85), (86) can be de-
fined by means of the formula:

ln detA = Tr(ln(Id + A)−A), (89)

where system (85), (86) is written as

(Id+A)

�
K
K

�
=

�
I
I

�
. (90)

For the precise definition of detA, see [10].
In addition, we have the following lemmas:

Lemma 4.3. Let v satisfy (13) for fixed D and Λ = ΛE,ρ be defined by (50) for

fixed E and ρ. Let A1, A2, I correspond to v according to formulas (20)-(23),

(30), (42), (58), (60), (64), (65), (83), (84). Let |x| < c for fixed c > 0. Then:

�Aj�L2(∂Λ×∂Λ) → 0, �I�L2(∂Λ) → 0, for �v�L∞(D) → 0, j = 1, 2; (91)

system (85), (86) for (K,K) ∈ L2(∂Λ,C2) is uniquely solvable by the method of

successive approximations when �v�L∞(D) is sufficiently small (for fixed D,E,ρ
and c).

Actually, Lemma 4.3 follows from estimates (48), (56), (71)-(73), (88).

Lemma 4.4. Let v satisfy (13) for fixed D and Λ = ΛE,ρ be defined by (50) for

fixed E and ρ, where ρ > ρ1(q,D,E), �v�L∞(D) < q, ρ1 is defined by (29). Let

A1, A2, I correspond to sv according to formulas (20)-(23), (30), (42), (58),

(60), (64), (65), (83), (84) (with sv in place of v), where s ∈]− s1, s1[, where
s1 = q/�v�L∞(D). And let detA = detA(x, s), x ∈ R2, s ∈] − s1, s1[, be the
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modified Fredholm determinant of the related system (85), (86) (where detA
depends also on v,E and ρ). Then:

detA(x, 0) = 1, x ∈ R2, (92)

detA ∈ C(R2×]− s1, s1[,C), (93)

detA(x, ·) is real-analytic on ]− s1, s1[ for fixed x ∈ R2. (94)

Lemma 4.4 is proved in Section 8. Using Lemma 4.4 we obtain, in particular,
the following result:

Proposition 4.5. Let Λ = ΛE,ρ be defined by (50) for fixed E and ρ, where
ρ > ρ1(q,D,E), ρ1 is defined by (29), D is a fixed open bounded domain in

R2
, q is a fixed positive number. Then for almost each v satisfying (13) with

�v�L∞(D) ≤ q the system (85), (86) corresponding to v (according to formulas

(30), (42), (58), (60), (64), (65), (83), (84)) is uniquely solvable for almost

each x ∈ R2
.

Remark 4.6. We understand the statement of Proposition 4.5 in the sense that
if v satisfies (13) and �v�L∞(D) = q1 for fixed q1, where 0 < q1 < q, then for
almost each s ∈]−s1, s1[, where s1 = q/q1, the system (85), (86) corresponding
to sv is uniquely solvable for almost each x ∈ R2.

Remark 4.7. If the assumptions of Proposition 4.5 are fulfilled, �v�L∞(D) < q,
and system (85), (86) corresponds to v, then, as a corollary of (93), the set of
x, where the system (85), (86) is uniquely solvable, is an open set in R2.

Proposition 4.5 is proved in Section 8.

5. Applications to the Novikov-Veselov equation

In this section we suppose that v and ρ satisfy the assumptions of Lemma 4.4
for fixed D, E and q.

We define

fs(k, l, t) = fs(k, l) exp[2it(k31 − 3k1k22 − l31 + 3l1l22)], (k, l) ∈ ME ;

hs(k, l, t) = hs(k, l) exp[2it(k31 − 3k1k22 − l31 + 3l1l22)],

(k, l) ∈ ∂ΣE,ρ × ∂ΣE,ρ ;

bs(k, t) = bs(k) exp[2it(k31 + k
3
1 − 3k1k22 − 3k1k

2
2)], k ∈ ΣE,ρ ;

(95)

where t ∈ R, s ∈] − s1, s1[, s1 is defined as in Lemma 4.4 and fs, hs, bs are
defined according to (11), (12), (20)-(23), (30), (42) with sv in place of v. In
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addition:

hs(k(λ), k(ς), t) = hs(k(λ), k(ς)) exp[iE3/2t(λ3 + λ−3 − ς3 − ς−3)]

=: hs,t(λ, ς, E), (λ, ς) ∈ ∂Λ× ∂Λ,

bs(k(λ), t) = bs(k(λ)) exp[itE3/2(λ3 + λ−3 + λ
3
+ λ

−3
)]

=: bs,t(λ, E), λ ∈ (C \ 0) \ Λ,

(96)

where t ∈ R, s ∈] − s1, s1[, k(λ) = k(λ, E) is defined by (35), Λ = Λ(E, ρ) is
defined by (50).

We consider Problem 3.5 of Section 3 with h = hs,t, b = bs,t, ψ+ = ψ+
s,t. As

in Section 4.1, we consider the reduction of this generalized Riemann-Hilbert-
Manakov problem to formulas (75), (76), (79), (80) and the system of equations
(85), (86), where µ� = µ�

s,t, e = es,t, Ωj = Ωj,s,t, j = 1, 2, K = Ks,t, I = Is,t,
Aj = Aj,s,t, j = 1, 2. In addition, as in Section 4.2, we consider detA(x, s, t)
for the aforementioned system (85), (86).

We expect that using ideas of [12, 13, 14, 19] and of the present work one
can obtain the following result:

Suppose that detA(x, s, t) �= 0 for x ∈ X , t ∈ T at fixed s ∈]−s1, s1[, where
X is an open domain in R2, T is an open interval in R, 0 ∈ T , s1 is defined in
Lemma 4.4. Then there is a real valued vs(·, t) such that:

vs(·, 0) = sv, (97)

where sv is the potential of Lemma 4.4;

−∆xψ
+
s,t + vs(x, t)ψ

+
s,t = Eψ+

s,t,

−∆xψs,t + vs(x, t)ψs,t = Eψs,t, (x, t) ∈ X × T ,
(98)

where ψ+
s,t = ψ+

s,t(x,λ), λ ∈ Λ, and ψs,t = ψs,t(x,λ), λ ∈ (C \ 0) \ Λ, solve
the aforementioned Problem 3.5; v = vs(x, t) solves the Novikov-Veselov equa-
tion (9) in X × T with appropriate w = ws(x, t) (and satisfies (97) on X ).

These studies will be given in detail elsewhere. Note that, actually, the
zeroes of detA(x, s, t) describe the blow-up points of the potential vs(x, t). It
remains to note that in similar way to Proposition 4.5 and Remarks 4.6, 4.7,
for almost each s ∈] − s1, s1[, we have that detA(x, s, t) �= 0 for almost each
(x, t) ∈ R2 × R; and the nonzero set of detA is open.

6. Proof of Lemma 3.2

6.1. Lemma for Green functions

Let
z = x1 + ix2, z = x1 − ix2 for x = (x1, x2) ∈ R2. (99)
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Lemma 6.1. The following formula holds:

G(x, k(λ))−G+(x,
√
E)

=
1

(2π)2

�

∂Λ
W (λ, ς, E)ei

√
E/2(ςz+z/ς)dς, λ, ς ∈ ∂Λ,

(100)

where G,G+
are defined in (21), (11), W is defined by (52), k(λ) = k(λ, E) is

defined in (35), Λ = ΛE,ρ is defined in (50).

Proof. We recall that

∂

∂λ
G(z, k(λ)) =

sgn(|λ|2 − 1)

4πλ
eik(−1/λ)x, λ ∈ (C \ 0) \ T, (101)

∂

∂λ
G(z, k(λ)) =

sgn(|λ|2 − 1)

4πλ
eik(λ)x, λ ∈ (C \ 0) \ T, (102)

where G is defined by (21), (22), k(λ) = k(λ, E) is defined by (35), T is defined
by (32); see [19].

Note that

k(−1/λ)x = −
√
E

2
(λz + z/λ), k(λ)x =

√
E

2
(λz + z/λ). (103)

Using the Cauchy formula for eik(−1/λ)x/λ and eik(λ)x/λ we have

eik(−1/λ)x/λ =
1

2πi

�

∂Λ

1

ς
e−i

√
E/2(ςz+z/ς) dς

ς − λ
, λ ∈ Λ, (104)

eik(λ)x/λ =
1

2πi

�

∂Λ

1

ς
ei

√
E/2(ςz+z/ς) dς

ς − λ
, λ ∈ Λ. (105)

Due to (101), (102) and (104), (105) we have

∂

∂λ
G(x, k(λ)) = sgn(|λ|2 − 1)

−1

2πi

�

∂Λ

1

4πς
e−i

√
E/2(ςz+z/ς) dς

ς − λ
,

λ ∈ Λ, |λ| �= 1,
(106)

∂

∂λ
G(x, k(λ)) = sgn(|λ|2 − 1)

1

2πi

�

∂Λ

1

4πς
ei

√
E/2(ςz+z/ς) dς

ς − λ
,

λ ∈ Λ, |λ| �= 1.
(107)

Formulas (106), (107) remain also valid with G(x, k(λ)) replaced in the left
hand side by G(x, k(λ))−G+(x,

√
E), where G+ is defined in (11).
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Integrating the differential equation for G−G+ we obtain

G(x, k(λ))−G+(x,
√
E)

= u(z,λ) +
�
G(x, k(λ0))−G+(x,

√
E)− u(z,λ0)

�
,

for λ0 = λ0(λ),λ ∈ Λ ∩D1, or for λ0(λ),λ ∈ Λ ∩ (C \ D1),

(108)

where D1 is defined by (39), λ0 = λ0(λ) =
λ
|λ| (1 + 0(|λ|2 − 1)),

u(z,λ) =
sgn(|λ|2 − 1)

2πi

�

∂Λ

1

4πς
e−i

√
E/2(ςz+z/ς) ln(ς − λ)dς

− sgn(|λ|2 − 1)

2πi

�

∂Λ

1

4πς
ei

√
E/2(ςz+z/ς) ln(ς − λ)dς, λ ∈ Λ \ T,

(109)

where notation 1 + 0(|λ|2 − 1) is like in (82). In the last expression logarithm
is chosen such that |� ln(·)| < π.

We change the variable ς → −1/ς in the first integral on the right and
obtain the formula

u(z,λ) = − sgn(|λ|2 − 1)

8π2i

�

∂Λ
ei

√
E/2(ςz+z/ς)

�
1

ς
ln (ς − λ)

+ς ln

�
−1

ς
− λ

��
dς, λ ∈ Λ \ T.

(110)

In the last expression logarithm is chosen such that |� ln(·)| < π.
We choose λ0 as λ0 = λ

|λ| (1± 0) since the limiting values of G−G+ on the

unit circle T are given by (see [19, Section 3]):

G(x, k(λ0))−G+(x,
√
E)

=
πi

(2π)2

�

T
ei

√
E/2(ςz+z/ς) × θ

�
sgn(|λ|2 − 1)i

�
|λ|ς
λ

− λ

|λ|ς

��
|dς|,

(111)

where θ is the Heaviside step function.
Using the Cauchy formula for ei

√
E/2(ςz+z/ς) in (111), we can rewrite (111)

as follows:

G(x,λ0)−G+(x,
√
E) =

1

8π2

�

ς1∈T

��

∂Λ

ei
√
E/2(ςz+z/ς)dς

ς − ς1

�

×θ

�
sgn(|λ|2 − 1)i

�
|λ|ς1
λ

− λ

|λ|ς1

��
|dς1|.

(112)

In order to complete the proof of Lemma 6.1 it remains only to put (112), (110)
into (108).
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In addition, to justify Remark 3.1, we need to prove (53). Assume that ς
belongs to the part |ς| = C of ∂Λ = ∂ΛE,ρ where

C = ρ/
√
E +

��
ρ/

√
E
�2

+ 1.

Since the point λ belongs to the disk |ς| ≤ C and the point λ0 is strictly inside
of the disk, the angle α between vectors ς −λ and ς −λ0 is strictly less then π.
Thus | argw1| = |α| < π in this case. If ς belongs to the part |ς| = 1/C of the
boundary of ∂Λ, then points λ and λ0 belong to the part of the ray (emitted
from λ = 0) through the point λ. This part belongs to the region |ς| ≥ 1/C,
and | argw1| = |α| < π/2 in this case. After the estimate (53) for w1 is proved,
the estimate for w2 becomes obvious if we replace −1/ς by ς.

6.2. Final part of the proof of Lemma 3.2

Let

ψ0 = ψ0(x, k(λ)) = eik(λ)x = ei(
√
E/2)(λz+z/λ), λ ∈ (C \ 0) \ T, (113)

where k(λ) = k(λ, E) is defined by (35), T is defined by (32).
We will denote by G+(

√
E), G(k) the convolution operators with kernels

G+, G of (21), (11), and we will denote by G+(
√
E)v,G(k)v the operators of

multiplication by the potential v followed by convolution G+(
√
E) or G(k),

respectively. Then, under the assumptions of Lemma 3.2, equations (11), (20)
can be considered as linear integral equations for ψ+(·, k),ψ(·, k) ∈ L∞(D), and
can be rewritten as follows:

ψ+(·, k) = (I −G+(
√
E)v)−1ψ0(·, k), ψ(·, k) = (I −G(k)v)−1ψ0(·, k), (114)

for fixed k ∈ ΣE \ ΣE,ρ, where I is the identity operator.
Thus

ψ+(·, k) = (I −G+(
√
E)v)−1(I −G(k)v)ψ(·, k),

ψ(·, k) = (I −G+(
√
E)v)−1(I −G+(

√
E)v)ψ(·, k), k ∈ ΣE \ ΣE,ρ.

(115)

Therefore,

ψ(·, k)− ψ+(·, k) = (I −G+(
√
E)v)−1(G(k)−G+(

√
E))vψ(·, k)

k ∈ ΣE \ ΣE,ρ.
(116)

We take G − G+ from Lemma 6.1 and use there that ψ0(x − y, k(λ)) =
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ψ0(x, k(λ))ψ0(−y, k(λ)). This leads to

(G(k(λ))−G+(
√
E))vψ(·, k(λ))

=
1

(2π)2

�

D

�

∂Λ
W (λ, ς)ψ0(x, k(ς))ψ0(−y, k(ς))dςv(y)ψ(y, k(λ))dy

=

�

∂Λ
W (λ, ς)ψ0(x, k(ς))h(k(ς), k(λ))dς, λ ∈ ∂Λ,

where we used also (30). We plug the last relation in (116). It remains to note
(see (114)) that (I −G+(

√
Ev))−1ψ0(·, k(ς)) = ψ+(·, k(ς)).

7. Proofs of Theorem 4.1 and Proposition 4.2

7.1. Proof of Theorem 4.1

Let
µ�
0(λ) = µ�(λ)− e(λ),

µ+
0 (λ) = µ+(λ)− e(λ), µ0(λ) = µ(λ)− e(λ),

(117)

where µ�, µ+, µ are the functions of (76), e(·) is the function of (67).
From formulas (64), (67) and from items 1 and 2 of Proposition 3.3 it

follows, in particular, that

∂

∂λ
e(λ) = r(x,λ, E)e(λ), λ ∈ C, (118)

∂

∂λ
µ�
0(λ) = r(x,λ, E)µ�

0(λ), λ ∈ C \ ∂Λ, (119)

µ�
0(λ) → 0 as λ → ∞.

Proceeding from (119) and using the generalized Cauchy formula for µ�
0 (see

formula (10.6) of Chapter 3 of [25]) one can obtain

µ�
0(λ) =

1

2πi

�

∂Λ
Ω1(λ, ζ)K0(ζ)dζ −

1

2πi

�

∂Λ
Ω2(λ, ζ)K0(ζ)dζ,

λ ∈ C \ ∂Λ,
(120)

where
K0(λ) := µ+

0 (λ)− µ0(λ), λ ∈ ∂Λ. (121)

In addition, from (80), (117) and (121) it follows that

K0(λ) = K(λ), λ ∈ ∂Λ. (122)

Formulas (117), (120), (122) imply formula (79).
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Finally, equation (81) follows from the substitution of (79) into (55) using
formulas (65), (76), (80), estimates (71)-(73) and the jump properties of the
Cauchy integral.

This completes the scheme of proof of Theorem 4.1.

7.2. Proof of Proposition 4.2

Equation (85) follows from equation (81) and formulas (83), (84). Equation
(86) follows from (85).

Estimates (87), (88) follow from formulas (64), (65), (83), (84), estimates
(54), (71)-(74), (77), (78) and the estimate

�Ω0
1u�Lp(∂Λ) ≤ const(p, ∂Λ)�u�Lp(∂Λ), 1 < p < ∞, (123)

where

(Ω0
1u)(λ) =

1

2πi

�

∂Λ

u(ς)dς

ς − λ(1− 0(|λ|− 1))
, λ ∈ ∂Λ, (124)

u is a test function on ∂Λ.

8. Proofs of Lemma 4.4 and Proposition 4.5

8.1. Proof of Lemma 4.4

Property (92) follows from (89), (91).
Property (93) follows from continuous dependence of A1, A2 with respect

to x ∈ R2, |x| ≤ c, at fixed s ∈]− s1, s1[ and continuous dependence of A1, A2

with respect to s ∈]− s1, s1[ uniformly in x ∈ R2, |x| ≤ c, in the sense of
� · �L2(∂Λ×∂Λ), for fixed c > 0.

In turn, these continuities of A1, A2 in x and in s follow from formulas (72),
(73), (84) and the following results:

(i) h|∂Λ×∂Λ depends continuously on s ∈]−s1, s1[ in the sense of �·�C(∂Λ×∂Λ),

(ii) uE,ρ depends continuously on s ∈]−s1, s1[ in the sense of � ·�Lp,2(C), 2 <
p < 4, where h = h(k(λ), k(ς)), uE,ρ correspond to sv according to (20)-
(23), (30), (35), (42), (45);

(iii) The following estimates hold:
���e−2i�k(λ)x − e−2i�k(λ)x�

��� ≤ Const · (
√
E(|λ|+ |λ|−1)|x− x�|)α,

λ ∈ C \ 0, x, x� ∈ R2, 0 < α ≤ 1,

���ei(k(ς)−k(λ))x − ei(k(ς)−k(λ))x�
��� ≤ 2(E+2ρ2)1/2e2ρmax(|x|,|x�|)|x− x�|,

ς, λ ∈ ∂Λ, x, x� ∈ R2;
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(iv) If u ∈ Lp,2(C), 2 < p < 4, then (|λ|+|λ−1|)αu(λ) ∈ Lp�,2(C) (as a function
of λ), 2 < p� < p(1 + αp/2)−1, where 0 < α < (p− 2)/p;

(v) The map (defined via (67))

r ∈ Lp,2(C) → e(·) ∈ C(C)

is continuous and the maps (defined via (68), (69))

r ∈ Lp,2(C) → Xj ∈ C(C2 \ Cε), j = 1, 2,

Cε = {(λ, ς) ∈ C2 : |λ− ς| < ε},

are continuous for any ε > 0, where Lp,2(C) is considered with the norm
of (37), 2 < p < 4, and C(C), C(C2 \Cε) are considered with the uniform
norms.

In order to prove (94) we consider sv, where s ∈ C, and we consider hs =
hs(k(λ), k(ς)), λ, ς ∈ ∂Λ, and bs = bs(k(λ)),λ ∈ (C \ 0) \ Λ, where hs, bs
correspond to sv according to (20)-(23), (30), (35), (42) (with sv in place of v).
Proceeding from these formulas and equations and from (26), (27), (51), one
can show that there is an open neighbourhood N of the real interval ]− s1, s1[
in C (where N depends on D, �v�L∞(D), E, ρ, q) such that

N = N , i.e. N is symmetric with respect to R, (125)

hs(·, ·, E) ∈ C(∂Λ× ∂Λ), uE,ρ,s ∈ Lp,2(C), 2 < p < 4,

with holomorphic dependence on s ∈ N ,
(126)

where uE,ρ,s is defined by (45) with bs in place of b.
Next, we consider es, X1,s, X2,s,Ω1,s,Ω2,s defined via (67), (68), (69), (70)

with rs in place of r, where rs is defined by (64) with bs in place of b, where
s ∈]− s1, s1[. And we consider e±s,σ, X

±
j,s,σ, j = 1, 2, defined via the following

systems of equations:

e+s,σ(λ) = 1− 1

π

�

C
rs(x, ζ, E)e−s,σ(ζ)

d�ζd�ζ
ζ − λ

,

e−s,σ(λ) = 1− 1

π

�

C
rσ(x, ζ, E)e+s,σ(ζ)

d�ζd�ζ
ζ − λ

,

(127)

X+
1,s,σ(λ, ζ) +

1

π

�

C
rs(x, η, E)X−

1,s,σ(η, ζ)
d�ζd�ζ
η − λ

=
1

2(ζ − λ)
,

X−
1,s,σ(λ, ζ) +

1

π

�

C
rσ(x, η, E)X+

1,s,σ(η, ζ)
d�ζd�ζ
η − λ

=
1

2(ζ − λ)
,

(128)
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X+
2,s,σ(λ, ζ) +

1

π

�

C
rs(x, η, E)X−

2,s,σ(η, ζ)
d�ζd�ζ
η − λ

=
1

2i(ζ − λ)
,

X−
2,s,σ(λ, ζ) +

1

π

�

C
rσ(x, η, E)X+

2,s,σ(η, ζ)
d�ζd�ζ
η − λ

=
−1

2i(ζ − λ)
,

(129)

where s,σ ∈ N , rs is defined by (64) with bs in place of b. In addition, we
consider also

Ω1,s,σ(λ, ζ) := X+
1,s,σ(λ, ζ) + iX+

2,s,σ(λ, ζ),

Ω2,s,σ(λ, ζ) := X+
1,s,σ(λ, ζ)− iX+

2,s,σ(λ, ζ),
(130)

where λ, ζ ∈ C, s,σ ∈ N .
Let

S := {(s,σ) ∈ N ×N : σ = s ∈]− s1, s1[ } . (131)

Using considerations of Section 9 of Chapter 3 of [25], one can show that
systems (127), (128), (129) for e±s,σ, X

±
j,s,σ, j = 1, 2, for (s,σ) ∈ S, are reduced

to the equations for es, Xj,s, j = 1, 2, s ∈] − s1, s1[, are uniquely solvable in
Lq
0(C), p/(p− 1) ≤ q < 2, where p is the number (126). In addition:

es = e+s,s, es = e−s,s, Xj,s = X+
j,s,s, Xj,s = X−

j,s,s, Ωj,s = Ωj,s,s, (132)

where j = 1, 2, s ∈]− s1, s1[.
Using the definition of rs and holomorphic dependence of uE,ρ,s on s ∈ N

in (126) one can show that

rs(x, ·, E) ∈ Lp,2(C), rσ(x, ·, E) ∈ Lp,2(C), 2 < p < 4,
with holomorphic dependence on s,σ ∈ N ,

(133)

for fixed x ∈ R2, E > 0.
Proceeding from these results and from properties of the integral opera-

tors in (127) -(129) (presented in [25]), one can show that there is an open
neighbourhood Sx of S in N ×N (where Sx depends also on v,E, ρ) such that:

systems (127), (128), (129) for e±s,σ, X
±
j,s,σ, j = 1, 2, are uniqely

solvable in Lq,0(C), p/(p− 1) ≤ q < 2, for (s,σ) ∈ Sx;
(134)

e+s,σ ∈ C(C), Ωj,s,σ ∈ C(C2 \ Cε), j = 1, 2, for any ε > 0,
with holomorphic dependence on (s,σ) ∈ Sx,

(135)

where Cε is defined in item (v) in the proof of property (93);
����Ω1,s,σ(λ, ζ)−

1

ζ − λ

���� <
c3(s,σ, p)

|ζ − λ|2/p
, |Ω2,s,σ(λ, ζ)| <

c3(s,σ, p)

|ζ − λ|2/p
, (136)
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where c3 depends continuously on (s,σ) ∈ Sx and depends also on v.
Let

Nx := {s ∈ N : (s, s) ∈ Sx }, x ∈ R2. (137)

One can see that Nx is an open neighbourhood of the real interval ] − s1, s1[
in C.

We consider

A1,s(λ, ζ) = A1,s(x,λ, ζ, E)

=
1

2πi

�

∂Λ
Rs(x,λ,λ

�, E)Ω1,s,s(λ
�(1− 0(|λ�|− 1)), ζ)dλ�,

A2,s(λ, ζ) = A2,s(x,λ, ζ, E)

=
−1

2πi

�

∂Λ
Rs(x,λ,λ

�, E)Ω2,s,s(λ
�, ζ)dλ�,

(138)

λ, ζ ∈ ∂Λ, where Rs is defined by (65) with hs in place of h, Ω1,s,σ,Ω2,s,σ are
the functions of (130), (135), (136), λ, ζ ∈ ∂Λ, s ∈ Nx.

We consider also

�Aj,s := Aj,s, j = 1, 2, s ∈ Nx. (139)

Using (126) for hs and (135), (136) for Ωj,s,s, j = 1, 2, we obtain

Aj,s ∈ L2(∂Λ× ∂Λ), j = 1, 2,
with holomorphic dependence on s ∈ Nx.

(140)

Using (139), (140) we also obtain

�Aj,s ∈ L2(∂Λ× ∂Λ), j = 1, 2,
with holomorphic dependence on s ∈ Nx.

(141)

We consider A(x, s), where s ∈ Nx ∩ Nx, defined using (8.14), (8.15) in a
similar way with A(x, s) for s ∈] − s1, s1[, but with �Aj,s in place of A(x, s).
Finally, we consider detA(x, s) for s ∈ Nx ∩Nx.

Using (132) for Ωj,s,s, (140), (141), we obtain that

detA(x, s) is holomorphic in s ∈ Nx ∩Nx for fixed x ∈ R2. (142)

Property (142) implies property (94).

8.2. Proof of Proposition 4.5

Let v be as in Remark 4.6 and let detA(x, s) be defined like in Lemma 4.4.
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Let
Z := {(x, s) ∈ R2×]− s1, s1[ : detA(x, s) = 0 },

Zx := {s ∈ ]− s1, s1[ : detA(x, s) = 0 }, x ∈ R2,

Zs := {x ∈ R2 : detA(x, s) = 0 }, s ∈]− s1, s1[.

(143)

Using (92), (94), we obtain that Zx is a discrete set (maybe empty) with-
out interior accumulation points in interval ] − s1, s1[. Therefore, we have, in
particular, that

Meas Z = 0 in R2×]− s1, s1[. (144)

As a corollary,

Meas Zs = 0 in R2 for almost each s ∈]− s1, s1[. (145)

Property (145) implies the result of Proposition 4.5 interpreted according to
Remark 4.6.
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Abstract. We deal with a dynamical system

utt −∆u+ qu = 0 in Ω× (0, T )

u
��
t=0

= ut

��
t=0

= 0 in Ω

∂νu = f in ∂Ω× [0, T ] ,

where Ω ⊂ R
n is a bounded domain, q ∈ L∞(Ω) is a real-valued

function, ν is the outward normal to ∂Ω, u = uf (x, t) is a solu-
tion. The input/output correspondence is realized by a response op-
erator RT : f �→ uf

��
∂Ω×[0,T ]

and its relevant extension by hyperbolicity

R2T . The operator R2T is determined by q
��
ΩT , where ΩT := {x ∈

Ω | dist (x, ∂Ω) < T}. The inverse problem is: Given R2T to recover
q in ΩT . We solve this problem by the boundary control method and
describe the necessary and sufficient conditions on R2T , which provide
its solvability.

Keywords: determination of potential via time-domain boundary measurements, char-
acterization of inverse data.
MS Classification 2010: 35R30, 35L05.

1. Introduction

Motivation

The problem, which the paper is devoted to, was solved about 20 years ago by
the BC-method, which is an approach to inverse problems (IPs) based on their
relations to control and system theory [1, 3, 5]. However, in the IP-community,
there are a few versions of what ’to solve an inverse problem’ means. The
versions may be ordered by levels as follows:

1. to establish the injectivity of the correspondence ‘parameters under re-
construction → inverse data’, what allows one to claim that the data determine
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the parameters
2. to prove the relevant continuity of this correspondence, and thus to show

that the determination is stable
3. to elaborate an efficient (preferably, realizable numerically) procedure,

which determines the parameters from the data 1

4. to provide a data characterization, i.e., describe the necessary and suf-
ficient conditions on the data, which ensure solvability of the given inverse
problem.
Typically, {i + 1}-th level is stronger and richer in content than i-th one.
Respectively, to reach the next level (especially, in multidimensional IPs) is
more difficult. The BC-method firmly keeps level 3 (see [3, 6]). In the mean
time, it provides data characterization in important one-dimensional problems:
see [7, 8].

Regarding level 4 in multidimensional IPs, there is substantial gap between
the frequency-domain and time-domain problems. In the first ones, the results
on the data characterization are much more promoted and successful (see [14,
17, 20, 21] and other). In time-domain problems, such results also do exist
(see, e.g., [22]) but are not so deep and systematic. Our paper is an attempt
to reduce the above-mentioned gap by the use of the BC-method.

Contents and results

• We develop a general approach proposed in [2] and apply it to a concrete
time-domain inverse problem for the wave equation with a potential. The ap-
proach elaborates the well-known and deep relations between inverse problems
and triangular factorization of operators in the Hilbert space [1, 2, 9, 14].

• In sections 2 and 3, a forward problem is considered. With the problem
one associates a relevant dynamical system. The system is endowed with stan-
dard control theory attributes: spaces and operators. In particular, a so-called
extended response operator R2T is introduced. It realizes the input/state corre-
spondence and later on plays a role of the data in the inverse problem. The key
property of the system is a local boundary controllability, which is relayed upon
the fundamental Holmgren-John-Tataru uniqueness theorem [23]. It plays a
crucial role in all versions of the BC-method.

Geometrical Optics (GO) describes propagation of wave field jumps in the
system. A noticeable fact is that the GO-formulas are well interpreted in
operator theory terms: they provide existence of a diagonal of the control
operator and time derivative composition.

• In section 4, we present a BC-procedure, which recovers the potential from
the given R2T . Then we prove Theorem 4.2, which is the main result. It

1surely, we mean the mathematically rigorous approaches
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provides a list of necessary and sufficient conditions on an operator R2T to be
an extended response operator.

The necessity is simple: the proof just summarizes the properties of R2T

stated in the forward problem. The sufficiency is richer in content. The proof
is constructive: we start with an operator R2T obeying all the conditions, and
construct a system with the response operator R2T = R2T . In construction we
follow the BC-procedure, which solves the IP.

In conclusion (section 5), a self-critical discussion of the obtained results is
provided.

2. Geometry

All functions, function classes and spaces are real.

Domain and subdomains

Let Ω ⊂ R
n be a bounded domain with the boundary Γ ∈ C∞. By d(a, b) we

denote an intrinsic distance in Ω, which is defined via the length of smooth
curves lying in Ω and connecting a with b.

For a subset A ⊂ Ω, we denote its metric neighborhoods by

Ωr
A := {x ∈ Ω | d(x,A) < r}, r > 0.

For A = Γ, we set Ωr := Ωr
Γ. Later on, in dynamics, the value

T∗ := max
Ω

τ(·) = inf{r > 0 | Ωr = Ω}

is interpreted as a time needed for the waves moving from Γ with the unit speed
to fill Ω.

A function τ(·) := d(·,Γ) on Ω is called an eikonal. By the definitions, we
have Ωr = {x ∈ Ω | τ(x) < r}. In dynamics, the eikonal level sets

Γs := {x ∈ Ω | τ(x) = s}, s ≥ 0

play the role of the forward fronts of waves moving from Γ.

Semi-geodesic coordinates

• Here we introduce a separation set (cut locus) of Ω with respect to Γ (see,
e.g, [16]) and use one of its equivalent definitions.

A point in Ω is said to be multiple if it is connected with Γ through more
than one shortest geodesics (straight lines in R

n). Denote by c0 the set of
multiple points and define

c := c0.
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The set c is called a cut locus. It is ’small’:

vol c = 0 , (1)

and separated from the boundary:

0 < Tc := d(c,Γ) ≤ T∗ .

In addition, note that Γs\c is a smooth (may be, disconnected) hyper-
surface in Ω. If s < Tc then Γs is smooth and diffeomorphic to Γ.

• For any x ∈ Ω \c, there is a unique point γ(x) ∈ Γ nearest to x. For such
an x, a pair (γ(x), τ(x)) determines its position in Ω and is said to be the
semi-geodesic coordinates (sgc). By x(γ, τ) we denote a point in Ω \c with the
given sgc (γ, τ).

In sgc, Rn-volume element in Ω takes the well-known form

dx = β(γ, τ) dΓdτ , (2)

where dΓ is Euclidean surface element on the boundary. Factor β is a Jacobian
of the passage from Cartesian coordinates to sgc.

• Denote ΣT := Γ× [0, T ). A set

Θ := {(γ(x), τ(x)) | x ∈ [Ω ∪ Γ] \c} ⊂ ΣT∗

is called a pattern of Ω. Also, we use its parts

ΘT :=
�
(γ(x), τ(x)) | x ∈

�
ΩT

∪ Γ
�
\c
�
= Θ ∩ ΣT , T > 0 .

For T < Tc, one has ΘT = ΣT .

Images

Fix a positive T ≤ T∗; let y be a function on ΩT ∪ Γ. A function on ΣT of the
form

ỹT (γ, τ) :=

�
β

1
2 (γ, τ)y (x(γ, τ)) , (γ, τ) ∈ ΘT

0, (γ, τ) ∈ ΣT \ΘT

is said to be an image of y. So, up to the factor β
1
2 , image is just a function

written in sgc.
An image operator IT : L2(ΩT ) → L2(ΣT ), IT y := ỹT is isometric. In-

deed, for y, v ∈ L2(ΩT ) one has

(y, v)L2(ΩT ) =

�

ΩT

y(x) v(x) dx
(1),(2)
=

�

ΘT

y(x(γ, τ)) v(x(γ, τ))β(γ, τ)dΓ dτ

=
�
ỹT , ṽT

�
L2(ΣT )

=
�
IT y, IT v

�
L2(ΣT )

.
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As an isometry, IT obeys Ran IT = {g ∈ L2(ΣT ) | supp g ⊂ ΘT } and
�
IT

�∗
IT = 1 , IT

�
IT

�∗
= GΘT , (3)

where GΘT cuts off functions in ΣT onto ΘT .

3. Dynamics

3.1. IBV problem

By ∂ν we denote a derivative with respect to outward normal at the boundary
Γ. Hs(. . . ) are the standard Sobolev spaces.

Consider an initial boundary-value problem

utt −∆u+ qu = 0 in Ω× (0, T ) (4)

u
��
t=0

= ut

��
t=0

= 0 in Ω (5)

∂νu = f on ΣT , (6)

where q ∈ L∞(Ω) is a function (potential), f is a Neumann boundary control,
u = uf (x, t) is a solution (wave). It is a well-posed problem; its solution
possesses the following properties.

• Regularity. The map f �→uf is continuous from L2(ΣT ) to C([0,T ];H
3
5−ε(Ω)),

whereas f �→ uf
��
ΣT acts continuously from L2(ΣT ) to H

1
5−2ε(ΣT ) (∀ε > 0).

Introduce a ‘smooth’ class of controls

M
T :=

�
f ∈ H2(ΣT ) | supp f ⊂ Γ× (0,T]

�

and note that each f ∈ MT vanishes near t = 0. For f ∈ MT one has
uf ∈ H2(Ω× [0, T ]). These facts are taken from [19] (Theorem A).

• Locality. For the hyperbolic equation (4), the finiteness of the domain of
influence principle holds and implies the following.

Let σ ⊂ Γ be an open set. Take a control acting from σ, i.e., provided
supp f ⊂ σ × [0, T ]. Then the relation

suppuf (·, t) ⊂ Ωt
σ, t ≥ 0 (7)

holds and shows that the waves propagate with the unit speed and fill the
proper metric neighborhood of σ in Ω.

By the latter, solution uf depends on the potential locally that enables one
to restate the problem (4)–(6) as follows:

utt −∆u+ qu = 0 in ΩT
× (0, T ) (8)

u
��
t<τ(x)

= 0 in ΩT × [0, T ] (9)

∂νu = f on ΣT . (10)
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Such a form emphasizes that uf is determined by behavior of potential q in ΩT

only (does not depend on q
��
Ω\ΩT ) that enables one to analyze wave propagation

without leaving ΩT .

• Steady-state property. Introduce a delay operator T T
T−ξ acting on controls by

the rule

�
T

T
T−ξf

�
(·, t) :=

�
0 , 0 ≤ t < T − ξ

f(·, t− (T − ξ)) , T − ξ ≤ t ≤ T
0 ≤ t ≤ T .

Since the operator −∆ + q, which governs the evolution of waves, does not
depend on time, one has

uT
T
T−ξf (·, T ) = uf (·, ξ) , 0 ≤ ξ ≤ T ;

uft = uf
t , uftt = uf

tt
(4)
= (∆− q)uf for f ∈ M

T , (11)

where the first relation implies the others.

3.2. System αT

Here we consider problem (8)–(10) as a dynamical system, name it by αT ,
and endow with standard attributes of control and system theory: spaces and
operators.

Spaces and subspaces

A space of controls FT := L2(ΣT ) is called an outer space of the system. It
contains an increasing family of subspaces, which consist of the delayed controls:

F
T, ξ :=

�
f ∈ F

T
| supp f ⊂ Γ× [T − ξ, T ]

�
= T

T
T−ξF

T , 0 ≤ ξ ≤ T .

With an open σ ⊂ Γ one associates the subspaces of controls

F
T, ξ
σ :=

�
f ∈ F

T
| supp f ⊂ σ × [T − ξ, T ]

�
, 0 ≤ ξ ≤ T ,

which act from σ.
A space HT = L2(ΩT ) is said to be inner; waves uf (·, t) are regarded as

its elements (states) depending on time. It contains an increasing family of
subspaces

H
ξ := {y ∈ H

T
| supp y ⊂ ΩT } , 0 ≤ ξ ≤ T .

Also, with σ ⊂ Γ we associate the subspaces

H
ξ
σ := {y ∈ H

T
| supp y ⊂ ΩT

σ } , 0 ≤ ξ ≤ T .

By locality property (7) and the first relation in (11), if f ∈ FT, ξ
σ then

uf (·, T ) ∈ Hξ
σ.
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Control operator

• In system αT , an input/state correspondence is realized by a control operator
WT : FT → HT

WT f := uf (·, T ) .

By the above mentioned regularity properties of solutions to (4)–(6), it acts
continuously from FT to H

3
5−ε(Ω). Hence, for any T > 0, WT is a compact

operator.

Lemma 3.1. For T < T∗, the control operator is injective: KerWT = {0}.

Proof. Let T < T∗, so that Ω \ ΩT is an open set. Let f ∈ KerWT = {0}, so
that uf (·, T ) = 0. Define a function U in Ω×R by

U(·, t) :=






0 , −∞ < t < 0

uf (·, t) , 0 ≤ t ≤ T

−uf (·, 2T − t) , T ≤ t ≤ 2T

0 , −∞ < t < 0 .

Owing to uf (·, T ) = 0, such an extension of uf does not violate its regularity.
As a consequence, the extension satisfies

Utt −∆U + qU = 0 in Ω×R , U(·, t)
��
Ω\ΩT = 0 .

Applying the Fourier transform U(·, t) �→ Ǔ(·,ω), we get

−ω2Ǔ −∆Ǔ + qǓ = 0 in Ω , Ǔ(·,ω)
��
Ω\ΩT = 0 .

Thus, for any ω ∈ R, Ǔ(·,ω) satisfies an elliptic equation and vanishes on an
open set. By the well-known uniqueness theorem, the latter implies Ǔ(·,ω) = 0
everywhere in Ω. Returning to the Fourier original, we get U(·, t) = 0 for
all t and arrive at f = ∂νuf

��
ΣT = ∂νU

��
ΣT = 0. Thus, f ∈ KerWT implies

f = 0.

• The locality property (7) and delay relation (11) lead to the embedding

WT
F

T, ξ
σ ⊂ H

ξ
σ , 0 ≤ ξ ≤ T , (12)

which is just a consequence of the finiteness of the wave propagation speed.
The fact, which plays a crucial role in the BC-method, is that this embedding
is dense: the relation

WTF
T, ξ
σ = H

ξ
σ , 0 ≤ ξ ≤ T (13)
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is valid for any T > 0 and open σ ⊆ Γ. In control theory this fact is referred to
as a local approximate boundary controllability of system αT ; it is derived from
the fundamental Holmgren-John-Tataru uniqueness theorem [1, 23].

• The following fact will be required in the data characterization. A multipli-
cation of functions by a bounded q is a self-adjoint bounded operator acting
in HT . The last relation in (11) can be written as ∆WT f −WT ftt = qWT f
that is just a form of writting the wave equation (8). Taking into account the
density of MT in FT , it is easy to conclude that a set of pairs

�
�∆WT f −WT ftt ,W

T f� | f ∈ M
T
�

(14)

determines the graph of the multiplication by q and, hence, determines the
potential q

��
ΩT .

Response operators

• In system αT , the input/output correspondence is realized by a response
operator RT : FT → FT ,

RT f := uf
��
ΣT .

By the above-mentioned regularity of uf , it acts continuously from FT to
H

1
5−2ε(ΣT ) and, hence, is a compact operator. The following is some of its

basic properties. We use the auxiliary operators Y T , JT : FT → FT ,

�
Y T f

�
(·, t) := f(·, T − t) ,

�
JT f

�
(·, t) :=

� t

0
f(·, s) ds , 0 ≤ t ≤ T .

Note that (Y T )∗ = (Y T )−1 = Y T and (Y T )2 = 1 holds.

Lemma 3.2. For T > 0 and 0 ≤ ξ ≤ T , the relations

RT
T

T
T−ξ = T

T
T−ξR

T ; RTJT = JTRT ; (Y TRT )∗ = Y TRT (15)

are valid.

Proof. The first relation follows from (11). The second is a simple consequence
of the first. Prove the third one.

Let controls f, g belong to the smooth class MT , which is dense in FT .
Cauchy conditions (9) imply

uf (·, t)
��
t=0

= uf
t (·, t)

��
t=0

= ug(·, T − t)
��
t=T

= ug
t (·, T − t)

��
t=T

= 0 .

Also, since each f ∈ MT vanishes near t = 0, the wave uf (·, T ) vanishes
near ΓT by locality (7).
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Integrating by parts, one has

0 =

�

ΩT×[0,T ]
[uf

tt −∆uf + quf ](x, t)ug(x, T − t) dx dt =

=

�

ΣT

[uf (γ, t) ∂νu
g(γ, T − t)− ∂νu

f (γ, t)ug(γ, T − t)] dΓ dt+

+

�

ΩT×[0,T ]
uf (x, t)[ug

tt −∆ug + qug](x, T − t) dx dt =

(10)
=

�

ΣT

[uf (γ, t) g(γ, T − t)− f(γ, t)ug(γ, T − t)] dΓ dt =

= (RT f, Y T g)FT − (f, Y TRT g)FT = (Y TRT f, g)FT − (f, Y TRT g)FT .

Thus, we have (Y TRT f, g)FT = (f, Y TRT g)FT . Since MT is dense in FT , we
get the last equality in (15).

• There is one more object of system αT related with the input/output corre-
spondence.

Denote D2T := in {(x, t) | x ∈ ΩT , t < 2T − τ(x)}. The problem

utt −∆u+ qu = 0 in D2T (16)

u
��
t<τ(x)

= 0 in D2T (17)

∂νu = f on Σ2T , (18)

can be regarded as a natural extension of problem (8)–(10). Such an extension
does exist and is well posed owing to the finiteness of the domains of influence
(hyperbolicity). Its solution uf is determined by q

��
ΩT .

With problem (16)–(18) one associates an extended response operator R2T :
F2T → F2T ,

R2T f := uf
��
Σ2T .

It is a compact operator with the properties quite analogous to (15):

R2T
T

2T
2T−ξ = T

2T
2T−ξR

2T , 0 ≤ ξ ≤ 2T ; R2TJ2T = J2TR2T ;

(Y 2TR2T )∗ = Y 2TR2T . (19)

Along with the solution uf , operator R2T is determined by q
��
ΩT . By the latter,

this operator must be regarded as an intrinsic object of system αT (but not
α2T ). Note in addition that R2T is meaningful at a very general level: see [2].

Connecting operator

• A key object of the BC-method is a connecting operator CT : FT → FT ,

CT := (WT )∗WT . (20)
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By the definition, we have

(CT f, g)FT = (WT f,WT g)HT =
�
uf (·, T ), ug(·, T )

�
HT ,

i.e., CT connects the Hilbert metrics of the outer and inner spaces. It is a
compact (because WT is) and nonnegative operator: (CT f, f)FT ≥ 0 holds
for all f ∈ FT . Moreover, since KerCT = KerWT , Lemma 3.1 provides its
positivity:

(CT f, f)FT > 0 for 0 �= f ∈ F
T , T < T∗.

• Recall that the image operator IT introduced in section 1 acts from L2(ΩT ) to
L2(ΣT ). In what follows we identify these spaces with HT and FT respectively,
and regard IT as a map from HT to FT .

The definition of images easily implies Y T ITHξ ⊂ FT, ξ, whereas (12) (for
σ = Γ) provides Y T ITWTFT, ξ ⊂ FT, ξ. The latter means that an oper-
ator Y T ITWT is triangular with respect to the family of subspaces (nest)
{FT, ξ}0≤ξ≤T [13].

For the connecting operator, the relations

CT (20)
= (WT )∗WT (3)

= (Y T ITWT )∗(Y T ITWT ) (21)

hold and show that operator Y T ITWT provides a triangular factorization of
the connecting operator with respect to the nest {FT, ξ}0≤ξ≤T [13, 15].

• A significant fact is that the connecting operator is determined by the ex-
tended response operator via an explicit formula:

CT = −
1

2
(ST )∗R2TJ2TST , (22)

where the map ST : FT → F2T extends the controls from ΣT to Σ2T by
oddness:

�
ST f

�
(·, t) =

�
f(·, t) , 0 ≤ t < T

−f(·, 2T − t) , T ≤ t ≤ 2T .

In [1, 3], a relevant analog of this representation is proved for the case of the
Dirichlet boundary controls. To modify the proof for obtaining (22) needs just
a minor correction.

3.3. System αT
∗

A dynamical system associated with the problem

vtt −∆v + qv = 0 in {(x, t) | x ∈ ΩT , t > τ(x)} (23)

v
��
t=T

= 0 , vt
��
t=T

= y ∈ H
T (24)

∂νv = 0 on ΣT (25)
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is denoted by αT
∗ and said to be dual to system αT . Its solution v = vy(x, t)

describes a wave, which is initiated by the velocity perturbation y and prop-
agates (in the reversed time) in Ω. The problem is well posed owing to the
finiteness of the domain of influence property.

Integration by parts provides the well-known relation

(uf (·, T ), y)HT = (f, vy)FT , f ∈ F
T , y ∈ H

T .

It is the relation, which motivates the term ‘dual’ [1, 3].
In the dual system, the state/observation correspondence is realized by an

observation operator OT : HT → FT ,

OT y := vy
��
ΣT .

Being written in the form (WT f, y)HT = (f,OT y)FT , the duality relation
leads to the equality

OT = (WT )∗ . (26)

It implies KerOT = HT � RanWT , whereas (13) (for σ = Γ) follows to the
equality KerOT = {0}. The latter is interpreted as a boundary observability of
the dual system.

4. Visualization of waves

4.1. Devices

Propagation of jumps in αT
∗

A very general fact of the propagation of singularities theory for the hyperbolic
equations is that discontinuous data produce discontinuous solutions, the dis-
continuities propagating along bicharacteristics and being supported on char-
acteristic surfaces. Here we deal with the Cauchy problem (23)–(25) with a y
having jumps of special kind. Our goal is to describe the corresponding jumps
of the image OT y. The description is provided by the proper Geometrical
Optics formulae. Since the GO-technique is rather cumbersome, we have to
restrict ourselves to heuristic considerations and references to our papers [1, 5],
where the rigorous analysis is developed.

We start with a simpler case T < Tc: the simplification is that the surfaces
Γξ are smooth as ξ ≤ T . A characteristic function (indicator) of a set A is
denoted by χA:

χA(p) :=

�
1 , p ∈ A

0 , p �∈ A
.

• Fix a ξ and (small) ∆ξ provided 0 < ξ < ξ +∆ξ < T . A subdomain

∆Ωξ := Ωξ+∆ξ \ Ωξ ⊂ ΩT
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is a thin layer between the smooth surfaces Γξ+∆ξ and Γξ.
Take a y ∈ C∞(ΩT ). A ‘slice’ χ∆Ωξy is a piece-wise smooth function sup-

ported in ∆Ωξ. Generically, it has the jumps at Γξ and Γξ+∆ξ. In what follows,
the jump at Γξ is of our main interest, whereas the jump at Γξ+∆ξ is introduced
just for technical convenience.

Return to system (23)–(25). Putting vt
��
t=T

= χ∆Ωξy in (24), we get a
Cauchy problem with discontinuous data. In particular, the data have a jump
at Γξ:

vt (x(γ, τ), T )

����
τ=ξ+0

τ=ξ−0

= y(x(γ, ξ)) − 0 = y(x(γ, ξ)) . (27)

As a consequence, the solution vχ∆Ωξy turns out to be non-smooth. The fol-
lowing is some details specific for problem (23)–(25).

• A velocity perturbation χ∆Ωξy, which initiates the wave process, is separated
from the boundary with the distance ξ. Therefore, by the finiteness of domain
of influence principle, the solution vχ∆Ωξy vanishes for t > T − ξ − τ(x), i.e.,
over a characteristic surface ST, ξ := {(x, t) ∈ ΩT × [0, T ]} (see Fig 4.1).

Figure 1: Propagation of jump

• Jumps of vt(·, T ) initiate jumps of the velocity v
χ∆Ωξy
t . One of the velocity

jumps is located at the characteristic ST, ξ 2. This jump propagates along the

2another jumps also do occur but are beyond our interest
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space-time rays rT, ξ
γ , which constitute the characteristic:

rT, ξ
γ := {(x, t) ∈ ΩT × [0, T ] | x = x(γ, ξ − τ), t = T − τ : 0 ≤ ξ ≤ T} ,

ST, ξ =
�

γ∈Γ

rT, ξ
γ .

The jump, which moves along rT, ξ
γ , starts from the point a = (x(γ, ξ), T ) and

reaches the boundary at b = (x(γ, 0), T −ξ). By (27), at the ‘input’ a the value
(amplitude) of the jump is y(x(γ, ξ)). At the endpoint b, its amplitude is found
by the GO-technique, which provides

v
χ∆Ωξy
t ((x(γ, 0), t)

����
t=T−ξ+0

t=T−ξ−0

= 0− β
1
2 (γ, ξ)y(x(γ, ξ))

= −β
1
2 (γ, ξ)y(x(γ, ξ)) . (28)

This relation corresponds to the well-known GO-law: the ratio of the input
and output jump amplitudes is governed by the factor β, which is determined
by the spreading of rays rT, ξ

γ [1, 5, 18].

• By the aforesaid, a trace v
χ∆Ωξy
t

��
ΣT vanishes on Γ × (T − ξ, T ] and has a

jump at the cross-section ΣT ∩ ST, ξ = Γ× {t = T − ξ}. In the mean time, by
the regularity results, this trace is continuous as an H

1
2 (Γ)-valued function of

t ∈ [0, T − ξ] 3. The following considerations specify the behavior of v
χ∆Ωξy
t

��
ΣT

near (and below) this cross-section.
Let

∆ΣT, ξ := {(γ, t) ∈ ΣT
| γ ∈ Γ, T − ξ −∆ξ ≤ t ≤ T − ξ}

be a thin ‘belt’ near the cross-section (see Fig. 4.1), χ∆ΣT, ξ its indicator. A
function on ΣT of the form χ∆ΣT, ξ

�
v
χ∆Ωξy
t

��
ΣT

�
is a ‘slice’ of the boundary

trace of the velocity. By (28), one can represented it as

�
χ∆ΣT, ξ

�
v
χ∆Ωξy
t

��
ΣT

��
(γ, t) =

=

�
−β

1
2 (γ, ξ)y(x(γ, ξ)) + wξ,∆ξ(γ, t) , (γ, t) ∈ ∆ΣT, ξ

0 , (γ, t) ∈ ΣT \∆ΣT, ξ
, (29)

where the first summand in the first line does not depend on t and, hence, obeys
�β

1
2 y�2L2(∆ΣT, ξ) ∼ ∆ξ, whereas the second summand satisfies

�wξ,∆ξ�2L2(∆ΣT, ξ) ∼ o(∆ξ) uniformly with respect to ξ ∈ [0, T ] and (small

enough) ∆ξ > 0 [1, 5]. So, the first summand is dominating.

3this property can be derived from Theorem 3.3 of [19].
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Amplitude integral

• Choose a partition Ξ = {ξi}Ni=0 : 0 = ξ0 < ξ1 < · · · < ξN = T of the
segment [0, T ] and denote

∆ξi = ξi−ξi−1 , ∆ΣT, ξi = Γ× [T−ξi−∆ξi , T−ξi] , ∆Ωξi = Ωξi \ Ωξi−1 ,

i = 1, 2, . . . N (Ω0 := ∅); rΞ = max
i=1,...,N

∆ξi .

Summing up the terms of the form (29) and recalling the definition of images,
we get

�
N�

i=1

χ∆ΣT, ξi

�
v
χ
∆Ωξi

y
t

��
ΣT

��
(γ, T − t) =

= −
�
IT y

�
(γ, t) + δy,Ξ(γ, t), (γ, t) ∈ ΣT , (30)

where �δy,Ξ�L2(ΣT ) → 0 as rΞ → 0. Substituting t by T −t, we see that, for the
given smooth y ∈ HT , the sums converge to −Y T IT y by the norm in FT . The
smallness of δy,Ξ is justified by perfect analogy with the case of the problem
with Dirichlet boundary controls [1, 5].

• Here we interpret (30) in operator terms.
Let XT, ξ be a projection in FT onto FT, ξ, which cuts off controls onto

Γ× [T − ξ, T ]. The difference ∆XT, ξi = XT, ξi −XT, ξi−1 is also the projection
cutting off controls onto the belt ∆Σξi, T : ∆XT, ξif = χ∆ΣT, ξi f .

By Gξ we denote a projection in HT onto Hξ, which cuts off functions
onto Ωξ. The difference ∆Gξi = Gξi − Gξi−1 cuts off functions onto the layer
∆Ωξi : ∆Gξiy = χ∆Ωξi y.

Recalling the definition of the observation operator, one can represent the
summands in (30) as

χ∆ΣT, ξi

�
v
χ
∆Ωξi

y
t

��
ΣT

�
= ∆XT, ξi∂tO

T∆Gξiy

and then write (30) in the form

lim
rΞ→0

�
N�

i=1

∆XT, ξi∂tO
T∆Gξi

�
y =:

��

[0,T ]
dXT, ξ ∂tO

T dGξ

�
y = Y T IT y . (31)

An operator construction in the square brackets is said to be an amplitude inte-
gral (AI). It represents the image of y as a collection of the wave jumps, which
pass through ΩT and are detected by the external observer at the boundary.

• Recall that (31) is derived under the assumption T < Tc. The case T > Tc

is more complicated since the equidistant surfaces Γξ can be non-smooth and
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disconnected. However, a remarkable fact is that representation (31) does
survive: it is valid for any T < T∗. For the system αT with Dirichlet boundary
controls, this result is stated in [1, 5]. To modify it for the case of Neumann
controls requires just a minor technical changes. So, the following does occur.

Proposition 4.1. For any positive T < T∗, the sums in (31) converge to the
limit

lim
rΞ→0

N�

i=1

∆XT, ξi∂tO
T∆Gξi =:

�

[0,T ]
dXT, ξ ∂tO

T dGξ = Y T IT (32)

in the weak operator topology.

WT
via amplitude integral

• Multiplying (32) by WT from the right, we get an operator V T : FT → FT ,

V T := Y T ITWT =

��

[0,T ]
dXT, ξ ∂tO

T dGξ

�
WT , (33)

which satisfies

V T
F

T, ξ
⊂ F

T, ξ , (V T )∗V T (21)
= CT . (34)

Thus, V T provides triangular factorization of the connecting operator with
respect to the nest {FT, ξ}0≤ξ≤T .

• Any densely defined closable linear operator acting from a Hilbert space to
a Hilbert space can be represented in the form of a polar decomposition (see,
e.g., [10]). For the control operator, such a decomposition is

WT = UT
|WT

| := UT
�
(WT )∗WT

� 1
2 (21)

= UT
�
CT

� 1
2 , (35)

where |WT | : FT → FT is a modulo of WT , and UT : FT → HT is an isometry,
which maps Ran |WT | ⊂ FT onto RanWT ⊂ HT by the rule

UT
|WT

|f = WT f , f ∈ F
T . (36)

By (13) with σ = Γ, for any T > 0 one has RanWT = HT . In the mean time,
for T < T∗, we have

Ran |WT | = F
T
�Ker |WT

| = F
T
�KerWT Lemma 3.1

= F
T .

As a result, if T < T∗ then UT can be extended by continuity from Ran |WT |

to FT , the extension being a unitary operator, which maps FT onto HT . In
what follows, we assume that such an extension is done; it satisfies

(UT )∗UT = 1FT , UT (UT )∗ = 1HT . (37)
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• Recall that Gξ projects in HT onto Hξ. We say a projection P ξ in HT onto
the subspace WTFT, ξ (formed by waves) to be a wave projection. A crucial
point of our approach is the equality

P ξ (13)
= Gξ , 0 ≤ ξ ≤ T , (38)

which corresponds to the controllability of system αT .
Let P̃T, ξ be a projection in FT onto the subspace |WT |FT, ξ. By (36), one

has
UT P̃T, ξ = P ξUT , 0 ≤ ξ ≤ T (39)

that implies

OTGξWT (26),(38)
= (WT )∗P ξWT (35)

= |WT
|(UT )∗P ξUT

|WT
| =

(39)
= |WT

| P̃T, ξ
|WT

| (40)

for 0 ≤ ξ ≤ T .

• Multiplying equality (33) by the isometry (IT )∗Y T from the left, and taking
into account (40), we get

WT = UT
|WT

|, UT = (IT )∗Y T

��

[0,T ]
dXT, ξ ∂t|W

T
| dP̃T, ξ

�
. (41)

Here the operators IT , Y T , XT, ξ are standard (do not depend on potential q),
whereas projections P̃T, ξ are obviously determined by |WT |. Operator WT is
triangular with respect to the pair of the nests {FT, ξ} and {Hξ} that means
WTFT, ξ ⊂ Hξ, 0 ≤ ξ ≤ T (see (13)). From the operator theory viewpoint,
representation (41) enables one to recover a triangular operator WT via its
modulo |WT |, the ‘phase’ part UT being expressed via a relevant operator
integral. The integral into the square brackets is referred to as a diagonal of
operator ∂tWT with respect to the nests {FT, ξ} and {Hξ} [9, 13].

• Introduce an operator AT : FT → FT by

AT := Y T

�

[0,T ]
dXT, ξ ∂t[C

T ]
1
2 dP̃T, ξ . (42)

With regard to (38) and (39), one can write (32) in the form AT (UT )∗ = IT

that enables one to represent the phase operator in the form

UT (41)
= (IT )∗AT .
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By (37) and (3), this representation implies

(AT )∗AT = 1, AT (AT )∗ = GΘT . (43)

Now, writing (41) in the form

WT = (IT )∗AT [CT ]
1
2 , (44)

we obtain the representation of the control operator, which plays a basic role
in solving inverse problems. The reason is the following.

Operator R2T formalizes information, which the external observer gets from
measurements at the boundary Γ. The waves uf propagate into Ω and are
invisible for him. However, the observer can determine CT via (22), find [CT ]

1
2 ,

construct the integral (42), determine WT via (44), and eventually recover
invisible waves uf (·, T ) = WT f . In the BC-method, such a remarkable option
is referred to as a visualization of waves.

4.2. Solving the inverse problem

Setup

As is mentioned in section 3.2, the extended response operator R2T depends
on the potential locally: it is determined by q

��
ΩT . Such a locality motivates

the following setup of the inverse problem.

(IP) Given operator R2T , to recover potential q in the subdomain ΩT .

The IP will be solved for an arbitrary fixed T < T∗. Surely, such an option
enables one to determine q in the whole Ω if R2T is given for a T ≥ T∗.

Procedure

Preparatory to solving the IP, recall that geometry of the wave propagation in
system αT is governed by the leading part ∂2

t − ∆ of the wave equation (4).
Since this part does not depend on the potential, the geometry is Euclidean [18].
Therefore, we have the right to regard all the geometric objects and parameters
(Ωξ, sgc, ΘT , β, T∗, etc) as known and use them for determination of q. In
particular, we can use the image operator IT .

Let T < T∗ be fixed. Given R2T one can recover q in ΩT by the following
procedure.

Step 1. Find CT by (22). Determine [CT ]
1
2 .

Step 2. Determine the subspaces [CT ]
1
2FT, ξ and the corresponding projections

P̃T, ξ for 0 ≤ ξ ≤ T .

Step 3. Construct the integral (42) and, then, recover WT via (44).

Step 4. Determine q
��
ΩT from the graph (14).

The IP is solved.
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4.3. Characterization of data

Main result

In addition to the procedure, which solves the IP, we provide the necessary and
sufficient conditions for its solvability.

Theorem 4.2. Let 0 < T < T∗. An operator R2T : F2T → F2T is the extended
response operator of a system αT with potential of the class L∞(ΩT ) if and only
if it satisfies the following conditions:

1. R2T is a compact operator obeying

Y 2T
R

2T = (R2TY 2T )∗; R
2T

T
2T
2T−ξ = T

2T
2T−ξR

2T , 0 ≤ ξ ≤ 2T . (45)

2. An operator CT : FT → FT ,

C
T := −

1

2
(ST )∗R2TJ2TST (46)

is symmetric and positive: (CT f, f)FT > 0 for 0 �= f ∈ FT .

3. Let P̃T, ξ be a projection in FT onto [CT ]
1
2FT, ξ. An operator integral

AT : FT → FT ,

A
T := Y T

�

[0,T ]
dXT, ξ ∂t[C

T ]
1
2 dP̃T, ξ (47)

converges in the weak operator topology to an isometry, which satisfies

(AT )∗AT = 1, A
T (AT )∗ = GΘT . (48)

4. An operator WT : FT → HT

W
T := (IT )∗AT [CT ]

1
2 (49)

satisfies WTMT ⊂ H2(ΩT ).

5. The relation
∂νW

T f
��
Γ
= f(·, T ) , f ∈ M

T (50)

is valid.

6. The relation
WTF

T, ξ
σ = H

ξ
σ , 0 ≤ ξ ≤ T (51)

holds for any open σ ⊆ Γ.

7. The relation

sup
0 �=f∈MT

�∆WT f −WT ftt�HT

�WT f�HT

< ∞ (52)

holds.

The proof consists of two parts.



CHARACTERIZATION OF INVERSE DATA IN THE BC-METHOD 67

Part I (necessity)

Proof. Let R2T = R2T , where R2T is the extended response operator of a
system αT with potential q ∈ L∞(ΩT ). The system possesses the connecting,
control, and phase operators CT , WT and UT respectively.

1. Relations (45) hold by (19).

2 . In view of (22), operator CT defined by (46) coincides with CT , which is a
compact positive operator.

3 . The equality CT = CT implies P̃T, ξ = P̃T, ξ. Comparing (42) with (47), we
conclude that AT = AT . Hence, (48) follows from (43).

4 . Comparing (49) with (44), we see that WT coincides with WT . Hence,
WTMT ⊂ H2(ΩT ) holds by the regularity results on the problem (4)–(6) (see
section 3.1).

5 . Since WT = WT , the equality (50) is just a form of writing (10).

6 . (51) holds by (13).

7 . Since WT f = WT f = uf (·, T ), we have

−∆W
T f +W

T ftt = −∆uf (·, T ) + uftt(·, T )
(11)
=

= −∆uf (·, T ) + uf
tt(·, T )

(8)
= quf (·, T ) .

The inequality (52) is a consequence of q ∈ L∞(ΩT ).

Part II (sufficiency)

The proof of sufficiency is constructive: given R2T we provide a system αT

with the response operator R2T = R2T . In fact, the construction follows the
procedure Step 1-4, which solves the IP.

Proof. Assume that R2T obeys 1 -5 .

• Determine operator CT by (46) and find [CT ]
1
2 . The latter is also positive

and injective.
Construct the operator integral in (47) and get operator AT . By (48), AT

is an isometry in FT with the range GΘTFT . Hence, it satisfies GΘTAT = AT .
Introduce operator WT : FT → HT in accordance with (49). Obviously, it

is injective. By (51) (for ξ = T and σ = Γ), its range WTFT is dense in HT .
Also, it satisfies

(WT )∗WT = [CT ]
1
2 (AT )∗IT (IT )∗AT [CT ]

1
2

(3)
= [CT ]

1
2 (AT )∗GΘTA

T [CT ]
1
2 =

= [CT ]
1
2 (AT )∗AT [CT ]

1
2

(48)
= C

T . (53)
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• SinceWT is injective, the set of pairs
�
�WT f, WT ftt� | f ∈ MT

�
constitutes

the graph of a linear operator acting in HT . This operator is denoted by
LT : WT f �→ WT ftt. It acts in HT and is densely defined (on WTFT ).

Recall that the class of smooth controls MT is dense in FT , its elements
vanishing near t = 0. The subclass

M
T
0 := {f ∈ M

T
| f vanishes near t = T}

is also dense in FT . Hence, WTMT
0 is dense in HT by (51) for σ = Γ, ξ = T .

As a result, an operator LT
0 := LT

��
WTMT

0
is densely defined in HT . Show that

it is symmetric.
Take f, g ∈ MT

0 . Note that ST f and ST g are twice differentiable with
respect to t and vanish near t = 0 and t = 2T . Also, note that the second
relation in (45) implies the commutation R2T∂2

t = ∂2
tR

2T . Then, we have

(LT
0 W

T f,WT g)HT = (LT
W

T f,WT g)HT = (WT ftt,W
T g)HT

(53)
=

= (CT ftt, g)FT
(46)
= −

1

2
([R2TJ2TST ]ftt, S

T g)F2T =

= −
1

2
([R2TJ2TST f ]tt, S

T g)F2T
�
= −

1

2
(R2TJ2TST f, [ST g]tt)F2T =

= −
1

2
(R2TJ2TST f, ST gtt)F2T = −

1

2
((ST )∗R2TJ2TST f, gtt)FT =

= (CT f, gtt)FT
(53)
= (WT f,WT gtt)HT = (WT f, LT

W
T g)HT =

= (WT f, LT
0 W

T g)HT .

In (�) we integrate by part with respect to time in FT = L2(ΣT ). So, LT
0 is

symmetric.

• Owing to (52), operator QT := ∆− LT defined on the dense set WTFT ⊂

HT , is bounded. By this, we assume that QT is extended to HT by continuity.
Operator QT is self-adjoint. Indeed, in view of (50), for f ∈ MT

0 one has
∂νWT f

��
Γ
= f

��
t=T

= 0, i.e., elements of WTMT
0 satisfy the homogeneous Neu-

mann boundary condition on Γ. By the latter, the Laplacian ∆ is symmetric
on WTMT

0 . Hence, QT
��
WTMT

0
= ∆

��
WTMT

0
− LT

0 is symmetric on a dense set.

Since it is bounded, we conclude that (QT )∗ = QT .

• For f ∈ MT ⊂ FT , define a function

uf (x, t) :=
�
W

T
T

T
T−tf

�
(x) in ΩT × [0, T ] . (54)

The definitions of the operators imply

�
∆−QT

�
uf (·, t) = LTuf (·, t) = LT

W
T
T

T
T−tf = W

T
�
T

T
T−tf

�
tt
=

= [WT
T

T
T−tf ]tt = uf

tt(·, t) .
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Thus, uf satisfies the equation

utt −∆u+QTu = 0 in ΩT
× (0, T ) , (55)

By (51) for σ = Γ, we have supp uf(·, t) ⊂ Ωt, i.e., uf satisfies the Cauchy
condition

u
��
t<τ(x)

= 0 in ΩT × [0, T ] . (56)

In the mean time, (50) easily implies that uf obeys

∂νu = f on ΣT . (57)

• Show that QT is a multiplication by a bounded function. The proof follows
the idea of [4].

Lemma 4.3. There is a (real) function q ∈ L∞(ΩT ) such that QT y = qy holds
for y ∈ HT .

Proof. 1. Choose a σ ⊂ Γ and f ∈ FT, ξ
σ ∩MT . By condition 4 and (51), we have

uf (·, T ) ∈ Hξ
σ ∩H2(ΩT ). Hence, ∆uf (·, T ) ∈ Hξ

σ. In the mean time, we have

ftt ∈ FT, ξ
σ ∩MT that implies uf

tt = LTuf (·, T ) = WT ftt
(51)
∈ Hξ

σ. Therefore,

QTuf (·, T )
(55)
= ∆uf (·, T ) − uf

tt ∈ Hξ
σ. Thus, QTWTFT, ξ

σ ⊂ Hξ
σ holds. Since

WTFT, ξ
σ is dense in Hξ

σ (see (51)), we conclude that QTHξ
σ ⊂ Hξ

σ. The latter
leads to QT [HT �Hξ

σ] ⊂ [HT �Hξ
σ] by virtue of the symmetry (QT )∗ = QT .

Hence, the subspaces Hξ
σ reduce QT that is equivalent to the commutation

QTGξ
σ = Gξ

σQ
T , σ ⊂ Γ, 0 ≤ ξ ≤ T , (58)

where Gξ
σ projects in HT onto Hξ

σ, i.e., cuts off functions on Ωξ
σ.

2. As is easy to verify, an operator τTσ : HT → HT ,

τTσ y :=

��

[0,T ]
ξ dGξ

σ

�
y =

�
lim
rΞ→0

N�

i=1

ξi [G
ξi
σ −Gξi−1

σ ]

�
y (59)

(the sums converge by the operator norm) acts by the rule

τTσ y =

�
d(·,σ)y in ΩT

σ

0 in ΩT \ ΩT
σ

,

i.e., multiplies functions by the distance to σ and, then, cuts off on ΩT
σ [4]. As

a consequence, an operator

τ̂Tσ := τTσ y + T (1HT −GT
σ )y
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multiplies functions by the continuous function dTσ (·) := max{d(·,σ), T}. In
the mean time, (58) implies

QT τ̂Tσ = τ̂Tσ QT , σ ⊂ Γ, 0 ≤ ξ ≤ T , (60)

because the sums in (59) do commute with all Gξ
σ.

3. Fix a (small) δ > 0. A simple geometric fact is that the functions
{dTσ | σ ⊂ Γ} separate points in ΩT−δ and vanish simultaneously in no point
x0 ∈ ΩT−δ. Hence, a family {dTσ | σ ⊂ Γ, 0 ≤ ξ ≤ T} generates the continuous
function algebra C(ΩT−δ) [4].

Correspondingly, an operator family {τ̂Tσ | σ ⊂ Γ, 0 ≤ ξ ≤ T} generates
the operator (sub)algebra C(ΩT−δ) ⊂ B(HT ) of multiplications by continuous
functions. As a consequence of (60), we have QT

C(ΩT−δ) = C(ΩT−δ)QT that
is possible if and only if QT is also a multiplication by a function q.

Since QT is bounded, we have q ∈ L∞(ΩT−δ). By arbitrariness of δ, we get
q ∈ L∞(ΩT ).

• With the above determined function q one associates the system αT of the
form (8)–(10). Such a system possesses its own operators WT and CT . Show
that WT = WT and CT = CT .

Since the problems (8)–(10) and (55)–(57) (with QT = q) are identical and
uniquely solvable, their solutions (for the same f ’s) coincide. Writing the first
relation of (11) in the form uf (·, t) = WTT T

T−tf and comparing with (54), we
see that WT = WT holds.

By the latter equality and (53), we have

C
T = (WT )∗WT = (WT )∗WT = CT . (61)

• System (55)–(57) (with QT = q) possesses the extended response operator
R2T . Here we prove the equality R2T = R2T that completes the proof of the
Theorem.

Begin with two lemmas of general character. The lemmas deal with a
Hilbert space F = L2([0, 2T ]; E) (with the Lebesgue measure dt), where E is
an auxiliary Hilbert space. By F± we denote the subspaces of functions, which
are even and odd with respect to t = T . So, the decompositions F = F+⊕F−

holds. Let

F
[a,b] := {f ∈ F | supp f ⊂ [a, b]} , 0 ≤ a < b ≤ 2T .

Lemma 4.4. If a bounded operator N : F → F satisfies

NF± ⊂ F± ; NF
[a,2T ]

⊂ F
[a,2T ] , 0 ≤ a ≤ 2T (62)

then it is local, i.e., preserves the support of functions:

NF
[a,b]

⊂ F
[a,b] , 0 ≤ a < b ≤ 2T . (63)
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Proof. 1. Representing F = F [0,T ] ⊕ F [T,2T ] and f = f1 + f2 with f1 ∈

F [0,T ], f2 ∈ F [T,2T ], we identify f ≡ �f1, f2�.
Introduce an isometry Y : F [0,T ] → F [T,2T ] by

(Y f)(t) := f(2T − t) , T ≤ t ≤ 2T .

Obviously, one has F± = {�f,±Y f�} | f ∈ F [0,T ]}. Since N preserves the
evenness/oddness, there are two operators k, l : F [0,T ] → F [0,T ] such that

N�f, Y f� = �kf, Y kf� and N�f,−Y f� = �lf,−Y lf� . (64)

Show that k = l. For a g ∈ F [0,T ], one has

2N�0, Y g� = N [�g, Y g� − �g,−Y g�]
(64)
= �kg, Y kg� − �lg,−Y lg� =

= �[k − l]g, Y [k + l]g� . (65)

In the mean time, we have �0, Y g� ∈ F [T,2T ] and, hence, N�0, Y g� ∈ F [T,2T ]

holds by (62). By the latter, 2N�0, Y g�must be of the form �0, ...�, i.e., [k−l]g =
0 is valid and implies k = l =: m.

2. Putting g = Y −1h in (65), we get

N�0, h� = �0, Y mY −1h� . (66)

In the mean time, we have

2N�g, 0� = N [�g, Y g�+ �g,−Y g�]
(64)
= �mg, Y g�+�mg,−Y mg� = 2�mg, 0� .

Combining the latter with (66), we arrive at the representation

N�g, h� = �mg, Y mY −1h� . (67)

3. Such a representation easily provides the following fact: operator N acts
locally in [0, 2T ] if and only if operator m is local in [0, T ]. Show that the
latter does occur.

Let supp f ⊂ [a, b] ⊂ [0, T ], so that f
��
0≤t<a

= 0 and f
��
b<t≤2T

= 0

holds. The first equality means that f ∈ F [a,2T ], implies Nf ∈ F [a,2T ] by (62)
and, thus, provides Nf

��
0≤t<a

= 0. Hence, with regard to f ≡ �f, 0�, we have

0 = Nf
��
0≤t<a

≡ [N�f, 0�]
��
0≤t<a

(67)
= �mf, 0�

��
0≤t<a

≡ mf
��
0≤t<a

,

i.e., m does not extend support to the left.
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By the choice of f , one has suppY f ⊂ [2T − b, 2T − a], so that Y f ∈

F [2T−b,2T ]. The latter implies NY f ∈ F [2T−b,2T ] in accordance with (62).
Hence, we have

0 = NY f
��
0≤t<2T−b

≡ [N�0, Y f�]
��
0≤t<2T−b

(67)
= �0, Y mf�

��
0≤t<2T−b

≡

≡ Y mf
��
0≤t<2T−b

.

Therefore, mf
��
t>2T−b

= 0, i.e., m does not extend support to the right. Thus,
m acts locally and, eventually, N is local.

In fact, the boundedness of N is not substantial and the proof (mutatis
mutandis) is available for a wider class of operators.

Lemma 4.5. If an operator N satisfies (62) and is compact then N = 0.

Proof. A projection X [a,b] in F onto F [a,b] cuts off functions on [a, b]. The com-

plement projection X [a,b]
⊥

= 1−X [a,b] cuts off on [0, a]∪ [b, 2T ]. By Lemma 4.4,
we have

NX [a,b] = X [a,b]NX [a,b] and NX [a,b]
⊥

= X [a,b]
⊥

NX [a,b]
⊥

.

Summing up, we get N = X [a,b]NX [a,b] +X [a,b]
⊥

NX [a,b]
⊥

that leads to

NX [a,b] = X [a,b]N , N∗X [a,b] = X [a,b]N∗

and, eventually, implies

N∗NX [a,b] = X [a,b]N∗N . (68)

In the mean time, operator N∗N is self-adjoint and compact. Let λ ∈ R

be its eigenvalue, Dλ the corresponding eigensubspace. By (68), we have
X [a,b]Dλ ⊂ Dλ that leads to dimDλ = ∞. The latter is possible only for
D0 = KerN∗N . Thus, the spectrum of N∗N is exhausted by λ = 0. Hence,
N∗N = 0. Therefore, N = 0.

• Now, we are ready to complete the proof of Theorem 4.2. Return to our
system (55)–(57) (with QT = q). Recall that ST : FT → F2T extends controls
from [0, T ] to [0, 2T ] by oddness with respect to t = T . We regard F2T =
L2(Σ2T ) as the space L2([0, 2T ]; E) with E = L2(Γ). Let F2T

± be the subspaces
of the even and odd functions, so that the decomposition

F
2T = F

2T
+ ⊕ F

2T
−

occurs. The embedding J2TF2T
− ⊂ F2T

+ holds and is dense. Also, one has
Y 2TF2T

± = F2T
± .
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Denote N := R2T − R2T With regard to (22) and (46), the equality (61)
leads to

(NJ2TST f, ST g)F2T = 0

for all f, g ∈ FT . It shows that the embedding

NF
2T
+ ⊂ F

2T
+

holds and evidently implies Y 2TNF2T
+ ⊂ F2T

+ . In the mean time, opera-
tor Y 2TN is self-adjoint: see (19) and (45). Therefore, it is reduced by the
even/odd subspaces: Y 2TNF2T

± ⊂ F2T
± . The latter leads to

NF
2T
± ⊂ F

2T
± . (69)

On the other hand, the shift invariance (19) and (45) implies

NF
2T, ξ

⊂ F
2T, ξ , 0 ≤ ξ ≤ 2T .

Joining the latter relation with (69) and applying Lemma 4.5, we arrive at
N = O that is R2T = R2T . Theorem 4.2 is proved.

5. Comments, doubts, philosophy

• A characterization of data for an inverse problem is a list of conditions pro-
viding its solvability. The reasonable requirement to any characterization is to
be checkable and possibly simple. As we guess, the only reasonable understand-
ing of ‘a condition is checkable’ is that it can be verified before (without) solving
the inverse problem. Formally, the conditions 1–7 of Theorem 4.2 satisfy such
a requirement because they do not use the knowledge of the potential q. How-
ever, comparing these conditions with the procedure Step 1–4, it is easy to
recognize that to check 1–7 is almost the same as to recover q. Conditions 1–7
just provide the procedure to be realizable. In such a situation, can one claim
that 1–7 is an efficient characterization?

And what is ‘efficient’? For instance, the key step of the procedure, as well
as the characterization, is constructing the operator integral (47). If it is at
our disposal, we get WT , recover the waves uf , and are able to check 5–7. In
the mean time, having uf one doesn’t need to check anything more but can
just determine q from the wave equation. So, can one regard the required in 3
convergence as an efficiently checkable condition? We don’t have a convincible
answer.

Also, can one avoid so long list of conditions and invent something simpler
and better? 4 We are rather sceptical and the following is some reasons for
scepticism.

4Actually, a long list of the characterization conditions is not something unusual: see,

e.g., the conditions on a spectral triple corresponding to a Riemannian manifold in [12].
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• The evolution of system (8)–(10) is governed by the operator Lq = −∆+q
and Neumann controls f = ∂νu

��
ΣT . Both of them are of very specific type. We

mean, replacing them by LQ = −
�

i,j ∂xia
ij∂xj + Q (with possibly nonlocal

and time dependent Q) and, let say, f = [∂νu + κu]
��
ΣT , we’d got a system

with the data R2T
Q of the properties quite analogous to R2T

q . Therefore, the

data characterization has to select R2T
q from a large reserve of the response

operators R2T
Q . It is such a selection, which the conditions 1–7 do implement.

Namely, the selection works as follows.

� Conditions 1, 2 appear at very general level of an abstract dynamical system
with boundary control (DSBC) associated with a time-independent boundary
triple [2]. Such a system necessarily satisfies (45) and (46).

� In 3, convergence of the operator integral to an isometric operator is a spe-
cific feature of hyperbolic DSBC’s obeying the finiteness of domain of influence
principle. System αT , which we deal with, is hyperbolic, and the characteriza-
tion must provide such a property.

Also, as was noticed in sections 3.2, 4.1 (see (21), (33)), the amplitude
integral is connected with a triangular factorization. One of the form of the
classical factorization problem is to recover a triangular operator via its imag-
inary (anti-Hermitian) part. It is solved by the use of the so-called triangular
truncation transformer [15], which is a kind of an operator integral. Its conver-
gence provides a solvability criterium to the factorization problem for a class
of Fredholm operators [15].

So, imposing condition 3, we follow the classicists. By the way, our con-
struction (32) is available for a wider class of operators [9].

� The characterization should specify a regularity class of potentials, which we
deal with. Condition 4, roughly speaking, rejects strongly singular potentials.

� Condition 5 excludes another types of boundary conditions like f = [∂νu +
κu]

��
ΣT . The Neumann condition is rather specific. In contrast to the Dirichlet

condition, which is connected with a Friedrichs operator extension, the Neu-
mann one is not of invariant meaning. The characterization has to take this
fact into account. Perhaps, one can specify the boundary condition right from
R2T , without constructing WT . It would be welcome.

� A discussable question is whether condition 6 may be efficiently checked.
However, (51) is also unavoidable: it is the condition, which provides a locality
of the potential.

� Assume for a while that q ∈ L2(Ω) \ L∞(Ω), so that the multiplication by
q is an unbounded operator. However, system αT with such a potential does
possess all the properties specified by conditions 1–6. In the mean time, the
characterization must reject such a case. We see no option to do it except of
imposing (52).
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So, all the conditions 1–7 are independent and, therefore, unavoidable. We
are forced to accept so long list of conditions just because we deal with a very
specific class of dynamical systems. The more specific is the class, the more
words is required for its description. The converse is also true: to be the
response operator of an abstract DSBC, it suffices for R2T to satisfy nothing
but (45) and (46) [2].

• A determination of q from R2T is conventionally regarded as an over-
determined problem. The reason is the following. One can represent

�
R2T f

�
(γ, t) =

�

Σt

r(t− s, γ, γ�) f(γ�, s) dΓγ� ds

with a (generalized) kernel r(t, γ, γ�). The convolution form with respect to
time is a consequence of the shift invariance (19). Bearing in mind that
γ = {γ1, γ2, . . . , γn−1}, one regards r as a function of 1 + 2(n − 1) = 2n − 1
variables, whereas a local potential q = q(x1, x2, . . . , xn) depends on n variables
only. Thus, for n ≥ 2 the data array is of higher dimension than the array of
parameters under determination ‘that is not natural’ 5.

Actually, on our opinion, in multidimensional problems such a counting
parameters is not quite reasonable and reliable. Indeed, for instance, how to
count the parameters if we need to recover from R2T not a function (potential)
but a Riemannian manifold, as in [3]? Nevertheless, the question arises: Does
the characterization 1–7 ‘kill’ unnecessary parameters and, if yes, in which
way? The possible answer is the following.

There is a sharp necessary condition related with a locality of potential. Let

P̃T, ξ
σ be the projection in FT onto the subspace [CT ]

1
2F

T, ξ
σ . Such a projection

is unitarily equivalent (via the isometry (IT )∗AT : see (49)) to the projection

onto WTF
T, ξ
σ . By (51), the latter projection coincides with the ‘geometric’

projection Gξ
σ, which cuts off functions onto Ωξ

σ. The geometric projections for
all σ and ξ commute. As a result, we arrive at the following condition: the
projection family {P̃T, ξ

σ | σ ⊂ Γ, 0 ≤ ξ ≤ T} must be commutative. Analyzing
the proof of Theorem 4.2, we see that it is the condition, which forces the
‘potential’Q to be a multiplication by q and, thus, rejects unnecessary variables.
However, the rejection mechanism is not well understood yet and we hope to
clarify it in future.
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Abstract. We consider inverse problems for p-Laplace type equa-
tions under monotonicity assumptions. In two dimensions, we show
that any two conductivities satisfying σ1 ≥ σ2 and having the same
nonlinear Dirichlet-to-Neumann map must be identical. The proof is
based on a monotonicity inequality and the unique continuation prin-
ciple for p-Laplace type equations. In higher dimensions, where unique
continuation is not known, we obtain a similar result for conductivities
close to constant.
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continuation principle.
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1. Introduction

The inverse conductivity problem posed by Calderón asks if the electrical con-
ductivity of a medium can be determined by voltage and current measurements
on its boundary. If Ω ⊂ Rn is a bounded open set representing the medium,
and if σ ∈ L

∞
+ (Ω) is a function representing the electrical conductivity, then

Ohm’s and Kirchhoff’s laws imply that given a boundary voltage f , the elec-
trical potential u in Ω will solve the conductivity equation

�
div(σ∇u) = 0 in Ω,

u = f on ∂Ω.

Here and below we write

L
∞
+ (Ω) = {σ ∈ L

∞(Ω) ; σ ≥ c0 > 0 a.e. in Ω for some c0 > 0}.

If X(Ω) is a function space (such as the space W 1,∞(Ω) of Lipschitz functions),
we also write

X+(Ω) = X(Ω) ∩ L
∞
+ (Ω).
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The boundary measurements are encoded by the Dirichlet-to-Neumann map
(DN map)

Λσ : f �→ σ∂νu|∂Ω
where σ∂νu|∂Ω is the electrical current flowing through the boundary, and the
normal derivative ∂ν is defined in a suitable weak sense. The inverse problem
is to determine the conductivity σ from knowledge of the DN map Λσ. This
question, known as the Calderón problem, is a fundamental inverse problem
with applications in industrial and medical imaging and having connections to
many other inverse problems. Both the theoretical and applied aspects of the
Calderón problem have been studied intensively in the last 35 years. We refer
to the survey [35] for more information.

In this paper we consider a nonlinear variant of the Calderón problem. Here
the standard Ohm’s law j = −σ∇u relating the current j and potential u is
replaced by the nonlinear law

j = −σ |∇u|p−2 ∇u

where p is a real number with 1 < p < ∞. Combining this with Kirchhoff’s
law stating that j is divergence free, we obtain the boundary value problem

�
div(σ |∇u|p−2 ∇u) = 0 in Ω,

u = f on ∂Ω.

The boundary measurements are encoded by the nonlinear DN map

Λσ : f �→ σ |∇u|p−2
∂νu|∂Ω

defined in a suitable weak sense. The inverse problem is to determine the
conductivity σ from knowledge of the nonlinear map Λσ.

The equation div(σ |∇u|p−2 ∇u) = 0 is called the weighted p-Laplace equa-
tion (with weight given by the positive function σ), and it is the Euler-Lagrange
equation related to minimizing the p-Dirichlet energy E(u) =

�
Ω σ |∇u|p dx.

The case p = 2 is just the linear conductivity equation, but if p �= 2 this
is a quasilinear degenerate elliptic equation. The p-Laplace equation appears
as a model for nonlinear dielectrics, plastic moulding, electro-rheological and
thermo-rheological fluids, fluids governed by a power law, viscous flows in
glaciology, or plasticity. The limiting cases p = 0 and p = 1 also arise in hybrid
imaging inverse problems such as ultrasound modulated electrical impedance
tomography (UMEIT) and current density imaging (CDI). See the references
in [12] for further information. The p-Laplace equation is of considerable math-
ematical interest as well, the case p = n is useful in conformal geometry [29]
and also the limiting cases p = 0, 1,∞ are relevant. We refer to [16, 23, 30] for
further details on p-Laplace type equations.
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The inverse problem of determining σ from the nonlinear DN map Λσ was
introduced in [32] as a nonlinear variant of the Calderón problem. There are
several previous works related to Calderón type problems for nonlinear equa-
tions (see the references of [32]), where the inverse problem is solved by lineariz-
ing the nonlinear DN map. However, the p-Laplace type model has the new
feature that linearizations at constant boundary values do not give any new
information, and thus genuinely nonlinear methods are required to treat the
inverse problem. The work [32] suggested a nonlinear version of the method of
complex geometrical optics solutions that has been widely used in the original
Calderón problem (see the survey [35]). The nonlinear version of this method
was based on p-harmonic functions introduced by Wolff [36].

We are aware of the following results on the inverse problem for p-Laplace
type equations:

• (Boundary uniqueness [32]) Λσ determines σ|∂Ω.

• (Uniqueness for normal derivative [10]) Λσ determines ∂νσ|∂Ω.

• (Inclusion detection [12]) If σ = 1 in Ω \D and σ ≥ 1+ ε > 1 in D where
D ⊂ Ω is an obstacle, then Λσ determines the convex hull of D. Further
results are given in [11].

The first two results were based on Wolff type solutions and boundary de-
termination arguments following Brown [13]. We remark that it would be
interesting to see if also the boundary determination method based on singular
solutions due to Alessandrini [3] applies to p-Laplace type equations. The third
result above extends the enclosure method for inclusion detection introduced
by Ikehata [26] to the p-Laplace case. The main new ingredient in [12] was a
monotonicity inequality, which allows to estimate the difference of DN maps,
Λσ1 − Λσ2 , under the condition σ1 ≥ σ2.

In this paper we continue the study of inverse problems for p-Laplace type
equations. The main point is that a monotonicity assumption σ1 ≥ σ2, together
with the monotonicity inequality and the unique continuation principle for p-
Laplace type equations in the plane [1, 6, 8, 31], allows to establish interior
uniqueness for the conductivities.

Theorem 1.1. Let Ω ⊂ R2 be a bounded open set and let 1 < p < ∞. If
σ1,σ2 ∈ W

1,∞
+ (Ω) satisfy σ1 ≥ σ2 in Ω, then Λσ1 = Λσ2 implies σ1 = σ2 in Ω.

In three and higher dimensions, the unique continuation principle even for
the standard p-Laplace equation remains an important open question (see for
instance [18]). We obtain the following partial result under the additional
assumption that one of the conductivities is close to a constant.
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Theorem 1.2. Let Ω ⊂ Rn with n ≥ 2 be a bounded open set with C
1,α bound-

ary where 0 < α < 1, let 1 < p < ∞, and let M > 0. There is a constant
ε = ε(n, p,α,Ω,M) > 0 such that if σ1,σ2 ∈ C

α(Ω) satisfy σ1 ≥ σ2 in Ω and

1/M ≤ σ1 ≤ M, �σ1�Cα(Ω) ≤ M, �σ2 − 1�Cα(Ω) ≤ ε,

then Λσ1 = Λσ2 implies σ1 = σ2 in Ω.

Both of the above theorems are based on the monotonicity inequality,
Lemma 2.2, and the existence of solutions whose gradient is nonvanishing in
suitable sets. More precisely, Lemma 2.2 implies that for any u ∈ W

1,p(Ω)
solving div(σ2 |∇u|p−2 ∇u) = 0 in Ω, one has

(p− 1)

�

Ω

σ2

σ
1/(p−1)
1

�
σ

1
p−1

1 − σ

1
p−1

2

�
|∇u|p dx ≤ �(Λσ1 − Λσ2)(u|∂Ω), u|∂Ω�.

Thus if σ1,σ2 ∈ C+(Ω) satisfy σ1 ≥ σ2 and Λσ1 = Λσ2 , it follows that

|∇u|p = 0 a.e. in E

for any solution u, where E = {x ∈ Ω ; σ1(x) > σ2(x)}. We would like to
show that σ1 = σ2, or that E is empty. But if E would be nonempty, then
all solutions u would satisfy ∇u = 0 in the open set E. It is thus enough to
exhibit one solution u with ∇u �= 0 somewhere in E.

If σ ∈ C
α
+(Ω) for some α > 0, we define the set of weak solutions

Sσ = {u ∈ W
1,p(Ω) ; div(σ |∇u|p−2 ∇u) = 0 in Ω}.

Each u ∈ Sσ is locally C
1 (see e.g. [28]), and we let C(u) be the critical set of

u,
C(u) = {x ∈ Ω ; |∇u| (x) = 0}.

The study of critical sets of solutions is of independent interest, and there are a
number of results in the case p = 2 and also in the two-dimensional case when
p �= 2 (see [6, 14] and references therein). The following question is relevant in
our context, and further answers to this question would imply improvements
in the above theorems when n ≥ 3:

Question. Let Ω ⊂ Rn be a bounded connected open set and let 1 < p < ∞.
Given σ ∈ C

α
+(Ω), consider the following statements:

(a) There is u ∈ Sσ such that C(u) has Lebesgue measure zero.

(b) For any set E ⊂ Ω of positive Lebesgue measure there is u ∈ Sσ such that
∇u|E is not zero a.e. in E.
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(c) For any open set U ⊂ Ω there is u ∈ Sσ such that ∇u|U is not zero a.e.
in U .

For which σ ∈ C
α
+(Ω) does (a), (b), or (c) hold?

Clearly (a) =⇒ (b) =⇒ (c). We note that (a) holds for constant conduc-
tivities, or for conductivities only depending on n− 1 variables (in these cases
there is a linear function which is a solution with nonvanishing gradient). Also,
(a) holds in two dimensions at least for Lipschitz σ, since C(u) for nonconstant
u ∈ Sσ is the set of zeros of a quasiregular map and hence has measure zero
(see [6] or Appendix 4). Finally, the weak unique continuation principle would
imply (c) since then C(u) has empty interior for any nonconstant u ∈ Sσ.

We remark that in the linear case p = 2, uniqueness results for the inverse
problem even without monotonicity assumptions have been known for a long
time (see the survey [35]). Monotonicity arguments go back to [2, 4, 5, 24, 25,
27], and recently they have been combined with the method of localized poten-
tials introduced in [17] to obtain reconstruction algorithms [20, 21]. However,
the unique continuation principle and the Runge approximation property play
a role in these arguments, and these facts are not known for p-Laplace type
equations in dimensions n ≥ 3.

This paper is organized as follows. Section 1 is the introduction. In Sec-
tion 2 we establish the monotonicity inequality and the two-dimensional result,
Theorem 1.1. Section 3 proves Theorem 1.2 which is valid in any dimension,
by a perturbation argument around constant conductivities. We will do the
proofs for the slightly more general equation

div(σ |A∇u ·∇u|(p−2)/2
A∇u) = 0 in Ω

where σ is a positive scalar function and A is a positive definite matrix func-
tion. Finally, Appendix 4 contains some interpolation and unique continuation
results required in the proofs.
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2. Interior uniqueness in the plane

Given a bounded open set Ω ⊂ R2 and a conductivity σ ∈ L
∞
+ (Ω), we consider

the Dirichlet problem for the following p-Laplace type equation where 1 < p <

∞, �
div(σ |A∇u ·∇u|(p−2)/2

A∇u) = 0 in Ω,

u = f on ∂Ω,
(1)

where A ∈ L
∞
+ (Ω,Rn×n), meaning that A = (ajk) where ajk ∈ L

∞(Ω), ajk =

akj , and for some c0 > 0 one has
�n

j,k=1 ajk(x)ξjξk ≥ c0 |ξ|2 for a.e. x ∈ Ω and
for all ξ ∈ Rn.

The problem (1) is well posed in W
1,p(Ω) for a given Dirichlet bound-

ary data f ∈ W
1,p(Ω) (the boundary values are understood so that u − f ∈

W
1,p
0 (Ω)), see for instance [15, 23, 30, 32]. The solution u minimizes the p-

Dirichlet energy

Ep(v) =

�

Ω
σ|A∇v ·∇v|p/2dx

over all v ∈ W
1,p(Ω) with v − f ∈ W

1,p
0 (Ω).

We formally define the nonlinear DN map by

Λσ : f �→ σ|A∇u ·∇u|(p−2)/2
A∇u · ν|∂Ω,

where u ∈ W
1,p(Ω) satisfies (1). More precisely, Λσ is a nonlinear map X → X

�

where X is the abstract trace space X = W
1,p(Ω)/W 1,p

0 (Ω) and X
� denotes

the dual of X, and Λσ is defined by the relation

�Λσ(f), g� =
�

Ω
σ |A∇u ·∇u|(p−2)/2

A∇u ·∇v dx, f, g ∈ X, (2)

where u ∈ W
1,p(Ω) is the unique solution of div(σ |A∇u ·∇u|(p−2)/2

A∇u) = 0
in Ω with u|∂Ω = f , and v is any function in W

1,p(Ω) with v|∂Ω = g. Here
� · , · � is the duality between X

� and X. If ∂Ω has Lipschitz boundary, the

trace space X can be identified with the Besov space B
1−1/p
pp (∂Ω). Physically

Λσ(f) is the current flux density caused by the boundary potential f . See [32,
Appendix] and [22] for further properties of the DN map.

The following is the main result of this section.

Theorem 2.1. Let Ω ⊂ R2 be a bounded open set, let A ∈ W
1,∞(Ω,Rn×n) be

a symmetric positive definite matrix function, and let σ1,σ2 ∈ W
1,∞
+ (Ω) be two

conductivities such that σ1 ≥ σ2 in Ω. If Λσ1 = Λσ2 , then σ1 = σ2 in Ω.

The proof is based on a monotonicity inequality and the unique continuation
principle for solutions of (1). Let us first consider the monotonicity inequality,
which holds true in any dimension n ≥ 2. In the linear case p = 2, the following
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inequality is well known (see references in the introduction). For p �= 2 this
inequality was proved in [12] in the case A = I. The proof for general A is
almost identical, but we give it here for completeness.

Lemma 2.2. Let Ω ⊂ Rn be a bounded open set where n ≥ 2, let σ1,σ2 ∈
L
∞
+ (Ω), let A ∈ C(Ω,Rn×n) be a symmetric positive definite matrix function,

and let 1 < p < ∞. If f ∈ W
1,p(Ω), then

(p− 1)

�

Ω

σ2

σ
1/(p−1)
1

�
σ

1
p−1

1 − σ

1
p−1

2

�
|A∇u2 ·∇u2|p/2 dx

≤ �(Λσ1 − Λσ2)f, f� ≤
�

Ω
(σ1 − σ2) |A∇u2 ·∇u2|p/2 dx,

where u2 ∈ W
1,p(Ω) solves div(σ2 |A∇u2 ·∇u2|(p−2)/2

A∇u2) = 0 in Ω with
u2|∂Ω = f .

We emphasize that if σ1 ≥ σ2, then all the terms in the inequality are
nonnegative, while if σ1 ≤ σ2, then they are nonpositive.

Proof. Let u1, u2 ∈ W
1,p(Ω) be the solutions of the Dirichlet problem for the

p-Laplace type equation,
�
div(σ |A∇u ·∇u|(p−2)/2

A∇u) = 0 in Ω,

u = f on ∂Ω,
(3)

corresponding to the conductivities σ = σ1 and σ = σ2 respectively.
Note that the solution of (3) can be characterized as the unique minimizer

of the energy functional

Ep(v) =

�

Ω
σ|A∇v ·∇v|p/2dx

over the set {v ∈ W
1,p(Ω); v − f ∈ W

1,p
0 (Ω)} (see [32, Appendix]). Therefore,

we obtain the following one sided inequality for the difference of DN maps:

�(Λσ1 − Λσ2)f, f� =
�

Ω
σ1|A∇u1 ·∇u1|p/2dx−

�

Ω
σ2|A∇u2 ·∇u2|p/2dx

≤
�

Ω
(σ1 − σ2)|A∇u2 ·∇u2|p/2dx.

Since A is symmetric positive definite, A = B
�
B for some symmetric matrix

function B ∈ C(Ω,Rn×n). The existence of such matrix B is due to the Lemma
4.1 in the Appendix. To obtain the other side of the inequality, note that

A∇u1 ·∇u2 = B∇u1 ·B∇u2.
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Let β > 0 be a real number (whose value will be fixed later). Using (2) several
times together with the fact that u1|∂Ω = u2|∂Ω, we may rewrite the difference
of DN maps as follows:

�(Λσ1 − Λσ2)f, f�

=

�

Ω
βσ2|A∇u2 ·∇u2|p/2

−
�
(1 + β)σ2 |A∇u2 ·∇u2|

p−2
2 A∇u2 ·∇u2 − σ1|A∇u1 ·∇u1|p/2

�
dx

=

�

Ω
βσ2|B∇u2|p −

�
(1 + β)σ2|B∇u2|p−2

B∇u2 ·B∇u1 − σ1|B∇u1|p
�
dx.

Now, by applying Young’s inequality |ab| ≤ |a|p
p + |b|p

�

p� where 1/p + 1/p� = 1,
we have

(1 + β)σ2|B∇u2|p−2
B∇u2 ·B∇u1 − σ1|B∇u1|p

=
1 + β

p1/p

σ2

σ
1/p
1

|B∇u2|p−2
B∇u2 · p1/pσ1/p

1 B∇u1 − σ1|B∇u1|p

≤ 1

p�

�
1 + β

p1/p

�p�
σ
p�

2

σ
1/(p−1)
1

|B∇u2|p + σ1|B∇u1|p − σ1|B∇u1|p

=
1

p�
(1 + β)p

� 1

p1/(p−1)

σ
p�

2

σ
1/(p−1)
1

|B∇u2|p.

Therefore

�(Λσ1 − Λσ2)f, f�

≥
�

Ω

�
βσ2 −

1

p�
(1 + β)p

� 1

p1/(p−1)

σ
p�

2

σ
1/(p−1)
1

�
|B∇u2|pdx

=

�

Ω

βσ2

σ
1/(p−1)
1

�
σ

1
p−1

1 − 1

p�
(1 + β)p

�

β

�
1

p

� 1
p−1

σ

1
p−1

2

�
|B∇u2|pdx. (4)

Note that (1+β)p
�

β → ∞ as β → ∞ or β → 0. So, the function β → (1+β)p
�

β

attains its minimum at β = p− 1. Thus, we choose β = p− 1 so that from (4),
we obtain the required inequality.

Next we consider the unique continuation principle for solutions of the p-
Laplace type equation

div(σ |A∇u ·∇u|(p−2)/2
A∇u) = 0. (5)
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The case when σ is constant and A = I is well-known due to the work of
Alessandrini [1], Bojarski-Iwaniec [8] and Manfredi [31], namely, if u is a solu-
tion of the p-Laplace equation

div(|∇u ·∇u|(p−2)/2 ∇u) = 0

in a planar domain Ω ⊂ R2 and if u is constant in an open subset of Ω, then it
is actually constant in the whole domain Ω. The proof of Alessandrini involves
a linear equation for log |∇u|, whereas the proof of Bojarski-Iwaniec (see also
[7, Chapter 16] for a presentation) uses that complex gradients of solutions
of the p-Laplace equation are quasiregular mappings, and that non-constant
quasiregular mappings are discrete and open.

The unique continuation principle holds for solutions of (5) as well at least
when the coefficients are Lipschitz, see [6, Proposition 3.3].

Theorem 2.3. If Ω is a domain in R2, A ∈ W
1,∞(Ω,Rn×n) is a symmetric

positive definite matrix function and σ ∈ W
1,∞
+ (Ω), and if u ∈ W

1,p
loc (Ω) is a

solution of (5) which is constant in an open nonempty subset of Ω, then u is
identically constant in Ω.

In the appendix, for possible later purposes we sketch an alternative proof of
Theorem 2.3 for A = I and σ Lipschitz continuous, based on the theory of Bel-
trami equations, following the approach introduced by Bojarski and Iwaniec [8].

Proof of Theorem 2.1. We argue by contradiction and suppose that σ1(x0) >
σ2(x0) for some x0 ∈ Ω. Since σ1 and σ2 are continuous, there exists some
open ball D ⊂ Ω so that σ1 − σ2 > 0 in D.

Let u2 ∈ W
1,p(Ω) be a solution of

div(σ2 |A∇u ·∇u|(p−2)/2
A∇u) = 0 in Ω,

with non-constant Dirichlet data f ∈ W
1,p(Ω) (i.e., f − C /∈ W

1,p
0 (Ω) for any

constant C). Using the left hand side of the monotonicity inequality (Lemma

2.2), the assumptions that σ1 ≥ σ2 and Λσ1 = Λσ2 , and the fact that σ

1
p−1

1 −
σ

1
p−1

2 ≥ c0 > 0 in D, we deduce that
�

D
|A∇u2 ·∇u2|p/2dx ≤ 0. (6)

Then |A∇u2 ·∇u2|p/2 = 0 a.e. in D, and the uniform ellipticity condition for
A implies that ∇u2 = 0 a.e. in D, i.e., u2 is constant on D. By the unique
continuation principle (Theorem 2.3), we know that u2 is constant on Ω. This
contradicts the fact that u2 had non-constant Dirichlet data f .

Remark 2.4. Theorem 2.1 would remain valid in higher dimensions if the
unique continuation principle would hold for solutions of (5).
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3. Interior uniqueness in higher dimensions

In this section, we will consider interior uniqueness for p-Laplace type inverse
problems in dimensions n ≥ 3 (the method also works when n = 2). We
will show that two conductivities σ1,σ2 that satisfy σ1 ≥ σ2 in Ω and Λσ1 =
Λσ2 must be identical in Ω, under the additional assumption that one of the
conductivities (as well as the matrix A) is close to constant.

Our main result reads as follows:

Theorem 3.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C
1,α bound-

ary where 0 < α < 1, let 1 < p < ∞, and let M > 0. There exists
ε = ε(n, p,α,Ω,M) > 0 such that for any σ1,σ2 ∈ C

α(Ω) and for any symmet-
ric positive definite A ∈ C

α(Ω,Rn×n) satisfying

1/M ≤ σ1 ≤ M in Ω,

�σj�Cα(Ω) + �A�Cα(Ω) ≤ M,

�σ2 − 1�L∞(Ω) + �A− I�L∞(Ω) ≤ ε,

the conditions σ1 ≥ σ2 in Ω and Λσ1 = Λσ2 imply that

σ1 = σ2 in Ω.

The proof is again based on the monotonicity inequality and the fact that
one can find solutions whose critical sets are small (in fact empty). However,
since it is not known if the unique continuation principle holds for our equations
in dimensions n ≥ 3, we will construct solutions with nonvanishing gradient by
perturbing a linear function u0(x) = x1 which solves the constant coefficient
p-Laplace equation

div(|∇u0|p−2∇u0) = 0 in Rn
.

Alternatively, one could also perturb the complex geometrical optics or Wolff
type solutions of the p-Laplace equation considered in [32] which also have
nonvanishing gradient.

The first step is to show that if u0 solves div(σ0 |A0∇u0 ·∇u0|
p−2
2 ∇u0) =

0 in Ω, and if one perturbs σ0 and A0 slightly, then the solution u1 of the
perturbed equation will stay close to u0 in W

1,p norm if u1|∂Ω = u0|∂Ω.
Lemma 3.2. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set, let 1 < p < ∞, and
let M > 0. There is C = C(n, p,Ω,M) such that for any σ0,σ1 ∈ L

∞
+ (Ω) and

A0, A1 ∈ L
∞
+ (Ω,Rn×n) satisfying

1/M ≤ σj ≤ M, 1/M ≤ Aj ≤ M a.e. in Ω,

one has

�∇u1 −∇u0�Lp(Ω)

≤ C(�σ1 − σ0�L∞(Ω) + �A1 −A0�L∞(Ω))
min{ 1

p−1 ,1} �∇u0�Lp(Ω)
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whenever u0, u1 ∈ W
1,p(Ω) solve

div(σj |Aj∇uj ·∇uj |
p−2
2 Aj∇uj) = 0 in Ω

and satisfy u1 − u0 ∈ W
1,p
0 (Ω).

Proof. Consider the expression

I :=

�

Ω
(|∇u1|+ |∇u0|)p−2 |∇u1 −∇u0|2 dx.

We will prove the estimate

I ≤ C(�σ1 − σ0�L∞ + �A1 −A0�L∞) �∇u0�p−1
Lp �∇u1 −∇u0�Lp . (7)

This implies the statement in the lemma: if p ≥ 2 the triangle inequality gives
�

Ω
|∇u1 −∇u0|p dx ≤

�

Ω
(|∇u1|+ |∇u0|)p−2 |∇u1 −∇u0|2 dx = I

and (7) yields

�∇u1 −∇u0�Lp ≤ C(�σ1 − σ0�L∞ + �A1 −A0�L∞)
1

p−1 �∇u0�Lp . (8)

On the other hand, if 1 < p < 2 we write
�

Ω
|∇u1 −∇u0|p dx

=

�

Ω

�
(|∇u1|+ |∇u0|)p−2 |∇u1 −∇u0|2

�p/2
(|∇u1|+ |∇u0|)

p(2−p)
2 dx (9)

and use Hölder’s inequality with exponents q = 2/p and q
� = 2/(2− p) to get

�∇u1 −∇u0�pLp ≤ I
p/2

��

Ω
(|∇u1|+ |∇u0|)p dx

� 2−p
2

≤ CI
p/2(�∇u1�pLp + �∇u0�pLp)

2−p
2 . (10)

One also has �∇u1�Lp ≤ C �∇u0�Lp (this can be seen by integrating the equa-

tion for u1 against the test function u1 − u0 ∈ W
1,p
0 (Ω)). Using (7) yields

�∇u1 −∇u0�Lp ≤ C(�σ1 − σ0�L∞ + �A1 −A0�L∞) �∇u0�Lp . (11)

The lemma follows by combining (8) (when p ≥ 2) and (11) (when 1 < p < 2).
It remains to show (7). For any fixed x (outside a set of measure zero), we

may factorize Aj = B
t
jBj so that one has |Bjξ|2 = Ajξ · ξ and

1

M
|ξ|2 ≤ |Bjξ|2 ≤ M |ξ|2 , ξ ∈ Rn

.
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Using a basic inequality (see e.g. [32, equation (A.4)]) we have, for some C =
C(n, p,M) which may change from line to line and for a.e. x,

(|∇u1|+ |∇u0|)p−2 |∇u1 −∇u0|2

≤ C(|B1∇u1|+ |B1∇u0|)p−2 |B1∇u1 −B1∇u0|2

≤ C(|B1∇u1|p−2
B1∇u1 − |B1∇u0|p−2

B1∇u0) · (B1∇u1 −B1∇u0)

≤ Cσ1(|A1∇u1 ·∇u1|
p−2
2 A1∇u1 − |A1∇u0 ·∇u0|

p−2
2 A1∇u0) · (∇u1 −∇u0).

Using that uj are solutions and u1 − u0 ∈ W
1,p
0 (Ω), it follows that

I ≤ C

�

Ω
σ1(|A1∇u1 ·∇u1|

p−2
2 A1∇u1 − |A1∇u0 ·∇u0|

p−2
2 A1∇u0)

· (∇u1 −∇u0) dx

= −C

�

Ω
σ1 |A1∇u0 ·∇u0|

p−2
2 A1∇u0 · (∇u1 −∇u0) dx

= −C

�

Ω
(σ1 |A1∇u0 ·∇u0|

p−2
2 A1∇u0 − σ0 |A0∇u0 ·∇u0|

p−2
2 A0∇u0)

· (∇u1 −∇u0) dx.

Writing σ1 = (σ1 − σ0) + σ0 and using the Hölder inequality, we get

I ≤ C �σ1 − σ0�L∞ �∇u0�p−1
Lp �∇u1 −∇u0�Lp

+ C

���|A1∇u0 ·∇u0|
p−2
2 A1∇u0 − |A0∇u0 ·∇u0|

p−2
2 A0∇u0

���
Lp/(p−1)

× [�∇u1 −∇u0�Lp ].

Writing A1∇u0 = (A1∇u0−A0∇u0)+A0∇u0 and using that
���a

p−2
2

1 − a

p−2
2

0

��� ≤
C |a1 − a0| when 1/M ≤ aj ≤ M (choosing aj = Aj

∇u0
|∇u0| ·

∇u0
|∇u0| ), we obtain (7).

We now interpolate the W
1,p control of u1 − u0 in Lemma 3.2 with the

uniform bounds obtained from the C
1,β regularity theory of p-Laplace type

equations to show that ∇u1 is actually close to ∇u0 in L
∞.

Lemma 3.3. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C
1,α boundary

where 0 < α < 1, let 1 < p < ∞, and let M > 0. There exist C > 0
and γ > 0, depending on n, p,α,Ω,M , such that for any σ0,σ1 ∈ C

α(Ω) and
A0, A1 ∈ L

∞
+ (Ω,Rn×n) satisfying

1/M ≤ σj , Aj ≤ M in Ω,

�σj�Cα(Ω) + �Aj�Cα(Ω) ≤ M,
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and for any f ∈ C
1,α(Ω) satisfying

�f�C1,α(Ω) ≤ M,

one has

�∇u1 −∇u0�L∞(Ω) ≤ C(�σ1 − σ0�L∞(Ω) + �A1 −A0�L∞(Ω))
γ

whenever u0, u1 ∈ W
1,p(Ω) solve

div(σj |Aj∇uj ·∇uj |
p−2
2 Aj∇uj) = 0 in Ω

and satisfy u1|∂Ω = u0|∂Ω = f |∂Ω.

Proof. Under the stated assumptions, the weak solutions u0 and u1 are C
1,β

regular up to the boundary, see for instance [28]. More precisely, there exists
β = β(n, p,α,Ω,M) with 0 < β < 1 so that u0 and u1 satisfy

�uj�C1,β(Ω) ≤ C (12)

where C = C(n, p,α,Ω,M) may change from line to line. Clearly also

�uj�W 1,p(Ω) ≤ C.

It follows from Lemma 3.2 that

�∇u1 −∇u0�Lp(Ω) ≤ C(�σ1 − σ0�L∞(Ω) + �A1 −A0�L∞(Ω))
min{ 1

p−1 ,1}.

On the other hand, (12) implies

�∇u1 −∇u0�Cβ(Ω) ≤ C.

The lemma follows by interpolating the last two estimates by using Lemma 4.2
in the appendix.

Now we show that the linear function u0(x) = x1 solving

div(|∇u0|p−2 ∇u0) = 0 in Ω

can be perturbed into a solution of div(σ |A∇u ·∇u|
p−2
2 A∇u) = 0 having

nonvanishing gradient, if σ and A are sufficiently close to constant.

Lemma 3.4. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C
1,α bound-

ary where 0 < α < 1, let 1 < p < ∞, and let M > 0. There exists
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ε = ε(n, p,α,Ω,M) > 0 such that for any σ ∈ C
α(Ω) and for any symmet-

ric positive definite A ∈ C
α(Ω,Rn×n) satisfying

�σ�Cα(Ω) + �A�Cα(Ω) ≤ M,

�σ − 1�L∞(Ω) + �A− I�L∞(Ω) ≤ ε,

there exists a solution u ∈ C
1(Ω) of

div(σ |A∇u ·∇u|
p−2
2 A∇u) = 0 in Ω

satisfying |∇u| ≥ 1/2 in Ω.

Proof. Note that by taking ε small enough, one has

1/2 ≤ σ ≤ 2, 1/2 ≤ A ≤ 2 in Ω.

Choose σ1 = σ, A1 = A and σ0 = 1, A0 = I, and observe that the linear
function u0(x) = x1 solves the p-Laplace equation

div(σ0 |A0∇u0 ·∇u0|
p−2
2 A0∇u0) = 0 in Ω.

By Lemma 3.3, there are C > 0 and γ > 0 so that the solution u = u1 of

div(σ1 |A1∇u ·∇u|
p−2
2 A1∇u) = 0 in Ω, u|∂Ω = u0|∂Ω

satisfies

�∇u−∇u0�L∞(Ω) ≤ C(�σ − 1�L∞(Ω) + �A− I�L∞(Ω))
γ
.

If ε is chosen so that C(2ε)γ ≤ 1/2, we have

|∇u| ≥ |∇u0|− |∇u−∇u0| ≥ 1/2 in Ω.

Proof of Theorem 3.1. First choose ε as in Lemma 3.4, and choose u ∈ W
1,p(Ω)

so that u solves
div(σ2 |A∇u ·∇u|

p−2
2 A∇u) = 0 in Ω

and satisfies |∇u| ≥ 1/2 in Ω. We now use a similar argument as in the proof
of Theorem 2.1. The conditions σ1 ≥ σ2 in Ω and Λσ1 = Λσ2 together with the
monotonicity inequality, Lemma 2.2, imply that

|∇u2|p = 0 a.e. in E

for any u2 solving div(σ2 |A∇u2 ·∇u2|(p−2)/2
A∇u2) = 0, where E = {x ∈

Ω ; σ1(x) > σ2(x)}. If the open set E were nonempty, one could choose u2 = u

to obtain a contradiction. Thus E must be empty and we have σ1 = σ2 in
Ω.



INVERSE PROBLEMS FOR THE P -LAPLACE EQUATION 93

4. Appendix. Auxiliary results

In this appendix, we first prove a result related to the decomposition of a
positive definite matrix having continuous entries and then state an interpo-
lation result. Finally we finish this section by recalling a proof of the unique
continuation principle for the weighted p-Laplace equation in the plane.

4.1. Matrix decomposition

Lemma 4.1. Let A ∈ C(Ω,Rn×n) be an n×n symmetric positive definite matrix
function. Then there exists a matrix function B ∈ C(Ω,Rn×n) such that A =
B

�
B.

Proof. Consider the following inner product and norm on Rn defined for x ∈ Ω,

�v, w�A(x) = A(x)v · w, |v|A(x) = (A(x)v · v)1/2, v, w ∈ Rn
.

We apply the Gram-Schmidt orthonormalization procedure to the standard
basis {e1, . . . , en} of Rn with respect to this inner product. Define

w1(x) = e1, v1(x) = w1/ |w1|A(x) ,

and if k ≥ 2 define inductively

wk(x) = ek − �ek, v1(x)�A(x)v1(x)− . . .− �ek, vk−1(x)�A(x)vk−1(x),

vk(x) = wk(x)/ |wk(x)|A(x) .

Now v1(x) = e1/
�
a11(x) is a continuous vector function in x, and inductively

one sees that each vk(x) is also continuous in x. Here it is crucial that A(x) is
positive definite and that {e1, . . . , en} are linearly independent, so the denom-
inators |wk(x)|A(x) are positive and continuous.

The above process leads to a basis {v1(x), . . . , vn(x)} of Rn which is or-
thonormal in the A(x) inner product, i.e., A(x)vj(x) · vk(x) = δjk. Then
V (x) =

�
v1(x) . . . vn(x)

�
is a matrix function in C(Ω,Rn×n) and satisfies

V (x)�A(x)V (x) = I.

Linear independence implies that det(V (x)) �= 0 for all x ∈ Ω. It follows that
the matrix B(x) = V (x)−1 is in C(Ω,Rn×n) and satisfies B(x)�B(x) = A(x)
in Ω.

4.2. Interpolation

Lemma 4.2. Let Ω be a bounded Lipschitz domain in Rn
, n ≥ 2, let 0 < β < 1,

and let 1 < p < ∞. For any θ ∈ ( n/p
β+n/p , 1] there is C > 0 such that whenever
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f ∈ C
β(Ω) satisfies

�f�Lp(Ω) ≤ M0,

�f�Cβ(Ω) ≤ M1,

then
�f�L∞(Ω) ≤ CM

1−θ
0 M

θ
1 .

Proof. Recall that, for 0 < β < 1, the Hölder space C
β(Ω) is precisely the

Besov space B
β
∞∞(Ω). We also denote by W

s,p(Ω) the L
p Sobolev space with

smoothness index s.
By the results in [33, Section 23], whenever ε > 0 and 2 ≤ q < ∞ one has

the continuous embeddings (which in fact hold for any bounded domain Ω, not
necessarily Lipschitz):

B
β
∞∞(Ω) ⊂ B

β−ε
q2 (Ω) ⊂ F

β−ε
q2 (Ω) = W

β−ε,q(Ω).

Thus we see that

�f�W 0,p(Ω) ≤ M0,

�f�Wβ−ε,q(Ω) ≤ CM1.

By complex interpolation [34, Theorem 2.13], we obtain for any 0 ≤ t ≤ 1 that

�f�W st,rt (Ω) ≤ M
1−t
0 (CM1)

t

where st = t(β − ε) and 1
rt

= (1− t) 1p + t
1
q .

Now fix θ with n/p
β+n/p < θ ≤ 1, and fix ε > 0 and 2 ≤ q < ∞ so that

θ(β − ε) >
n
r where 1

r = (1 − θ) 1p + θ
1
q (this condition is equivalent with

θ(β− ε+ n
p − n

q ) >
n
p , and such ε and q exist since θ >

n/p
β+n/p ). Choosing t = θ

above and using the continuous embedding W
sθ,rθ (Ω) ⊂ L

∞(Ω), which follows
from [33, Section 23] since sθ > n/rθ, we get

�f�L∞(Ω) ≤ CM
1−θ
0 (CM1)

θ

as required. (After the initial embeddings, one could also use the universal
extension operator for Lipschitz domains [34, Theorem 2.11] and work in Rn.)

4.3. Unique continuation principle for weighted
p-harmonic functions in the plane

In this subsection, we sketch a proof of the unique continuation principle for
the weighted p-Laplace equation

div(σ |∇u|p−2 ∇u) = 0 (13)



INVERSE PROBLEMS FOR THE P -LAPLACE EQUATION 95

in a bounded domain Ω ⊂ R2 following [8]. This result is also a special case of
[6, Proposition 3.3]. Indeed, according to a very recent work of [19], even the
strong unique continuation principle holds for the solutions of (13). Assume
that σ is positive and Lipschitz continuous in Ω.

We first consider the case p ≥ 2. Let us define a vector field F : Ω → R2 by

F (x) = σ
p/2|∇u(x)|(p−2)/2∇u(x),

where u satisfies (13). Then it follows from [8, Proof of Proposition 2] that
F ∈ W

1,2
loc (Ω,R2).

We write f = σux − iσuy for the complex gradient of u in the complex
plane, where z = x+ iy, and define the nonlinear counterparts of the complex
gradient f by Fa = |f |af, a > −1. In the following computations, we will derive
the nonlinear first order elliptic system for F , that is Fa with a = (p− 2)/2.

From the definition of f and Fa, we have

2ux =
1

σ
|Fa|−

a
a+1

�
Fa + Fa

�

and

2uy = i
1

σ
|Fa|−

a
a+1

�
Fa − Fa

�
.

Therefore from the above equalities we have,

∂

∂y

� 1
σ
|Fa|−

a
a+1 (Fa + Fa)

�
= i

∂

∂x

� 1
σ
|Fa|−

a
a+1 (Fa − Fa)

�
.

This is equivalent to

Im
∂

∂z̄

� 1

σ
|Fa|−

a
a+1Fa

�
= 0. (14)

Note that, for a = (p− 2)/2, Fa is differentiable almost everywhere and so (14)
reduces to the complex equation

∂

∂z̄
Fa −

∂

∂z̄
Fa =− a

a+ 2

�
F̄a

Fa

∂

∂z
Fa −

Fa

F̄a

∂

∂z
Fa

�

+ σ
2a+ 2

a+ 2

�
F̄a

∂

∂z

�
1

σ

�
− Fa

∂

∂z̄

�
1

σ

��
.

(15)

On the other hand, since u satisfies weighted p-Laplacian equation

∇ · (σ|∇u|p−2∇u) = 0,

we have

∇ ·
�

1

σp−2
|Fa|

p−2−a
a+1 (Fa + Fa, i(Fa − Fa))

�
= 0,
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which is equivalent to the equation

∂

∂x

�
1

σp−2
|Fa|

p−2−a
a+1 (Fa + Fa)

�
+ i

∂

∂y

�
1

σp−2
|Fa|

p−2−a
a+1 (Fa − Fa)

�
= 0.

Using the complex notation we can write

Re
∂

∂z̄

�
1

σp−2
|Fa|

p−2−a
a+1 Fa

�
= 0.

For a = (p−2)/2, Fa is differentiable almost everywhere and so the last equation
can be written as

∂

∂z̄
Fa +

∂

∂z̄
Fa =− p− 2− a

a+ p

�
Fa

Fa

∂

∂z
Fa +

Fa

Fa

∂

∂z
Fa

�

− σ
p−2 2a+ 2

a+ p

�
Fa

∂

∂z̄

�
1

σp−2

�
+ Fa

∂

∂z

�
1

σp−2

��
.

(16)

Adding (15) and (16), we get (with a = (p− 2)/2)

∂

∂z̄
F = q1

∂

∂z
F + q2

∂

∂z
F +H(z, F ), (17)

where

q1 = −1

2

�
p− 2

p+ 2
+

p− 2

3p− 2

�
F

F
,

q2 = −1

2

�
p− 2

3p− 2
− p− 2

p+ 2

�
F

F

and

H(z, F ) =σ
p

p+ 2

�
F

∂

∂z

�
1

σ

�
− F

∂

∂z̄

�
1

σ

��

− σ
p−2 p

3p− 2

�
F

∂

∂z

�
1

σp−2

�
+ F

∂

∂z̄

�
1

σp−2

��
.

It is easy to check that |q1|+ |q2| < 1 and |H(z, F )| ≤ q3(z)|F | with q3 ∈ L
∞.

Under these structure assumptions for q1, q2 and q3, by [9, Section 8.4], the
solution of (17) can be represented as

F (z) = H(χ(z))eϕ(z)
, (18)

where H is analytic, χ is quasiconformal and ϕ is Hölder continuous in Ω with

ϕz̄,ϕz ∈ L
q(Ω) for some q > 2. Write R(ξ) = |ξ|

2a+2−p
2p ξ and it is clear that

Fa(z) = R ◦ F(p−2)/2 =
��H(χ(z))

��βH(χ(z))e(β+1)ϕ(z)
. (19)
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Note that the function Gβ :=
��H(χ(z))

��βH(χ(z)) is quasiregular as being the
composition of a quasiregular mapping with an analytic function.

Suppose now u is constant on an open subset of Ω, then Fa will vanish on
that open subset, which together with the observation that e

(β+1)ϕ(z) is non-
zero, implies that Gβ is zero on that open subset. Since Gβ is quasiregular,
it is either constant or both discrete and open, and Gβ being zero in an open
subset of Ω necessarily forces Gβ to be zero everywhere in Ω. This implies that
Fa ≡ 0 in Ω and hence u is identically constant in Ω.

The case p ∈ (1, 2) can be treated identically as above, provided that we are
able to show F ∈ W

1,2
loc (Ω,R2). Note that since the regularity is a local issue,

we may assume that Ω is a simply connected bounded domain. As in [7, Page
426-427], this can be done by a very elegant argument involving the weighted
dual q-harmonic equation, where 1

p + 1
q = 1. Namely, there exists a weighted

q-harmonic function v ∈ W
1,q
loc (Ω) satisfying

div(σ1−q|∇v|q−2∇v) = 0

such that vx = −σ|∇u|p−2
uy and vy = σ|∇u|p−2

ux. Since q > 2 and σ
1−q is

positive and Lipschitz, it follows again from [8, Proof of Proposition 2] that
|∇v|(q−2)/2∇v ∈ W

1,2
loc (Ω,R2) and so F ∈ W

1,2
loc (Ω,R2) as desired.
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Stable determination of an inclusion
in an inhomogeneous elastic body

by boundary measurements

Antonino Morassi and Edi Rosset

“Dedicato a Giovanni Alessandrini per il suo sessantesimo compleanno”

Abstract. In this paper we consider the stability issue for the in-
verse problem of determining an unknown inclusion contained in an
elastic body by all the pairs of measurements of displacement and trac-
tion taken at the boundary of the body. Both the body and the inclusion
are made by inhomogeneous linearly elastic isotropic material. Under
mild a priori assumptions about the smoothness of the inclusion and
the regularity of the coefficients, we show that the logarithmic stability
estimate proved in [3] in the case of piecewise constant coefficients con-
tinues to hold in the inhomogeneous case. We introduce new arguments
which allow to simplify some technical aspects of the proof given in [3].

Keywords: Inverse problems, linearized elasticity, inclusions, stability, unique continua-
tion.
MS Classification 2010: 35R30, 35Q74, 35R25, 74B05, 74G75.

1. Introduction

The inverse problem of determining unknown inclusions in continuous bodies
from measurements of physical parameters taken at the boundary of the body
has attracted a lot of attention in the last thirty years, see, among other contri-
butions, the reconstruction results obtained in [12, 17, 18]. Inclusions may be
due to the presence of inhomogeneities or defects inside the body, and the de-
velopment of non-invasive testing approaches is of great importance in several
practical contexts, ranging from medicine to engineering applications.

Inverse problems of this class are usually ill-posed according to Hadamard’s
definition, and one of the main issues is the uniqueness of the solution, that
is the determination of the boundary measurements which ensure the unique
determination of the defect. Moreover, from the point of view of practical
applications, it is crucial to establish how small perturbations on the data may
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affect the accuracy of the identification of the inclusion, namely, the study of
the stability issue.

The prototype of these inverse problems is the determination of an inclusion
inside an electric conductor from boundary measurements of electric potential
and current flux. Uniqueness was first proved by Isakov in �88 [14]. The first
stability result is due to Alessandrini and Di Cristo [2], who derived a loga-
rithmic stability estimate of the inclusion from all possible boundary measure-
ments, that is from the full Dirichlet-to-Neumann map. More precisely, the
authors considered in [2] the case of piecewise-constant coefficients and con-
structed an ingenious proof which, starting from Alessandrini’s identity (first
derived in [1]), makes use of fundamental solutions for elliptic equations with
discontinuous coefficients, and suitable quantitative forms of unique continu-
ation for solutions to Laplacian equation. An extension of the above result
to the case of variable coefficients was derived in [8]. The pioneering work [2]
stimulated a subsequent line of research in which methods and results were
extended to other frameworks, such as, for example, the stable identification
of inclusions in thermal conductors [9, 10], which involves a parabolic equation
with discontinuous coefficients.

Concerning the determination of an inclusion in an elastic body from the
Dirichlet-to-Neumann map, the uniqueness was proved by Ikehata, Nakamura
and Tanuma in [13]. The stability issue has been recently faced in [3]. The
statical equilibrium of the defected body is governed by the following system
of elliptic equations

div ((C+ (CD − C)χD)∇u) = 0, in Ω, (1)

where u is the three-dimensional displacement field inside the elastic body Ω,
χD is the characteristic function of the inclusion D, and C, CD is the elasticity
tensor in the background material and inside the inclusion, respectively. Given
inclusions D1, D2, let ΛDi : H1/2(∂Ω) → H−1/2(∂Ω) be the Dirichlet-to-
Neumann map which gives the traction at the boundary ∂Ω corresponding to
a displacement field assigned on ∂Ω, when D = Di, i = 1, 2. Assuming that
C, CD1 = CD2 are constant and of Lamé type (e.g., isotropic material), and
under C1,α-regularity of the boundary of the inclusion, the authors derived the
following stability result. If, for some �, 0 < � < 1,

�ΛD1 − ΛD2�L(H1/2(∂Ω),H−1/2(∂Ω)) ≤ �, (2)

then the Hausdorff distance between the two inclusions can be controlled as

dH(∂D1, ∂D2) ≤
C

| log �|η
, (3)

where the constants C > 0 and η, 0 < η ≤ 1, only depend on the a-priori data.
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The piecewise-constant Lamé case can be considered as a simplified math-
ematical model of real elastic bodies. Therefore, it is of practical interest to
extend the stability estimate (3) to variable coefficients both in the background,
C = C(x), and in the inclusions, CDi = CDi(x), i = 1, 2. More precisely, as-
suming C1,1 and Cτ regularity, τ ∈ (0, 1), for C and CDi , respectively, i = 1, 2,
in this paper we show that (3) continues to hold. Let us emphasize that in
order to derive our result the exact knowledge of the elasticity tensor inside
the inclusion is not needed. In fact, only the strong convexity conditions (16)
and the bounds (17), (20), (22) are required. Moreover, as in [3], the inclusion
is allowed to share a portion of its boundary with the boundary of the body Ω.

Let us briefly recall the main ideas of our approach and the new mathemati-
cal tools we used in the proof of the stability result. Let ΓDi be the fundamental
matrix associated to the elasticity tensor (C + (CDi − C)χDi), i = 1, 2. The
main idea is to obtain an upper and a lower bound for (ΓD2 − ΓD1)(y, w) for
points y and w belonging to the connected component of R3 \ (D1 ∪D2) which
contains R3\Ω, and approaching non-tangentially a suitable point P ∈ ∂D1\D2

(or ∂D2 \D1). A first crucial ingredient in determining both upper and lower
bounds is the integral representation of (ΓD2−ΓD1)(y, w) given by formula (40).
Next, the upper bound follows from an application of Alessandrini’s identity
(suitably adapted to linear elasticity, see Lemma 6.1 in [3]) and a propagation
of smallness argument based on iterated use of the three spheres inequality for
solutions to the Lamé system of linear elasticity with smooth variable coeffi-
cients.

In proving the lower bound (see Section 4) we introduce new arguments
which entail a simplification of the proof given for the piecewise-constant co-
efficient case. Indeed, a generalization of Theorem 8.1 in [3], which was a key
tool in proving the lower bound, should need the derivation of an asymptotic
approximation of ΓD in terms of the fundamental matrix obtained by locally
flattening the boundary ∂D and freezing the coefficients at a point belonging
to ∂D, which does not appear straightforward.

Finally, let us emphasize that the statement of Theorem 8.1 in [3], besides
being worth of interest from a theoretical viewpoint, may have relevant inter-
est for its possible applications. In fact, it turned out to be a fundamental
ingredient in the proof of Lipschitz stability estimates for the inverse problem
of determining the Lamé moduli for a piecewise constant elasticity tensor cor-
responding to a known partition of the body in a finite number of subdomains
having regular interfaces [6], see also [7] for the case of flat interfaces.

The plan of the paper is as follows. Notation and the a priori information
are introduced in section 2, together with the statement of the stability result
(Theorem 2.2). In section 3 we recall some auxiliary results, we state the upper
and lower bounds on (ΓD2 −ΓD1), Theorems 3.4 and 3.5, and we give the proof
of the main Theorem 2.2. Section 4 is devoted to the proof of Theorem 3.5.
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2. The main result

2.1. Notation

Let us denote R3
+ = {x ∈ R3 | x3 > 0} and R3

− = {x ∈ R3 | x3 < 0}. Given
x ∈ R3, we shall denote x = (x�, x3), where x� = (x1, x2) ∈ R2, x3 ∈ R. Given
x ∈ R3 and r > 0, we shall use the following notation for balls in three and two
dimensions:

Br(x) = {y ∈ R3
| |y − x| < r}, Br = Br(O),

B�
r(x

�) = {y� ∈ R2
| |y� − x�

| < r}, B�
r = B�

r(O).

Definition 2.1 (Ck,α regularity). Let E be a domain in R3. Given k, α,
k ∈ N, 0 < α ≤ 1, we say that E is of class Ck,α with constants ρ0, M0 > 0, if,
for any P ∈ ∂E, there exists a rigid transformation of coordinates under which
we have P = 0 and

E ∩Bρ0(O) = {x ∈ Bρ0(O) | x3 > ϕ(x�)},

where ϕ is a Ck,α function on B�
ρ0

satisfying

ϕ(O) = 0,

|∇ϕ(O)| = 0, when k ≥ 1,

�ϕ�Ck,α(B�
ρ0

(O)) ≤ M0ρ0.

Here and in the sequel all norms are normalized such that their terms are
dimensionally homogeneous. For instance

�ϕ�Ck,α(B�
ρ0

(O)) =
k�

i=0

ρi0�∇
iϕ�L∞(B�

ρ0
(O)) + ρk+α

0 |∇
kϕ|α,B�

ρ0
(O),

where

|∇
kϕ|α,B�

ρ0
(O) = sup

x�, y�∈B�
ρ0

(O)

x� �=y�

|∇kϕ(x�)−∇kϕ(y�)|

|x� − y�|α
.

Similarly, for a vector function u : Ω ⊂ R3 → R3, we set

�u�H1(Ω,R3) =

��

Ω
|u|2 + ρ20

�

Ω
|∇u|2

� 1
2

,

and so on for boundary and trace norms such as � · �
H

1
2 (∂Ω,R3)

, � · �
H− 1

2 (∂Ω,R3)
.
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For any U ⊂ R3 and for any r > 0, we denote

Ur = {x ∈ U | dist(x, ∂U) > r}, (4)

Ur = {x ∈ R3
| dist(x, U) < r}. (5)

We denote by Mm×n the space of m×n real valued matrices and we also use the
notation Mn = Mn×n. Let L(X,Y ) be the space of bounded linear operators
between Banach spaces X and Y .

For every pair of real n-vectors a and b, we denote by a⊗b the n×n matrix
with entries

(a⊗ b)ij = aibj , i, j = 1, ..., n. (6)

For every 3 × 3 matrices A, B and for every C ∈ L(M3,M3), we use the
following notation:

(CA)ij =
3�

k,l=1

CijklAkl, (7)

A ·B =
3�

i,j=1

AijBij , (8)

|A| = (A ·A)
1
2 , (9)

where Cijkl, Aij and Bij are the entries of C, A and B respectively.
Finally, let us recall the definition of the Hausdorff distance dH(A,B) of

two bounded closed sets A,B ⊂ R3

dH(A,B) = max

�
max
x∈A

d(x,B),max
x∈B

d(x,A)

�

2.2. A-priori information and main result

We make the following a-priori assumptions. The continuous body Ω is a
bounded domain in R3 such that

R3
\ Ω is connected, (10)

|Ω| ≤ M1ρ
3
0, (11)

Ω is of class C1,α, with constants ρ0, M0, (12)

and the inclusion D is a connected subset of Ω satisfying

R3
\D is connected, (13)

D is of class C1,α, with constants ρ0, M0, (14)
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where ρ0, M0, M1 are given positive constants, and 0 < α ≤ 1.
The background material is linearly elastic isotropic, with elasticity tensor

C = C(x), which - without restriction - may be defined in the whole R3. The
cartesian components of C(x) are

Cijkl(x) = λ(x)δijδkl + µ(x)(δkiδlj + δliδkj), for every x ∈ R3, (15)

where δij is the Kronecker’s delta and the Lamé moduli λ = λ(x), µ = µ(x)
satisfy the strong convexity conditions

µ(x) ≥ α0, 2µ(x) + 3λ(x) ≥ γ0, for every x ∈ R3, (16)

for given constants α0 > 0, γ0 > 0. We shall also assume upper bounds

µ(x) ≤ µ, λ(x) ≤ λ, for every x ∈ R3, (17)

where µ > 0, λ ∈ R are given constants. Let us notice that (15) clearly implies
the major and minor symmetries of C, namely

Cijkl = Cklij = Clkij , i, j, k, l = 1, 2, 3. (18)

The inclusion D is assumed to be made by linearly elastic isotropic material
having elasticity tensor CD = CD(x) with components

CD
ijkl(x) = λD(x)δijδkl + µD(x)(δkiδlj + δliδkj), for every x ∈ Ω, (19)

where the Lamé moduli λD(x), µD(x) satisfy the conditions (16)–(17) and, in
addition,

(λ(x)− λD(x))2 + (µ(x)− µD(x))2 ≥ η20 > 0, for every x ∈ Ω, (20)

for a given constant η0 > 0.
Finally, the elasticity tensors C and CD are assumed to be of C1,1 class in

R3 and of Cτ class in Ω, τ ∈ (0, 1), respectively, that is

�λ�C1,1(R3) + �µ�C1,1(R3) ≤ M, (21)

�λD
�Cτ (Ω) + �µD

�Cτ (Ω) ≤ M, (22)

for a given constant M > 0.

For any f ∈ H
1
2 (∂Ω), let u ∈ H1(Ω) be the weak solution to the Dirichlet

problem
�

div ((C+ (CD − C)χD)∇u) = 0, in Ω,

u = f, on ∂Ω,

(23)

(24)
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where χD is the characteristic function of D. The Dirichlet-to-Neumann map
ΛD associated to (23)–(24),

ΛD : H1/2(∂Ω) → H−1/2(∂Ω), (25)

is defined in the weak form by

< ΛDf, v|∂Ω >=

�

Ω
(C+ (CD

− C)χD)∇u ·∇v, (26)

for every v ∈ H1(Ω).
We prove the following logarithmic stability estimate for the inverse problem

of recovering the inclusion D from the knowledge of the map ΛD.

Theorem 2.2. Let Ω ⊂ R3 be a bounded domain satisfying (10)–(12) and let
D1, D2 be two connected inclusions contained in Ω satisfying (13)–(14). Let
C(x) and CDi(x) be the elasticity tensor of the material of Ω and of the in-
clusion Di, i = 1, 2, respectively, where C(x) given in (15) and CDi(x) given
in (19) (for D = Di) satisfy (16), (17), (20), (21) and (22). If, for some �,
0 < � < 1,

�ΛD1 − ΛD2�L(H1/2(∂Ω),H−1/2(∂Ω)) ≤
�

ρ0
, (27)

then
dH(∂D1, ∂D2) ≤ Cρ0| log �|

−η, (28)

where C > 0 and η, 0 < η ≤ 1, are constants only depending on M0, α, M1,
α0, γ0, µ, λ, η0, τ , M .

Remark 2.3. If in Theorem 2.2 we further assume that the two inclusions are
at a prescribed distance from ∂Ω, then the result continues to hold even when
the local Dirichlet-to-Neumann map is known. The proof can be obtained by
adapting the general theory developed by Alessandrini and Kim [4].

3. Proof of the main result

In order to state the metric Lemma 3.1 below, we need to introduce some
notation.

We denote by G the connected component of R3 \ (D1 ∪D2) which con-
tains R3 \ Ω.

Given O = (0, 0, 0), a unit vector v, h > 0 and ϑ ∈
�
0, π

2

�
, we denote by

C(O, v, h,ϑ) =
�
x ∈ R3

| |x− (x · v)v| ≤ sinϑ|x|, 0 ≤ x · v ≤ h
�

(29)

the closed truncated cone with vertex at O, axis along the direction v, height h
and aperture 2ϑ. Given R, d, 0 < R < d and Q = −de3, let us consider the cone
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C
�
O,−e3,

d2−R2

d , arcsin R
d

�
, whose lateral boundary is tangent to the sphere

∂BR(Q) along the circumference of its base.
Given a point P ∈ ∂D1∩∂G, let ν be the outer unit normal to ∂D1 at P and

let d > 0 be such that the segment [P + dν, P ] is contained in G. For a point
P0 ∈ G, let γ be a path in G joining P0 to P + dν. We consider the following
neighbourhood of γ∪ [P +dν, P ]\{P} formed by a tubular neighbourhood of γ
attached to a cone with vertex at P and axis along ν

V (γ, d, R) =
�

S∈γ

BR(S) ∪ C

�
P, ν,

d2 −R2

d
, arcsin

R

d

�
. (30)

Let us also define

S2ρ0 =
�
x ∈ R3

|ρ0 < dist(x,Ω) < 2ρ0
�
. (31)

Lemma 3.1. Under the assumptions of Theorem 2.2, up to inverting the role of

D1 and D2, there exist positive constants d, c, where d
ρ0

only depends on M0

and α, and c ≥ 1 only depends on M0, α and M1, and there exists a point
P ∈ ∂D1 ∩ ∂G such that

dH(∂D1, ∂D2) ≤ c dist(P,D2), (32)

and such that, giving any point P0 ∈ S2ρ0 , there exists a path γ ⊂ Ω2ρ0 ∩ G

joining P0 to P + dν, where ν is the unit outer normal to D1 at P , such that,
choosing a coordinate system with origin O at P and axis e3 = −ν, we have

V (γ, d, R) ⊂ R3
∩ G, (33)

where R
ρ0

only depends on M0 and α.

The thesis of the above lemma is a straightforward consequence of Lem-
ma 4.1 and Lemma 4.2 in [3], and is inspired by results obtained in [5] and [2].

Let D be a domain of class C1,α with constants ρ0, M0 and 0 < α ≤ 1. The
elasticity tensors C and CD given by (15) and (19) respectively, satisfy (16),
(17), (21) and (22).

Given y ∈ R3 and a concentrated force lδ(· − y) applied at y, with l ∈ R3,
let us consider the normalized fundamental solution uD ∈ L1

loc(R3,R3) defined
by






div x

�
(C(x) + (CD(x)− C(x))χD)∇xuD(x, y; l)

�

= −lδ(x− y), in R3 \ {y},

lim|x|→∞ uD(x, y; l) = 0,

(34)
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where δ(·− y) is the Dirac distribution supported at y. It is well-known that

uD(x, y; l) = ΓD(x, y)l, (35)

where ΓD = ΓD(·, y) ∈ L1
loc(R3,L(R3,R3)) is the normalized fundamental ma-

trix for the operator div x((C(x) + (CD(x)−C(x))χD)∇x(·)). Existence of ΓD

and asymptotic estimates are stated in the following Proposition.

Proposition 3.2. Under the above assumptions, there exists a unique funda-
mental matrix ΓD(·, y) ∈ C0(R3 \ {y}), such that

ΓD(x, y) = (ΓD(y, x))T , for every x ∈ R3, x �= y, (36)

|ΓD(x, y)| ≤ C|x− y|−1, for every x ∈ R3, x �= y, (37)

|∇xΓ
D(x, y)| ≤ C|x− y|−2, for every x ∈ R3, x �= y, (38)

where the constant C > 0 only depends on M0, α, α0, γ0, λ, µ, τ , M .

A proof of Proposition 3.2 follows by merging the regularity results by Li
and Nirenberg [15] and the analysis by Hofmann and Kim [11], see [3] for
details.

Let Di, i = 1, 2, be a domain of class C1,α with constants ρ0, M0 and
0 < α ≤ 1, and consider the elasticity tensors

C1 = CχR3\D1
+ CD1χD1 , C2 = CχR3\D2

+ CD2χD2 , (39)

where CD1 , CD2 given in (19) (with D = D1 and D = D2, respectively) satisfy
(16), (17) and (22).

The following Proposition 3.3 states an integral representation involving
the normalized fundamental matrices corresponding to inclusions D1 and D2.
Similar identities will be introduced in Section 4, in order to prove Theorem 3.5.
Since these integral representations are basic ingredients for our approach, we
present here a proof of Proposition 3.3, which is more exhaustive with respect
to that given in [3, Proof of Lemma 6.2], where some details were implied.

Proposition 3.3. Let Di and CDi , i = 1, 2, satisfy the above assumptions.
Then, for every y, w ∈ R3, y �= w, and for every l, m ∈ R3 we have

�
ΓD2 − ΓD1

�
(y, w)m · l =

=

�

Ω
C1

∇ΓD1(·, y)l ·∇ΓD2(·, w)m−

�

Ω
C2

∇ΓD1(·, y)l ·∇ΓD2(·, w)m. (40)

Proof. Formula (40) is obtained by subtracting the two following identities
�

R3

C1
∇ΓD1(·, y)l ·∇ΓD2(·, w)m = ΓD2(y, w)m · l, (41)
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�

R3

C2
∇ΓD1(·, y)l ·∇ΓD2(·, w)m = ΓD1(y, w)m · l. (42)

To prove (41), let

H = {f : R3 → R3 | f ∈ C0(R3,R3) ∩H1(R3,R3),
f with compact support}.

(43)

By the weak formulation of (34) (with D = D1), we have

�

R3

C1
∇ΓD1(·, y)l ·∇ϕ = ϕ(y) · l, for every ϕ ∈ H. (44)

Let � > 0, R > 0, with � ≤ |w−y|
2 , R ≥ 2max{|y|, |w|}, and choose ϕ ∈ H such

that supp(ϕ) ⊂ B2R(0) and ϕ|BR(0)\B�(w) ≡ ΓD2(·, w)m. Then, (44) can be
rewritten as

I�,R + I� + IR,2R = ΓD2(y, w)m · l, (45)

where

I�,R =

�

BR(0)\B�(w)
C1

∇ΓD1(·, y)l ·∇ΓD2(·, w)m, (46)

I� =

�

B�(w)
C1

∇ΓD1(·, y)l ·∇ϕ, (47)

IR,2R =

�

B2R(0)\BR(0)
C1

∇ΓD1(·, y)l ·∇ϕ. (48)

Integrating by parts on B�(w) and recalling that y ∈ R3 \B�(w), we have

I� =

�

∂B�(w)
(C1

∇ΓD1(·, y)l)ν · ΓD2(·, w)m. (49)

For every x ∈ ∂B�(w) and by our choice of �, we have |x−y| ≥ |y−w|−|w−x| ≥
|y−w|

2 . Therefore, by (37) and (38), we have

I� ≤ C

�

|x−w|=�

1

|x− y|2
1

|x− w|
≤

C�

|y − w|2
, (50)

where the constant C > 0 only depends on M0, α, α0, γ0, λ, µ, τ , M .
Analogously, integrating by parts in B2R(0)\BR(0) and recalling that ϕ = 0

on ∂B2R(0) and y ∈ BR
2
(0), we have

IR,2R = −

�

∂BR(0)
(C1

∇ΓD1(·, y)l)ν · ΓD2(·, w)m. (51)
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For every x ∈ ∂BR(0) and by our choice of R, we have |x−w| ≥ |x|− |w| ≥ R
2

and |x− y| ≥ R
2 . Therefore,

IR,2R ≤ C

�

|x|=R

1

|x− y|2
1

|x− w|
≤

C

R
, (52)

where the constant C > 0 only depends on M0, α, α0, γ0, λ, µ, τ , M .
Using the estimates (50) and (52) in (45), and taking the limit as � → 0

and R → ∞, we obtain (41). Symmetrically, we obtain
�

R3

C2
∇ΓD1(·, y)l ·∇ΓD2(·, w)m = ΓD1(w, y)l ·m. (53)

By using (36), we obtain (42).

Let P , P ∈ ∂D1, be the point introduced in Lemma 3.1. In the following
two theorems, we use a cartesian coordinate system such that P ≡ O = (0, 0, 0)
and ν = −e3, where ν is the unit outer normal to D1 at P .

Theorem 3.4 (Upper bound on (ΓD2 − ΓD1)). Under the notation of Lemma
3.1, let

yh = P − he3, (54)

wh = P − λwhe3, 0 < λw < 1, (55)

with
0 < h ≤ hρ0, (56)

where h only depends on M0 and α.
Then, for every l, m ∈ R3, |l| = |m| = 1, we have

|(ΓD2 − ΓD1)(yh, wh)m · l| ≤
C

λwh
�
C1

�
h
ρ0

�C2

, (57)

where the positive constants C, C1 and C2 only depend on M0, α, M1, α0, γ0,
λ, µ, τ and M .

For the proof of the above result, we refer to [3, Section 7]. To give an
idea of the role played by Proposition 3.3 in proving estimate (57), let us recall
Alessandrini’s identity

�

Ω
C1

∇u1 ·∇u2 −

�

Ω
C2

∇u1 ·∇u2 =< (ΛD1 − ΛD2)u2, u1 >, (58)

which holds for every pair of solutions ui ∈ H1(Ω) to (1) with D = Di, i = 1, 2.
By choosing in the above identity u1(·) = ΓD1(·, y)l, u2(·) = ΓD2(·, w)m

with y, w ∈ S2ρ0 , the first member of (58) coincides with the second member
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of (40), so that, recalling the asymptotic estimate (37) and the hypothesis (27),
we obtain the following smallness estimate

|(ΓD2 − ΓD1)(y, w)m · l| ≤ C
�

ρ0
, for every y, w ∈ S2ρ0 , (59)

where C > 0 only depends on M0, α, M1, α0, γ0, λ, µ, τ , M .
This first smallness estimate is then propagated up to the points yh, wh,

with a technical construction based on iterated application of the three spheres
inequality.

Theorem 3.5 (Lower bound on the function (ΓD2 −ΓD1)). Under the notation
of Lemma 3.1, let

yh = P − he3. (60)

For every i = 1, 2, 3, there exists λw ∈
�

2
3 ,

3
4 ,

4
5

�
and there exists �h ∈

�
0, 1

2

�

only depending on M0, α, α0, γ0, λ, µ, η0, τ , M , such that

|(ΓD2 − ΓD1)(yh, wh)ei · ei)| ≥
C

h
, for every h, 0 < h < �h dist(P,D2), (61)

where
wh = P − λwhe3, (62)

and C > 0 only depends on M0, α, M1, α0, γ0, λ, µ, τ , M and η0.

The proof of this key result will be given in Section 4.
We are now in position to prove the main result of this paper.

Proof of Theorem 2.2. By the upper bound (57), with l = m = ei for i ∈

{1, 2, 3}, and the lower bound (61), we have

C ≤ �
C1

�
h
ρ0

�C2

, for every h, 0 < h ≤ min{hρ0,�h d(P,D2)} (63)

where C,C1, C2 only depend on M0, α, M1, α0, γ0, λ, µ, τ , M and η0. By our
regularity assumptions on the domains, there exists �C > 0, only depending on
M0, α, M1, such that

d(P,D2) ≤ diam(Ω) ≤ �Cρ0. (64)

Set h∗ = min
�

h
�C
,�h

�
. Then inequality (63) holds for every h such that h ≤

h∗d(P,D2), with h∗ only depending on M0, α, M1, α0, γ0, λ, µ, τ , M and η0.
Taking the logarithm in (63) and recalling that � ∈ (0, 1), we obtain

h ≤ Cρ0

�
1

| log �|

� 1
C2

, for every h, 0 < h ≤ h∗d(P,D2), (65)
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In particular, choosing h = h∗d(P,D2), we have

d(P,D2) ≤ Cρ0

�
1

| log �|

� 1
C2

. (66)

The thesis follows from Lemma 3.1.

4. Proof of Theorem 3.5

Let us recall that we have chosen a cartesian coordinate system with origin
P ≡ O and e3 = −ν, where ν is the unit outer normal to D1 at P .

Let C0 = C(O) be the constant Lamé tensor, having Lamé moduli λ ≡ λ(O),
µ ≡ µ(O), and let CD1

0 = CD1(O) be the constant Lamé tensor with Lamé
moduli λ ≡ λD1(O), µ ≡ µD1(O). Moreover, let us introduce the elasticity
tensors C+

0 = C0χR3
−
+ CD1

0 χR3
+
, C1

0 = C0χR3\D1
+ CD1

0 χD1 .

Let Γ, Γ0, Γ
+
0 , Γ

D1
0 be the fundamental matrices associated to the tensors

C, C0, C+
0 , C1

0, respectively.
In the above notation, we may write, for every m, l ∈ R3, |l| = |m| = 1,

|(ΓD2−ΓD1)(yh, wh)m·l| ≥ |(Γ+
0 −Γ0)(yh, wh)m·l|−|(ΓD2−Γ)(yh, wh)m·l|−

− |(Γ− Γ0)(yh, wh)m · l|− |(Γ+
0 − ΓD1

0 )(yh, wh)m · l|−

− |(ΓD1
0 − ΓD1)(yh, wh)m · l|. (67)

The following Lemma, which is a straightforward consequence of Proposi-
tion 9.3 and formula (9.11), derived in [3], gives a positive lower bound for
the term |(Γ+

0 − Γ0)(yh, wh)ei · ei|, i = 1, 2, 3, for a suitable wh.

Lemma 4.1. For every i = 1, 2, 3, there exists λw ∈
�

2
3 ,

3
4 ,

4
5

�
such that

��(Γ+
0 (yh, wh)− Γ0(yh, wh))ei · ei

�� ≥ C

h
, for every h > 0, (68)

where C > 0 only depends on α0, γ0, λ, µ, η0.

From now on, let λw be chosen accordingly to the above lemma and let
h ≤

1
2 min{d(P,D2),

ρ0√
1+M2

0

}.

Term ΓD2 − Γ.
Let us consider the vector valued function

v(x) = (ΓD2 − Γ)(x,wh)m. (69)

Let us set ρ = d(P,D2). Since d(wh, P ) = λwh ≤ h ≤
ρ
2 , we have that

d(wh, D2) ≥ d(P,D2)−d(wh, P ) ≥ ρ
2 . Therefore v(x) is a solution to the Lamé

system
div x(C∇xv(x)) = 0, in B ρ

2
(wh). (70)
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By the regularity estimate

sup
B ρ

4
(wh)

|v(x)| ≤
C

ρ
3
2

��

B ρ
2
(wh)

|v(x)|2
� 1

2

, (71)

with C only depending on α0, γ0, λ, µ, and by applying the asymptotic esti-
mates (37) to ΓD2 and Γ, it follows that

sup
B ρ

4
(wh)

|v(x)| ≤
C

ρ
, (72)

where C > 0 only depends on M0, α, α0, γ0, λ, µ, τ , M .
Since d(yh, wh) = (1− λw)h ≤

h
3 ≤

ρ
6 , yh ∈ B ρ

4
(wh) and

��(ΓD2 − Γ)(yh, wh)m · l
�� = |v(yh) · l| ≤

C

ρ
=

C

d(P,D2)
, (73)

for every l,m ∈ R3, |l| = |m| = 1, with C only depending on M0, α, α0, γ0, λ,
µ, τ , M .

Term ΓD1
0 − ΓD1 .

By the same arguments seen in the proof of Proposition 3.3, we have that,
for every y, w ∈ R3, y �= w, and for every l,m ∈ R3,

�

R3

C1
∇ΓD1(·, y)l ·∇ΓD1

0 (·, w)m = ΓD1
0 (y, w)m · l, (74)

�

R3

C1
0∇ΓD1(·, y)l ·∇ΓD1

0 (·, w)m = ΓD1(y, w)m · l. (75)

Choosing y = yh and w = wh, we have

(ΓD1
0 −ΓD1)(yh, wh)m · l =

�

R3

(C1
−C1

0)∇ΓD1(·, yh)l ·∇ΓD1
0 (·, wh)m = J +J0,

(76)
with

J =

�

D1

(CD1 − CD1
0 )∇ΓD1(·, yh)l ·∇ΓD1

0 (·, wh)m, (77)

J0 =

�

R3\D1

(C− C0)∇ΓD1(·, yh)l ·∇ΓD1
0 (·, wh)m. (78)

Let us estimate J . We have trivially

|J | ≤ C(I1 + I2), (79)
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where C > 0 only depends on M0, α, α0, γ0, λ, µ, τ , M and

I1 =

�

|x|≥ρ0

|(CD1 − CD1
0 )(x)|

|x− yh|2|x− wh|
2
, (80)

I2 =

�

|x|≤ρ0

|(CD1 − CD1
0 )(x)|

|x− yh|2|x− wh|
2
. (81)

Let us first estimate I1. Since h ≤
ρ0

2 and |x| ≥ ρ0, we have that |x − yh| ≥

|x|− |yh| = |x|− h ≥
|x|
2 and similarly |x− wh| ≥

|x|
2 , so that

I1 ≤ C

�

|x|≥ρ0

1

|x|4
=

C

ρ0
, (82)

with C only depending on λ, µ. To estimate I2, we use the fact that

|(CD1 − CD1
0 )(x)| = |CD1(x)− CD1(O)| ≤

C

ρτ0
|x|τ , (83)

with C only depending on M , so that

I2 ≤
C

ρτ0
(I �2 + I ��2 ), (84)

where

I �2 =

�

A

|x|τ

|x− yh|2|x− wh|
2
, (85)

I ��2 =

�

B

|x|τ

|x− yh|2|x− wh|
2
, (86)

with A = {|x| ≤ ρ0, |x| < 6|yh − wh|}, B = {6|yh − wh| ≤ |x| ≤ ρ0}.
We perform the change of variables x = |yh − wh|z in I �2, obtaining

I �2 ≤ 6τ |yh − wh|
τ−1

�

|z|≤6

�
z −

yh
|yh − wh|

�−2 �
z −

wh

|yh − wh|

�−2

. (87)

Since the integral on the right hand side is bounded by an absolute constant,
see [16, Chapter 2, Section 11], we have that

I �2 ≤ C|yh − wh|
τ−1, (88)

with C only depending on τ .
For every x ∈ B, we have

|x| ≥ 6|yh − wh| = 6h(1− λw) ≥
6

5
h, (89)



116 A. MORASSI AND E. ROSSET

so that

|x| ≤ |x− yh|+ |yh| = |x− yh|+ h ≤ |x− yh|+
5

6
|x|. (90)

Hence
1

6
|x| ≤ |x− yh|, (91)

and, similarly,
1

6
|x| ≤ |x− wh|. (92)

By (91)–(92), we have

I ��2 ≤ 64
�

B
|x|τ−4

≤ C

� ρ0

6|yh−wh|
rτ−2dr ≤ C|yh − wh|

τ−1, (93)

where C is an absolute constant.
From (79), (82), (84), (88), (93) and noticing that |yh−wh| = h(1−λw) ≥

h
5 ,

we have

|J | ≤
C

h

�
h

ρ0
+

�
h

ρ0

�τ�
, (94)

where C only depends on M0, α, α0, γ0, λ, µ, τ , M .
The term J0 is estimated analogously with τ replaced by 1, and therefore,

by (76),

|(ΓD1
0 − ΓD1)(yh, wh)m · l| ≤

C

h

�
h

ρ0
+

�
h

ρ0

�τ�
, (95)

where C only depends on M0, α, α0, γ0, λ, µ, τ , M .

Term Γ+
0 − ΓD1

0 .
Arguing similarly to the proof of Proposition 3.3, we have that, for every

y, w ∈ R3, y �= w, and for every l,m ∈ R3,

(Γ+
0 −ΓD1

0 )(y, w)m · l =

�

R3

(CD1
0 −C0)(χD1 −χR3

+
)∇ΓD1

0 (·, y)l ·∇Γ+
0 (·, w)m =

=

�

D1\R3
+

(CD1
0 − C0)∇ΓD1

0 (·, y)l ·∇Γ+
0 (·, w)m−

−

�

R3
+\D1

(CD1
0 − C0)∇ΓD1

0 (·, y)l ·∇Γ+
0 (·, w)m. (96)

Therefore

|(Γ+
0 − ΓD1

0 )(yh, wh)m · l| ≤ C

�

A∪B

1

|x− yh|2|x− wh|
2
, (97)
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where

A =

�
x ∈ (R3

+ \D1) ∪ (D1 \ R3
+) | |x| ≥

ρ0�
1 +M2

0

�
, (98)

B =

�
x ∈ (R3

+ \D1) ∪ (D1 \ R3
+) | |x| ≤

ρ0�
1 +M2

0

�
, (99)

and C only depends on M0, α, α0, γ0, λ, µ, τ , M . By our hypotheses, h ≤
ρ0

2
√

1+M2
0

. Hence, for every x ∈ A, h ≤
|x|
2 , |x−yh| ≥ |x|−h ≥

|x|
2 , and similarly

|x− wh| ≥
|x|
2 , so that

�

A

1

|x− yh|2|x− wh|
2
≤ 16

�

|x|≥ ρ0√
1+M2

0

1

|x|4
=

C

ρ0
, (100)

with C only depending on M0.
By the local representation of the boundary of D1 as a C1,α graph, it follows

that

B ⊂

�
x ∈ R3

| |x�
| ≤

ρ0�
1 +M2

0

, |x3| ≤
M0

ρα0
|x�

|
1+α

�
. (101)

By performing the change of variables z = x
h , we have

�

B

1

|x− yh|2|x− wh|
2

≤

�

|x�|≤ ρ0√
1+M2

0

dx�
� M0

ρα0
|x�|1+α

−M0
ρα0

|x�|1+α

1

|x− yh|2|x− wh|
2
dx3

=
1

h

�

|z�|≤ ρ0

h
√

1+M2
0

dz�
� M0

�
h
ρ0

�α
|z�|1+α

−M0

�
h
ρ0

�α
|z�|1+α

1

|z + e3|2|z + λwe3|2
dz3

≤
1

h

�

R2

dz�
� M0

�
h
ρ0

�α
|z�|1+α

−M0

�
h
ρ0

�α
|z�|1+α

1

|z + e3|2|z + λwe3|2
dz3. (102)

Denoting

D(z) =
�
|z�|2 + (z3 + 1)2

� �
|z�|2 + (z3 + λw)

2
�
, (103)

we have �

B

1

|x− yh|2|x− wh|
2
≤

1

h
(J1 + J2), (104)
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where

J1 =

�

|z�|≤
�

1
3M0

� 1
1+α

dz�
� M0

�
h
ρ0

�α
|z�|1+α

−M0

�
h
ρ0

�α
|z�|1+α

1

D(z)
dz3, (105)

J2 =

�

|z�|≥
�

1
3M0

� 1
1+α

dz�
� M0

�
h
ρ0

�α
|z�|1+α

−M0

�
h
ρ0

�α
|z�|1+α

1

D(z)
dz3. (106)

To estimate J1, let us notice that, recalling h ≤
ρ0

2
√

1+M2
0

,

|z3 + λw| ≥ λw − |z3| ≥
2

3
−M0

�
h

ρ0

�α

|z�|1+α
≥

1

3
, (107)

and, a fortiori, |z3 + 1| ≥ 1
3 . Hence D(z) ≥ 1

34 and

J1 ≤ 34
�

|z�|≤
�

1
3M0

� 1
1+α

2M0

�
h

ρ0

�α

|z�|1+αdz� = C

�
h

ρ0

�α

, (108)

with C only depending on M0 and α.
To estimate J2 we use the trivial inequality D(z) ≥ |z�|4 when α < 1, and

D(z) ≥ C(M0)|z�|
7
2 when α = 1, so obtaining

J2 ≤ C

�
h

ρ0

�α

, (109)

with C only depending on M0 and α.
By (97), (100), (104), (108), (109), we have

|(Γ+
0 − ΓD1

0 )(yh, wh)m · l| ≤
C

h

�
h

ρ0
+

�
h

ρ0

�α�
, (110)

with C only depending on M0, α, α0, γ0, λ, µ, τ , M .

Term Γ− Γ0.
Similarly to the proof of Proposition 3.3, we have that, for every y, w ∈ R3,

y �= w,

(Γ0 − Γ)(y, w)m · l =

�

R3

(C− C0)∇Γ(·, y)l ·∇Γ0(·, w)m. (111)

From this identity, the arguments of the proof are similar to those seen to
estimate the addend J0 in the expression of (ΓD1

0 − ΓD1)(yh, wh)l · m given
by (76), so that

|(Γ0 − Γ)(yh, wh)m · l| ≤
C

h

�
h

ρ0

�
, (112)
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with C only depending on M0, α, α0, γ0, λ, µ, τ , M .

Conclusion. Finally, from (67), (68), (73), (95), (110), (112), we have

|(ΓD2 − ΓD1)(yh, wh)ei · ei| ≥

≥
C

h

�
1− C1

h

d(P,D2)
− C2

h

ρ0
− C3

�
h

ρ0

�α

− C4

�
h

ρ0

�τ�
, (113)

with Ci, i = 1, ..., 4, only depending on M0, α, α0, γ0, λ, µ, τ , M and
C only depending on α0, γ0, λ, µ and η0. Let h1 = min{ 1

2 ,
1

5C1
}, h2 =

min

�
1

2
√

1+M2
0

, 1
5C2

, 1

(5C3)
1
α
, 1

(5C4)
1
τ

�
. If h ≤ min{h1d(P,D2), h2ρ0}, then

|(ΓD2 − ΓD1)(yh, wh)ei · ei| ≥
C

5h
, (114)

Let �h = min
�
h1,

h2
�C

�
, where �C has been introduced in (64). Then inequal-

ity (61) holds for every h such that h ≤ �h d(P,D2).

Acknowledgements

The second author is supported by Università degli Studi di Trieste FRA 2014
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Abstract. We give a survey at an introductory level of old and re-

cent results in the study of critical points of solutions of elliptic and

parabolic partial differential equations. To keep the presentation sim-

ple, we mainly consider four exemplary boundary value problems: the

Dirichlet problem for the Laplace’s equation; the torsional creep prob-

lem; the case of Dirichlet eigenfunctions for the Laplace’s equation; the

initial-boundary value problem for the heat equation. We shall mostly

address three issues: the estimation of the local size of the critical set;

the dependence of the number of critical points on the boundary values

and the geometry of the domain; the location of critical points in the

domain.

Keywords: Elliptic partial differential equations, parabolic partial differential equations,
critical points of solutions, hot spots.
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1. Introduction

Let Ω be a domain in the Euclidean space RN , Γ be its boundary and u : Ω → R
be a differentiable function. A critical point of u is a point in Ω at which
the gradient ∇u of u is the zero vector. The importance of critical points is
evident. At an elementary level, they help us to visualize the graph of u, since
they are some of its notable points (they are local maximum, minimum, or
inflection/saddle points of u). At a more sophisticated level, if we interpret u
and ∇u as a gravitational, electrostatic or velocity potential and its underlying
field of force or flow, the critical points are the positions of equilibrium for
the field of force or stagnation points for the flow and give information on
the topology of the equipotential lines or of the curves of steepest descent (or
stream lines) related to u.

A merely differentiable function can be very complicated. For instance,
Whitney [88] constructed a non-constant function of class C1 on the plane
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with a connected set of critical values (the images of critical points). If we
allow enough smoothness, this is no longer possible as Morse-Sard’s lemma
informs us: indeed, if u is at least of class CN , the set of its critical values must
have zero Lebesgue measure and hence the regular values of u must be dense
in the image of u (see [8] for a proof).

When the function u is the solution of some partial differential equation,
the situation improves. In this survey, we shall consider the four archetypical
equations:

∆u = 0, ∆u = −1, ∆u+ λu = 0, ut = ∆u,

that is the Laplace’s equation, the torsional creep equation, the eigenfunction

equation and the heat equation.
It should be noticed at this point some important differences between the

first and the remaining three equations.
One is that the critical points of harmonic functions — the solutions of

the Laplace’s equation — are always “saddle points” as it is suggested by
the maximum and minimum principles and the fact that ∆u is the sum of
the eigenvalues of the hessian matrix ∇2u. The other three equations instead
admit solutions with maximum or minimum points.

Also, we know that the critical points of a non-constant harmonic function u
on an open set of R2 are isolated and can be assigned a sort of finite multiplicity,
for they are the zeroes of the holomorphic function f = ux − iuy. By means
of the theory of quasi-conformal mappings and generalized analytic functions,
this result can be extended to solutions of the elliptic equation

(a ux + b uy)x + (b ux + c uy)y + d ux + e uy = 0 (1)

(with suitable smoothness assumptions on the coefficients) or even to weak
solutions of the elliptic equation in divergence form,

(a ux + b uy)x + (b ux + c uy)y = 0 in Ω, (2)

even allowing discontinuous coefficients.
Instead, solutions of the other three equations can show curves of critical

points in R2, as one can be persuaded by looking at the solution of the torsional
creep equation in a circular annulus with zero boundary values.

These discrepancies extend to any dimension N ≥ 2, in the sense that it
has been shown that the set of the critical points of a non-constant harmonic
function (or of a solution of an elliptic equation with smooth coefficients mod-
eled on the Laplace equation) has at most locally finite (N − 2)-dimensional
Hausdorff measure, while solutions of equations fashioned on the other three
equations have at most locally finite (N − 1)-dimensional Hausdorff measure.

Further assumptions on solutions of a partial differential equation, such as
their behaviour on the boundary and the shape of the boundary itself, can
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give more detailed information on the number and location of critical points.
In these notes, we shall consider the case of harmonic functions with various
boundary behaviors and the solutions τ , φ and h of the following three prob-
lems:

−∆τ = 1 in Ω, τ = 0 on Γ; (3)

∆φ+ λφ = 0 in Ω, φ = 0 on Γ; (4)

ht = ∆h in Ω× (0,∞), (5)

h = 0 on Γ× (0,∞), h = ϕ on Ω× {0}, (6)

where ϕ is a given function. We will refer to (3), (4), (5)-(6), as the torsional

creep problem, the Dirichlet eigenvalue problem, and the initial-boundary value

problem for the heat equation, respectively.
A typical situation is that considered in Theorem 3.2: a harmonic function

u on a planar domain Ω is given together with a vector field � on Γ of assigned
topological degree D; the number of critical points in Ω then is bounded in
terms of D, the Euler characteristic of Ω and the number of proper connected
components of the set {z ∈ Γ : �(z) · ∇u(z) > 0} (see Theorem 3.2 for the
exact statement). We shall also see how this type of theorem has recently been
extended to obtain a bound for the number of critical points of the Li-Tam
Green’s function of a non-compact Riemanniann surface of finite type in terms
of its genus and the number of its ends.

Owing to the theory of quasi-conformal mappings, Theorem 3.2 can be
extended to solutions of quite general elliptic equations and, thanks to the work
of G. Alessandrini and co-authors, has found effective applications to the study
of inverse problems that have as a common denominator the reconstruction of
the coefficients of an elliptic equation in a domain from measurements on the
boundary of a set of its solutions.

A paradigmatic example is that of Electric Impedence Tomography (EIT)
in which a conductivity γ is reconstructed, as the coefficient of the elliptic
equation

div(γ∇u) = 0 in Ω,

from the so-called Neumann-to-Dirichlet (or Dirichlet-to-Neumann) operator
on Γ. In physical terms, an electrical current (represented by the co-normal
derivative γuν) is applied on Γ generating a potential u, that is measured on Γ
within a certain error. One wants to reconstruct the conductivity γ from some
of these measurements. Roughly speaking, one has to solve for the unknown γ
the first order differential equation

∇u ·∇γ + (∆u) γ = 0 in Ω,

once the information about u has been extended from Γ to Ω. It is clear that
such an equation is singular at the critical points of u. Thus, it is helpful to
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know a priori that ∇u does not vanish and this can be done via (appropriate
generalizations of) Theorem 3.2 by choosing suitable currents on Γ.

The possible presence of maximum and/or minimum points for the solutions
of (3), (4), or (5)-(6) makes the search for an estimate of the number of critical
points a difficult task (even in the planar case). In fact, the mere topological
information only results in an estimate of the signed sum of the critical points,
the sign depending on whether the relevant critical point is an extremal or
saddle point. For example, for the solution of (3) or (4), we only know that
the difference between the number of its (isolated) maximum and saddle points
(minimum points are not allowed) must equal χ(Ω), the Euler characteristic

of Ω — a Morse-type theorem. Thus, further assumptions, such as geometric
information on Ω, are needed. More information is also necessary even if we
consider the case of harmonic functions in dimension N ≥ 3.

In the author’s knowledge, results on the number of critical points of so-
lutions of (3), (4), or (5)-(6) reduce to deduction that their solutions admit a
unique critical point if Ω is convex. Moreover, the proof of such results is some-
what indirect: the solution is shown to be quasi-concave — indeed, log-concave
for the cases of (4) and (5)-(6), and 1/2-concave for the case (3) — and then
its analyticity completes the argument. Estimates of the number of critical
points when the domain Ω has more complex geometries would be a significant
advance. In this survey, we will propose and justify some conjectures.

The problem of locating critical points is also an interesting issue. The
first work on this subject dates back to Gauss [36], who proved that the crit-
ical points of a complex polynomial are its zeroes, if they are multiple, and
the equilibrium points of the gravitational field of force generated by particles
placed at the zeroes and with masses proportional to the zeroes’ multiplicities
(see Section 4). Later refinements are due to Jensen [47] and Lucas [62], but
the first treatises on this matter are Marden’s book [68] and, primarily, Walsh’s
monograph [87] that collects most of the results on the number and location of
critical points of complex polynomials and harmonic functions known at that
date. In general dimension, even for harmonic functions, results are sporadic
and rely on explicit formulae or symmetry arguments.

Two well known questions in this context concern the location of the hot spot
in a heat conductor — a hot spot is a point of (absolute or relative) maximum
temperature in the conductor. The situation described by (5)-(6) corresponds
with the case of a grounded conductor. By some asymptotic analysis, under
appropriate assumptions on ϕ, one can show that the hot spots originate from
the set of maximum points of the function dΩ(x) — the distance of x ∈ Ω from
Γ — and tend to the maximum points of the unique positive solution of (4),
as t → ∞. In the case Ω is convex, we have only one hot spot, as already
observed. In Section 4, we will describe three techniques to locate it; some of
them extend their validity to locate the maximum points of the solutions to
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(3) and (4). We will also give an account of what it is known about convex
conductors that admit a stationary hot spot (that is the hot spot does not
move with time).

It has also been considered the case in which the homogeneous Dirichlet
boundary condition in (6) is replaced by the homogeneous Neumann condition:

uν = 0 on Γ× (0,∞). (7)

These settings describe the evolution of temperature in an insulated conductor
of given constant initial temperature and has been made popular by a con-
jecture of J. Rauch [76] that would imply that the hot spot must tend to a
boundary point. Even if we now know that it is false for a general domain, the
conjecture holds true for certain planar convex domains but it is still standing
for unrestrained convex domains.

The remainder of the paper is divided into three sections that reflect the
aforementioned features. In Section 2, we shall describe the local properties of
critical points of harmonic functions or, more generally, of solutions of elliptic
equations, that lead to estimates of the size of critical sets. In Section 3, we shall
focus on bounds for the number of critical points that depend on the boundary
behavior of the relevant solutions and/or the geometry of Γ. Finally, in Section
4, we shall address the problem of locating the possible critical points. As
customary for a survey, our presentation will stress ideas rather than proofs.

This paper is dedicated with sincere gratitude to Giovanni Alessandrini —
an inspiring mentor, a supportive colleague and a genuine friend — on the
occasion of his 60th birthday. Much of the material presented here was either
inspired by his ideas or actually carried out in his research with the author.

2. The size of the critical set of a harmonic function

A harmonic function in a domain Ω is a solution of the Laplace’s equation

∆u = ux1x1 + · · ·+ uxNxN = 0 in Ω.

It is well known that harmonic functions are analytic, so there is no difficulty
to define their critical points or the critical set

C(u) = {x ∈ Ω : ∇u(x) = 0}.

Before getting into the heart of the matter, we present a relevant example.

2.1. Harmonic polynomials

In dimension two, we have a powerful tool since we know that a harmonic
function is (locally) the real or imaginary part of a holomorphic function. This
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remark provides our imagination with a reach set of examples on which we can
speculate. For instance, the harmonic function

u = Re(zn) = Re [(x+ iy)n] , n ∈ N,

already gives some insight on the properties of harmonic functions we are in-
terested in. In fact, we have that

ux − iuy = nzn−1;

thus, u has only one distinct critical point, z = 0, but it is more convenient to
say that u has n − 1 critical points at z = 0 or that z = 0 is a critical point
with multiplicity m with m = n − 1. By virtue of this choice, we can give a
topological meaning to m.

To see that, it is advantageous to represent u in polar coordinates:

u = rn cos(nθ);

here, r = |z| and θ is the principal branch of arg z, that is we are assuming
that −π ≤ θ < π. Thus, the topological meaning of m is manifest when we
look at the level “curve” {z : u(z) = u(0)}: it is made of m + 1 = n straight
lines passing through the critical point z = 0, divides the plane into 2n cones

(angles), each of amplitude π/n and the sign of u changes across those lines
(see Fig. 1). One can also show that the signed angle ω formed by ∇u and the
direction of the positive real semi-axis, since it equals −(n− 1) arg z, increases
by 2πm while z makes a complete loop clockwise around z = 0; thus, m is a
sort of winding number for ∇u.

The critical set of a homogeneous polynomial P : RN → R is a cone in RN .
Moreover, if P is also harmonic (and non-constant) one can show that

dimension of C(u) ≤ N − 2. (8)

2.2. Harmonic functions

If N = 2 and u is any harmonic function, the picture is similar to that outlined
in the example. In fact, we can again consider the “complex gradient” of u,

g = ux − iuy,

and observe that g is holomorphic in Ω, since ∂zg = 0, and hence analytic.
Thus, the zeroes of g (and hence the critical points of u) in Ω are isolated and
have finite multiplicity. If z0 is a zero with multiplicity m of g, then we can
write that

g(z) = (z − z0)
mh(z),



CRITICAL POINTS OF SOLUTIONS OF PDE’S 127

AN INTRODUCTION

1

Figure 1: Level set diagram of u = r6 cos(6θ) at the critical point z = 0; u
changes sign from positive to negative at dashed lines and from negative to
positive at solid lines.

where h is holomorphic in Ω and h(z0) �= 0.
On the other hand, we also know that u is locally the real part of a holo-

morphic function f and hence, since f � = g, by an obvious normalization, it is
not difficult to infer that

f(z) =
1

n
(z − z0)

nk(z),

where n = m+1 and k is holomorphic and k(z0) = h(z0) �= 0. Passing to polar
coordinates by z = z0 + reiθ tells us that

f(z0 + reiθ) =
|h(z0)|

n
rnei(nθ+θ0) +O(rn+1) as r → 0,

where θ0 = arg h(z0). Thus, we have that

u =
|h(z0)|

n
rn cos(nθ + θ0) +O(rn+1) as r → 0,

and hence, modulo a rotation by the angle θ0, in a small neighborhood of z0,
we can say that the critical level curve {z : u(z) = u(z0)} is very similar to
that described in the example with 0 replaced by z0. In particular, it is made
of n simple curves passing through z0 and any two adjacent curves meet at z0
with an angle that equals π/n (see Fig. 2).
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1

Figure 2: Level set diagram of a harmonic function at a critical point with
multiplicity m = 5. The curves meet with equal angles at the critical point.

If N ≥ 3, similarly, a harmonic function can be approximated near a point 0
at which vanishes by a homogeneous harmonic polynomial of some degree n:

u(x) = Pn(x) +O(|x|n+1) as |x| → 0. (9)

However, the structure of the set C(u) depends on whether 0 is an isolated
critical point of Pn or not. In fact, if 0 is not isolated, then C(u) and C(Pn)
could not be diffeomorphic in general, as shown by the harmonic function

u(x, y, z) = x2 − y2 + (x2 + y2) z − 2

3
z3, (x, y, z) ∈ R3.

Indeed, if P2(x, y, z) = x2 − y2, C(P2) is the z-axis, while C(u) is made of 5
isolated points ([74]).

2.3. Elliptic equations in the plane

These arguments can be repeated with some necessary modifications for solu-
tions of uniformly elliptic equations of the type (1), where the variable coef-
ficients a, b, c are Lipschitz continuous and d, e are bounded measurable on Ω
and the uniform ellipticity is assumed to take the following form:

ac− b2 = 1 in Ω.

Now, the classical theory of quasi-conformal mappings comes in our aid (see
[14, 86] and also [4, 5]). By the uniformization theorem (see [86]), there exists
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a quasi-conformal mapping ζ(z) = ξ(z) + i η(z), satisfying the equation

ζz = κ(z) ζz with |κ(z)| = a+ c− 2

a+ c+ 2
< 1,

such that the function U defined by U(ζ) = u(z) satisfies the equation

∆U + P Uξ +QUη = 0 in ζ(Ω),

where P and Q are real-valued functions depending on the coefficients in (1)
and are essentially bounded on ζ(Ω). Notice that, since the composition of ζ
with a conformal mapping is still quasi-conformal, if it is convenient, by the
Riemann mapping theorem, we can choose ζ(Ω) to be the unit disk D.

By setting G = Uξ − i Uη, simple computations give that

Gζ = RG+RG in D,

where R = (P + iQ)/4 is essentially bounded. This equation tells us that G
is a pseudo-analytic function for which the following similarity principle holds
(see [86]): there exist two functions, H(ζ) holomorphic in D and s(ζ) Hölder
continuous on the whole C, such that

G(ζ) = es(ζ)H(ζ) for ζ ∈ D. (10)

Owing to (10), it is clear that the critical points of u, by means of the
mapping ζ(z), correspond to the zeroes of G(ζ) or, which is the same, of H(ζ)
and hence we can claim that they are isolated and have a finite multiplicity.

This analysis can be further extended if the coefficients d and e are zero,
that is for the solutions of (2). In this case, we can even assume that the
coefficients a, b, c be merely essentially bounded on Ω, provided that we agree
that u is a non-constant weak solution of (1). It is well known that, with these
assumptions, solutions of (1) are in general only Hölder continuous and the
usual definition of critical point is no longer possible. However, in [5] we got
around this difficulty by introducing a different notion of critical point, that
is still consistent with the topological structure of the level curves of u at its
critical values.

To see this, we look for a surrogate of the harmonic conjugate for u. In
fact, (1) implies that the 1-form

ω = −(b ux + c uy) dx+ (a ux + b uy) dy

is closed (in the weak sense) in Ω and hence, thanks to the theory developed
in [15], we can find a so-called stream function v ∈ W 1,2(Ω) whose differential
dv equals ω, in analogy with the theory of gas dynamics (see [13]).



130 ROLANDO MAGNANINI

AN INTRODUCTION

1

Figure 3: Level set diagram of a solution of an elliptic equation with discon-
tinuous coefficients at a geometric critical point with multiplicity m = 5. At
that point, any two consecutive curves meet with positive angles, possibly not
equal to one another.

Thus, in analogy with what we have done in Subsection 2.2, we find out
that the function f = u+ i v satisfies the equation

fz = µ fz (11)

where

µ =
c− a− 2ib

2 + a+ c
and |µ| ≤ 1− λ

1 + λ
< 1 in Ω,

and λ > 0 is a lower bound for the smaller eigenvalue of the matrix of the
coefficients: �

a b
b c

�
.

The fact that f ∈ W 1,2(Ω,C) implies that f is a quasi-regular mapping that
can be factored as

f = F ◦ χ in Ω,

where χ : Ω → D is a quasi-conformal homeomorphism and F is holomorphic
in D (see [60]). Therefore, the following representation formula holds:

u = U(χ(z)) for z ∈ Ω,

where U is the real part of F .
This formula informs us that the level curves of u can possibly be distorted

by the homeomorphism χ, but preserve the topological structure of a harmonic
function (see Fig. 3). This remark gives grounds to the definition introduced
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in [5]: z0 ∈ Ω is a geometric critical point of u if the gradient of U vanishes
at χ(z0) ∈ D. In particular, geometric critical points are isolated and can be
classified by a sort of multiplicity.

2.4. Quasilinear elliptic equations in the plane

A similar local analysis can be replicated when N = 2 for quasilinear equations
of type

div{A(|∇u|)∇u} = 0,

where A(s) > 0 and 0 < λ ≤ 1 + sA�(s)/A(s) ≤ Λ for every s > 0 and some
constants λ and Λ.

AN INTRODUCTION

u ≡ 0

u > 0u < 0

u > 0 u < 0

1

Figure 4: Level set diagram of a solution of a degenerate quasilinear elliptic
equation with B(s) =

√
1 + s2 at a critical value.

These equations can be even degenerate, such as the p-Laplace equation
with 1 < p < ∞ (see [8]). It is worth mentioning that also the case in which
A(s) = B(s)/s, where B is increasing, with B(0) > 0, and superlinear and
growing polynomially at infinity (e.g. B(s) =

√
1 + s2), has been studied

in [23]. In this case the function 1+sA�(s)/A(s) vanishes at s = 0 and it turns
out that the critical points of a solution u (if any) are never isolated (Fig. 4).
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2.5. The case N ≥ 3

As already observed, critical points of harmonic functions in dimension N ≥ 3
may not be isolated. Besides the example given in Section 2.2, another concrete
example is given by the function

u(x, y, z) = J0
��

x2 + y2
�
cosh(z), (x, y, z) ∈ R3,

where J0 is the first Bessel function: the gradient of u vanishes at the origin
and on the circles on the plane z = 0 having radii equal to the zeroes of the
second Bessel function J1. It is clear that a region Ω can be found such that
C(u) ∩ Ω is a bounded continuum.

Nevertheless, it can be proved that C(u) always has locally finite (N −
2)-dimensional Hausdorff measure HN−2. A nice argument to see this was
suggested to me by D. Peralta-Salas [74]. If u is a non-constant harmonic
function and we suppose that C(u) has dimension N−1, then the general theory
of analytic sets implies that there is an open and dense subset of C(u) which is an
analytic sub-manifold (see [59]). Since u is constant on a connected component
of the critical set, it is constant on C(u), and its gradient vanishes. Thus, by the
Cauchy-Kowalewski theorem u must be constant in a neighborhood of C(u),
and hence everywhere by unique continuation. Of course, this argument would
also work for solutions of an elliptic equation of type

N�

i,j=1

aij(x)uxixj +
N�

j=1

bj(x)uxj = 0 in Ω, (12)

with analytic coefficients.
When the coefficients aij , bj in (12) are of class C∞(Ω), the result has been

proved in [39] (see also [38]): if u is a non-constant solution of (12), then for
any compact subset K of Ω it holds that

HN−2(C(u) ∩K) < ∞. (13)

The proof is based on an estimate similar to (8) for the complex dimension
of the singular set in CN of the complexification of the polynomial Pn in the
approximation (9).

The same result does not hold for solutions of equation

N�

i,j=1

aij(x)uxixj +
N�

j=1

bj(x)uxj + c(x)u = 0 in Ω, (14)

with c ∈ C∞(Ω). For instance the gradient of the first Laplace-Dirichlet eigen-
function for a spherical annulus vanishes exactly on a (N − 1)-dimensional



CRITICAL POINTS OF SOLUTIONS OF PDE’S 133

sphere. A more general counterexample is the following (see [39, Remark
p. 362]): let v be of class C∞ and with non-vanishing gradient in the unit
ball B in RN ; the function u = 1 + v2 satisfies the equation

∆u− cu = 0 with c =
∆v2

1 + v2
∈ C∞(B);

we have that C(u) = {x ∈ B : v(x) = 0} and it has been proved that any closed
subset of RN can be the zero set of a function of class C∞ (see [84]).

However, once (13) is settled, it is rather easy to show that the singular set

S(u) = C(u) ∩ u−1(0) = {x ∈ Ω : u(x) = 0,∇u(x) = 0}

of a non-constant solution of (14) also has locally finite (N − 2)-dimensional
Hausdorffmeasure [39, Corollary 1.1]. This can be done by a trick, since around
any point in Ω there always exists a positive solution u0 of (14) and it turns
out that the function w = u/u0 is a solution of an equation like (12) and that
S(u) ⊆ C(w). In particular the set of critical points on the nodal line of an
eigenfunction of the Laplace operator has locally finite (N − 2)-dimensional
Hausdorff measure.

Nevertheless, for a solution of (12) the set S(u) can be very complicated, as
a simple example in [39, p. 361]) shows: the function u(x, y, z) = xy + f(z)2,
where f is a smooth function with |ff ��| + (f �)2 < 1/4 that vanishes exactly
on an arbitrary given closed subset K of R, is a solution of

uxx + uyy + uzz − (f2)��(z)uxy = 0 and S(u) = {(0, 0)}×K.

Heuristically, as in the 2-dimensional case, the proof of (13) is essentially
based on the observation that, by Taylor’s expansion, a harmonic function u can
be approximated near any of its zeroes by a homogeneous harmonic polynomial
Pm(x1, . . . , xn) of degree m ≥ 1. Technically, the authors use the fact that the
complex dimension of the critical set in CN of the complexified polynomial
Pm(z1, . . . , zN ) is bounded by N − 2. A C∞-perturbation argument and an
inequality from geometric measure theory then yield that, near a zero of u, the
HN−2-measure of C(u) can be bounded in terms of N and m. The extension
of these arguments to the case of a solution of (12) is then straightforward.
Recently in [26], (13) has been extended to the case of solutions of elliptic
equations of type

N�

i,j=1

{aij(x)ux}xj +
N�

j=1

bj(x)uxj ,

where the coefficients aij(x) and bj(x) are assumed to be Lipschitz continuous
and essentially bounded, respectively.
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3. The number of critical points

A more detailed description of the critical set C(u) of a harmonic function u
can be obtained if we assume to have some information on its behavior on the
boundary Γ of Ω. While in Section 2 the focus was on a qualitative description
of the set C(u), here we are concerned with establishing bounds on the number
of critical points.

3.1. Counting the critical points of a harmonic function in
the plane

An exact counting formula is given by the following result.

Theorem 3.1 ([4]). Let Ω be a bounded domain in the plane and let

Γ =
J�

j=1

Γj ,

where Γj , j = 1, . . . , J are simple closed curves of class C1,α
. Consider a

harmonic function u ∈ C1(Ω) ∩ C2(Ω) that satisfies the Dirichlet boundary

condition

u = aj on Γj , j = 1, . . . , J, (15)

where a1, . . . , aJ are given real numbers, not all equal.

Then u has in Ω a finite number of critical points z1, . . . , zK ; if m(z1), . . . ,
m(zK) denote their multiplicities, then the following identity holds:

�

zk∈Ω

m(zk) +
1

2

�

zk∈Γ

m(zk) = J − 2. (16)

Thanks to the analysis presented in Subsection 2.3, this theorem still holds
if we replace the Laplace equation in (15) by the general elliptic equation (1).
In fact, modulo a suitable change of variables, we can use (10) with Im(s) = 0
on the boundary.

The function considered in Theorem 3.1 can be interpreted in physical terms
as the potential in an electrical capacitor and hence its critical points are the
points of equilibrium of the electrical field (Fig. 5).

The proof of Theorem 3.1 relies on the fact that the critical points of u are
the zeroes of the holomorphic function f = ux − i uy and hence they can be
counted with their multiplicities by applying the classical argument principle to
f with some necessary modifications. The important remark is that, since the
boundary components are level curves for u, the gradient of u is parallel on them
to the (exterior) unit normal ν to the boundary, and hence arg f = − arg ν.
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Thus, the situation is clear if u does not have critical points on Γ: the
argument principle gives at once that

�

zk∈Ω

m(zk) =
1

2πi

�

+Γ

f �(z)

f(z)
dz

=
1

2π
Incr(arg f,+Γ) =

1

2π
Incr(− arg ν,+Γ) = −[1− (J − 1)] = J − 2,

where by Incr(·,+γ) we intend the increment of an angle on an oriented curve
+γ and by +Γ we mean that Γ is trodden in such a way that Ω is on the
left-hand side.

AN INTRODUCTION

u = 0

u = 3

u = 3

u = 1

1

Figure 5: An illustration of Theorem 3.1: the domain Ω has 3 holes; u has
exactly 2 critical points; dashed and dotted are the level curves at critical
values.

If Γ contains critical points, we must first prove that they are also isolated.
This is done, by observing that, if z0 is a critical point belonging to some
component Γj , since u is constant on Γj , by the Schwarz’s reflection principle

(modulo a conformal transformation of Ω), u can be extended to a function �u
which is harmonic in a whole neighborhood of z0. Thus, z0 is a zero of the
holomorphic function �f = �ux− i �uy and hence is isolated and with finite multi-

plicity. Moreover, the increment of arg �f on an oriented closed simple curve +γ
around z0 is exactly twice as much as that of arg f on the part of +γ inside Ω.
This explains the second addendum in (16).

Notice that condition (15) can be re-written as

uτ = 0 on Γ,
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where τ : Γ → S1 is the tangential unit vector field on Γ. We cannot hope
to obtain an identity as (16) if uτ is not constant. However, a bound for the
number of critical points of a harmonic function (or a solution of (1)) can be
derived in a quite general setting.

In what follows, we assume that Ω is as in Theorem 3.1 and that � : Γ → S1
denotes a (unitary) vector field of class C1(Γ, S1) of given topological degree D,
that can be defined as

2πD = Incr(arg(�),+Γ). (17)

Also, we will use the following definitions:

(i) if (J +,J−) is a decomposition of Γ into two disjoint subsets such that
u� ≥ 0 on J + and u� ≤ 0 on J−, we denote by M(J +) the number of
connected components of J + which are proper subsets of some component
Γj of Γ and set:

M = min{M(J +) : (J +,J +) decomposes Γ};

(ii) if I± = {z ∈ Γ : ±u�(z) > 0}, by M± we denote the number of connected
components of I± which are proper subsets of some component Γj of Γ.

Notice that in (i) the definition of M does not change if we replace J + by J−.

Theorem 3.2 ([4]). Let u ∈ C1(Ω) ∩ C2(Ω) be harmonic in Ω and denote by

m(zj) the multiplicity of a zero zj of f = ux − i uy.

(a) If M is finite and u has no critical point in Γ, then

�

zj∈Ω

m(zj) ≤ M −D;

(b) if M+ +M−
is finite, then

�

zj∈Ω

m(zj) ≤
�
M+ +M−

2

�
−D,

where [x] is the greatest integer ≤ x.

This theorem is clearly less sharp than Theorem 3.1 since, in that setting,
it does not give information about critical points on the boundary. However,
it gives the same information on the number of interior critical points, since in
the setting of Theorem 3.1 the degree of the field τ on +Γ equals 2 − J and
M = 0.

The possibility of choosing the vector field � arbitrarily makes Theorem 3.2
a very flexible tool: for instance, the number of critical points in Ω can be



CRITICAL POINTS OF SOLUTIONS OF PDE’S 137

AN INTRODUCTION

u� > 0

u� < 0

u� > 0

u� < 0

u� = 0

1

Figure 6: An illustration of Theorem 3.2. Here, M = M+ = 4; M− = 4;
D = −2 if � = ν or τ ; D = 1 if � = z/|z| and the origin is in Ω; D = 0 if
� = (1, 0) or (0, 1).

estimated from information on the tangential, normal, co-normal, partial, or
radial (with respect to some origin) derivatives (see Fig. 6).

As an illustration, it says that in a domain topologically equivalent to a
disk, in order to have n interior critical point the normal (or tangential, or
co-normal) derivative of a harmonic function must change sign at least n + 1
times and a partial derivative at least n times. Thus, Theorem 3.2 helps to
choose Neumann data that insures the absence of critical points in Ω. For this
reason, in its general form for elliptic operators, it has been useful in the study
of EIT and other similar inverse problems.

We give a sketch of the proof of (a) of Theorem 3.2, that hinges on the
simple fact that, if we set θ = arg(�) and ω = arg(ux − i uy), then

u� = � ·∇u = |∇u| cos(θ + ω).

Hence, if (J +,J−) is a minimizing decomposition of Γ as in (i), then

|ω + θ| ≤ π

2
on J + and |ω + θ − π| ≤ π

2
on J−.

Thus, two occurrences must be checked. If a component Γj is contained in
J + or J−, then ����

1

2π
Incr(ω + θ,+Γj)

���� ≤
1

2
,
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that implies that ω and −θ must have the same increment, being the right-hand
side an integer. If Γj contains points of both J + and J−, instead, if σ+ ⊂ J +

and σ− ⊂ J− are two consecutive components on Γj , then

1

2π
Incr(ω + θ,+(σ+ ∩ σ−) ≤ 1.

Therefore, if Mj is the number of connected components of J + ∩ Γj (which
equals that of J + ∩ Γj), then

1

2π
Incr(ω + θ,+Γj) ≤ Mj ,

and hence

�

zk∈Ω

m(zk) =
1

2π
Incr(ω,+Γ) =

1

2π
Incr(ω + θ,+Γ)−D

=
J�

j=1

1

2π
Incr(ω + θ,+Γj) ≤

J�

j=1

Mj −D = M −D.

The obstacle problem. An estimate similar to that of Theorem 3.2 has
been obtained also for N = 2 by Sakaguchi [78] for the obstacle problem. Let
Ω be bounded and simply connected and let ψ be a given function in C2(Ω) —
the obstacle. There exists a unique solution u ∈ H1

0 (Ω) such that u ≥ ψ in Ω
of the obstacle problem

�

Ω
∇u ·∇(v − u) dx ≥ 0 for every v ∈ H1

0 (Ω) such that u ≥ ψ.

It turns out that u ∈ C1,1(Ω) and u is harmonic outside of the contact set

I = {x ∈ Ω : u(x) = ψ(x)}. In [78] it is proved that, if the number of
connected components of local maximum points of ψ equals J , then

�

zk∈Ω\I

m(zk) ≤ J − 1,

with the usual meaning for zk and m(zk). In [78], this result is also shown to
hold for a more general class of quasi-linear equations. The proof of this result
is based on the analysis of the level sets of u at critical values, in the wake of [1]
and [40].

Topological bounds as in Theorems 3.1 or 3.2 are not possible in dimension
greater than 2. We give two examples.
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Tε

B

u = 1

u = 0

1

Figure 7: The broken doughnut in a ball: u must have a critical point near the
center of B and one between the ends of T .

The broken doughnut in a ball. The first is an adaptation of one
contained in [28] and reproduces the situation of Theorem 3.1 (see Fig. 7).
Let B be the unit ball centered at the origin in R3 and T an open torus with
center of symmetry at the origin and such that T ⊂ B. We can always choose
coordinate axes in such a way that the x3-axis is the axis of revolution for T and
hence define the set Tε = {x ∈ T : x2 < ε−1|x1|}. Tε is simply connected and
tends to T as ε → 0+. Now, set Ωε = B \ Tε and consider a capacity potential
for Ω, that is the harmonic function in Ωε with the following boundary values

u = 0 on ∂B, u = 1 on ∂Tε.

Since Ωε has 2 planes of symmetry (the x1x2 and x2x3 planes), the partial
derivatives ux1 and ux3 must be zero on the two segments that are the inter-
section of Ωε with the x2-axis. If σ is the segment that contains the origin, the
restriction of u to σ equals 1 at the point σ ∩ ∂Tε, is 0 at the point σ ∩ ∂B, is
bounded at the origin by a constant < 1 independent of ε, and can be made
arbitrarily close to 1 between the “ends” of Tε, when ε → 0+, It follows that,
if ε is sufficiently small, ux2 (and hence ∇u) must vanish twice on σ.

It is clear that this argument does not depend on the size or on small de-
formations of T . Thus, we can construct in B a (simply connected) “chain” Cε

of an arbitrary number n of such tori, by gluing them together: the solution in
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the domain obtained by replacing Tε by Cε will then have at least 2n critical
points.

Circles of critical points. The second example shows that, in general
dimension, a finite number of sign changes of some derivative of a harmonic
function u on the boundary does not even imply that u has a finite number of
critical points.

To see this, consider the harmonic function is Subsection 2.5:

u(x, y, z) = J0(
�
x2 + y2) cosh(z).

It is easy to see that, for instance, on any sphere centered at the origin the
normal derivative uν changes its sign a finite number of times. However, if
the radius of the sphere is larger than the first positive zero of J1 = 0, the
corresponding ball contains at least one circle of critical points.

Star-shaped annuli. Nevertheless, if some additional geometric informa-
tion is added, something can be done. Suppose that Ω = D0 \D1, where D0

and D1 are two domains in RN , with boundaries of class C1 and such that
D1 ⊂ D0. Suppose that D0 and D1 are star-shaped with respect to the same
origin O placed in D1, that is the segment OP is contained in the domain
for every point P chosen in it. Then, the capacity potential u defined as the
solution of the Dirichlet problem

∆u = 0 in Ω, u = 0 on ∂D0, u = 1 on ∂D1,

does not have critical points in Ω. This is easily proved by considering the
harmonic function

w(x) = x ·∇u(x), x ∈ Ω.

Since D0 and D1 are starshaped and of class C1, w ≥ 0 on ∂Ω. By the strong
maximum principle, then w > 0 in Ω; in particular, ∇u does not vanish in Ω
and all the sets D1 ∪ {x ∈ Ω : u(x) > s} turn out to be star shaped too
(see [33]). This theorem can be extended to the capacity potential defined in
Ω = RN \D1 as the solution of

∆u = 0 in Ω, u = 1 on ∂Ω, u → 0 as |x| → ∞.

Such results have been extended in [35, 75, 81] to a very general class of non-
linear elliptic equations.

3.2. Counting the critical points of Green’s functions on
manifolds

With suitable restrictions on the coefficients, (2) can be regarded as the Laplace-
Beltrami equation on the Riemannian surface R2 equipped with the metric

c (dx)2 − 2b (dx)(dy) + a (dy)2.
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Theorems 3.1 and 3.2 can then be interpreted accordingly.
This point of view has been considered in a more general context in [29, 30],

where the focus is on Green’s functions of a 2-dimensional complete Riemannian
surface (M, g) of finite topological type (that is, the first fundamental group of
M is finitely generated). A Green’s function is a symmetric function G(x, y)
that satisfies in M the equation

−∆gG(·, y) = δy, (18)

where ∆g is the Laplace-Beltrami operator induced by the metric g and δy is
the Dirac delta centered at a point y ∈ M .

A symmetric Green’s function G can always be constructed by an approx-
imation argument introduced in [61]: an increasing sequence of compact sub-
sets Ωn containing y and exhausting M is introduced and G is then defined as
the limit on compact subsets of M \ {y} of the sequence Gn − an, where Gn

is the solution of (18) such that Gn = 0 on Γn and an is a suitable constant.
A Green’s function defined in this way is generally not unique, but has many
properties in common with the fundamental solution for Laplace’s equation in
the Euclidean plane.

With these premises, in [29, 30] it has been proved the following notable
topological bound:

number of critical points of G ≤ 2g+ e− 1,

where g and e are the genus and the number of ends of M ; the number 2g+e−1
is known as the first Betti number of M . Moreover, if the Betti number is
attained, then G is Morse, that is at its critical points the Hessian matrix is
non-degenerate. In [29], it is also shown that, in dimensions greater than two,
an upper bound by topological invariants is impossible.

Two different proofs are constructed in [29] and [30], respectively. Both
proofs are based on the following uniformization principle: since (M, g) is a
smooth manifold of finite topological type, it is well known (see [54]) that there
exists a compact surface Σ endowed with a metric g� of constant curvature,
a finite number J ≥ 0 of isolated points points pj ∈ Σ and a finite number
K ≥ 0 of (analytic) topological disks Dk ⊂ Σ such that (M, g) is conformally
isometric to the manifold (M �, g�), where M � is interior of

M � = Σ \




J�

j=1

{pj} ∪
K�

k=1

Dk



 .

That means that there exist a diffeomorphism Φ : M → M � and a positive
function f on M such that Φ∗g� = fg; it turns out that the genus g of Σ and
the number J +K — that equals the number e ends of M — determine M up
to diffeomorphisms.
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The proof in [29] then proceeds by analyzing the transformed Green’s func-
tion G� = G ◦ Φ−1. It is proved that G� satisfies the problem

−∆g�G�(·, y�) = δy� −
J�

j=1

cjδpj in the interior of M �, G� = 0 on
K�

k=1

∂Dk,

where y� = Φ(y) and the constants cj , possibly zero (in which case G� would be
g�-harmonic near pj), sum up to 1. Thus, a local blow up analysis of the Hopf

index I(zn), j = 1, . . . , N , of the gradient of G� at the critical points z1, . . . , zN
(isolated and with finite multiplicity), together with the Hopf Index Theorem

([70, 71]), yield the formula

N�

n=1

I(zn) +
�

cj �=0

I(pj) = χ(Σ∗),

where χ(Σ∗) is the Euler characterstic of the manifold

Σ∗ = Σ \
�
Dy� ∪

K�

k=1

Dk

�

and Dy� is a sufficiently small disk around y�. Since χ(Σ∗) is readily computed
as 1− 2g−K and I(zn) ≤ −1, one then obtains that

number of critical points of G� = −
N�

n=1

I(zn) =

2g+K − 1 +
�

cj �=0

I(pj) ≤ 2g+ J +K − 1 = 2g+ e− 1.

Of course, the gradient of G∗ vanishes if and only if that of G does.

The proof contained in [30] has a more geometrical flavor and focuses on
the study of the integral curves of the gradient of G. This point of view is
motivated by the fact that in Euclidean space the Green’s function (the fun-
damental solution) arises as the electric potential of a charged particle at y,
so that its critical points correspond to equilibria and the integral curves of
its gradient field are the lines of force classically studied in the XIX century.
Such a description relies on techniques of dynamical systems rather than on
the toolkit of partial differential equations.

We shall not get into the details of this proof, but we just mention that it
gives a more satisfactory portrait of the integral curves connecting the various
critical points of G — an issue that has rarely been studied.
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3.3. Counting the critical points of eigenfunctions

The bounds and identities on the critical points that we considered so far are
based on a crucial topological tool: the index I(z0) of a critical point z0.

For a function u ∈ C1(Ω), the integer I(z0) is the winding number or

degree of the vector field ∇u around z0 and is related to the portrait of the set
Nu = {z ∈ U : u(z) = u(z0)} for a sufficiently small neighborhood U of z0. As
a matter of fact, if z0 is an isolated critical point of u, one can distinguish two
situations (see [4, 77]):

(I) if U is sufficiently small, Nu = {z0} and I(z0) = 1;

(II) if U is sufficiently small, Nu consists of n simple curves and, if n ≥ 2,
each pair of such curves crosses at z0 only; it turns out that I(z0) = 1−n.

Critical points with index I equal to 1, 0, or negative are called extremal, trivial,
or saddle points, respectively (see [4]) . A saddle point is simple or Morse if
the hessian matrix of u at that point is not trivial.

In the cases we examined so far, we always have that I(z0) ≤ −1, that is z0
is a saddle point, since (I) and (II) with n = 1 cannot occur, by the maximum
principle.

The situation considerably changes when u is a solution of (3), (4), or (5).
Here, we shall give an account of what can be said for solutions of (4). The
same ideas can be used for solutions of the semilinear equation

−∆u = f(u) in Ω,

subject to a homogeneous Dirichlet boundary condition, where the non-linearity
f : R → R satisfies the assumptions:

f(t) > 0 if t > 0 or f(t)/t > 0 for t �= 0

(see [4] for details). We present here the following result that is in the spirit of
Theorem 3.1.

Theorem 3.3 ([4]). Let Ω be as in Theorem 3.1 and u ∈ C1(Ω) ∩ C2(Ω) be a

solution of (4). If z0 ∈ Ω is an isolated critical point of u in Ω, then

(A) either z0 is a nodal critical point, that is z0 ∈ S(u), and the function

ux− i uy is asymptotic to c (z− z0)m, as z → z0, for some c ∈ C\{0} and

m ∈ N,

(B) or z0 is an extremal, trivial, or simple saddle critical point.
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Finally, if all the critical points of u in Ω are isolated
1
, the following identity

holds: �

zk∈Ω

m(zk) +
1

2

�

zk∈Γ

m(zk) + nS − nE = J − 2. (19)

Here, nS and nE denote the number of the simple saddle and extremal points

of u.

Thus, a bound on the number of critical points in topological terms is not
possible — additional information of different nature should be added.

The proof of this theorem can be outlined as follows.
First, one observes that, at a nodal critical point z0 ∈ Ω, ∆u vanishes, and

hence the situation described in Subsection 2.2 is in order, that is ux − i uy

actually behaves as specified in (A) and the index I(z0) equals −m. If z0 ∈ Γ,
a reflection argument like the one used for Theorem 3.1 can be used, so that
z0 can be treated as an interior nodal critical point of an extended function
with vanishing laplacian at z0 and (A) holds; in this case, however, as done for
Theorem 3.1, the contribution of z0 must be counted as −m/2.

Secondly, one examines non-nodal critical points. At these points ∆u is
either positive or negative. If, say, ∆u(z0) < 0, then at least one eigenvalue
of the hessian matrix of u must be negative and the remaining eigenvalue is
either positive (and hence a simple saddle point arises), negative (and hence a
maximum point arises) or zero (and hence, with a little more effort, either a
trivial or a simple saddle point arises). Thus, the total index of these points
sums up to nE − nS .

Finally, identity (19) is obtained by applying Hopf’s index theorem in a
suitable manner.

3.4. Extra assumptions: the emergence of geometry

As emerged in the previous subsection, topology is not enough to control the
number of critical points of an eigenfunction or a torsion function. Here, we
will explain how some geometrical information about Ω can be helpful.

Convexity is a useful information. If the domain Ω ⊂ RN , N ≥ 2, is convex,
one can expect that the solution τ of (3) and the only positive solution φ1 of (4)
— it exists and, as is well known, corresponds to the first Dirichlet eigenvalue
λ1 — have only one critical point (the maximum point). This expectation is
realistic, but a rigorous proof is not straightforward.

1This assumption can be removed when Ω is simply connected, by using the analyticity
of u (see [4])
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In fact, one has to first show that τ and φ1 are quasi-concave, that is one
shows the convexity of the level sets

{x ∈ Ω : u(x) ≥ s} for every 0 ≤ s ≤ max
Ω

u,

for u = τ or u = φ1. It should be noted that φ1 is never concave and examples
of convex domains Ω can be constructed such that τ is not concave (see [57]).

The quasi-concavity of τ and φ1 can be proved in several different ways (see
[16, 17, 21, 46, 56, 57, 82]). Here, we present the argument used in [57]. There,
the desired quasi-convexity is obtained by showing that the functions σ =

√
τ

and ψ = log φ1 are concave functions (τ and φ1 are then said 1/2-concave and
log-concave, respectively).

In fact, one shows that σ and ψ satisfy the conditions

∆σ = −1 + 2 |∇σ|2
2σ

in Ω, σ = 0 on Γ,

and
∆ψ = −(λ1 + |∇ψ|2) in Ω, ψ = −∞ on Γ.

The concavity test established by Korevaar in [57], based on a maximum prin-
ciple for the so-called concavity function (see also [55]), applies to these two
problems and guarantees that both σ and ψ are concave. With similar argu-
ments, one can also prove that the solution of (5)-(6) is log-concave in x for
any fixed time t.

The obtained quasi-concavity implies in particular that, for u = τ or φ1,
the set of critical points C(u), that here coincides with the set

M(u) =
�
x ∈ Ω : u(x) = max

Ω
u
�
,

is convex. This set cannot contain more than one point, due to the analyticity
of u. In fact, if it contained a segment, being the restriction of u analytic on
the chord of Ω containing that segment, u would be a positive constant on this
chord and this is impossible, since u = 0 at the endpoints of this chord.

This same argument makes sure that, if ϕ ≡ 1 in a convex domain Ω, then
for any fixed t > 0 there is a unique point x(t) ∈ Ω — the so-called hot spot —
at which the solution of (5)-(6) attains its maximum in Ω, that is

h(x(t), t) = max
x∈Ω

h(x, t) for t > 0.

The location of x(t) in Ω will be one of the issues in the next section.

A conjecture. Counting (or estimating the number of) the critical points
of τ , φ1, or h when Ω is not convex seems a difficult task. For instance, to the
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author’s knowledge, it is not even known whether or not the uniqueness of the
maximum point holds true if Ω is assumed to be star-shaped with respect to
some origin.

We conclude this subsection by offering and justifying a conjecture on the
number of hot spots in a bounded simply connected domain Ω in R2. To this
aim, we define for t > 0 the set of hot spots as

H(t) = {x ∈ Ω : x is a local maximum point of h(·, t)}.

We shall suppose that the function ϕ in (6) is continuous, non-negative and
not identically equal to zero in Ω, so that, by Hopf’s boundary point lemma,
H(t) ∩ Γ = ∅. Also, by an argument based on the analyticity of h similar to
that used for the uniqueness of the maximum point in a convex domain, we can
be sure that H(t) is made of isolated points (see [4] for details). (A parabolic
version of ) Theorem 3.3 then yields that

nE(t)− nS(t) = 1,

where nE(t) and nS(t) are the number extremal and simple saddle points of
h(·, t); clearly nE(t) is the cardinality of H(t). An estimate on the total number
of critical points of h(·, t) will then follow from one on nE(t).

Notice that, if λn and φn, n ∈ N, are Dirichlet eigenvalues (arranged in
increasing order) and eigenfunctions (normalized in L2(Ω)) of the Laplace’s
operator in Ω, then the following spectral formula

h(x, t) =
∞�

n=1

�ϕ(n)φn(x)e
−λnt holds for x ∈ Ω and t > 0, (20)

where �ϕ(n) is the Fourier coefficient of ϕ corresponding to φn. Then we can
infer that eλ1th(x, t) → �ϕ(1)φ1(x) as t → ∞, with

�ϕ(1) =
�

Ω
ϕ(x)φ1(x) dx > 0,

and the convergence is uniform on Ω under sufficient assumptions on ϕ and Ω.
This information implies that, if x(t) ∈ H(t), then

dist(x(t),H∞) → 0 as t → ∞, (21)

where H∞ is the set of local maximum points of φ1.
Now, our conjecture concerns the influence of the shape of Ω on the number

nE(t). To rule out the possible influence of the values of ϕ, we assume that ϕ ≡
1: then we know that there holds the following asymptotic formula (see [85]):

lim
t→0+

4t log[1− h(x, t)] = −dΓ(x)
2 for x ∈ Ω; (22)
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Ωε

H0

H∞

1

Figure 8: As time t increases, H(t) goes from H0, the set of maximum points
of dΓ, to H∞, the set of maximum points of φ1.

here, dΓ(x) is the distance of a point x ∈ Ω from the boundary Γ. The conver-
gence in (22) is uniform on Ω under suitable regularity assumptions on Γ.

Now, suppose that dΓ has exactly m distinct local (strict) maximum points
in Ω. Formula (22) suggests that, when t is sufficiently small, h(·, t) has the
same number m of maximum points in Ω. As time t increases, one expects
that the maximum points of h(·, t) do not increase in number. Therefore, the
following bounds should hold:

nE(t) ≤ m and hence nE(t) + nS(t) ≤ 2m− 1 for every t > 0. (23)

From the asymptotic analysis performed on (20), we also derive that the total

number of critical points of φ1 does not exceeds 2m− 1.

We stress that (23) cannot always hold with the equality sign. In fact, if
D±

ε denotes the unit disk centered at (±ε, 0) and we consider the domain Ωε

obtained from D+
ε ∪D−

ε by “smoothing out the corners” (see Fig. 8), we notice
that m = 2 for every 0 < ε < 1, while Ωε tends to the unit ball centered at the
origin and hence, if ε is small enough, φ1 has only one critical point, being Ωε

“almost convex”.

Based on a similar argument, inequalities like (23) should also hold for the
number of critical points of the torsion function τ . In fact, if Us is the solution
of the one-parameter family of problems

−∆Us + sUs = 1 in Ω, Us = 0 on Γ,
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where s is a positive parameter, we have that

lim
s→0+

Us = τ and lim
s→∞

1√
s
log[1− sUs] = −dΓ,

uniformly on Ω (see again [85]).
We finally point out that the asymptotic formulas presented here hold in

any dimension; thus, the bounds in (23) may be generalized in some way.

3.5. A conjecture by S. T. Yau

To conclude this section about the number of critical points of solutions of
partial differential equations, we cannot help mentioning a conjecture proposed
in [89] (also see [32, 48, 49]). This is motivated by the study of eigenfunctions of
the Laplace-Beltrami operator ∆g in a compact Riemannian manifold (M, g).

Let {φk}k∈N be a sequence of eigenfunctions,

∆gφk + λkφk = 0 in M.

Let xk ∈ M be a point of maximum for φk in M and Bk a geodesic ball
centered at xk and with radius C/

√
λk. If we blow up Bk to the unit disk in

R2 and let uk/maxφk be the eigenfunction after that change of variables, then
a subsequence of {uk}k∈N will converge to a solution u of

∆u+ u = 0, |u| < 1 in R2. (24)

If we can prove that u has infinitely many isolated critical points, then we can
expect that their number be unbounded also for the sequence {φk}k∈N.

A naive insight built up upon the available concrete examples of entire eigen-
functions (the separated eigenfunctions in rectangular or polar coordinates) may
suggest that it would be enough to prove that any solution of (24) has infinitely
many nodal domains. It turns out that this is not always true, as a clever coun-
terexample obtained in [32, Theorem 3.2] shows: there exists a solution of (24)
with exactly two nodal domains.

The counterexample is constructed by perturbing the solution of (24)

f = J1(r) sin θ,

where (r, θ) are the usual polar coordinates and J1 is the second Bessel’s func-
tion; f has infinitely many nodal domains. The desired example is thus ob-
tained by the perturbation h = f + ε g, where g(x, y) = f(x − δx, y − δy)
and (δx, δy) is suitably chosen. As a result, if ε is sufficiently small, the set
{(x, y) ∈ R2 : h(x, y) �= 0} is made of two interlocked spiral-like domains (see
[32, Figure 3.1]).
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A related result was proved in [31], where it is shown that there is no topo-
logical upper bound for the number of critical points of the first eigenfunction
on Riemannian manifolds (possibly with boundary) of dimension larger than
two. In fact, with no restriction on the topology of the manifold, it is possi-
ble to construct metrics whose first eigenfunction has as many isolated critical
points as one wishes.

Recently, it has been proved in [52] that, if (M, g) is a non-positively curved
surface with concave boundary, the number of nodal domains of φk diverges
along a subsequence of eigenvalues of density 1 (see also [53] for related results).
The surface needs not have any symmetries. The number can also be shown to
grow like log λk ([91]). In light of such results, Yau’s conjecture was updated
as follows: show that, for any (generic) (M, g) there exists at least one sub-
sequence of eigenfunctions for which the number of nodal domains (and hence
of the critical points) tends to infinity ([90, 91]).

4. The location of critical points

4.1. A little history

The first result that studies the critical points of a function is probably Rolle’s

theorem: between two zeroes of a differentiable real-valued function there is at
least one critical point. Thus, a function that has n distinct zeroes also has at
least n− 1 critical points — an estimate from below — and we roughly know
where they are located.

After Rolle’s theorem, the first general result concerning the zeroes of the
derivative of a general polynomial is Gauss’s theorem: if

P (z) = an (z − z1)
m1 · · · , (z − zK)mK , with m1 + · · ·+mK = n,

is a polynomial of degree n, then

P �(z)

P (z)
=

m1

z − z1
+ · · ·+ mK

z − zK

and hence the zeroes of P �(z) are, in addition to the multiple zeroes of P (z)
themselves, the roots of

m1

z − z1
+ · · ·+ mK

z − zK
= 0.

These roots can be interpreted as the equilibrium points of the gravitational
field generated by the masses m1, . . . ,mK placed at the points z1, . . . , zK , re-
spectively.

If the zeroes of P (z) are placed on the real line then, by Rolle’s theorem,
it is not difficult to convince oneself that the zeroes of P �(z) lie in the smallest
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interval of the real axis that contains the zeroes of P (z). This simple result
has a geometrically expressive generalization in Lucas’s theorem: the zeroes of
P �(z) lie in the convex hull Π of the set {z1, . . . , zK} — named Lucas’s polygon

—and no such zero lies on ∂Π unless is a multiple zero zk of P (z) or all the
zeroes of P (z) are collinear (see Fig. 9).

In fact, it is enough to observe that, if z /∈ Π or z ∈ ∂Π, then all the zk
lie in the closed half-plane H containing them and the side of Π which is the
closest to z. Thus, if � = �x + i �y is an outward direction to ∂H, we have that

Re

��
K�

k=1

mk

z − zk

�
�

�
=

K�

k=1

mk
Re

�
(z − zk) �

�

|z − zk|2
> 0,

since all the addenda are non-negative and not all equal to zero, unless the zk’s
are collinear.

AN INTRODUCTION

1

Figure 9: Lucas’s theorem: the zeroes of P �(z) must fall in the convex envelope
of those of P (z).

If P (z) has real coefficients, we know that its non-real zeroes occur in con-
jugate pairs. Using the circle whose diameter is the segment joining such a pair
— this is called a Jensen’s circle of P (z) — one can obtain a sharper estimate
of the location of the zeroes of P �(z): each non-real zero of P �(z) lies on or
within a Jensen’s circle of P (z). This result goes under the name of Jensen’s
theorem (see [87] for a proof).

All these results can be found in Walsh’s treatise [87], that contains many
other results about zeroes of complex polynomials or rational functions and
their extensions to critical points of harmonic functions: among them restricted
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versions of Theorem 3.1 give information (i) on the critical points of the Green’s
function of an infinite region delimited by a finite collection of simple closed
curves and (ii) of harmonic measures generated by collections of Jordan arcs.
Besides the argument’s principle already presented in these notes, a useful in-
gredient used in those extensions is a Hurwitz’s theorem (based on the classical
Rouché’s theorem): if fn(z) and f(z) are holomorphic in a domain Ω, contin-
uous on Ω, f(z) is non-zero on Γ and fn(z) converges uniformly to f(z) on Ω,
then there is a n0 ∈ N such that, for n > n0, fn(z) and f(z) have the same
number of zeroes in Ω.

4.2. Location of critical points of harmonic functions in
space

The following result is somewhat an analog of Lucas’s theorem and is related
to [87, Theorem 1, p. 249], which holds in the plane.

Theorem 4.1 ([28]). Let D1, . . . , DJ be bounded domains in RN
, N ≥ 3, with

boundaries of class C1,α
and with mutually disjoint closures, and set

Ω = RN \
J�

j=1

Dj .

Let u ∈ C0(Ω) ∩ C2(Ω) be the solution of the boundary value problem

∆u = 0 in Ω, u = 1 on Γ, u(x) → 0 as |x| → ∞. (25)

If K denotes the convex hull of

J�

j=1

Dj ,

then u does not have critical points in RN \ K (sse Fig. 10).

This theorem admits at least two proofs and it is worth to present both of
them. The former is somewhat reminiscent of Lucas’s proof and is based on an
explicit formula for u,

u(x) =
1

(N − 2)ωN

�

Γ

uν(y)

|x− y|N−2
dSy, x ∈ Ω,

that can be derived as a consequence of Stokes’s formula. Here, ωN is the
surface area of a unit sphere in RN , dSy denotes the (N − 1)-dimensional
surface measure, and uν is the (outward) normal derivative of u.
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By the Hopf’s boundary point lemma, uν > 0 on Γ. Also, if x ∈ RN \ K,
we can choose a hyperplane π passing through x and supporting K (at some
point). If � is the unit vector orthogonal to π at x and pointing into the half-
space containing K, we have that (x−y)·� is non-negative and is not identically
zero for y ∈ Γ. Therefore,

u�(x) = − 1

ωN

�

Γ

uν(y) (x− y) · �
|x− y|N dSy < 0,

which means that ∇u(x) �= 0.

AN INTRODUCTION

D1

D2

1

Figure 10: No critical points outside of the convex envelope.

The latter proof is based on a symmetry argument ([79]) and, as it will be
clear, can also be extended to more general non-linear equations. Let π be any
hyperplane contained in Ω and let H be the open half-space containing K and
such that ∂H = π. Let x� be the mirror reflection in π of any point x ∈ H ∩Ω.
Then the function defined by

u�(x) = u(x�) for x ∈ H ∩ Ω

is harmonic in H ∩ Ω, tends to 0 as |x| → ∞ and

u� < u in H ∩ Ω, u� = u on π \ Γ.

Therefore, by the Hopf’s boundary point lemma, u�(x) �= 0 at any x ∈ π \ Γ
for any direction � not parallel to π. Of course, if x ∈ Γ ∩ π, we obtain that
uν(x) > 0 by directly using the Hopf’s boundary point lemma.

Generalizations of Lucas’s theorem hold for other problems. Here, we men-
tion the well known result of Chavel and Karp [25] for the minimal solution of
the Cauchy problem for the heat equation in a Riemannian manifold (M, g):

ut = ∆gu in M × (0,∞), u = ϕ on M × {0}, (26)
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where ϕ is a bounded initial data with compact support in M . In [23], it is
shown that, if M is complete, simply connected and of constant curvature, then
the set of the hot spots of u,

H(t) =

�
x ∈ M : u(x, t) = max

y∈M
u(y, t)

�
,

is contained in the convex hull of the support of ϕ. The proof is based on
an explicit formula for u in terms of the initial values ϕ. For instance, when
M = RN , we have the formula

u(x, t) = (4πt)−N/2

�

RN

e−|x−y|2ϕ(y) dy for (x, t) ∈ RN × (0,∞).

With this formula in hand, by looking at the second derivatives of u, one can
also prove that there is a time T > 0 such that, for t > T , H(t) reduces to the
single point �

RN y ϕ(y)dy�
RN ϕ(y)dy

,

which is the center of mass of the measure space (RN ,ϕ(y)dy) (see [51]).
We also mention here the work of Ishige and Kabeya ([43, 44, 45]) on the

large time behavior of hot spots for solutions of the heat equation with a rapidly
decaying potential and for the Schrödinger equation.

4.3. Hot spots in a grounded conductor

From a physical point of view, the solution (26) describes the evolution of the
temperature of M when its initial value distribution is known on M . The
situation is more difficult if ∂M is not empty. We shall consider here the
case of a grounded heat conductor, that is we will study the solution h of the
Cauchy-Dirichlet problem (5)-(6).

Bounded conductor. As already seen, if ϕ ≥ 0, (20) implies (21). For an
arbitrary continuous function ϕ, from (20) we can infer that, if m is the first
integer such that �ϕ(n) �= 0 and m + 1, . . . ,m + k − 1 are all the integers such
that λm = λm+1 = · · · = λm+k−1, then

eλmt h(x, t) →
m+k−1�

n=m

�ϕ(n)φn(x) if t → ∞.

Also, when ϕ ≡ 1, (22) holds and hence

dist(x(t),H0) → 0 as t → 0, (27)
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where H0 is the set of local (strict) maximum points of dΓ. These informations
give a rough picture of the set of trajectories of the hot spots:

T =
�

t>0

H(t).

Notice in passing that, if Ω is convex and has N distinct hyperplanes of
symmetry, it is clear that T is made of the same single point — the intersection
of the hyperplanes — that is the hot spot does not move or is stationary. Also,
it is not difficult to show (see [24]) that the hot spot does not move if Ω is
invariant under an essential group G of orthogonal transformations (that is for
every x �= 0 there is A ∈ G such that Ax �= 0). Characterizing the class P of
convex domains that admit a stationary hot spot seems to be a difficult task:
some partial results about convex polygons can be found in [64, 65] (see also
[63]). There it is proved that: (i) the equilateral triangle and the parallelogram
are the only polygons with 3 or 4 sides in P; (ii) the equilateral pentagon and
the hexagons invariant under rotations of angles π/3, 2π/3, or π are the only
polygons with 5 or 6 sides all touching the inscribed circle centered at the hot
spot.

The analysis of the behavior of H(t) for t → 0+ and t → ∞ helps us to
show that hot spots do move in general.

AN INTRODUCTION

x0

D+

D∗

1

Figure 11: The reflected D∗ is contained in D+, hence h� can be defined in D∗.
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To see this, it is enough to consider the half-disk (see Fig. 11)

D+ = {(x, y) ∈ R2 : |x| < 1, x1 > 0};

being D+ convex, for each t > 0, there is a unique hot spot that, as t → 0+,
tends to the maximum point x0 = (1/2, 0) of dΓ. Thus, it is enough to show
that x0 is not a spatial critical point of h(x, t) for some t > 0 or, if you like,
for φ1.

This is readily seen by Alexandrov’s reflection principle. Let D∗ = {x ∈
D+ : x1 > 1/2} and define

h�(x1, x2, t) = h(1− x1, x2, t) for (x1, x2, t) ∈ D∗ × (0,∞);

h� is the reflection of h in the line x1 = 1/2. We clearly have that

(h� − h)t = ∆(h− h�) in D∗ × (0,∞), h� − h = 0 on D∗ × {0},
h�−h>0 on (∂D∗ ∩ ∂+)× (0,∞), h�−h=0 on (∂D∗ ∩D+)× (0,∞).

Thus, the strong maximum principle and the Hopf’s boundary point lemma
imply that

−2hx1(1/2, x2, t) = h�
x1
(1/2, x2, t)− hx1(1/2, x2, t) > 0

for (1/2, x2, t) ∈ (∂D∗ ∩D+)× (0,∞), and hence x0 cannot be a critical point
of h.

The Alexandrov’s principle just mentioned can also be employed to estimate
the location of a hot spot. In fact, as shown in [18], by the same arguments
one can prove that hot spots must belong to the subset ♥(Ω) of Ω defined as
follows. Let πω be a hyperplane orthogonal to the direction ω ∈ SN−1 and let
H+

ω and H−
ω be the two half-spaces defined by πω; let Rω(x) denote the mirror

reflection of a point x in πω. Then, the heart
2 of Ω is defined by

♥(Ω) =
�

ω∈SN−1

{H−
ω ∩ Ω : Rω(H

+
ω ∩ Ω) ⊂ Ω}.

When Ω is convex, then ♥(Ω) is also convex and, if Γ is of class C1, we are
sure that its distance from Γ is positive (see [34]). Also, we know that H(t) is
made of only one point x(t), so that

dist(x(t),Γ) ≥ dist(♥(Ω),Γ).

The set ♥(Ω) contains many notable geometric points of the set Ω, such as
the center of mass, the incenter, the circumcenter, and others; see [19], where

2♥(Ω) has also been considered in [72] under the name of minimal unfolded region.
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further properties of the heart of a convex body are presented. See also [80]
for related research on this issue.

As clear from [18], the estimate just presented is of purely geometric nature,
that is it only depends on the lack of symmetry of Ω and does not depend on
the particular equation we are considering in Ω, as long as the equation is
invariant by reflections.

A different way to estimate the location of the hot spot of a grounded con-
vex heat conductor or the maximum point of the solution of certain elliptic
equations is based on ideas related to Alexandrov-Bakelman-Pucci’s maximum
principle and does take into account the information that comes from the rel-
evant equation. For instance, in [18] it is proved that the maximum point x∞
of φ1 in Ω is such that

dist(x∞,Γ) ≥ CN rΩ

�
rΩ

diam(Ω)

�N2−1

, (28)

where CN is a constant only depending on N , rΩ is the inradius of Ω (the
radius of a largest ball contained in Ω) and diam(Ω) is the diameter of Ω.

The idea of the proof of (28) is to compare the concave envelope f of φ1 —
the smallest concave function above φ1 — and the function g whose graph is
the surface of the (truncated) cone based on Ω and having its tip at the point
(x∞,φ(x∞)) (see Fig. 12).

Since f ≥ g and f(x∞) = g(x∞), we can compare their respective sub-

differential images:

∂f(Ω) =
�

x∈Ω

�
p ∈ RN : f(x) + p · (y − x) ≥ f(y) for y ∈ Ω

�
,

∂g(Ω) =
�

x∈Ω

�
p ∈ RN : g(x) + p · (y − x) ≥ g(y) for y ∈ Ω

�
;

in fact, it holds that ∂g(Ω) ⊆ ∂f(Ω).
Now, ∂g(Ω) has a precise geometrical meaning: it is the set φ1(x∞)Ω∗, that

is a multiple of the polar set of Ω with respect to x∞ defined by

Ω∗ = {y ∈ RN : (x− x∞) · (y − x∞) ≤ 1 for every x ∈ Ω}.

The volume |∂f(Ω)| can be estimated by the formula of change of variables to
obtain:

φ1(x∞)N |Ω∗| = |∂g(Ω)| ≤ |∂f(Ω)| ≤
�

C
| detD2f | dx =

�

C
| detD2φ1| dx,

where C = {x ∈ Ω : f(x) = φ1(x)} is the contact set. Since the determinant
and the trace of a matrix are the product and the sum of the eigenvalues of the
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matrix, by the arithmetic-geometric mean inequality, we have that | detD2φ1| ≤
(−∆φ1/N)N , and hence we can infer that

|Ω∗| ≤
�

C

�
−∆φ1

Nφ1(x∞)

�N
dx =

�

C

�
λ1(Ω)φ1

Nφ1(x∞)

�N
dx ≤

�
λ1(Ω)

N

�N
|Ω|,

being φ1 ≤ φ1(x∞) in Ω. Finally, in order to get (28) explicitly, one has to
bound |Ω∗| from below by the volume of the polar set of a suitable half-ball
containing Ω, and λ1(Ω) from above by the isodiametric inequality (see [18] for
details).
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Figure 12: The concave envelope of φ1 and the cone g. The dashed cap is the
image f(C) = φ1(C) of the contact set C.

The two methods we have seen so far, give estimates of how far the hot
spot must be from the boundary. We now present a method, due to Grieser
and Jerison [37], that gives an estimate of how far the hot spot can be from
a specific point in the domain. The idea is to adapt the classical method of

separation of variables to construct a suitable approximation u of the first
Dirichlet eigenfunction φ1 in a planar convex domain. Clearly, if Ω were a
rectangle, say [a, b]× [0, 1], then that approximation would be exact: in fact

u(x, y) = φ1(x, y) = sin[π(x− a)/(b− a)].

If Ω is not a rectangle, after some manipulations, we can suppose that

Ω = {(x, y) : a < x < b, f1(x) < y < f2(x)}

where, in [a, b], f1 is convex, f2 is concave and

0 ≤ f1 ≤ f2 ≤ 1 and min
[a,b]

f1 = 0, max
[a,b]

f2 = 1

(see Fig. 13).
The geometry of Ω does not allow to find a solution by separation of vari-

ables as in the case of the rectangle. However, one can operate “as if” that
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1

Figure 13: Estimating the hot spot in the “long” convex set Ω.

separation were possible. To understand that, consider the length of the section
of foot x, parallel to the y-axis, by

h(x) = f2(x)− f1(x) for a ≤ x ≤ b,

and notice that, if we set

α(x, y) = π
y − f1(x)

h(x)
,

the function

e(x, y) =
�
2/h(x) sinα(x, y) for f1(x) ≤ y ≤ f2(x),

satisfies for fixed x the problem

eyy + π2e = 0 in (f1(x), f2(x)), e(x, f1(x)) = e(x, f2(x)) = 0

— thus, it is the first Dirichlet eigenfunction in the interval (f1(x), f2(x)),
normalized in the space L2([f1(x), f2(x)]). The basic idea is then that φ1(x, y)
should be (and in fact it is) well approximated by its lowest Fourier mode in the
y-direction, computed for each fixed x, that is by the projection of φ1 along e:

ψ(x) e(x, y) where ψ(x) =

� f2(x)

f1(x)
φ1(x, η) e(x, η) dη.

To simplify matters, a further approximation is needed: it turns out that ψ
and its first derivative can be well approximated by φ/

√
2 and its derivative,

where φ is the first eigenfunction of the problem

φ��(x) +

�
µ− π2

h(x)2

�
φ(x) = 0 for a < x < b, φ(a) = φ(b) = 0.
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Since near the maximum point x1 of φ, |φ�(x)| can be bounded from below
by a constant times |x − x1|, the constructed chain of approximations gives
that, if (x0, y0) is the maximum point of φ1 on Ω, then there is an absolute
constant C such that

|x1 − x0| ≤ C.

C is independent of Ω, but the result has clearly no content unless b− a > C.

Unbounded conductor. If Ω is unbounded, by working with suitable barri-
ers, one can still prove formula (22) when ϕ ≡ 1 (see [66, 67]), the convergence
holding uniformly on compact subsets of Ω. Thus, any hot spot x(t) will again
satisfy (27).

To the author’s knowledge, [51] is the only reference in which the behavior
of hot spots for large times has been studied for some grounded unbounded
conductors. There, the cases of a half-space RN

+ = {x ∈ RN : xN > 0} and the
exterior of a ball Bc = {x ∈ RN : |x| > 1} are considered. It is shown that
there is a time T > 0 such that for t > T the set H(t) is made of only one hot
spot x(t) = (x1(t), . . . , xN (t)) and

xj(t) →
�
RN−1 yjyNϕ(y�)dy��
RN−1 yNϕ(y�)dy�

, 1 ≤ j ≤ N − 1,
xN (t)√

2t
→ 1 as t → ∞,

if Ω = RN
+ , while for Ω = Bc, if ϕ is radially symmetric, then there is a time

T > 0 such that H(t) = {x ∈ RN : |x| = r(t)}, for t > T , where r(t) is some
smooth function of t such that

lim sup
t→∞

r(t) = ∞.

Upper bounds for H(t) are also given in [51] for the case of the exterior of a
smooth bounded domain.

4.4. Hot spots in an insulated conductor

We conclude this survey by giving an account on the so-called hot spot conjec-

ture by J. Rauch [76]. This is related to the asymptotic behavior of hot spots in
a perfectly insulated heat conductor modeled by the following initial-boundary
value problem:

ht = ∆h in Ω×(0,∞), h = ϕ on Ω×{0}, ∂νu = 0 on Γ×(0,∞). (29)

Observe that, similarly to (20), a spectral formula also holds for the solution
of (29):

h(x, t) =
∞�

n=1

�ϕ(n)ψn(x) e
−µnt, for x ∈ Ω and t > 0. (30)
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Here {µn}n∈N is the increasing sequence of Neumann eigenvalues and {ψn}n∈N
is a complete orthonormal system in L2(Ω) of eigenfunctions corresponding to
the µn’s, that is ψn is a non-zero solution of

∆ψ + µψ = 0 in Ω, ∂νψ = 0 on Γ, (31)

with µ = µn. The numbers �ϕ(n) are the Fourier coefficients of ϕ corresponding
to ψn, that is

�ϕ(n) =
�

Ω
ϕ(x)ψn(x) dx, n ∈ N.

Since µ1 = 0 and ψ1 = 1/
�
|Ω|, we can infer that

eµmt

�
h(x, t)− 1�

|Ω|

�

Ω
ϕ dx

�
→

m+k−1�

n=m

�ϕ(n)ψn(x) as t → ∞, (32)

where m is the first integer such that �ϕ(n) �= 0 and m+1, . . . ,m+k−1 are all
the integers such that µm = µm+1 = · · · = µm+k−1. Thus, similarly to what
happens for the case of a grounded conductor, as t → ∞, a hot spot x(t) of h
tends to a maximum point of the function at the right-hand side of (32).

Now, roughly speaking, the conjecture states that, for “most” initial condi-
tions ϕ, the distance from Γ of any hot and cold spot of h must tend to zero as
t → ∞, and hence it amounts to prove that the right-hand side of (32) attains
its maximum and minimum at points in Γ.

It should be noticed now that the quotes around the word most are justified
by the fact that the conjecture does not hold for all initial conditions. In fact,
as shown in [10], if Ω = (0, 2π)× (0, 2π) ⊂ R2, the function defined by

h(x1, x2, t) = −e−t(cosx1 + cosx2), (x1, x2) ∈ Ω, t > 0,

is a solution of (29) — with ϕ(x1, x2) = −(cosx1 + cosx2) — that attains its
maximum at (−π,π) for any t > 0. However, it turns out that in this case
h(x1, x2, t) = −e−µ4tψ4(x1, x2). Thus, it is wiser to rephrase the conjecture by
asking whether or not the hot and cold spots tend to Γ if the coefficient �ϕ(2)
of the first non-constant eigenfunction ψ2 is not zero or, which is the same,
whether or not maximum and minimum points of ψ2 in Ω are attained only
on Γ.

In [55], a weaker version of this last statement is proved to hold for domains
of the form D× (0, a), where D ⊂ RN−1 has a boundary of class C0,1. In [55],
the conjecture has also been reformulated for convex domains. Indeed, we now
know that it is false for fairly general domains: in [20] a planar domain with
two holes is constructed, having a simple second eigenvalue and such that the
corresponding eigenfunction attains its strict maximum at an interior point
of the domain. It turns out that in that example the minimum point is on
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the boundary. Nevertheless, in [12] it is given an example of a domain whose
second Neumann eigenfunction attains both its maximum and minimum points
at interior points. In both examples the conclusion is obtained by probabilistic
methods.

Besides in [55], positive results on this conjecture can be found in [9, 10, 11,
27, 50, 69, 73, 83]. In [10], the conjecture is proved for planar convex domains
Ω with two orthogonal axis of symmetry and such that

diam(Ω)

width(Ω)
> 1.54.

This restriction is removed in [50]. In [73], Ω is assumed to have only one axis
of symmetry, but ψ2 is assumed anti-symmetric in that axis. A more general
result is contained in [9]: the conjecture holds true for domains of the type

Ω = {(x1, x2) : f1(x1) < x2 < f2(x1)},

where f1 and f2 have unitary Lipschitz constant. In [27], a modified version is
considered: it holds true for general domains, if vigorous maxima are considered
(see [27] for the definition). If no symmetry is assumed for a convex domain Ω,
Y. Miyamoto [69] has verified the conjecture when

diam(Ω)2

|Ω| < 1.378

(for a disk, this ratio is about 1.273).

For unbounded domains, the situation changes. For the half-space, Jimbo
and Sakaguchi proved in [51] that there is a time T after which the hot spot
equals a point on the boundary that depends on ϕ. In [51], the case of the
exterior Ω of a ball BR is also considered for a radially symmetric ϕ. For a
suitably general ϕ, Ishige [41] has proved that the behavior of the hot spot is
governed by the point

Aϕ =

�

Ω
x

�
1 +

RN

N − 1
|x|−N

�
ϕ(x) dx

�

Ω
ϕ(x) dx

.

If Aϕ ∈ BR, then H(t) tends to the boundary point RAϕ/|Aϕ|, while if Aϕ /∈
BR, then H(t) tends to Aϕ itself.

Results concerning the behavior of hot spots for parabolic equations with a
rapidly decaying potential can be found in [43, 44].
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(1913), 181–195.

[48] D. Jakobson and N. Nadirashvili, Eigenfunctions with few critical points, J.
Differential Geom. 53 (1999), 177–182.

[49] D. Jakobson, N. Nadirashvili and D. Toth, Geometric properties of eigen-
functions, Russian Math. Surveys 56 (2001), 67–88.

[50] D. Jerison and N. Nadirashvili, The ”hot spots” conjecture for domains with
two axes of symmetry, J. Amer. Math. Soc. 13 (2000), 741–772.

[51] S. Jimbo and S. Sakaguchi, Movement of hot spots over unbounded domains
in RN , J. Math. Anal. Appl. 182 (1994), 810–835.

[52] J. Jung and S. Zelditch, Number of nodal domains of eigenfunctions on non-
positively curved surfaces with concave boundary, Math. Ann. 364 (2016), 813–
840.

[53] J. Jung and S. Zelditch, Number of nodal domains and singular points of
eigenfunctions of negatively curved surfaces with an isometric involution, J. Dif-
ferential Geom. 102 (2016), 37–66.

[54] M. Kalka and D. Yang, On nonpositive curvature functions on noncompact
surfaces of finite topological type, Indiana Univ. Math. J. 43 (1994), 775–804.

[55] B. Kawohl, Rearrangements and convexity of level sets in PDE, Springer,
Berlin, 1985.

[56] A. U. Kennington, Power concavity and boundary value problems, Indiana
Univ. Math. J. 34 (1985), 687–704.

[57] N. J. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary
value problems, Indiana Univ. Math. J. 32 (1983), 603–614.

[58] N. J. Korevaar and J. L. Lewis, Convex solutions of certain elliptic equations
have constant rank Hessians, Arch. Ration. Mech. Anal. 97 (1987), 19–32.

[59] S. Kantz and H. R. Parks, A Primer of Real Analytic Functions, Birkhäuser,
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Abstract. We consider a two-phase heat conductor in RN
with N ≥ 2

consisting of a core and a shell with different constant conductivities.

Suppose that, initially, the conductor has temperature 0 and, at all

times, its boundary is kept at temperature 1. It is shown that, if there

is a stationary isothermic surface in the shell near the boundary, then

the structure of the conductor must be spherical. Also, when the medium

outside the two-phase conductor has a possibly different conductivity,

we consider the Cauchy problem with N ≥ 3 and the initial condition

where the conductor has temperature 0 and the outside medium has

temperature 1. Then we show that almost the same proposition holds

true.
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1. Introduction

Let Ω be a bounded C2 domain in RN (N ≥ 2) with boundary ∂Ω, and let
D be a bounded C2 open set in RN which may have finitely many connected
components. Assume that Ω \ D is connected and D ⊂ Ω. Denote by σ =
σ(x) (x ∈ RN ) the conductivity distribution of the medium given by

σ =






σc in D,

σs in Ω \D,

σm in RN \ Ω,

where σc,σs,σm are positive constants and σc �= σs. This kind of three-phase
electrical conductor has been dealt with in [7] in the study of neutrally coated
inclusions.
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In the present paper we consider the heat diffusion over two-phase or three-
phase heat conductors. Let u = u(x, t) be the unique bounded solution of
either the initial-boundary value problem for the diffusion equation:

ut = div(σ∇u) in Ω× (0,+∞), (1)

u = 1 on ∂Ω× (0,+∞), (2)

u = 0 on Ω× {0}, (3)

or the Cauchy problem for the diffusion equation:

ut = div(σ∇u) in RN
× (0,+∞) and u = XΩc on RN

× {0}, (4)

where XΩc denotes the characteristic function of the set Ωc = RN \Ω. Consider
a bounded domain G in RN satisfying

D ⊂ G ⊂ G ⊂ Ω and dist(x, ∂Ω) ≤ dist(x,D) for every x ∈ ∂G. (5)

The purpose of the present paper is to show the following theorems.

Theorem 1.1. Let u be the solution of problem (1)-(3) for N ≥ 2, and let Γ
be a connected component of ∂G satisfying

dist(Γ, ∂Ω) = dist(∂G, ∂Ω). (6)

If there exists a function a : (0,+∞) → (0,+∞) satisfying

u(x, t) = a(t) for every (x, t) ∈ Γ× (0,+∞), (7)

then Ω and D must be concentric balls.

Corollary 1.2. Let u be the solution of problem (1)-(3) for N ≥ 2. If there

exists a function a : (0,+∞) → (0,+∞) satisfying

u(x, t) = a(t) for every (x, t) ∈ ∂G× (0,+∞), (8)

then Ω and D must be concentric balls.

Theorem 1.3. Let u be the solution of problem (4) for N ≥ 3. Then the

following assertions hold:

(a) If there exists a function a : (0,+∞) → (0,+∞) satisfying (8), then Ω
and D must be concentric balls.

(b) If σs = σm and there exists a function a : (0,+∞) → (0,+∞) satisfying

(7) for a connected component Γ of ∂G with (6), then Ω and D must be

concentric balls.
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Corollary 1.2 is just an easy by-product of Theorem 1.1. Theorem 1.3
is limited to the case where N ≥ 3, which is not natural; that is required for
technical reasons in the use of the auxiliary functions U, V,W given in section 4.
We conjecture that Theorem 1.3 holds true also for N = 2.

The condition (7) means that Γ is an isothermic surface of the normalized
temperature u at every time, and hence Γ is called a stationary isothermic sur-
face of u. When D = ∅ and σ is constant on RN , a symmetry theorem similar
to Theorem 1.1 or Theorem 1.3 has been proved in [13, Theorem 1.2, p. 2024]
provided the conclusion is replaced by that ∂Ω must be either a sphere or the
union of two concentric spheres, and a symmetry theorem similar to Corol-
lary 1.2 has also been proved in [10, Theorem 1.1, p. 932]. The present paper
gives a generalization of the previous results to multi-phase heat conductors.

We note that the study of the relationship between the stationary isother-
mic surfaces and the symmetry of the problems has been initiated by Alessan-
drini [2, 3]. Indeed, when D = ∅ and σ is constant on RN , he considered the
problem where the initial data in (3) is replaced by the general data u0 in
problem (1)-(3). Then he proved that if all the spatial isothermic surfaces of u
are stationary, then either u0 − 1 is an eigenfunction of the Laplacian or Ω is
a ball where u0 is radially symmetric. See also [8, 14] for this direction.

The following sections are organized as follows. In section 2, we give four
preliminaries where the balance laws given in [9, 10] play a key role on behalf
of Varadhan’s formula (see (12)) given in [15]. Section 3 is devoted to the
proof of Theorem 1.1. Auxiliary functions U, V given in section 3 play a key
role. If D is not a ball, we use the transmission condition (35) on ∂D to
get a contradiction to Hopf’s boundary point lemma. In section 4, we prove
Theorem 1.3 by following the proof of Theorem 1.1. Auxiliary functions U, V,W
given in section 4 play a key role. We notice that almost the same arguments
work as in the proof of Theorem 1.1.

2. Preliminaries for N ≥ 2

Concerning the behavior of the solutions of problem (1)-(3) and problem (4),
we start with the following lemma.

Lemma 2.1. Let u be the solution of either problem (1)-(3) or problem (4). We

have the following assertions:

(a) For every compact set K ⊂ Ω, there exist two positive constants B and b
satisfying

0 < u(x, t) < Be−
b
t for every (x, t) ∈ K × (0, 1].

(b) There exists a constant M > 0 satisfying

0 ≤ 1− u(x, t) ≤ min{1,Mt−
N
2 |Ω|}
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for every (x, t) ∈ Ω × (0,+∞) or ∈ RN × (0,∞), where |Ω| denotes the

Lebesgue measure of the set Ω.

(c) For the solution u of problem (1)-(3), there exist two positive constants

C and λ satisfying

0 ≤ 1− u(x, t) ≤ Ce−λt
for every (x, t) ∈ Ω× (0,+∞).

(d) For the solution u of problem (4) where N ≥ 3, there exist two positive

constants β and L satisfying

β−1
|x|2−N

≤

� ∞

0
(1− u(x, t)) dt ≤ β|x|2−N

if |x| ≥ L,

where Ω ⊂ BL(0) = {x ∈ RN : |x| < L}.

Proof. We make use of the Gaussian bounds for the fundamental solutions of
parabolic equations due to Aronson [4, Theorem 1, p. 891] (see also [5, p. 328]).
Let g = g(x, t; ξ, τ) be the fundamental solution of ut = div(σ∇u). Then there
exist two positive constants α and M such that

M−1(t− τ)−
N
2 e−

α|x−ξ|2
t−τ ≤ g(x, t; ξ, τ) ≤ M(t− τ)−

N
2 e−

|x−ξ|2
α(t−τ) (9)

for all (x, t), (ξ, τ) ∈ RN × (0,+∞) with t > τ .
For the solution u of problem (4), 1− u is regarded as the unique bounded

solution of the Cauchy problem for the diffusion equation with initial data
XΩ which is greater than or equal to the corresponding solution of the initial-
boundary value problem for the diffusion equation under the homogeneous
Dirichlet boundary condition by the comparison principle. Hence we have
from (9)

1− u(x, t) =

�

RN

g(x, t; ξ, 0)XΩ(ξ) dξ ≤ Mt−
N
2 |Ω|.

The inequalities 0 ≤ 1 − u ≤ 1 follow from the comparison principle. This
completes the proof of (b). Moreover, (d) follows from (9) as is noted in [4, 5.
Remark, pp. 895–896].

For (a), let K be a compact set contained in Ω. We set

Nρ = {x ∈ RN : dist(x, ∂Ω) < ρ}

where ρ = 1
2 dist(K, ∂Ω) (> 0). Define v = v(x, t) by

v(x, t) = λ

�

Nρ

g(x, t; ξ, 0) dξ for every (x, t) ∈ RN
× (0,+∞),
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where a number λ > 0 will be determined later. Then it follows from (9) that

v(x, t) ≥ λM−1t−
N
2

�

Nρ

e−
α|x−ξ|2

t dξ for (x, t) ∈ RN
× (0,+∞)

and hence we can choose λ > 0 satisfying

v ≥ 1 on ∂Ω× (0, 1].

Thus the comparison principle yields that

u ≤ v in Ω× (0, 1]. (10)

On the other hand, it follows from (9) that

v(x, t) ≤ λMt−
N
2

�

Nρ

e−
|x−ξ|2

αt dξ for (x, t) ∈ RN
× (0,+∞).

Since |x− ξ| ≥ ρ for every x ∈ K and ξ ∈ Nρ, we observe that

v(x, t) ≤ λMt−
N
2 e−

ρ2

αt |Nρ| for every (x, t) ∈ K × (0,+∞),

where |Nρ| denotes the Lebesgue measure of the setNρ. Therefore (10) gives (a).
For (c), for instance choose a large ball B with Ω ⊂ B and let ϕ = ϕ(x) be

the first positive eigenfunction of the problem

− div(σ∇ϕ) = λϕ in B and ϕ = 0 on ∂B

with sup
B

ϕ = 1. Choose C > 0 sufficiently large to have

1 ≤ Cϕ in Ω.

Then it follows from the comparison principle that

1− u(x, t) ≤ Ce−λtϕ(x) for every (x, t) ∈ Ω× (0,+∞),

which gives (c).

The following asymptotic formula of the heat content of a ball touching at
∂Ω at only one point tells us about the interaction between the initial behavior
of solutions and geometry of domain.

Proposition 2.2. Let u be the solution of either problem (1)-(3) or prob-

lem (4). Let x ∈ Ω and assume that the open ball Br(x) with radius r > 0
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centered at x is contained in Ω and such that Br(x) ∩ ∂Ω = {y} for some

y ∈ ∂Ω. Then we have:

lim
t→+0

t−
N+1

4

�

Br(x)

u(z, t) dz = C(N,σ)






N−1�

j=1

�
1

r
− κj(y)

�



− 1
2

. (11)

Here, κ1(y), . . . ,κN−1(y) denote the principal curvatures of ∂Ω at y with respect

to the inward normal direction to ∂Ω and C(N,σ) is a positive constant given

by

C(N,σ) =





2σ

N+1
4

s c(N) for problem (1)-(3) ,

2
√
σm√

σs+
√
σm

σ
N+1

4
s c(N) for problem (4) ,

where c(N) is a positive constant depending only on N . (Notice that if σs = σm

then C(N,σ) = σ
N+1

4
s c(N) for problem (4), that is, just half of the constant for

problem (1)-(3).)
When κj(y) = 1/r for some j ∈ {1, · · · , N − 1}, (11) holds by setting the

right-hand side to +∞ (notice that κj(y) ≤ 1/r always holds for all j’s).

Proof. For the one-phase problem, that is, for the heat equation ut = ∆u, this
lemma has been proved in [12, Theorem 1.1, p. 238] or in [13, Theorem B, pp.
2024–2025 and Appendix, pp. 2029–2032]. The proof in [13] was carried out
by constructing appropriate super- and subsolutions in a neighborhood of ∂Ω
in a short time with the aid of the initial behavior [13, Lemma B.2, p. 2030]
obtained by Varadhan’s formula [15] for the heat equation ut = ∆u

−4t log u(x, t) → dist(x, ∂Ω)2 as t → +0 (12)

uniformly on every compact set in Ω. (See also [13, Theorem A, p. 2024] for
the formula.) Here, with no need of Varadhan’s formula, (a) of Lemma 2.1
gives sufficient information on the initial behavior [13, Lemma B.2, p. 2030].
We remark that since problem (1)-(3) is one-phase with conductivity σs near
∂Ω, we can obtain formula (11) for problem (1)-(3) only by scaling in t. On
the other hand, problem (4) is two-phase with conductivities σm,σs near ∂Ω if
σm �= σs. Therefore, it is enough for us to prove formula (11) for problem (4)
where σm �= σs.

Let u be the solution of problem (4) where σm �= σs, and let us prove this
lemma by modifying the proof of Theorem B in [13, Appendix, pp. 2029–2032].

Let us consider the signed distance function d∗ = d∗(x) of x ∈ RN to the
boundary ∂Ω defined by

d∗(x) =

�
dist(x, ∂Ω) if x ∈ Ω,

− dist(x, ∂Ω) if x �∈ Ω.
(13)
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Since ∂Ω is bounded and of class C2, there exists a number ρ0 > 0 such that
d∗(x) is C2-smooth on a compact neighborhood N of the boundary ∂Ω given
by

N = {x ∈ RN : −ρ0 ≤ d∗(x) ≤ ρ0}. (14)

We make N satisfy N ∩D = ∅. Introduce a function F = F (ξ) for ξ ∈ R by

F (ξ) =
1

2
√
π

� ∞

ξ
e−s2/4ds.

Then F satisfies

F �� +
1

2
ξF � = 0 and F � < 0 in R,

F (−∞) = 1, F (0) =
1

2
, and F (+∞) = 0.

For each ε ∈ (0, 1/4), we define two functions F± = F±(ξ) for ξ ∈ R by

F±(ξ) = F (ξ ∓ 2ε).

Then F± satisfies

F ��
± +

1

2
ξF �

± = ±εF �
±, F �

± < 0 and F− < F < F+ in R,

F±(−∞) = 1, F±(0) ≷
1

2
, and F±(+∞) = 0.

By setting η = t−
1
2 d∗(x), µ =

√
σm/

√
σs and θ± = 1+ (µ− 1)F±(0) (> 0),

we introduce two functions v± = v±(x, t) by

v±(x, t) =






µ
θ±

F±

�
σ
− 1

2
s η

�
for (x, t) ∈ Ω× (0,+∞),

1
θ±

�
F±

�
σ
− 1

2
m η

�
+ θ± − 1

�
for (x, t) ∈ Ωc × (0,+∞).

(15)

Then v± satisfies the transmission conditions

v±
��
+
= v±

��
− and σm

∂v±
∂ν

���
+
= σs

∂v±
∂ν

���
−

on ∂Ω× (0,+∞), (16)

where + denotes the limit from outside and − that from inside of Ω and ν =
ν(x) denotes the outward unit normal vector to ∂Ω at x ∈ ∂Ω, since ν = −∇d∗

on ∂Ω. Moreover we observe that for each ε ∈ (0, 1/4), there exists t1,ε ∈ (0, 1]
satisfying

(±1) {(v±)t − σ∆v±} > 0 in (N \ ∂Ω)× (0, t1,ε]. (17)
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In fact, a straightforward computation gives

(v±)t − σ∆v± =

�
−

µ
tθ±

�
±ε+

√
σst∆d∗

�
F �
± in (N ∩ Ω)× (0,+∞),

−
1

tθ±

�
±ε+

√
σmt∆d∗

�
F �
± in

�
N \ Ω

�
× (0,+∞).

Then, for each ε ∈ (0, 1/4), by setting t1,ε = 1
max{σs,σm}

�
ε

2M

�2
, where M =

max
x∈N

|∆d∗(x)|, we obtain (17).

Then, in view of (a) of Lemma 2.1 and the definition (15) of v±, we see that
there exist two positive constants E1 and E2 satisfying

max{|v+|, |v−|, |u|} ≤ E1e
−E2

t in Ω \ N × (0, 1]. (18)

By setting, for (x, t) ∈ RN × (0,+∞),

w±(x, t) = (1± ε)v±(x, t)± 2E1e
−E2

t , (19)

since v± and u are all nonnegative, we obtain from (18) that

w− ≤ u ≤ w+ in Ω \ N × (0, 1]. (20)

Moreover, in view of the facts that F±(−∞) = 1 and F±(+∞) = 0, we see that
there exists tε ∈ (0, t1,ε] satisfying

w− ≤ u ≤ w+ on ((∂N \ Ω)× (0, tε]) ∪ (N × {0}) . (21)

Then, in view of (16), (17), (20), (21) and the definition (19) of w±, we have
from the comparison principle over N that

w− ≤ u ≤ w+ in
�
N ∪ Ω

�
× (0, tε]. (22)

By writing
Γs = {x ∈ Ω : d∗(x) = s} for s > 0,

let us quote a geometric lemma from [11] adjusted to our situation.

Lemma 2.3. ([11, Lemma 2.1, p. 376]) If max
1≤j≤N−1

κj(y) <
1

r
, then we have:

lim
s→0+

s−
N−1

2 H
N−1(Γs ∩Br(x)) = 2

N−1
2 ωN−1






N−1�

j=1

�
1

r
− κj(y)

�



− 1
2

,

where HN−1
is the standard (N−1)-dimensional Hausdorff measure, and ωN−1

is the volume of the unit ball in RN−1.
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Let us consider the case where max
1≤j≤N−1

κj(y) <
1

r
. Then it follows from (22)

that for every t ∈ (0, tε]

t−
N+1

4

�

Br(x)
w− dz ≤ t−

N+1
4

�

Br(x)
u dz ≤ t−

N+1
4

�

Br(x)
w+ dz. (23)

On the other hand, with the aid of the co-area formula, we have

�

Br(x)
v± dz =

µ

θ±
(σst)

N+1
4

� 2r(σst)
− 1

2

0
F±(ξ)ξ

N−1
2

�
(σst)

1
2 ξ
�−N−1

2
H

N−1
�
Γ
(σst)

1
2 ξ

∩Br(x)
�
dξ,

where v± is defined by (15). Thus, by Lebesgue’s dominated convergence the-
orem and Lemma 2.3, we get

lim
t→+0

t−
N+1

4

�

Br(x)
w± dx =

µ

θ±
(σs)

N+1
4 2

N−1
2 ωN−1






N−1�

j=1

�
1

r
− κj(y)

�



− 1
2 � ∞

0
F±(ξ)ξ

N−1
2 dξ.

Moreover, again by Lebesgue’s dominated convergence theorem, since

lim
ε→0

θ± = 1 + (µ− 1)F (0) =
µ+ 1

2
and µ =

√
σm/

√
σs ,

we see that

lim
t→+0

t−
N+1

4

�

Br(x)
w± dx =

2
√
σm

√
σs +

√
σm

(σs)
N+1

4 2
N−1

2 ωN−1






N−1�

j=1

�
1

r
− κj(y)

�



− 1
2 � ∞

0
F (ξ)ξ

N−1
2 dξ.

Therefore (23) gives formula (11) provided max
1≤j≤N−1

κj(y) <
1

r
.

Once this is proved, the case where κj(y) = 1/r for some j ∈ {1, · · · , N−1}
can be dealt with as in [12, p. 248] by choosing a sequence of balls {Brk(xk)}∞k=1
satisfying:

rk < r, y ∈ ∂Brk(xk), andBrk(xk) ⊂ Br(x) for every k ≥ 1, and lim
k→∞

rk = r.
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Then, because of max
1≤j≤N−1

κj(y) ≤
1

r
<

1

rk
, applying formula (11) to each ball

Brk(xk) yields that

lim inf
t→+0

t−
N+1

4

�

Br(x)
u(z, t) dz = +∞.

This completes the proof of Proposition 2.2.

In order to determine the symmetry of Ω, we employ the following lemma.

Lemma 2.4. Let u be the solution of either problem (1)-(3) or problem (4).
Under the assumption (7) of Theorem 1.1 and Theorem 1.3, the following as-

sertions hold:

(a) There exists a number R > 0 such that

dist(x, ∂Ω) = R for every x ∈ Γ;

(b) Γ is a real analytic hypersurface;

(c) there exists a connected component γ of ∂Ω, that is also a real analytic

hypersurface, such that the mapping γ � y �→ x(y) ≡ y−Rν(y) ∈ Γ, where
ν(y) is the outward unit normal vector to ∂Ω at y ∈ γ, is a diffeomorphism;

in particular γ and Γ are parallel hypersurfaces at distance R;

(d) it holds that

max
1≤j≤N−1

κj(y) <
1

R
for every y ∈ γ, (24)

where κ1(y), · · · ,κN−1(y) are the principal curvatures of ∂Ω at y ∈ γ with

respect to the inward unit normal vector −ν(y) to ∂Ω;

(e) there exists a number c > 0 such that

N−1�

j=1

�
1

R
− κj(y)

�
= c for every y ∈ γ. (25)

Proof. First it follows from the assumption (5) that

Br(x) ⊂ Ω \D for every x ∈ ∂G with 0 < r ≤ dist(x, ∂Ω).

Therefore, since σ = σs in Ω\D, we can use a balance law (see [10, Theorem 2.1,
pp. 934–935] or [9, Theorem 4, p. 704]) to obtain from (7) that

�

Br(p)
u(z, t) dz =

�

Br(q)
u(z, t) dz for every p, q ∈ Γ and t > 0, (26)
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provided 0 < r ≤ min{ dist(p, ∂Ω), dist(q, ∂Ω)}. Let us show assertion (a).
Suppose that there exist a pair of points p and q satisfying

dist(p, ∂Ω) < dist(q, ∂Ω).

Set r = dist(p, ∂Ω). Then there exists a point y ∈ ∂Ω such that y ∈ Br(p)∩∂Ω.
Choose a smaller ball Br̂(x) ⊂ Br(p) with 0 < r̂ < r and Br̂(x)∩∂Br(p) = {y}.

Since max
1≤j≤N−1

κj(y) ≤
1

r
<

1

r̂
, by applying Proposition 2.2 to the ball Br̂(x),

we get

lim inf
t→+0

t−
N+1

4

�

Br(p)
u(z, t) dz ≥ lim

t→+0
t−

N+1
4

�

Br̂(x)
u(z, t) dz > 0.

On the other hand, since Br(q) ⊂ Ω, it follows from (a) of Lemma 2.1 that

lim
t→+0

t−
N+1

4

�

Br(q)
u(z, t) dz = 0,

which contradicts (26), and hence assertion (a) holds true.
We can find a point x∗ ∈ Γ and a ball Bρ(z∗) such that Bρ(z∗) ⊂ G and

x∗ ∈ ∂Bρ(z∗). Since Γ satisfies (6), assertion (a) yields that there exists a point
y∗ ∈ ∂Ω satisfying

BR+ρ(z∗) ⊂ Ω, y∗ ∈ BR+ρ(z∗) ∩ ∂Ω, and BR(x∗) ∩ ∂Ω = {y∗}.

Observe that

max
1≤j≤N−1

κj(y∗) ≤
1

R+ ρ
<

1

R
and x∗ = y∗ −Rν(y∗) ≡ x(y∗).

Define γ ⊂ ∂Ω by

γ =
�
y ∈ ∂Ω : BR(x) ∩ ∂Ω = {y} for x = y −Rν(y) ∈ Γ

and max
1≤j≤N−1

κj(y) <
1

R

�
.

Hence y∗ ∈ γ and γ �= ∅. By Proposition 2.2 we have that for every y ∈ γ and
x = x(y)(= y −Rν(y))

lim
t→+0

t−
N+1

4

�

BR(x)
u(z, t) dz = C(N,σ)






N−1�

j=1

�
1

R
− κj(y)

�



− 1
2

. (27)

Here let us show that, if y ∈ γ and x = x(y), then ∇u(x, t) �= 0 for some t > 0,
which guarantees that in a neighborhood of x, Γ is a part of a real analytic
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hypersurface properly embedded in RN because of (7), real analyticity of u with
respect to the space variables, and the implicit function theorem. Moreover,
this together with the implicit function theorem guarantees that γ is open in
∂Ω and the mapping γ � y �→ x(y) ∈ Γ is a local diffeomorphism, which is
also real analytic. If we can prove additionally that γ is closed in ∂Ω, then
the mapping γ � y �→ x(y) ∈ Γ is a diffeomorphism and γ is a connected
component of ∂Ω since Γ is a connected component of ∂G, and hence all the
remaining assertions (b) – (e) follow from (26), (27) and the definition of γ.
We shall prove this later in the end of the proof of Lemma 2.4.

Before this we show that, if y ∈ γ and x = x(y), then ∇u(x, t) �= 0 for some
t > 0. Suppose that ∇u(x, t) = 0 for every t > 0. Then we use another balance
law (see [10, Corollary 2.2, pp. 935–936]) to obtain that

�

BR(x)
(z − x)u(z, t) dz = 0 for every t > 0. (28)

On the other hand, (a) of Lemma 2.1 yields that

lim
t→+0

t−
N+1

4

�

K
u(z, t) dz = 0 for every compact set K ⊂ Ω, (29)

and hence by (27) it follows that for every ε > 0

lim
t→+0

t−
N+1

4

�

BR(x)∩Bε(y)
u(z, t) dz = C(N,σ)






N−1�

j=1

�
1

R
− κj(y)

�



− 1
2

. (30)

This implies that

lim
t→+0

t−
N+1

4

�

BR(x)
(z − x)u(z, t) dz =

C(N,σ)






N−1�

j=1

�
1

R
− κj(y)

�



− 1
2

(y − x) �= 0,

which contradicts (28).
It remains to show that γ is closed in ∂Ω. Let {yn} be a sequence of points

in γ with lim
n→∞

yn = y∞ ∈ ∂Ω, and let us prove that y∞ ∈ γ. By combining (26)

with (27), we see that there exists a positive number c satisfying assertion (e)
and hence by continuity

N−1�

j=1

�
1

R
− κj(y

∞)

�
= c > 0 and max

1≤j≤N−1
κj(y

∞) ≤
1

R
, (31)
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since yj ∈ γ for every j. Thus max
1≤j≤N−1

κj(y
∞) <

1

R
. Let x∞ = y∞ −

Rν(y∞)(= x(y∞)). It suffices to show that BR(x∞) ∩ ∂Ω = {y∞}. Suppose
that there exists another point y ∈ BR(x∞) ∩ ∂Ω. Then for every R̂ ∈ (0, R)
we can find two points p∞ and p in BR(x∞) such that

BR̂(p
∞) ∪BR̂(p) ⊂ BR(x

∞), BR̂(p
∞) ∩ ∂Ω = {y∞}, and BR̂(p) ∩ ∂Ω = {y}.

Hence by Proposition 2.2 we have

lim
t→+0

t−
N+1

4

�

BR̂(p∞)
u(z, t) dz = C(N,σ)






N−1�

j=1

�
1

R̂
− κj(y

∞)

�



− 1
2

,

lim
t→+0

t−
N+1

4

�

BR̂(p)
u(z, t) dz = C(N,σ)






N−1�

j=1

�
1

R̂
− κj(y)

�



− 1
2

.

Thus, with the same reasoning as in (30) by choosing small ε > 0, we have
from (31), (26), (27) and assertion (e) that for every x ∈ γ

C(N,σ)






N−1�

j=1

�
1

R
− κj(y

∞)

�



− 1
2

= C(N,σ)c−
1
2

= lim
t→+0

t−
N+1

4

�

BR(x)
u(z, t) dz = lim

t→+0
t−

N+1
4

�

BR(x∞)
u(z, t) dz

≥ lim
t→+0

t−
N+1

4

��

BR̂(p∞)∩Bε(y∞)
u(z, t) dz +

�

BR̂(p)∩Bε(y)
u(z, t) dz

�

= C(N,σ)










N−1�

j=1

�
1

R̂
− κj(y

∞)

�



− 1
2

+






N−1�

j=1

�
1

R̂
− κj(y)

�



− 1
2



 .

Since R̂ ∈ (0, R) is arbitrarily chosen, this gives a contradiction, and hence γ
is closed in ∂Ω.

Lemma 2.5. Let u be the solution of problem (4). Under the assumption (8)
of Theorem 1.3, the same assertions (a)–(e) as in Lemma 2.4 hold provided Γ
and γ are replaced by ∂G and ∂Ω, respectively.

Proof. By the same reasoning as in assertion (a) of Lemma 2.4 we have asser-
tion (a) from the assumption (8). Since every component Γ of ∂G has the same
distance R to ∂Ω, every component Γ satisfies the assumption (6). Therefore,
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we can use the same arguments as in the proof of Lemma 2.4 to prove this
lemma. Here we must have

∂Ω = {x ∈ RN : dist(x,G) = R}.

3. Proof of Theorem 1.1

Let u be the solution of problem (1)-(3) for N ≥ 2. With the aid of Aleksan-
drov’s sphere theorem [1, p. 412], Lemma 2.4 yields that γ and Γ are concentric
spheres. Denote by x0 ∈ RN the common center of γ and Γ. By combining the
initial and boundary conditions of problem (1)-(3) and the assumption (7) with
the real analyticity in x of u over Ω \ D, we see that u is radially symmetric
with respect to x0 in x on

�
Ω \D

�
× (0,∞). Here we used the assumption that

Ω \D is connected. Moreover, in view of the Dirichlet boundary condition (2),
we can distinguish the following two cases:

(I) Ω is a ball; (II) Ω is a spherical shell.

By virtue of (c) of Lemma 2.1, we can introduce the following two auxiliary
functions U = U(x), V = V (x) by

U(x) =

� ∞

0
(1− u(x, t)) dt for x ∈ Ω \D, (32)

V (x) =

� ∞

0
(1− u(x, t)) dt for x ∈ D. (33)

Then we observe that

−∆U =
1

σs
in Ω \D, −∆V =

1

σc
in D, (34)

U = V and σs
∂U

∂ν
= σc

∂V

∂ν
on ∂D, (35)

U = 0 on ∂Ω, (36)

where ν = ν(x) denotes the outward unit normal vector to ∂D at x ∈ ∂D
and (35) is the transmission condition. Since U is radially symmetric with
respect to x0, by setting r = |x− x0| for x ∈ Ω \D we have

−
∂2

∂r2
U −

N − 1

r

∂

∂r
U =

1

σs
in Ω \D. (37)

Solving this ordinary differential equation yields that

U =

�
c1r2−N −

1
2Nσs

r2 + c2 if N ≥ 3,

−c1 log r −
1

4σs
r2 + c2 if N = 2,

(38)
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where c1, c2 are some constants depending on N . Remark that U can be ex-
tended as a radially symmetric function of r in RN \ {x0}.

Let us first show that case (II) does not occur. Set Ω = Bρ+(x0) \Bρ−(x0)
for some numbers ρ+ > ρ− > 0. Since Ω \ D is connected, (36) yields that
U(ρ+) = U(ρ−) = 0 and hence c1 < 0. Moreover we observe that

U �� < 0 on [ρ−, ρ+]. (39)

Recall that D may have finitely many connected components. Let us take a
connected component D∗ ⊂ D. Then, since D∗ ⊂ Ω, we see that there exist
ρ∗ ∈ (ρ−, ρ+) and x∗ ∈ ∂D∗ which satisfy

U(ρ∗) = min{U(r) : r = |x− x0|, x ∈ ∂D∗} and ρ∗ = |x∗ − x0|. (40)

Notice that ν(x∗) equals either
x∗−x0

ρ∗
or −x∗−x0

ρ∗
. For r > 0, set

Û(r) = U(ρ∗) +
σs

σc
(U(r)− U(ρ∗)). (41)

Since

Û(r)− U(r) =

�
σs

σc
− 1

�
(U(r)− U(ρ∗)), (42)

it follows that

Û

�
≥ U if σs > σc

≤ U if σs < σc
on ∂D∗. (43)

Moreover, we remark that Û never equals U identically on ∂D∗ since Ω \D∗ is
connected and Ω is a spherical shell. Observe that

−∆Û =
1

σc
and

∂Û

∂r
=

σs

σc

∂U

∂r
in D∗. (44)

On the other hand, we have

−∆V =
1

σc
in D∗ and V = U on ∂D∗. (45)

Then it follows from (43) and the strong comparison principle that

Û

�
> V if σs > σc

< V if σs < σc
in D∗, (46)

since Û never equals U identically on ∂D∗. The transmission condition (35)
with the definition of Û tells us that

Û = V and
∂Û

∂ν
=

∂V

∂ν
at x = x∗ ∈ ∂D∗, (47)
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since ν(x∗) equals either
x∗−x0

ρ∗
or −x∗−x0

ρ∗
. Therefore applying Hopf’s bound-

ary point lemma to the harmonic function Û −V gives a contradiction to (47),
and hence case (II) never occurs. (See [6, Lemma 3.4, p. 34] for Hopf’s bound-
ary point lemma.)

Let us consider case (I). Set Ω = Bρ(x0) for some number ρ > 0. We
distinguish the following three cases:

(i) c1 = 0; (ii) c1 > 0; (iii) c1 < 0.

We shall show that only case (i) occurs. Let us consider case (i) first. Note
that

U �(r) < 0 if r > 0, and U �(0) = 0. (48)

Take an arbitrary component D∗ ⊂ D. Then, since D∗ ⊂ Ω = Bρ(x0), we see
that there exist ρ∗ ∈ (0, ρ) and x∗ ∈ ∂D∗ which also satisfy (40). Notice that
ν(x∗) equals x∗−x0

ρ∗
. For r ≥ 0, define Û = Û(r) by (41). Then, by (42) we

also have (43). Observe that both (44) and (45) also hold true. Then it follows
from (43) and the comparison principle that

Û

�
≥ V if σs > σc

≤ V if σs < σc
in D∗. (49)

The transmission condition (35) with the definition of Û also yields (47) since
ν(x∗) equals x∗−x0

ρ∗
. Therefore, by applying Hopf’s boundary point lemma to

the harmonic function Û − V , we conclude from (47) that

Û ≡ V in D∗

and hence D∗ must be a ball centered at x0. In conclusion, D itself is connected
and must be a ball centered at x0, since D∗ is an arbitrary component of D.

Next, let us show that case (ii) does not occur. In case (ii) we have

U �(r) < 0 if r > 0, lim
r→0

U(r) = +∞, and x0 ∈ D. (50)

Let us choose the connected component D∗ of D satisfying x0 ∈ D∗. Then,
since D∗ ⊂ Ω = Bρ(x0), we see that there exist ρ∗1, ρ∗2 ∈ (0, ρ) and x∗1, x∗2 ∈

∂D∗ which satisfy that ρ∗1 ≤ ρ∗2 and

U(ρ∗1) = max{U(r) : r = |x− x0|, x ∈ ∂D∗} and ρ∗1 = |x∗1 − x0|, (51)

U(ρ∗2) = min{U(r) : r = |x− x0|, x ∈ ∂D∗} and ρ∗2 = |x∗2 − x0|. (52)

Notice that ν(x∗i) equals x∗i−x0
ρ∗i

for i = 1, 2. Also, the case where ρ∗1 = ρ∗2
may occur for instance if D∗ is a ball centered at x0. For r > 0, we set

Û(r) =

�
U(ρ∗2) +

σs
σc

(U(r)− U(ρ∗2)) if σs > σc ,

U(ρ∗1) +
σs
σc

(U(r)− U(ρ∗1)) if σs < σc .
(53)
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Then, as in (43), it follows that

Û ≥ U on ∂D∗. (54)

Observe that

−∆Û =
1

σc
and

∂Û

∂r
=

σs

σc

∂U

∂r
in D∗ \ {x0}, and lim

x→x0

Û = +∞. (55)

Therefore, since we also have (45), it follows from (54) and the strong compar-
ison principle that

Û > V in D∗ \ {x0}. (56)

The transmission condition (35) with the definition of Û tells us that

Û = V and
∂Û

∂ν
=

∂V

∂ν
at x = x∗i ∈ ∂D∗, (57)

since ν(x∗i) equals x∗i−x0
ρ∗i

for i = 1, 2. Therefore applying Hopf’s boundary

point lemma to the harmonic function Û −V gives a contradiction to (57), and
hence case (ii) never occurs.

It remains to show that case (iii) does not occur. In case (iii), since c1 < 0,
there exists a unique critical point r = ρc of U(r) such that

U(ρc) = max{U(r) : r > 0} > 0 and 0 < ρc < ρ ; (58)

U �(r) < 0 if r > ρc and U �(r) > 0 if 0 < r < ρc ; (59)

lim
r→0

U(r) = −∞ and x0 ∈ D. (60)

Let us choose the connected component D∗ of D satisfying x0 ∈ D∗. Then,
since D∗ ⊂ Ω = Bρ(x0), as in case (ii), we see that there exist ρ∗1, ρ∗2 ∈ (0, ρ)
and x∗1, x∗2 ∈ ∂D∗ which satisfy (51) and (52). In view of the shape of the
graph of U , we have from the transmission condition (35) that at x∗i ∈ ∂D∗, i =
1, 2,

∂V

∂ν
=

σs

σc

∂U

∂ν
=

�
0 if ρ∗i = ρc ,

σs
σc
U � if ρ∗i �= ρc ,

(61)

where, in order to see that ν(x∗i) equals x∗i−x0
ρ∗i

if ρ∗i �= ρc, we used the fact

that both D∗ and Bρ(x0)\D∗ are connected and x0 ∈ D∗. Also, the case where
ρ∗1 = ρ∗2 may occur for instance if D∗ is a ball centered at x0. For r > 0, we
define Û = Û(r) by

Û(r) =

�
U(ρ∗1) +

σs
σc

(U(r)− U(ρ∗1)) if σs > σc ,

U(ρ∗2) +
σs
σc

(U(r)− U(ρ∗2)) if σs < σc .
(62)
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Remark that (62) is opposite to (53). Then, as in (54), it follows that

Û ≤ U on ∂D∗. (63)

Hence, by proceeding with the strong comparison principle as in case (ii), we
conclude that

Û < V in D∗ \ {x0}. (64)

Then, it follows from the definition of Û and (61) that (57) also holds true. In
conclusion, applying Hopf’s boundary point lemma to the harmonic function
Û − V gives a contradiction to (57), and hence case (iii) never occurs.

4. Proof of Theorem 1.3

Let u be the solution of problem (4) for N ≥ 3. For assertion (b) of Theo-
rem 1.3, with the aid of Aleksandrov’s sphere theorem [1, p. 412], Lemma 2.4
yields that γ and Γ are concentric spheres. Denote by x0 ∈ RN the common
center of γ and Γ. By combining the initial condition of problem (4) and
the assumption (7) with the real analyticity in x of u over RN \ D coming
from σs = σm, we see that u is radially symmetric with respect to x0 in x
on

�
RN \D

�
× (0,∞). Here we used the assumption that Ω \D is connected.

Moreover, in view of the initial condition of problem (4), we can distinguish
the following two cases as in section 3:

(I) Ω is a ball; (II) Ω is a spherical shell.

For assertion (a) of Theorem 1.3, with the aid of Aleksandrov’s sphere theorem
[1, p. 412], Lemma 2.5 yields that ∂G and ∂Ω are concentric spheres, since
every component of ∂Ω is a sphere with the same curvature. Therefore, only the
case (I) remains for assertion (a) of Theorem 1.3. Also, denoting by x0 ∈ RN the
common center of ∂G and ∂Ω and combining the initial condition of problem (4)
and the assumption (8) with the real analyticity in x of u over Ω\D yield that
u is radially symmetric with respect to x0 in x on

�
RN \D

�
× (0,∞).

By virtue of (b) of Lemma 2.1, since N ≥ 3, we can introduce the following
three auxiliary functions U = U(x), V = V (x) and W = W (x) by

U(x) =

� ∞

0
(1− u(x, t)) dt for x ∈ Ω \D, (65)

V (x) =

� ∞

0
(1− u(x, t)) dt for x ∈ D, (66)

W (x) =

� ∞

0
(1− u(x, t)) dt for x ∈ RN

\ Ω. (67)
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Then we observe that

−∆U =
1

σs
in Ω \D, −∆V =

1

σc
in D, −∆W = 0 in RN

\ Ω, (68)

U = V and σs
∂U

∂ν
= σc

∂V

∂ν
on ∂D, (69)

U = W and σs
∂U

∂ν
= σm

∂W

∂ν
on ∂Ω, (70)

lim
|x|→∞

W (x) = 0, (71)

where ν = ν(x) denotes the outward unit normal vector to ∂D at x ∈ ∂D or to
∂Ω at x ∈ ∂Ω and (69) - (70) are the transmission conditions. Here we used (d)
of Lemma 2.1 to obtain (71).

Let us follow the proof of Theorem 1.1. We first show that case (II) for
assertion (b) of Theorem 1.3 does not occur. Set Ω = Bρ+(x0) \ Bρ−(x0) for
some numbers ρ+ > ρ− > 0. Since u is radially symmetric with respect to x0 in
x on

�
RN \D

�
× (0,∞), we can obtain from (68)-(71) that for r = |x−x0| ≥ 0

U = c1r2−N −
1

2Nσs
r2 + c2 for ρ− ≤ r ≤ ρ+,

W = c3r2−N for r ≥ ρ+,

W = c4 for 0 ≤ r ≤ ρ−,

where c1, . . . , c4 are some constants, since Ω \ D is connected. Remark that
U can be extended as a radially symmetric function of r in RN \ {x0}. We
observe that c4 > 0 and c3 > 0. Also it follows from (70) that U �(ρ−) = 0 and
U �(ρ+) < 0, and hence

c1 < 0 and U � < 0 on (ρ−, ρ+].

Then the same argument as in the corresponding case in the proof of Theo-
rem 1.1 works and a contradiction to the transmission condition (69) can be
obtained. Thus case (II) for assertion (b) of Theorem 1.3 never occurs.

Let us proceed to case (I). Set Ω = Bρ(x0) for some number ρ > 0. Since
u is radially symmetric with respect to x0 in x on

�
RN \D

�
× (0,∞), we can

obtain from (68)-(71) that for r = |x− x0| ≥ 0

U = c1r2−N −
1

2Nσs
r2 + c2 for x ∈ Ω \D,

W = c3r2−N for r ≥ ρ,

where c1, c2, c3 are some constants, since Ω \D is connected. Remark that U
can be extended as a radially symmetric function of r in RN \ {x0}. Therefore
it follows from (70) that U �(ρ) < 0. As in the proof of Theorem 1.1, We
distinguish the following three cases:

(i) c1 = 0; (ii) c1 > 0; (iii) c1 < 0.
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Because of the fact that U �(ρ) < 0, the same arguments as in the proof of
Theorem 1.1 works to conclude that only case (i) occurs and D must be a ball
centered at x0.
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Abstract. Based on a variant of the frequency function approach

of Almgren, we establish an optimal bound on the vanishing order of

solutions to stationary Schrödinger equations associated to a class of

subelliptic equations with variable coefficients whose model is the so-

called Baouendi-Grushin operator. Such bound provides a quantitative

form of strong unique continuation that can be thought of as an analogue

of the recent results of Bakri and Zhu for the standard Laplacian.
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1. Introduction

In this note we study quantitative uniqueness for zero-order perturbations of
variable coefficient subelliptic equations whose “constant coefficient” model is
the so called Baouendi-Grushin operator. Precisely, in RN , with N = m + k,
we analyze equations of the form

N�

i=1

Xi(aij(z, t)Xju) = V (z, t)u, (1)

where z ∈ Rm, t ∈ Rk, and the vector fields X1, ..., XN are given by

Xi = ∂zi , i = 1, ...m, Xm+j = |z|β∂tj , j = 1, ...k, β > 0. (2)

Besides ellipticity, the N × N matrix-valued function A(z, t) = [aij(z, t)] is
requested to satisfy certain structural hypothesis that will be specified in (20),
(21) in Section 2 below. These assumptions reduce to the standard Lipschitz
continuity when the dimension k = 0, or the parameter β → 0. The as-
sumptions on the potential function V (z, t) are specified in (22) below. They



190 A. BANERJEE AND N. GAROFALO

represent the counterpart, with respect to the non-isotropic dilations associated
with the vector fields X1, ..., XN , of the requirements

|V (x)| ≤ M, | < x,DV (x) > | ≤ M, (3)

for the classical Schrödinger equation ∆u = V u in Rn. To put this paper in
the proper historical perspective we recall that for this operator, and under
the hypothesis (3), quantitative unique continuation results akin to our have
been recently obtained in [2], by Carleman estimates, and in [18], by means of
a variant of Almgren’s frequency function introduced in [17]. In these papers
the authors established sharp estimates on the order of vanishing of solution to
Schrödinger equations which generalized those in [6] and [7] for eigenvalues of
the Laplacian on a compact manifold. Our results should be seen as a gener-
alization of those in [2] and [18] to subelliptic equations such as (1) above. As
the reader will realize such generalization is made possible by the combination
of several quite non-trivial geometric facts that beautifully combine. Some of
these facts are based on the previous work [13]. We also mention that the
frequency approach in [17] and [18] has been recently extended in [3] to obtain
sharp quantitative estimates at the boundary of Dini domains for more general
elliptic equations with Lipschitz principal part.

When in (1) we take [aij ] = IN , the identity matrix in RN , then the oper-
ator in the left-hand side of (1) reduces to the well known Baouendi-Grushin
operator

Bβu =
N�

i=1

X2
i
u = ∆zu+ |z|2β∆tu, (4)

which is degenerate elliptic along the k-dimensional subspace M = {0} × Rk.
We observe that Bβ is not translation invariant in RN . However, it is invariant
with respect to the translations along M . When β = 1 the operator Bβ is
intimately connected to the sub-Laplacians in groups of Heisenberg type. In
such Lie groups, in fact, in the exponential coordinates with respect to a fixed
orthonormal basis of the Lie algebra the sub-Laplacian is given by

∆H = ∆z +
|z|2

4
∆t +

k�

�=1

∂t�
�

i<j

b�
ij
(zi∂zj − zj∂zi), (5)

where b�
ij

indicate the group constants. If u is a solution of ∆H that further

annihilates the symplectic vector field
�

k

�=1 ∂t�
�

i<j
b�
ij
(zi∂zj −zj∂zi), then we

see that, in particular, u solves (up to a normalization factor of 4) the operator
Bβ obtained by letting β = 1 in (4) above.

We recall that a more general class of operators modeled on Bβ was first
introduced by Baouendi, who studied the Dirichlet problem in weighted Sobolev
spaces in [4]. Subsequently, Grushin in [14, 15] studied the hypoelliptcity of the
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operator Bβ when β ∈ N, and showed that this property is drastically affected
by addition of lower order terms.

In the paper [10] the second named author introduced a frequency function
associated with Bβ , and proved that such frequency is monotone nondecreasing
on solutions of Bβu = 0. Such result, which generalized Almgren’s in [1],
was used to establish the strong unique continuation property for Bβ . The
results in [10] were extended to more general equations of the form (1) by the
second named author and Vassilev in [13], following the circle of ideas in the
works [11, 12]. We mention that a version of the Almgren type monotonicity
formula for Bβ played an extensive role also in the recent work [5] on the
obstacle problem for the fractional Laplacian. Remarkably, the operator Bβ

also played an important role in the recent work [16] on the higher regularity
of the free boundary in the classical Signorini problem.

We can now state our main result.

Theorem 1.1. Let u be a solution to (1) in B10 such that (aij) satisfy (20),
(21) and V satisfy (22) below. We furthermore assume that XiXju ∈ L2

loc
(B10)

and |u| ≤ C0. Then, there exist universal R1 > 0, a ∈ (0, 1/3), depending only

on R,Λ in (20), (21), and constants C1, C2 depending on m, k,β,λ,Λ, C0 and�
BR1

3

u2ψ, such that for all 0 < r < aR1 one has

||u||L∞(Br) ≥ C1

�
r

R1

�C2

√
K

. (6)

It is worth emphasizing that, when k = 0, we have N = m and then (14)
below gives ψ ≡ 1. In such a case the constant K in (22) below can be taken
to be ||V ||W 1,∞ + 1. We thus see that Theorem 1.1, when A ≡ IN , reduces
to the cited Euclidean result in [2] and [18]. Therefore, Theorem 1.1 can be
thought of as a subelliptic generalization of this sharp quantitative uniqueness
result for the standard Laplacian. We also would like to mention that, to the
best of our knowledge, Theorem 1.1 is new even for Bβu = V u where Bβ is as
in (4).

The present paper is organized as follows. In Section 2 we introduce the
basic notations and gather some crucial preliminary results from [10] and [13].
In Section 3 we establish a monotonicity theorem for a generalized frequency.
Such result plays a central role in this paper. In Section 4, we finally prove our
main result, Theorem 1.1 above.

2. Notations and preliminary results

Henceforth in this paper we follow the notations adopted in [10] and [13], with
one notable proviso: the parameter β > 0 in (2), (4), etc. in this paper plays
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the role of α > 0 in [10] and [13]. The reason for this is that we have reserved
the greek letter α for the powers of the weight (r2 − ρ)α in definitions (30),
(31) and (32) below. Let {Xi} for i = 1, ...N be defined as in (2). We denote
an arbitrary point in RN as (z, t) ∈ Rm × Rk. Given a function f , we denote

Xf = (X1f, .....XNf), |Xf |2 =
N�

i=1

(Xif)
2, (7)

respectively the intrinsic gradient and the square of its length. We recall
from [10] that the following family of anisotropic dilations are associated with
the vector fields in (2)

δa(z, t) = (az, aβ+1t), a > 0. (8)

Let
Q = m+ (β + 1)k. (9)

Since denoting by dzdt Lebesgue measure in RN we have d(δa(z, t)) = aQdzdt,
the number Q plays the role of a dimension in the analysis of the operator Bβ .
For instance, one has the following remarkable fact (see [10]) that the funda-
mental solution Γ of Bβ with pole at the origin is given by the formula

Γ(z, t) =
C

ρ(z, t)Q−2
, (z, t) �= (0, 0),

where ρ is the pseudo-gauge

ρ(z, t) = (|z|2(β+1) + (β + 1)2|t|2)
1

2(β+1) . (10)

We respectively denote by

Br = {(z, t) ∈ RN | ρ(z, t) < r}, Sr = {(z, t) ∈ RN | ρ(z, t) = r},

the gauge pseudo-ball and sphere centered at 0 with radius r. The infinitesimal
generator of the family of dilations (8) is given by the vector field

Z =
m�

i=1

zi∂zi + (β + 1)
k�

j=1

tj∂yj . (11)

We note the important facts that

divZ = Q, [Xi, Z] = Xi, i = 1, ..., N. (12)

A function v is δa-homogeneous of degree κ if and only if Zv = κv. Since ρ
in (10) is homogeneous of degree one, we have

Zρ = ρ. (13)
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We also need the angle function ψ introduced in [10]

ψ = |Xρ|2 =
|z|2β

ρ2β
. (14)

The function ψ vanishes on the characteristic manifold M = Rn × {0} and
clearly satisfies 0 ≤ ψ ≤ 1. Since ψ is homogeneous of degree zero with respect
to (8), one has

Zψ = 0. (15)

A first basic assumption on the matrix-valued function A = [aij ] is that it
be symmetric and uniformly elliptic. I.e., aij = aji, i, j = 1, ..., N , and there
exists λ > 0 such that for every (z, t) ∈ RN and η ∈ RN one has

λ|η|2 ≤< A(z, t)η, η >≤ λ−1|η|2. (16)

On the potential V we preliminarily assume that V ∈ L∞
loc

(RN ). With these
hypothesis in place we can introduce the notion of weak solution of (1).

Definition 2.1. A weak solution to (1) in an open set Ω ⊂ RN
is a function

u ∈ L2
loc

(Ω) such that the distributional horizontal gradient Xu ∈ L2
loc

(Ω), and
for which the following equality holds for all ϕ ∈ C∞

0 (Ω)

�

Ω
< AXu,Xϕ >=

�

Ω
V uϕ. (17)

We note that when A ≡ IN , and for a class of vector fields which are
modeled on (2) above, in the pioneering paper [9] it was proved that a weak
solution u to (1) is locally Hölder continuous in Ω with respect to the control
metric associated with the vector fields (2). In particular, it is continuous with
respect to the Euclidean topology of RN . For the general situation of (17) the
local Hölder continuity of weak solutions can be proved essentially following [9],
but see also [8] where such result is discussed for more general equations in the
case in which V = 0 in (17) above. In this paper, however, all we need is the
local boundedness of weak solutions of (17), and we do assume it a priori in
Theorem 1.1 above, so we do not need to derive it.

Throughout the paper we assume that

A(0, 0) = IN , (18)

where IN indicates the identity matrix in RN . In order to state our main
assumptions (H) on the matrix A it will be useful to represent the latter in the
following block form

A =

�
A11 A12

A21 A22

�
,



194 A. BANERJEE AND N. GAROFALO

Here, the entries are respectively m × m, m × k, k × m and k × k matrices,
and we assume that At

12 = A21. We shall denote by B the matrix

B = A− IN ,

and thus
B(0, 0) = ON , (19)

thanks to (18). The proof of Theorem 1.1 relies crucially on the following
assumptions on the matrix A. These will be our main hypothesis and, without
further mention, will be assumed to hold throughout the paper.

HYPOTHESIS. There exists a positive constant Λ such that, for some R > 0,
one has in B

R
the following estimates

|bij | = |aij − δij | ≤






Λρ, for 1 ≤ i, j ≤ m,

Λψ
1
2+

1
2β ρ = Λ |z|β+1

ρβ , otherwise,

(20)

|Xkbij | = |Xkaij | ≤






Λ, for 1 ≤ k ≤ m, and 1 ≤ i, j ≤ m,

Λψ
1
2 = Λ |z|β

ρβ , otherwise.

(21)

Remark 2.2. We note that in the situation when k = 0 the above hypothesis
coincide with the usual Lipschitz continuity at the origin of the coefficients aij .

Now we assume that V in (1) satisfy the following hypothesis for some
K ≥ 0

|V | ≤ Kψ, |ZV | ≤ Kψ, (22)

where ψ indicates the function introduced in (14) above. Without loss of gen-
erality we assume henceforth that K ≥ 1.

We next collect several preliminary results established in [13] that will be
important in the proof of Theorem 1.1. We consider the quantity

µ =< AXρ, Xρ > . (23)

We note that, by the uniform ellipticity (16) of A, the function µ is comparable
to ψ defined in (14), in the sense that

λψ ≤ µ ≤ λ−1ψ. (24)

By (24) it is clear that, similarly to ψ, the function µ vanishes on the char-
acteristic manifold M = {(0, t) ∈ RN | t ∈ Rk}. The following vector field F
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introduced in [13] will play an important role in this paper:

F =
ρ

µ

N�

i,j=1

aijXiρXj . (25)

It is clear that F is singular on M . However, using (29) below and the assump-
tions (20), (21) on the matrix A, it was shown in [13] that F can be extended
to all of RN to a continuous vector field that, near the characteristic manifold
M , gives a small perturbation of the Euler vector field Z in (11) above, but see
also the Remark 2.3 below. We note from (25) that

Fρ = ρ. (26)

More in general, the action of F on a function u is given by

Fu =
ρ

µ
< AXρ, Xu > . (27)

We also let
σ =< BXρ, Xρ >= µ− ψ. (28)

As in (2.13) in [13], F can be represented in the following way

F = Z − σ

µ
Z +

ρ

µ

N�

i,j=1

bijXiρXj . (29)

Remark 2.3. We emphasize that when A(z, t) ≡ IN , then B(z, t) ≡ 0N . In
such case we immediately see from (29) that F ≡ Z.

Henceforth, for any two vector fields U and W , [U,W ] = UW−WU denotes
their commutator. In the next theorem we collect several important estimates
that have been established in [10] and [13].

Theorem 2.4. There exists a constant C(β,λ,Λ, N) > 0 such that for any

function u one has:

(i) |Q− divF | ≤ Cρ;

(ii) |Fµ| ≤ Cρψ;

(iii) div(σZ
µ
) ≤ Cρ;

(iv) |Xiρ| ≤ ψ1+ 1
2β , i = 1, ...,m, |Xm+jρ| ≤ (β + 1)ρ1/2, j = 1, ..., k;

(v) |F − Z| ≤ Cρ2;

(vi) | < FAXu,Xu > | ≤ Cρ|Xu|2;
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(vii) |[Xi, F ]u−Xiu| ≤ Cρ|Xu|, i = 1, ..., N ;

(viii) |σ| ≤ Cρψ3/2+ 1
2β |Xσ| ≤ Cψ3/2

;

(ix) | bijXjρXi

µ
| ≤ C|z|;

(x) |Xiψ| ≤ Cβψ

|z| , i = 1, ...,m, |Xn+jψ| ≤ Cβψ

ρ
, j = 1, ..., k;

(xi) |σ
µ
| ≤ Cρψ, |Zσ| ≤ Cρψ, |Xkσ| ≤ Cψ3/2

;

(xii) |[Xi,−σZ

µ
]u| ≤ Cρ|Xu|, (Lemma 2.7 in [13]);

(xiii) |[X�,
ρ

µ

�
N

i,j=1
bijXjρ

X i
]u| ≤ Cρ|Xu|, � = 1, ..., N .

The properties expressed in (i) and (vii) should be compared with (12)
above.

3. Monotonicity of a generalized frequency

Henceforth, we denote by u a weak solution to (1) in B10. For the sake of brevity
in all the integrals involved we will routinely omit the variable of integration
(z, t) ∈ RN , as well as Lebesgue measure dzdt. When we say that a constant
is universal, we mean that it depends exclusively on m, k,β, on the ellipticity
bound λ on A(z, t), see (16) above, and on the Lipschitz bound Λ in (20),
(21). Likewise, we will say that O(1), O(r), etc. are universal if |O(1)| ≤ C,
|O(r)| ≤ Cr, etc., with C ≥ 0 universal.

For 0 < r < R, where R is as in the hypotheses (20), (21) above, we define
the generalized height function of u in Br as follows

H(r) =

�

Br

u2(r2 − ρ2)αµ, (30)

where ρ is the pseudo-gauge in (10) above, the function µ is defined in (23),
and α > −1 is going to be fixed later (precisely, in passing from (55) to (56)
below). We also introduce the generalized energy of u in Br

I(r) =

�

Br

< AXu,Xu > (r2 − ρ2)α+1 +

�

Br

V u2(r2 − ρ2)α+1, (31)

where, besides (16), theN×N matrix-valued functionA(z, t) fulfills the require-
ments (20), (21) above, whereas the potential V (z, t) satisfies the hypothesis
(22) above. We define the generalized frequency of u as follows

N(r) =
I(r)

H(r)
. (32)



QUANTITATIVE UNIQUENESS 197

The central result of this section is the following monotonicity result for the
frequency N(r).

Theorem 3.1. There exists R1 > 0, depending only on R and Λ in (20), (21),
such that the function

r → eC1r(N(r) + C2Kr2),

is monotone non-decreasing on the interval (0, R1). Here, C1 and C2 are two

universal nonnegative numbers.

The proof of Theorem 3.1 will be divided into several steps. We begin by
noting that although the gauge ρ in (10) above is not smooth at the origin,
nevertheless all subsequent calculations can be justified by integrating over the
set Br − Bε, and then let ε → 0. Moreover, by standard approximation type
arguments as in [13] which crucially use the estimates in Theorem 2.4, we can
assume that all the computations hereafter are classical. The initial step in the
proof of Theorem 3.1 is the following result that provides a crucial alternative
representation of the generalized energy (31).

Lemma 3.2. For every 0 < r < R one has

I(r) = 2(α+ 1)

�

Br

uFu(r2 − ρ2)αµ. (33)

Proof. Using the definition of F , the divergence theorem and (1), we find

2(α+ 1)

�

Br

uFu(r2 − ρ2)αµ = −
�

Br

u < AXu,X(r2 − ρ2)α+1 >

=

�

Br

< AXu,Xu > (r2 − ρ2)α+1 +

�

Br

V u2(r2 − ρ2)α+1,

which proves (33) above.

Lemma 3.3 (First variation formula for H(r)). There exists a universal O(1)
such that for every r ∈ (0, R) one has

H �(r) =
2α+Q

r
H(r) +O(1)H(r) +

1

(α+ 1)r
I(r). (34)

Proof. Differentiating (30), and using the fact that (r2 − ρ2)α vanishes on Sr,
we find that

H �(r) = 2αr

�

Br

u2(r2 − ρ2)α−1µ.
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Using the identity

(r2 − ρ2)α−1 =
1

r2
(r2 − ρ2)α +

ρ2

r2
(r2 − ρ2)α−1,

the latter equation can be rewritten as

H �(r) =
2α

r
H(r) +

2α

r

�

Br

u2(r2 − ρ2)α−1ρ2µ.

Recalling (26), we have

H �(r) =
2α

r
H(r)− 1

r

�

Br

u2F (r2 − ρ2)αµ.

Integrating by parts, we obtain

H �(r) =
2α

r
H(r) +

1

r

�

Br

div(µu2F )(r2 − ρ2)α

=
2α

r
H(r) +

2

r

�

Br

uFu(r2 − ρ2)αµ

+
1

r

�

Br

u2 div(F )(r2 − ρ2)αµ+
1

r

�

Br

u2(r2 − ρ2)αFµ.

Using (i) in Theorem 2.4 to estimate the third term in the right-hand side,
and (ii) to estimate the forth one, we obtain

H �(r) =
2α+Q

r
H(r) +O(1)H(r) +

2

r

�

Br

uFu(r2 − ρ2)αµ. (35)

Using (33) in (35) we conclude that (34) holds.

Our next result is a basic first variation formula of the generalized energy
I(r). Its proof will be quite laborious, and it displays many of the beautiful
geometric properties of the Baouendi-Grushin vector fields (2).

Lemma 3.4 (First variation formula for I(r)). There exists a universal O(1)
and R1 depending on R,Λ as in (20), (21) such that for every r ∈ (0, R1) one
has

I �(r) =
2α+Q

r
I(r)

+
4(α+ 1)

r

�

Br

(Fu)2(r2 − ρ2)αµ+O(1)I(r) +O(1)KrH(r), (36)

where K ≥ 1 is the constant in (22).
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Proof. Differentiating the expression (31) of I(r) we obtain,

I �(r) = 2(α+ 1)r

�

Br

< AXu,Xu > (r2 − ρ2)α

+ 2(α+ 1)r

�

Br

V u2(r2 − ρ2)α.

Using the identity

(r2 − ρ2)α =
1

r2
(r2 − ρ2)α+1 +

ρ2

r2
(r2 − ρ2)α,

we find

I �(r) =
2(α+ 1)

r

�

Br

< AXu,Xu > (r2 − ρ2)α+1

+
2(α+ 1)

r

�

Br

< AXu,Xu > (r2 − ρ2)αρ2

+ 2(α+ 1)r

�

Br

V u2(r2 − ρ2)α. (37)

The second term in the right-hand side of (37) is dealt with as follows

2(α+ 1)

r

�

Br

< AXu,Xu > (r2 − ρ2)αρ2

= −1

r

�

Br

< AXu,Xu > F (r2 − ρ2)α+1. (38)

To compute the integral in the right-hand side of (38) we now use the
following Rellich type identity in Lemma 2.11 in [13]:

�

∂Br

< AXu,Xu >< G, ν >= 2

�

∂Br

aijXiu < Xj , ν > Gu

− 2

�

Br

aij(divXi)XjuGu− 2

�

Br

aijXiu[Xj , G]u+

�

Br

divG < AXu,Xu >

+

�

Br

< (GA)Xu,Xu > −2

�

Br

GuXi(aijXju), (39)

where G is a vector field, GA is the matrix with coefficients Gaij , ν denotes the
outer unit normal to Br, and the summation convention over repeated indices
has been adopted. Since for the vector fields X1, ..., XN in (2) above we have
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divXi = 0, if in (39) we take a vector field such that G ≡ 0 on ∂Br, we obtain

�

Br

divG < AXu,Xu >= 2

�

Br

aijXiu[Xj , G]u

−
�

Br

< (GA)Xu,Xu > +2

�

Br

GuXi(aijXju). (40)

In the identity (40) we now take G = (r2− ρ2)α+1F . We remark that, while in
our situation the vector fields Xi and G are not smooth, one can nonetheless
rigorously justify the implementation of (40) as in [13] by standard approxima-
tion arguments based on the key estimates in Theorem 2.4 above. Now we look
at each individual term in (40). We first note that from (1) the last integral in
the right-hand side of (40) equals −2

�
Br

FuV u(r2 − ρ2)α+1. For the left-hand
side of (40) we have instead

�

Br

divG < AXu,Xu >=

�

Br

divF < AXu,Xu > (r2 − ρ2)α+1

+

�

Br

< AXu,Xu > F (r2 − ρ2)α+1. (41)

Combining (40) and (41), we reach the conclusion

−
�

Br

< AXu,Xu > F (r2 − ρ2)α+1 =

�

Br

divF < AXu,Xu > (r2 − ρ2)α+1

+

�

Br

< (FA)Xu,Xu > (r2 − ρ2)α+1 − 2

�

Br

aijXiu[Xj , G]u

− 2

�

Br

FuV u(r2 − ρ2)α+1. (42)

Using (i) in Theorem 2.4 we find

�

Br

divF < AXu,Xu > (r2 − ρ2)α+1 = Q

�

Br

< AXu,Xu > (r2 − ρ2)α+1

+O(r)

�

Br

< AXu,Xu > (r2 − ρ2)α+1. (43)

Using (vi) in Theorem 2.4 we have

�

Br

< (FA)Xu,Xu > (r2 − ρ2)α+1

= O(r)

�

Br

< AXu,Xu > (r2 − ρ2)α+1. (44)
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We next keep in mind that

[Xj , G] = −2(α+ 1)ρ(r2 − ρ2)αXjρF + (r2 − ρ2)α+1[Xj , F ].

This gives

aijXiu[Xj , G]u = −2(α+ 1)(r2 − ρ2)αρ < AXρ, Xu > Fu

+ (r2 − ρ2)α+1aijXiu[Xi, F ]u

= −2(α+ 1)(r2 − ρ2)α(Fu)2µ

+ (r2 − ρ2)α+1aijXiu ([Xj , F ]u−Xju)

+ (r2 − ρ2)α+1 < AXu,Xu >,

where we have used the fact that

ρ < AXρ, Xu >= µFu,

which follows from (27) above. We thus conclude that

− 2

�

Br

aijXiu[Xj , G]u = −2

�

Br

< AXu,Xu > (r2 − ρ2)α+1 (45)

+O(r)

�

Br

< AXu,Xu > (r2 − ρ2)α+1 + 4(α+ 1)

�

Br

(Fu)2(r2 − ρ2)αµ,

where we have used the crucial estimate (vii) in Theorem 2.4 to control the
integral �

Br

aijXiu ([Xj , F ]u−Xju) (r
2 − ρ2)α+1.

Using (43), (44) and (45) in (42), we conclude

−
�

Br

< AXu,Xu > F (r2−ρ2)α+1 = (Q−2)

�

Br

< AXu,Xu > (r2−ρ2)α+1

+O(r)

�

Br

< AXu,Xu > (r2 − ρ2)α+1 + 4(α+ 1)

�

Br

(Fu)2(r2 − ρ2)αµ

− 2

�

Br

FuV u(r2 − ρ2)α+1. (46)

With (46) in hands we now return to (38) to find

2(α+ 1)

r

�

Br

< AXu,Xu > (r2 − ρ2)αρ2

=
Q− 2

r

�

Br

<AXu,Xu> (r2 − ρ2)α+1 +O(1)

�

Br

<AXu,Xu> (r2 − ρ2)α+1

+
4(α+ 1)

r

�

Br

(Fu)2(r2 − ρ2)αµ− 2

r

�

Br

FuV u(r2 − ρ2)α+1. (47)
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The equation (47) is the central one in the proof of the first variation of the
energy. Such equation allows us to unravel the second term in the right-hand
side of (38) above, to which we now return to find

I �(r) =
2α+Q

r

�

Br

< AXu,Xu > (r2 − ρ2)α+1

+
4(α+ 1)

r

�

Br

(Fu)2(r2 − ρ2)αµ+O(1)

�

Br

< AXu,Xu > (r2 − ρ2)α+1

− 2

r

�

Br

FuV u(r2 − ρ2)α+1 + 2(α+ 1)r

�

Br

V u2(r2 − ρ2)α.

Recalling the definition (31) of I(r) we see that we can rewrite the latter equa-
tion as follows

I �(r) =
2α+Q

r
I(r)− 2α+Q

r

�

Br

V u2(r2 − ρ2)α+1

+
4(α+ 1)

r

�

Br

(Fu)2(r2 − ρ2)αµ+O(1)I(r)−O(1)

�

Br

V u2(r2 − ρ2)α+1

− 2

r

�

Br

FuV u(r2 − ρ2)α+1 + 2(α+ 1)r

�

Br

V u2(r2 − ρ2)α. (48)

An integration by parts now gives

− 2

r

�

Br

FuV u(r2 − ρ2)α+1 = −1

r

�

Br

F (u2/2)V (r2 − ρ2)α+1

=
1

2r

�

Br

u2 div((r2 − ρ2)α+1V F ) =
1

2r

�

Br

V u2(r2 − ρ2)α+1 divF

+
1

2r

�

Br

u2FV (r2 − ρ2)α+1 − α+ 1

r

�

Br

V u2ρFρ(r2 − ρ2)α.

Since one has trivially (r2 − ρ2)α+1 ≤ r2(r2 − ρ2)α, from the assumptions (22)
above, from (16) and from (i) in Theorem 2.4, we find

����
1

2r

�

Br

V u2(r2 − ρ2)α+1 divF

���� ≤ CKr

�

Br

u2(r2 − ρ2)αµ = CKrH(r),

where C = C(β,m, k,λ) > 0 is universal. Similarly, one has
����
1

2r

�

Br

u2FV (r2 − ρ2)α+1

���� ≤ CKrH(r).

Finally, since by (26) we have Fρ = ρ, we obtain
����−

α+ 1

r

�

Br

V u2ρFρ(r2 − ρ2)α
���� ≤ CKrH(r).
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In conclusion, we have for a universal O(1)

−2

r

�

Br

FuV u(r2 − ρ2)α+1 = O(1)KrH(r).

The other terms containing V in the right-hand side of (48) are estimated
similarly. We thus conclude

I �(r) =
2α+Q

r
I(r)+

4(α+ 1)

r

�

Br

(Fu)2(r2−ρ2)αµ+O(1)I(r)+O(1)KrH(r),

which is (36).

We are now in a position to provide the

Proof of Theorem 3.1. Using (32), and the equations (34) in Lemma 3.3 and
(36) in Lemma 3.4, we find for some universal C1, C3 ≥ 0,

N �(r) =
I �(r)

H(r)
− H �(r)

H(r)
N(r) = O(1)N(r) +O(1)Kr

+

�
4(α+ 1)

�

Br

(Fu)2(r2 − ρ2)αµ− 1

(α+ 1)

I(r)2

H(r)

�
1

rH(r)

≥ −C1N(r)− C3Kr, (49)

where in the last inequality, we have used the fact that, in view of (33) in
Lemma 3.2, the Cauchy-Schwarz inequality and the definition of H(r), we
have

I(r)2 = 4(α+ 1)2
��

Br

uFu(r2 − ρ2)αµ

�2

≤ 4(α+ 1)2H(r)

�

Br

(Fu)2(r2 − ρ2)αµ.

The inequality (49) implies that, with C2 = C3/2, the function

r → eC1r(N(r) + C2Kr2)

is nondecreasing.

4. Proof of Theorem 1.1

This final section is devoted to proving the main result in this paper, Theorem
1.1. We start from Theorem 3.1 which implies

eC1r(N(r) + C2Kr2) ≤ eC1s(N(s) + C2Ks2), for 0 < r < s < R1.
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Henceforth, without loss of generality we assume that R1 ≤ 1. The latter
monotonicity property implies, in particular, the existence of universal con-
stants C2 > 0 and C ≥ 1 such that

N(r) ≤ C(N(s) + C2K), for 0 < r < s < R1. (50)

Returning to (34) in Lemma 3.3, we rewrite it in the following form

d

dr
log

�
H(r)

r2α+Q

�
= O(1) +

1

(α+ 1)r
N(r), 0 < r < R1, (51)

where |O(1)| ≤ C, with C universal.
Suppose now that 0 < r1 < r2 < 2r2 < r3 < R1. Integrating (51) between

r1 and 2r2, and using (50), we find

log H(2r2)
H(r1)

− C

log
�

2r2
r1

� − (2α+Q) ≤ C

α+ 1
(N(2r2) + C2K) . (52)

Next, we integrate (51) between 2r2 and r3, and again using (50) we find

C

α+ 1

�
N(2r2)− CC2K

�
≤ C

2




log H(r3)

H(2r2)
+ C

log
�

r3
2r2

� − (2α+Q)



 . (53)

Combining (52) and (53) we conclude

log H(2r2)
H(r1)

− C

C
2
log

�
2r2
r1

� ≤
log H(r3)

H(2r2)
+ C

log
�

r3
2r2

� + C � K

α+ 1
−
�
1− 1

C
2

�
(2α+Q),

where we have let C � = (C + 1)/C. Since C ≥ 1, if we now set

α0 = log

�
r3
2r2

�
, β0 = C

2
log

�
2r2
r1

�
,

then we obtain

α0 log
H(2r2)

H(r1)
≤ β0 log

H(r3)

H(2r2)
+ C(α0 + β0) + C � K

α+ 1
α0β0. (54)

Dividing both sides of the latter inequality by the quantity α0 + β0, we find

log

�
H(2r2)

H(r1)

� α0
α0+β0

≤ log

�
H(r3)

H(2r2)

� β0
α0+β0

+ C + C � K

α+ 1

αβ0

α0 + β0
.
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This gives

logH(2r2) ≤ log
�
H(r3)

β0
α0+β0 H(r1)

α0
α0+β0

�
+ C + C � K

α+ 1
α0, (55)

where we have used the trivial estimate β0

α0+β0
≤ 1. Exponentiating both sides

of (55) and choosing α =
√
K, we conclude

H(2r2) ≤ eC
�

r3
2r2

�C
�√

K

H(r3)
β0

α0+β0 H(r1)
α0

α0+β0 . (56)

We now consider the quantity

h(r) =

�

Br

u2µ. (57)

The following estimates are easily verified from (30) and (57)

H(r) ≤ r2αh(r), and h(r) ≤ H(s)

(s2 − r2)α
, 0 < r < s < R1.

From these estimates and (56) we obtain

h(r2) ≤ eC(
r3
2r2

)C
��√

K h(r3)
β0

α0+β0 h(r1)
α0

α0+β0 , (58)

for r1 < r2 < 2r2 < r3 < R1. At this point, we take r2 = R1
3 , r3 = R1. If

C0 = ||u||2
L∞(BR1 )

�

BR1

µ > 0,

then we clearly have h(R1) ≤ C0, and we conclude from (58) that

h(R1/3)
1+

β0
α0 ≤ eC(1+

β0
α0

)
�
3

2

�C
��(1+

β0
α0

)
√
K

C
β0
α0
0 h(r), 0 < r < R1/3. (59)

If we set A = eC and γ = C
2

log(3/2) , then q = β0/α0 = − log(r/R1)γ − C
2
, and

recalling that C ≥ 1 we obtain from (59) for 0 < r < R1/3

h(r) ≥ C0

�
h(R1/3)

AC0

�1+q �3

2

�−C
��(1+q)

√
K

≥ C0M
1+q

0

�
r

R1

�B
√
K

,

where we have let M0 = h(R1/3)
AC0

, and B = γC �� log(3/2). If M0 ≥ 1 this
estimate implies in a trivial way for 0 < r < R1/3

h(r) ≥ C0

�
r

R1

�B
√
K

.



206 A. BANERJEE AND N. GAROFALO

If instead 0 < M0 ≤ 1, keeping in mind that C ≥ 1, with B� = max{B,
γ log(1/M0)} we obtain for 0 < r < R1/3

h(r) ≥ C0

�
r

R1

�B
√
K+γ log(1/M0)

≥ C0

�
r

R1

�B
�(1+

√
K)

≥ C0

�
r

R1

�2B�√
K

,

where the last inequality follows by remembering that K ≥ 1. In either
case, the desired conclusion of Theorem 1.1 follows by noticing that h(r) ≤
||u||2

L∞(Br)

�
Br

µ, and that
�
Br

µ ≤ λ−1
�
Br

ψ = λ−1ωrQ, where we have let

ω =
�
B1

ψ. In fact, we would find

||u||L∞(Br) ≥ C3

�
r

R1

�C4

√
K

,

with C3 = C0

�
λ

ωR
Q
1

and C4 = 2B�. This finishes the proof of Theorem 1.1.
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Abstract. We consider a conducting body with complex valued admit-
tivity containing a finite number of well separated thin inclusions. We
derive an asymptotic formula for the boundary values of the potential
in terms of the width of the inclusions.
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1. Introduction

Let Ω ⊂ R2 be a smooth bounded domain representing the region occupied by
a conducting body and consider, at a fixed frequency ω, the complex valued
admittivity background

γ0 = σ0 + iωε0 in Ω,

where σ0 and ε0 are real valued functions representing the electrical conduc-
tivity and permittivity, respectively.

Let Σj ⊂⊂ Ω, for j = 1, . . . , N be a collection of simple, regular curves and
consider, for � sufficiently small, a neighborhood of Σj given by

Dj

�
= {x ∈ Ω : dist(x,Σj) < �},

representing a thin inhomogeneity of admittivity

γj = σj + iωεj .

Let ψ ∈ H1/2(∂Ω) represents a complex valued boundary current and let
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u0 be the background potential which satisfies

�
div (γ0∇u0) = 0 in Ω

γ0
∂u0
∂ν

= ψ on ∂Ω,

where ν is the unit outer normal to ∂Ω.
Let

γ� = γ0 +
N�

j=1

(γj − γ0)χD
j
�

and consider the perturbed complex-valued potential u� solution to

�
div (γ�∇u�) = 0 in Ω

γ�
∂u�
∂ν

= ψ on ∂Ω.

The main goal of the paper is to obtain an asymptotic expansion for the bound-
ary values (u� − u0)|∂Ω

as � → 0.
The formula we derive is analogue to the one obtained in [3] in the case of

constant real valued conductivities σ0 and σ1 (ω = 0).
More precisely, we show that for y ∈ ∂Ω and � → 0,

(u� − u0)(y) = �v(y) + o(�).

where

v(y) =
N�

j=1

2

�

Σj

(γ0 − γj)(x)Mj(x)∇u0(x)∇xN(x, y) dσx.

Here N(x, y) is the Neumann function corresponding to the operator div (γ0∇·)
and Mj is a two by two matrix with complex valued entries.

It is well known that this type of expansion can be used in order to solve the
inverse problem of detecting the curves Σj , j = 1, . . . , N from boundary mea-
surements. In fact, in [1] the authors show that for the conductivity equation,
it is possible to detect finitely many segments from knowledge on the boundary
of the first order term v appearing in the expansion. Moreover they show the
continuous dependence of the segments from the boundary measurement v is
Lipschitz stable. A similar result has been obtained in the case of the system
of linearized elasticity, for the case N = 1, in [2].

2. Main assumptions and results

For j = 1, . . . , N , let Σj be a simple, regular C2,α curve with α ∈ (0, 1) and
assume there exists a contant K > 1 such that, in a neighborhood of radius
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K−1 of each point in Σj , the curve is the graph of a C2,α function and

�Σj�C2,α ≤ K, dist(Σj , ∂Ω) ≥ K−1,

K−1 ≤ L(Σj) ≤ K, dist(Σj ,Σk) ≥ K−1 if j �= k,
(1)

where L denotes the length.
On each curve Σj we fix an continuous orthonormal system (nj(x), tj(x))

such that nj(x) is a normal direction to Σj at its point x and τj(x) is a tangent
direction.

Assume γ0, γj : Ω → C such that γ0 ∈ C1,α(Ω), γj ∈ Cα(Ω) with

�γ0�C1,α(Ω), �γj�Cα(Ω) ≤ K, (2)

and, furthermore, assume there exists c0 > 0 such that

σj ≥ c0, for j = 0, 1, . . . , N. (3)

Consider finally a complex valued flux ψ ∈ H−1/2(∂Ω) satisfying the compati-
bility condition �

∂Ω
ψ = 0. (4)

Then, under the above assumptions, there exist unique weak solutions u0

and u� in H1(Ω) to






div (γ0∇u0) = 0 in Ω,

γ0
∂u0
∂ν

= ψ on ∂Ω,�
∂Ω u0 = 0,

(5)

and 




div (γ�∇u�) = 0 in Ω,

γ�
∂u�
∂ν

= ψ on ∂Ω,�
∂Ω u� = 0.

(6)

We also introduce the Neumann function N solution to





div (γ0∇N(·, y)) = δy in Ω,

γ0
∂N(·,y)

∂ν
= 1

L(∂Ω) on ∂Ω,�
∂Ω N(·, y) = 0,

(7)

It is well known that under assumptions (2) and (3) there exists a unique
solution to (7) (see [5]).

We are now ready to state our main result.
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Theorem 2.1. Let Ω ⊂ R2 be bounded smooth domain and {Σ}N
j=1 ⊂⊂ Ω a

set of curves satisfying (1), let γ0 and γj (for j = 1, . . . , N) be admittivities
satisfying (2) and (3) and let u0 and u� be solutions to (5) and (6), respectively.
Then, for y ∈ ∂Ω and � → 0,

(u� − u0)(y) = 2�
N�

j=1

�

Σj

(γ0(x)− γj(x))Mj(x)∇u0(x) ·∇N(x, y) dσx + o(�),

where

Mj(x) =
γ0(x)

γj(x)
nj(x)⊗ nj(x) + τj(x)⊗ τj(x).

3. Proof of Theorem 2.1

We will perform the proof in the caseN = 1. Since the curves are well separated
one from each other, the same argument will work for the case of multiple
inclusions.

A complex valued equation as

div (γ∇u) = 0

can be interpreted as a two by two system for real valued functions. In fact,
denoting by

u1 = �u and u2 = �u,
we have that the function u = (u1, u2) : Ω → R2 satisfies the system

∂

∂xk

�
ahk
ij

∂uj

∂xk

�
= 0 for i = 1, 2

where, for i, j, h, k = 1, 2,

ahk
ij

= δhkδij�γ − δhk(δi1δj2 − δi2δj1)�γ.

If
�γ ≥ c0 > 0,

then
ahk
ij
ξi
h
ξj
k
≥ c0|ξ|2

which corresponds to strong ellipticity. For this reason we can apply to our
equations the results that hold for strongly elliptic systems.

We first establish some key energy estimates.

Lemma 3.1. There exists a constant C = C(K, co,Ω) such that

�u� − u0�H1(Ω) ≤ C|D1
�
|1/2�ψ�H−1/2(∂Ω).



ASYMPTOTIC FORMULAS FOR THIN INHOMOGENEITIES 213

Proof. Since u0 and u� are solutions to (5) and (6), then w� = u� − u0 is weak
solution to






div (γ�∇w�) = div
�
(γ0 − γ1)χD1

�
∇u0

�
in Ω,

γ�
∂w�
∂ν

= 0 on ∂Ω,�
∂Ω u� = 0.

Hence, for every φ ∈ H1(Ω),

�

Ω
γ�∇w� ·∇φ =

�

Ω
(γ0 − γ1)χD1

�
∇u0 ·∇φ. (8)

By choosing φ = w� ∈ H1(Ω), we get

�

Ω
γ�|∇w�|2 =

�

Ω
(γ0 − γ1)χD1

�
∇u0 ·∇w�.

Now, by (3), we have

�∇w��L2(Ω) ≤ C|D1
�
|1/2 �γ0 − γ1�L∞(Ω) sup

D1
�

|∇u0|.

By interior regularity results (see [4, Theorem2.1, Chapter 2]),

sup
D1

�

|∇u0| ≤ C�ψ�H−1/2(∂Ω),

so that
�∇w��L2(Ω) ≤ C|D1

�
|1/2�ψ�H−1/2(∂Ω)

where C = C(K, c0).
Finally, since �

∂Ω
w� = 0,

by Poincaré inequality we have

�w��L2(Ω) ≤ C�∇w��L2(Ω)

with C = C(Ω) and we obtain

�u� − u0�H1(Ω) ≤ |D1
�
|1/2�ψ�H1/2(∂Ω),

which ends the proof.

We will also make use of some key regularity results for elliptic systems with
discontinuous coefficients due to [6] (that extend the one established in [7] for
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scalar elliptic equations). We state here a simplified version of Proposition 5.1
of [6].

Let c and M be two positive constants with M > 2K and denote by Qc,M

the set of points x ∈ Ω such that dist(x, ∂Ω) > M−1 and such that there is a
square of size c centered at x that intersects ∂D1

�
in at most two cartesian curves

whose C1,α norms are bounded by M , i.e. there exists a coordinate system at x
such that ∂D1

�
∩ [−c, c]2 consists in graphs of at most two functions h− < h+

with �h±�C1,α ≤ M . Let us denote by ΩM = {x ∈ Ω : dist(x, ∂Ω) > 1
2M }.

Lemma 3.2. Let β ∈ (0, 1/4) and M > 2K. there exists a constant C depending
on α, K, c0 and M such that if � ∈ (0, 1

3K ), 0 < c < 1
6K and u� ∈ H1(Ω) is a

solution of
div (γ�∇u) = 0 in Ω,

then

�u��C1,β(Qc,M∩D
1
�)

≤ C

c1+β
�u��L2(Ω) (9)

and

�u��C1,β(Qc,M\D1
� )

≤ C

c1+β
�u��L2(Ω). (10)

Lemma 3.3. There exists η > 0 such that, if u ∈ H1(Ω) is a solution to the
complex valued equation

div (γ∇u) = f in Ω,

where γ : Ω → C, γ ∈ L∞(Ω) such that

�γ ≥ c0 > 0

and f ∈ H−1,2+η(Ω), then u ∈ H1,2+η

loc
(Ω) and, given Bρ and B2ρ concentric

disks contained in Ω,

�∇u�L2+η(Bρ) ≤ C
�
�f�H−1,2+η(B2ρ) + ρ

2
2+η−1�∇u�L2(B2ρ)

�
.

For the proof see [4, Chapter 2, Section 10].

Proof of Theorem 2.1. Take y ∈ ∂Ω. Then, by the definition of the Neumann
function, it is easy to see that

(u� − u0)(y) =

�

D1
�

(γ0 − γ1)∇u� ·∇N(·, y).

We prove the theorem in the more interesting and complicated case when Σ1

is an open curve. In fact, in this case, ∂D1
�
has derivatives (near the endpoints

of Σ1) that degenerate as � tends to zero. This implies that the regularity
estimates of Lemma 3.2 cannot be applied near the endpoints of Σ1.
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Let P1 and Q1 be the endpoints of Σ1, let θ ∈ (0, 1) to be chosen later, and
define

D1,θ
�

=
�
x+ µn(x) : x ∈ Σ1, dist(x, P1 ∪Q1) > �θ, µ ∈ (�, �)

�
.

It is easy to see that there exists a constant M > 2K and depending only on K,
such that

D1,θ
�

⊂ Q �β
4 ,M

∩D1
�
.

An application of Lemma 3.2 thus gives

�∇u��
Cβ(D1,θ

� )
≤ C�−θ(1+β)�u��L2(Ω) ≤ C�−θ(1+β)�ψ�H−1/2(∂Ω) (11)

where C does not depend on �.
Then,

�

D1
�

(γ0 − γ1)(x)∇u�(x) ·∇N(x, y) dx

=

�

D
1,θ
�

(γ0 − γ1)(x)∇u�(x) ·∇N(x, y) dx

+

�

D1
�\D

1,θ
�

(γ0 − γ1)(x)∇u�(x) ·∇N(x, y) dx := I1 + I2.

Let us estimate I2 first.

|I2| ≤

�����

�

D1
�\D

1,θ
�

(γ0 − γ1)∇(u� − u0) ·∇N(·, y)

�����

+

�����

�

D1
�\D

1,θ
�

(γ0 − γ1)∇u0 ·∇N(·, y)

����� .

Observe that, since γ0 ∈ C1,α(Ω), by interior regularity results ([4, Theorem
2.1, Chapter 2], by [5] and by (2) we get

�∇u0�L∞(D1
� )

≤ C�ψ�H−1/2(∂Ω), (12)

|∇N(x, y)| ≤ C

|x− y| ,

and, since y ∈ ∂Ω
�∇N(·, y)�L∞(D1

� )
≤ C. (13)

Hence, by (12), (13) and Lemma 3.1,

|I2| ≤ C
��D1

�
\D1,θ

�

�� �ψ�H−1/2(∂Ω) ≤ C�1+θ�ψ�H−1/2(∂Ω).
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We now define

Σθ

η
=

�
x+ ηn1(x) : x ∈ Σ1, dist(x, P1 ∪Q1) > �θ

�
.

Due to the regularity of Σ1, if we denote by dση

x
the arclength measure on Σθ

η

and by dσx the arclength measure on Σ1, we have

dση

x
= (1 +O(η))dσx.

For every point x+ ηn(x) ∈ D1,θ
�

, let x� = x+ �n(x). By (11),

|∇u�(x+ ηn(x))−∇u�(x�)| ≤ C|x+ ηn(x)− x�|β�−θ(1+β)�ψ�H−1/2(∂Ω)

≤ C�β−θ(1+β)�ψ�H−1/2(∂Ω)

and, also,
|(γ1 − γ0)(x+ ηn(x))− (γ1 − γ0)(x�)| ≤ C�α

so that
�

D
1,θ
�

(γ0 − γ1)∇u�∇xN = 2�

�

Σθ
�

(γ0 − γ1)∇ui

�
∇xN + o(�),

where we set
ui

�
= u�|D1

�
, ue

�
= u�|

Ω\D1
�

.

We now use the transmission conditions

ui

�
= ue

�
,

γ1
∂ui

�

∂n
= γ0

∂ue

�

∂n
,

that are satisfied on ∂D1,θ
�

pointwise, in order to obtain, finally,
�

D
1,θ
�

(γ0 − γ1)∇ui

�
∇N

= 2�

�

Σθ
�

(γ0 − γ1)

�
γ0
γ1

∂ue

�

∂n

∂N

∂nx

+
∂ue

�

∂τ

∂N

∂τx

�
+ o(�).

Assume that
�∇ue

�
−∇ue

0�L∞(Σθ
� )

≤ C�θ1�ψ�H−1/2(∂Ω) (14)

for some θ1 > 0. Then
�

D
1,θ
�

(γ0 − γ1)(x)∇ui

�
(x)∇N(x, y)dx

= 2�

�

Σθ
�

(γ0 − γ1)

�
γ0
γ1

∂ue

0

∂n1

∂N

∂n1
+

∂ue

0

∂τ1

∂N

∂τ1

�
dσ�

x
+ o(�)

= 2�

�

Σ1

(γ0 − γ1)M1(x)∇u0(x)∇xN(x, y)dσx + o(�),
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which concludes the proof.
So, we are left with the proof of (14). Let 2� < d < 1

2K and let

Ω�

d
=

�
x ∈ Ω : dist(x, ∂(Ω \D1

�
)) > d

�
.

Since u� − u0 is solution of

div(γ0∇(u� − u0)) = 0 in Ω \D1
�
,

the regularity assumption on γ0 implies that uε − u0 ∈ H2
loc

(Ω \ D1
�
) (see [4,

Theorem 2.1, Chapter 2]).
Consider Φk

�
= ∂

∂xk
(u� − u0) for k = 1, 2.

The function Φk

�
satisfies in Ω \D1

�

div
�
γ0∇Φk

�

�
= −div

�
∂γ0
∂xk

∇(u� − u0)

�
=: F.

By Caccioppoli inequality and by Lemma 8 we have that

�∇Φk

�
�2
L2(Ω�

d/2
) ≤ C

d2
�Φk

�
�2
L2(Ω�

d/4
) + �F�2

H−1(Ω�
d/4

)

≤ C

�
1

d2
�Φk

�
�2
L2(Ω�

d/4
) + �∇(u� − u0)�2L2(Ω)

�

≤ C

�
1

d2
+ 1

�
�∇(u� − u0)�2L2(Ω)

≤ C

�
1

d2
+ 1

�
��ψ�2

H−1/2(∂Ω).

Hence

�Φk

�
�H1(Ω�

d/2
) ≤ C

√
�d−1�ψ�H−1/2(∂Ω).

Applying Lemma 3.3 to Φk

�
gives

�∇Φk

�
�L2+η(Ω�

d)
≤ C

�
�F�H−1,2+η(Ω�

d/2
) + d

2
2+η−1�∇Φk

�
�2
L2(Ω�

d/2
)

�
.

Now, by

�F�H−1,2+η(Ω�
d/2

) ≤ C�∇(u� − u0)�L2+η(Ω�
d/2

)

and by the interior regularity estimates and Sobolev Immersion Theorem

�∇(u� − u0)�L2+η(Ω�
d/2

) ≤ C�u� − u0�H2(Ω�
d/2

)

≤ C�u� − u0�H1(Ω�
d/4

) ≤ �u� − u0�H1(Ω)
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and hence

�∇Φk

�
�L2+η(Ω�

d)
≤ C

�
�u� − u0�H1(Ω) + d

2
2+η−1�∇Φk

�
�2
L2(Ω�

d/2
)

�

≤ C
�
1 + d

2
2+η−2

�√
� �ψ�H−1/2(∂Ω).

Finally, since 2
2+η

− 2 < 0 and d < 1, from last inequality, we derive

�∇Φk

�
�L2+η(Ω�

d)
≤ Cd

2
2+η−2√� �ψ�H−1/2(∂Ω).

On the other hand, applying Lemma 3.3 to u� − u0 we have

�Φk

�
�L2+η(Ω�

d)
≤ Cd

2
2+η−1√��ψ�H−1/2(∂Ω).

By Sobolev Imbedding Theorem we than have
����

∂

∂xk

(u� − u0)

����
L∞(Ω�

d)

≤ Cd
2

2+η−2√� �ψ�H−1/2(∂Ω). (15)

Now let y ∈ Σ�
�
and yd be the closest point to y in Ω�

d
. By (11) we have

|∇u�(y)−∇u�(yd)| ≤ C
dβ

�θ(β+1)
�ψ�H−1/2(∂Ω). (16)

Hence, by (15) and (16) we have

|∇(ue

�
− u0)(y)| ≤ C

�
dβ�−θ(β+1) + d−2+ 2

2+η
√
�
�
�ψ�H−1/2(∂Ω).

Choosing θ < β

2(2− 2
2+η )(β+1)

we get

|∇(ue

�
− u0)(y)| ≤ C�θ1

with θ1 > 0.
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Abstract. The main result of the present paper consists in a quanti-
tative estimate of unique continuation at the boundary for solutions to
the wave equation. Such estimate is the sharp quantitative counterpart
of the following strong unique continuation property: let u be a solution
to the wave equation that satisfies an homogeneous Robin condition on
a portion S of the boundary and the restriction of u|S on S is flat on
a segment {0}× J with 0 ∈ S then u|S vanishes in a neighbourhood of
{0}× J .
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Robin problem.

MS Classification 2010: 35R25, 35L, 35B60, 35R30.

1. Introduction

The strong unique continuation properties at the boundary and the related
quantitative estimates have been well understood in the context of second or-
der elliptic equations, [1, 22], and in the context of second order parabolic
equations [16, 17, 32]. For instance, in the framework of elliptic equations, the
doubling inequality at the boundary and three sphere inequality are the typi-
cal forms in which such quantitative estimates of unique continuation occur [4].
Similar forms, like three cylinder inequality or two-sphere one cylinder inequal-
ity, occur in the parabolic case [32]. In the context of hyperbolic equation,
strong properties of unique continuation at the interior and the related quanti-
tative estimates are less studied [6, 24, 25, 31]. Also, we recall here the papers
[11, 12, 26] in which unique continuation properties are proved along and across
lower dimensional manifolds for the wave equation. We refer to [8, 9, 23] for
recent result of quantitative estimate for hyperbolic equations. Such results are
the quantitative counterpart of the unique continuation properties for equation
with partially analytic coefficients proved in [19, 27, 30], see also [20].

Quantitative estimates of strong unique continuation at the boundary are
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one of most important tool which enables to prove sharp stability estimates for
inverse problems for PDE with unknown boundaries or with unknown boundary
coefficients of Robin type, [3, 29] (elliptic equations), [5, 10, 14, 32] (parabolic
equations), [33] (hyperbolic equations). In the context of elliptic and parabolic
equations, the stability estimates that were proved are optimal [2, 13, 14].

To the authors knowledge there exits no result in the literature concern-
ing quantitative estimates of strong unique continuation at the boundary for
hyperbolic equations.

In order to make clear what we mean, we illustrate our result in a particular
and meaningful case. Let A(x) be a real-valued symmetric n×n, n ≥ 2, matrix
whose entries are functions of Lipschitz class satisfying a uniform ellipticity
condition. Let u be a solution to

∂
2
t
u− div (A(x)∇xu) = 0, in B

+
1 × J, (1)

where B
+
1 = {x = (x�

, xn) ∈ Rn : |x| < 1, xn > 0} and J = (−T, T ) is an inter-
val of R. Assume that u satisfies the following Robin condition

A(x�
, 0)∇xu(x

�
, 0, t) · ν + γ(x�)u(x�

, 0, t) = 0, in B
�
1 × J, (2)

where B
�
1 is the Rn−1 ball of radius 1 centred at 0, ν denotes the outer unit

normal to B�
1 and γ, the Robin coefficient, is of Lipschitz class. The quantitative

estimate of strong unique continuation that we provide here may be briefly
described as follows. Let r ∈ (0, 1) and assume that

sup
t∈J

�u(·, 0, t)�
L2(B�

r)
≤ ε and �u(·, 0)�

H2(B+
1 )

≤ 1, (3)

where ε < 1. Then

�u(·, 0, 0)�
L2(B�

s0
) ≤ C

��log
�
ε
θ
���−α

, (4)

where s0 ∈ (0, 1), C ≥ 1, α > 0 are constants independent of u and r and

θ = | log r|−1
. (5)

For the precise statement of our result we refer to Theorem 2.1. Roughly speak-
ing, in such a Theorem the half ball B+

1 is replaced by the region {(x�
, xn) ∈ B1 :

xn > φ(x�)} where φ ∈ C
1,1 (B�

1) satisfies φ(0) = |∇x�φ(0)| = 0. In addition, u
satisfies the Robin condition (2) on S1 × J where S1 = {(x�

,φ(x�)) : x� ∈ B
�
1}.

The estimate (4) is a sharp estimate from two points of view:
(i) The logarithmic character of the estimate cannot be improved as it is

shown by a well-known counterexample of John for the wave equation, [21];
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(ii) The sharp dependence of θ by r. Indeed it is easy to check that the
estimate (4) implies that the following strong unique continuation property at
the boundary holds true. Let u satisfy (1) and (2) and assume that

sup
t∈J

�u(·, 0, t)�
L2(B�

r)
= O(rN ), ∀N ∈ N, as r → 0

then we have
u(x�

, 0, t) = 0 for every (x�
, t) ∈ U ,

where U is a neighbourhood of {0}× J .
In order to prove the quantitative estimate (4), we have mainly refined the

strategy developed in [31] in which the author, among various results, proved
that if

sup
t∈J

�u(·, t)�
L2(B+

r ) ≤ ε and �u(·, 0)�
H2(B+

1 )
≤ 1,

then

�u(·, 0)�
L2(B+

s0)
≤ C

��log
�
ε
θ
���−1/6

, (6)

where θ = | log r|−1, s0 ∈ (0, 1), C ≥ 1 are constants independent of u and
r and an homogeneous Neumann boundary condition applies instead of (2).
To carry out our proof, we first adapt an argument used in [28] in the elliptic
context which enable to reduce the Robin boundary condition into a Neumann
boundary one. Subsequently we need a careful refinement of some arguments
used in [31]. Actually, to fulfil our proof it is not sufficient to apply the above
estimate (6). In order to illustrate this point, a comparison with the analogue
elliptic context (i.e. u is time independent) could be useful. In such an elliptic
context [28] instead of (3) we would have

�u(·, 0)�
L2(B�

r)
≤ ε and �u�

H2(B+
1 )

≤ 1.

Thus, from stability estimates for the Cauchy problem [4] and regularity result
we would obtain the following Holder estimate

�u�
L2
�
B

+
r
2

� ≤ Cε
β
,

where C and β ∈ (0, 1) are independent on u and r. By using the above
estimate, the three sphere inequality at the boundary and standard regularity
results we would have

�u�
H1(B+

ρ ) ≤ Cε
ϑ
,

where 0 < ρ < 1 and ϑ ∼ | log r|−1 as r → 0. Finally, by trace inequality we
would obtain

�u�
L2

�
B

�
ρ/2

� ≤ Cε
ϑ
.



224 E. SINCICH AND S. VESSELLA

The application of the same argument in the hyperbolic case would lead to a
loglog type estimate instead of the desired single log one (4). In fact, opposite
to the elliptic case, in the hyperbolic context the dependence of the interior
values of the solution upon the Cauchy data is logarithmic. As a consequence,
by combining such a log dependence with the logarithmic estimate in (6) we
would obtain a loglog type estimate for �u(·, 0, 0)�

L2(B�
s0
).

The plan of the paper is as follows. In Section 2 we state the main result
of this paper. In Section 3 we prove our main theorem, in Section 4 we discuss
some auxiliary results and in Section 5 we conclude by summarizing the main
steps of our proof.

2. The main result

2.1. Notation and Definition

In several places within this manuscript it will be useful to single out one
coordinate direction. To this purpose, the following notations for points x ∈ Rn

will be adopted. For n ≥ 2, a point x ∈ Rn will be denoted by x = (x�
, xn),

where x
� ∈ Rn−1 and xn ∈ R. Moreover, given r > 0, we will denote by

Br, B
�
r
, �Br the ball of Rn, Rn−1 and Rn+1 of radius r centred at 0. For

any open set Ω ⊂ Rn and any function (smooth enough) u we denote by
∇xu = (∂x1u, · · · , ∂xnu) the gradient of u. Also, for the gradient of u we use
the notation Dxu. If j = 0, 1, 2 we denote by D

j

x
u the set of the derivatives

of u of order j, so D
0
x
u = u, D

1
x
u = ∇xu and D

2
x
u is the Hessian matrix

{∂xixju}
n

i,j=1. Similar notation are used whenever other variables occur and Ω

is an open subset of Rn−1 or a subset of Rn+1. By H
�(Ω), � = 0, 1, 2 we denote

the usual Sobolev spaces of order �, in particular we have H
0(Ω) = L

2(Ω).
For any interval J ⊂ R and Ω as above we denote

W (J ;Ω) =
�
u ∈ C

0
�
J ;H2 (Ω)

�
: ∂�

t
u ∈ C

0
�
J ;H2−� (Ω)

�
, � = 1, 2

�
.

We shall use the letters C,C0, C1, · · · to denote constants. The value of the
constants may change from line to line, but we shall specified their dependence
everywhere they appear.

2.2. Statements of the main results

Let A(x) =
�
a
ij(x)

�n

i,j=1
be a real-valued symmetric n × n matrix whose

entries are measurable functions and they satisfy the following conditions for
given constants ρ0 > 0, λ ∈ (0, 1] and Λ > 0,

λ |ξ|
2
≤ A(x)ξ · ξ ≤ λ

−1
|ξ|

2
, for every x, ξ ∈ Rn

, (7a)
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|A(x)−A(y)| ≤
Λ

ρ0
|x− y| , for every x, y ∈ Rn

. (7b)

Let φ be a function belonging to C
1,1

�
B

�
ρ0

�
that satisfies

φ(0) = |∇x�φ(0)| = 0 , (8a)

�φ�
C1,1(B�

ρ0
) ≤ Eρ0, (8b)

where

�φ�
C1,1(B�

ρ0
) = �φ�

L∞(B�
ρ0
) + ρ0 �∇x�φ�

L∞(B�
ρ0
) + ρ

2
0

��D2
x�φ

��
L∞(B�

ρ0
) .

For any r ∈ (0, ρ0] denote by

Kr := {(x�
, xn) ∈ Br : xn > φ(x�)}

and
Sr := {(x�

,φ(x�)) : x�
∈ B

�
r
}.

We assume that the Robin coefficient γ belongs to C
0,1(Sρ0) and for a given

γ̄ > 0 is such that

�γ�
C0,1(Sρ0)

≤ γ̄ . (9)

Let U ∈ W ([−λρ0,λρ0];Kρ0) be a solution to

∂
2
t
U − div (A(x)∇xU) = 0, in Kρ0 × (−λρ0,λρ0), (10)

satisfying the following Robin condition

A∇xU · ν + γU = 0, on Sρ0 × (−λρ0,λρ0), (11)

where ν denotes the outer unit normal to Sρ0 .
Let r0 ∈ (0, ρ0] and denote

ε = sup
t∈(−λρ0,λρ0)

�
ρ
−n+1
0

�

Sr0

U
2(σ, t)dσ

�1/2

(12)

and

H =




2�

j=0

ρ
j−n

0

�

Kρ0

��Dj

x
U(x, 0)

��2 dx




1/2

. (13)
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Theorem 2.1. Let (7) be satisfied. Let U ∈ W ([−λρ0,λρ0];Kρ0) be a solution
to (10) satisfying (12) and (13). Assume that u satisfies (11). There exist
constants s0 ∈ (0, 1) and C ≥ 1 depending on λ, Λ and E only such that for
every 0 < r0 ≤ ρ ≤ s0ρ0 the following inequality holds true

�U(·, 0)�
L2(Sρ)

≤
C
�
ρ0ρ

−1
�C

(H + eε)
�
�θ log

�
H+eε

ε

��1/6
, (14)

where
�θ =

log(ρ0/Cρ)

log(ρ0/r0)
. (15)

From now on we shall refer to the a priori bounds as the following set of
quantities: λ,Λ, ρ0, E, γ̄.

3. Proof of Theorem 2.1

In what follows we use the following

Proposition 3.1. There exists a radius r1 > 0 depending on the a priori data
only, such that the problem

�
div(A∇ψ) = 0 , in Kr1 ,
A∇ψ · ν + γψ = 0 , in Sr1 ,

(16)

admits a solution ψ ∈ H
1(Kr1) satisfying

ψ(x) ≥ 1 for every x ∈ Kr1 . (17)

Moreover, there exists a constant ψ̄ > 0 depending on the a priori data only,
such that

�ψ�C1(Kr1 )
≤ ψ̄ . (18)

Proof. See Section 4

Let r1 and ψ be the radius and the function introduced in Proposition 3.1.
Denoting with

u
� =

U

ψ
, (19)

it follows that u� ∈ W ([−λr1,λr1];Kr1) is a solution to

ψ
2(x)∂2

t
u
�
− div (A�(x)∇xu

�) = 0, in Kr1 × (−λr1,λr1), (20)
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satisfying the following Neumann condition

A
�
∇xu

�
· ν = 0, on Sr1 × (−λr1,λr1), (21)

where ν denotes the outer unit normal to Sr1 and A
�(x) = ψ

2(x)A(x). Re-
peating the arguments in [31, Subsection 3.2] (partly based on the techniques
introduced in [1]), we can assume with no loss of generality that A

�(0) = I

with I identity matrix n×n and we infer that there exist ρ1, ρ2 and a function
φ ∈ C

1,1(Bρ2 ,Rn) such that

Φ(Bρ2) ⊂ Bρ1 , (22a)

Φ(y, 0) = (y�,φ(y�)) , (22b)

C
−1

≤ |detDΦ(y)| ≤ C, for every y ∈ Bρ2 . (22c)

Let us define the matrix A(y) = {a(y)}n
i,j=1 as follows (below (DΦ−1)tr

denotes the transposed matrix of (DΦ−1))

A(y) = |detDΦ(y)|(DΦ−1)(Φ(y))A�(Φ(y))(DΦ−1)tr(Φ(y)),

z(y, t) = u
�(Φ(y), t) , (23)

u(y, t) = z(y�, |yn|, t) , (24)

and hence we get that u is a solution to

q(y)∂2
t
u− div

�
Ã(y)∇u

�
= 0, in Bρ2 × (−λρ2,λρ2), (25)

where for every y ∈ Bρ2 we denote

q(y) = |detDΦ(y�, |yn|)|ψ
2(y�, |yn|),

and Ã(y) = {ãij(y)}ni,j=1 is the matrix whose entries are given by

ãij(y
�
, yn) = aij(y

�
, |yn|), if either i, j ∈ {1, . . . , n− 1}, or i = j = n, (26a)

ãnj(y
�
, yn) = ãjn(y

�
, yn) = sgn(yn)a

nj(y�, |yn|), if 1 ≤ j ≤ n− 1. (26b)

From (7a), (7b), (22c), (17) and (18) there exist constants Λ̃, λ̃ > 0 depend-
ing on the a priori data only such that

λ̃ |ξ|
2
≤ Ã(y)ξ · ξ ≤ λ̃

−1
|ξ|

2
, for every y ∈ Bρ2 , ξ ∈ Rn

, (27a)

���Ã(y1)− Ã(y2)
��� ≤

Λ̃

ρ0
|y1 − y2| , for every y1, y2 ∈ Bρ2 (27b)

and
λ̃ ≤ q(y) ≤ λ̃

−1
, for every y ∈ Bρ2 , (28a)
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|q(y1)− q(y2)| ≤
Λ̃

ρ0
|y1 − y2| , for every y1, y2 ∈ Bρ2 . (28b)

Let us recall that, by construction, the function u in (24) is even w.r.t. the
variable yn and moreover with no loss of generality we may assume that u (up
to replacing it with its even part w.r.t the variable t as in [31]) is even w.r.t. t
also. From now for the sake of simplicity we shall assume that ρ2 = 1.

By (12) and by (13) we have that there exist C1, C2 > 0 constants depending
on the a priori data only such that

� = sup
t∈(−λ,λ)

��

B�
r0

u
2(y�, 0, t)dy�

�1/2

≤ C1ε , (29)

H1 =




2�

j=0

�

B1

��Dj

x
u(y, 0)

��2 dy




1/2

≤ C2H . (30)

As in [31], let �u0 be an even extension w.r.t. yn of the function u0 := u(·, 0)
such that �u0 ∈ H

2 (B2) ∩H
1
0 (B2) and

��u0�H2(B2) ≤ CH1, (31)

where C is an absolute constant.
Let us denote by λj , with 0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · the eigenvalues

associated to the Dirichlet problem

�
div

�
Ã(y)∇yv

�
+ ωq(y)v = 0, in B2,

v ∈ H
1
0 (B2) .

(32)

and by ej(·) the corresponding eigenfunctions normalized by
�

B2

e
2
j
(y)q(y)dy = 1. (33)

Let us stress that we may choose the eigenfunctions ej to be even w.r.t yn
(see Remark 4.1 in Section 4). By (7a), (28) and Poincaré inequality we have
for every j ∈ N

λj =

�

B2

Ã(y)∇xej(y) ·∇yej(y)dy ≥ cλ
2

�

B2

e
2
j
(y)q(y)dy = cλ

2
, (34)

where c is an absolute constant. Denote by

αj :=

�

B2

�u0(y)ej(y)q(y)dy, (35)
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and let

�u(y, t) :=
∞�

j=1

αjej(y) cos
�
λjt. (36)

By Proposition 3.3 in [31] we have that

∞�

j=1

(1 + λj)
2
α
2
j
≤ CH

2
1 , (37)

where C > 0 depends on λ̃ and Λ̃ only.
Moreover, as a consequence of the uniqueness for the Cauchy problem for

the equation (25) (see (3.9) in [31] for a detailed discussion) we have that

ũ(y, t) = u(y, t) for |y|+ λ̃
−1

|t| < 1 . (38)

We define for any µ ∈ (0, 1] and for any k ∈ N the following mollified form
of the Boman transformation of �u(y, ·) [7]

�uµ,k(x) =

�

R
�u(x, t)ϕµ,k(t)dt, for x ∈ B2 , (39)

where {ϕµ,k}
∞
k=1 is a suitable sequence of mollifiers, [31, Section 3.1], such that

supp ϕµ,k ⊂

�
−

λ(µ+1)
4 ,

λ(µ+1)
4

�
, ϕµ,k ≥ 0, ϕµ,k even function and such that

�
R ϕµ,k(t)dt = 1.

From now on we fix µ := k
− 1

6 for k ≥ 1 and we denote

�uk := �uµ,k. (40)

By Proposition 3.3 im [31], it follows that

�u(·, 0)− �uµ,k�L2(B1)
≤ CHk

−1/6
. (41)

Let

�ϕµ,k(τ) =

�

R
ϕµ,k(t)e

−iτt
dt =

�

R
ϕµ,k(t) cos τ tdt, τ ∈ R.

Let us introduce now, for every k ∈ N an even function gk ∈ C
1,1(R) such that

if |z| ≤ k then we have gk(z) = cosh z, if |z| ≥ 2k then we have gk(z) = cosh 2k
and such that it satisfies the condition

|gk(z)|+ |g
�
k
(z)|+ |g

��
k
(z)| ≤ ce

2k, for every z ∈ R, (42)

where c is an absolute constant.
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Let us introduce the following quantities

hk(z) = e
2k min

�
1,
�
4πλ−1

|z|
�2k�

, z ∈ R , (43a)

fk(y, z) =
∞�

j=1

λjαj �ϕµ,k

��
λj

��
g
��
k

�
z

�
λj

�
− gk

�
z

�
λj

��
ej(y) ,

y ∈ B2 , z ∈ R, (43b)

Fk(y, t, z) =
∞�

j=1

αj

�
λjγk(z

�
λj) sin(

�
λjt)ej(y) , y ∈ B2 , t, z ∈ R, (43c)

γk(z
�
λj) = g

��
k
(z
�

λj)− gk(z
�
λj), z ∈ R. (43d)

Proposition 3.2. Let

vk(y, z) :=
∞�

j=1

αj �ϕµ,k

��
λj

�
gk

�
y

�
λj

�
ej(z) , for (y, z) ∈ B2 × R. (44)

We have that vk(·, z) belongs to H
2 (B2)∩H

1
0 (B2) for every y ∈ R, vk(y, z) is

an even function with respect to z and it satisfies

�
q(y)∂2

z
vk + div

�
Ã(y)∇xvk

�
= fk(y, z), in B2 × R,

vk(·, 0) = �uk, in B2.

(45)

Moreover we have

2�

j=0

�∂
j

y
vk(·, z)�H2−j(B2) ≤ CHe

2k, for every z ∈ R, (46)

�fk(·, z)�L2(B2) ≤ CHe
2k min

�
1,
�
4πλ−1

|z|
�2k�

, for every z ∈ R, (47)

�Fk(·, 0, t, z)�
H

1
2 (B�

1)
≤ CH1hk(z), for every t, z ∈ R, (48)

where C depends on λ̃ and Λ only.

Proof. Except for the inequality (48) which is discussed below, the proofs of
the remaining results follow along the lines of Proposition 3.4 in [31]. From the
arguments in Proposition 3.4 in [31] we deduce that

|γk(z
�

λj)| ≤ chk(z) , (49)
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where c > 0 is an absolute constant constant, which in turn implies that

�Fk(·, 0, t, z)�L2(B2) ≤ ch
2
k

∞�

j=1

α
2
j
λj ≤ CH

2
1h

2
k
(z) , (50)

with C > 0 constant depending on λ̃.
From (27a) we have

λ̃

�

B2

|∇yFk(y, t, z)|
2dy ≤

�

B2

Ã(y)∇yFk(y, t, z) ·∇yFk(y, t, z)dy (51)

=
∞�

j=1

αj

�
λj sin(

�
λjt)γk(z

�
λj)

�

B2

Ã(y)∇yej(y) ·∇yFk(y, t, z)dy

=
∞�

j=1

αj

�
λj sin(

�
λjt)γk(z

�
λj)

�

B2

λjq(y)ej(y)Fk(y, t, z)dy

=
∞�

j=1

α
2
j
λ
2
j
(sin(

�
λjt)γk(z

�
λj))

2
≤

∞�

j=1

α
2
j
λ
2
j
(chk(z))

2
≤ CH

2
1h

2
k
(z) ,

where C > 0 is a constant depending on λ̃ and Λ̃ only.
Combining (50) and (51) we get

�Fk(·, t, z)�H1(B2) ≤ CH1hk(z) , (52)

which in view of standard trace estimates leads to

�Fk(·, 0, t, z)�
H

1
2 (B�

1)
≤ CH1hk(z) . (53)

Let us now consider a function Φ ∈ L
2(B�

r0
) and let us define for any

(t, z) ∈ R = {(t, z) ∈ R2 : |t| < λ̃, |z| < 1}

wk(t, z) =

�

B�
r0

Wk(y
�
, 0, t, z)Φ(y�)dy� , (54)

where

Wk(y, t, z) =
∞�

j=1

αj cos(
�
λjt)gk(z

�
λj)ej(y) . (55)

Note that from (44) we have

vk(y, z) =

�

R
ϕµ̄,k(t)Wk(y, t, z)dt . (56)
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Proposition 3.3. We have that wk(·, ·) belongs to H
1 (R) is a weak solution

to
∆t,zwk(t, z) = −∂tF̃k(t, z) (57)

satisfying
|wk(t, 0)| ≤ ��Φ�L2(B�

r0
) , (58a)

∂zwk(t, 0) = 0 , (58b)

where

F̃k(t, z) =

�

B�
r0

Fk(y
�
, 0, t, z)Φ(y�)dy� . (59)

Moreover, for any (t, z) ∈ R we have that

|wk(t, z)| ≤ CH1e
2k
�Φ�L2(B�

r0
) , (60a)

|F̃k(t, z)| ≤ CH1hk(z)�Φ�L2(B�
r0

) , (60b)

where C > 0 is a constant depending on λ̃ and Λ̃ only.

Proof. We start by proving (57). To this aim we consider a test function
φ ∈ H

1
0 (R) and by integration by parts we get

�

R

∇t,zwk ·∇φdtdy (61)

=
∞�

j=1

�

R

λjαj < ej ,Φ > (gk(z
�
λj)− g

��
k
(z
�
λj)) cos(

�
λjt)φ(t, z)dt dz

=
∞�

j=1

−

�

R

∂t

��
λjαj < ej ,Φ > γk(z

�
λj) sin(

�
λjt)

�
φ(t, z) dtdz

where we mean < ej ,Φ >=
�
B�

r0

ej(y�, 0)Φ(y�))dy� . Again by integration by

parts with respect to the variable t we get

�

R

∇t,zwk ·∇φdtdy =

�

R

��

B�
r0

Fk(y
�
, 0, t, z)Φ(y�)dy�

�
∂tφ dtdz (62)

and hence (57) follows.
Let us now prove (58a) and (58b). We have that by (36)

wk(t, 0) =

�

B�
r0

ũ(y�, 0, t)ϕ(y�)dy� . (63)
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Hence by (38) and (29) we have that

|wk(t, 0)| ≤

��

B�
r0

|ũ(y�, 0, t)|2dy�
� 1

2

�Φ�L2(B�
r0

) ≤ ��Φ�L2(B�
r0

) . (64)

By (55) we also get that

∂zwk(t, 0) =

�

B�
r0

Wk(y
�
, 0, t, z)|z=0Φ(y

�)dy� = 0 . (65)

Let us now prove (60a). By a standard trace inequality, by (37) and by (42)
we have

|wk(t, z)| ≤ �Wk�H1(B2)�Φ�L2(B�r0)

≤ Ce
2k




∞�

j=1

(1 + λj)α
2
j





1
2

�Φ�L2(B�r0) ≤ CH1e
2k
�Φ�L2(B�r0) . (66)

Finally (60b) follows from (48).

Proposition 3.4. Let wk be the function introduced in (54), then we have that

|wk(t, z)| ≤ Cr
1
2
0 σk�Φ�L2(B�

r0
) for any |t| ≤

λ̃

2
, |z| ≤

r0

8
, (67)

where

σk =
�
�+H1(Cr0)

2k
�β �

H1(Cr0)
2k +H1e

2k
�1−β

. (68)

Proof. We notice that by (57) and by a standard local boundedness estimate

it follows that for any t0 ∈ (− λ̃

2 ,
λ̃

2 ) we have

�wk�
L∞(B(2)

r0
8

(t0,0))
≤

1

r0
�wk�

L2(B(2)
r0
4

(t0,0))
, (69)

where we denote B
(2)
r (t0, 0) = {(t, z) ∈ R2 : |t− t0|

2 + |z|2 ≤ r
2} for any r > 0.

Let w̃k ∈ H
1(B(2)

r0
8
(t0, 0)) be the solution to the following Dirichlet problem





∆t,zw̃k = −∂tF̃k(t, z) in B

(2)
r0
8
(t0, 0),

w̃k = 0 on ∂B
(2)
r0
8
(t0, 0) .

(70)

We observe that being ∂tF̃k(t, z) odd with respect the variable z, we have
that w̃k is odd with respect the variable z as well. Moreover, we have that
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∂zw̃k(t, z) = 0 on B
(1)
r0
8

where we denote B
(1)
r = (t0 − r, t0 + r) × {0} for any

r > 0.

Now denoting

ŵk = wk − w̃k , (71)

we have that 



∆t,zŵk = 0 in B

(2)
r0
8
(t0, 0),

ŵk = 0 on B
(1)
r0
8
.

(72)

By the argument in Proposition 3.5 of [31], which in turn are based on well-
known stability estimates for the Cauchy problem (see for instance [4]), it
follows that

�

B
(2)
r0
32

(t0,0)
|ŵk|

2
≤ C




�

B
(2)
r0
8

(t0,0)
|ŵk|

2




1−β 


�

B
(1)
r0
16

(t0,0)
|ŵk|

2




β

. (73)

Furthermore we have that by (58a), (60b) and (60a)

�ŵk�
L2(B(1)

r0
16

(t0,0))
≤ C(�+H1(Cr0)

2k)�Φ�L2(B�
r0

) , (74a)

�ŵk�
L2(B(2)

r0
8

(t0,0))
≤ C

�
H1e

2k +H1(Cr0)
2k
�
�Φ�L2(B�

r0
) , (74b)

where C > 0 is a constant depending on the a priori data only. Inserting (74a)
and (74b) in (73) we get the thesis.

Proposition 3.5. Let vk be defined in (44), then we have

�

B�
r0

|vk(y
�
, 0, z)|2dy� ≤ (Cr

− 1
2

0 σk)
2
, (75)

where C > 0 depends on λ̃ and Λ̃ only.

Proof. From (54), (67) and the dual characterization of the norm, we have that

�

B�
r0

|Wk(y
�
, 0, t, z)|2dy� ≤ (Cr

− 1
2

0 σk)
2
, (76)
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for |t| ≤ λ̃

2 , |z| ≤
r0
8 . On the other hand by using equality (56), we have that

|vk(y
�
, 0, z)|2 ≤

������

� λ̃(µ̄+1)
4

−λ̃(µ̄+1)
4

ϕµ̄,k(t)Wk(y
�
, 0, t, z)dt

������

2

≤




� λ̃(µ̄+1)

4

−λ̃(µ̄+1)
4

ϕµ̄,k(t)dt








� λ̃(µ̄+1)

4

−λ̃(µ̄+1)
4

ϕµ̄,k(t)|Wk(y
�
, 0, t, z)|2dt





=




� λ̃(µ̄+1)

4

−λ̃(µ̄+1)
4

ϕµ̄,k(t)|Wk(y
�
, 0, t, z)|2dt



 . (77)

Hence from (76) we have

�

B�
r0

|vk(y
�
, 0, z)|2dy� ≤

� λ̃(µ̄+1)
4

−λ̃(µ̄+1)
4

dt

�
ϕµ̄,k(t)

�

B�
r0

|Wk(y
�
, 0, t, z)|2dy�

�

≤




� λ̃(µ̄+1)

4

−λ̃(µ̄+1)
4

ϕµ̄,k(t)dt




�
Cr

− 1
2

0 σk

�2
≤

�
Cr

− 1
2

0 σk

�2
. (78)

We are now in position to conclude the proof of Theorem 2.1. We observe
that since the eigenfunctions ej introduced in (33) are even with respect yn

and since by (26b) we have

ãi,n(y
�
, 0) = 0 for 1 ≤ i ≤ n− 1 , (79)

it follows that for any |y�| ≤ 2

Ã(y�, 0)∇vk · ν

= −ãn,n(y
�
, 0)

∞�

j=1

αjϕ̂µ̄,k(
�
λj)gk(z

�
λj)∂ynej(y

�
, 0) = 0 , (80)

where ν = (0, . . . , 0,−1). Hence by (45), (75) and (80)






q(y)∂2
z
vk + div

�
Ã(y)∇xvk

�
= fk(y, z), |y| ≤ r0, |z| ≤

r0
8 ,

�vk(·, 0, z)�L2(B�
r0

) ≤ Cr
− 1

2
0 σk , |z| ≤

r0
8 ,

Ã(y�, 0)∇vk · ν = 0 , |y�| ≤ r0, |z| ≤
r0
8 .

(81)
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Finally combining (46), (47), quantitative estimates for the Cauchy prob-
lem (81) (see Theorems 3.5 and 3.6 in [31]), we obtain the following

�vk�L2(B̃ r0
32

) ≤ C
�
�+H1(Cr0)

2k
�β2 �

H1e
2k +H1(Cr0)

2k
�1−β

2

, (82)

where C > 0 depends on λ̃ and Λ̃ .
Let us observe that the above inequality replace Theorem 3.6 in [31]. The

same arguments discussed in [31] from Theorem 3.7 and on go through for the
present case and lead to the desired estimate (14).

4. Auxiliary results

Proof of Proposition 3.1. Let Ψ ∈ C
1,1(Bρ0) be the map defined as

Ψ(y�, yn) = (y�, yn + φ(y�)) . (83)

For any r ∈ (0, ρ0√
2(C+1)

) we have that

K r√
2(E+1)

⊂ Ψ(B−
r
) ⊂ K√

2(E+1)r , (84)

where B
−
r

= {y ∈ Rn : |y�| < r , yn < 0} and furthermore we get

|detDΨ| = 1 . (85)

Denoting by

σ(y) = (DΨ−1)(Ψ(y))A(Ψ(y))(DΨ−1)T (Ψ(y)), (86)

γ
�(y) = γ(Ψ(y)) , (87)

γ
�
0 = γ

�(0) , (88)

it follows that

σ(0) = A(0) , (89)

�σi,j�C0,1(B+ ρ0√
2(C+1)

) ≤ Σ , for i, j = 1, . . . , n , (90)

�γ
�
i,j
�
C0,1(B� ρ0√

2(C+1)
(0)) ≤ Λ�

, (91)

where Σ,Λ� are positive constants depending on E,Λ, ρ0 only.
Dealing as in Proposition 4.3 in [28] we look for a solution to (16) of the

form

ψ(x�
, xn) = ψ

�(Ψ−1(x�
, xn)) , (92)
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where ψ
� is a solution to

�
div(σ(y)∇ψ

�) = 0 , in B
−
r2

,

σ∇ψ
� · ν� + γ

�
ψ
� = 0 , on B

�
r2

,
(93)

with r2 = min{ρ0,
λn

−n/2

12γ̄ }.

And in turn, as in Claim 4.4 of [28], we search for a solution ψ
� to (93) such

that ψ� = ψ0 − s, where ψ0 is a solution to

�
div(A(0)∇ψ0) = 0 , in B

−
r2

,
A(0)∇ψ0 · ν

� + γ
�
0ψ0 = 0 , on B

�
r2

,
(94)

satisfying ψ0 ≥ 2 in B
−
r2

and where s ∈ H
1(B−

r2
) is a weak solution to the

problem






div(σ∇s) = −div((σ −A(0))∇ψ0) , in B
−
r2

,

σ∇s · ν� + γ
�
s = (σ −A(0))∇ψ0 · ν

� + (γ� − γ0)ψ0 , on B
�
r2

,

s = 0 , on |y| = r2 ,

(95)

such that s(y) = O(|y|2) near the origin. The proof of the latter relies on a
slight adaptation of the arguments in Claim 4.4 of [28].

In order to construct ψ0, we introduce the following linear change of variable
L = (li,j)i,j=1,...,n (see also [18])

L : Rn
→ Rn (96)

ξ �→ Lξ = R

�
A−1(0)ξ (97)

where R is the planar rotation in Rn that rotates the unit vector v

�v� , where

v =
�

A(0)en to the nth standard unit vector en, and such that

R|(π)⊥ ≡ Id|(π)⊥ ,

where π is the plane in Rn generated by en, v and (π)⊥ denotes the orthogonal
complement of π in Rn. For this choice of L we have

i) A(0) = L
−1 · (L−1)T ,

ii) (Lξ) · en = 1
||v||ξ · en.

which means that L
−1 : x �→ ξ is the linear change of variables that maps I

into A(0).
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By defining L̃ as the (n− 1)× (n− 1) matrix such that L̃ = (l)i,j=1··· ,n−1

we have that the function

ψ̄(ξ) = 8e−|detL||detL̃|−1
γ
�
0ξn cos(|detL||detL̃|−1

ξ1γ
�
0) (98)

is a solution to
�

∆ψ̄ = 0 , in B
−
r3

,

∇ψ̄ · ν� + |detL||detL̃|−1
γ
�
0ψ̄ = 0 , on B

�
r3

,
(99)

where r3 =
1

2

Λ
1
2

ρ0
r2 .

Finally we observe that by setting

ψ0(y) = ψ̄(Ly) (100)

we end up with a weak solution to (94) such that

|ψ0| > 2 in B
−
r2
(0) . (101)

Hence the thesis follows by choosing r1 = r2√
2(E+1)

ψ(x�
, xn) = ψ

�(φ−1(x�
, xn))

and ψ
� = ψ0 − s.

Proposition 4.1. There exists a complete orthonormal system of eigenfunc-
tions ej in L

2
+(B2, qdy) = {f ∈ L

2(B2, qdy) s.t. f(y�, yn) = f(y�,−yn)} associ-
ated to the Dirichlet problem (31).

Proof. Let us start by observing that from (26) and since

ãni(y
�
, 0) = ain(y

�
, 0) = 0, for i ∈ {1, . . . , n− 1}, (102a)

ãnn(0) = 1, (102b)

it follows that

div(Ã(y)∇y(u(y
�
,−yn))) = div(Ã(z)∇z(u(z)))|z=(y�,−yn) (103)

for any smooth function u.
We set

u
+(y) =

u(y�, yn) + u(y�,−yn)

2
(104)

and we observe that being q even with respect to yn then we have that if u is
a solution to (32) then u

+ is a solution to (32) as well.
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Let us denote by λj , with 0 < λ1 ≤ λ2 ≤ . . .λj ≤ . . . the eigenvalues asso-
ciated to the Dirichlet problem (32) and let {S1, S2, . . . , Sj, . . . } be a complete
orthonormal system of eigenfunctions in L

2(B2, qdy) .
Let us now fix j ∈ N and let {Sj1 , Sj2 , . . . , Sjkj } be such that they span the

eigenspace corresponding to the eigenvalue λj . We restrict our attention to the
non trivial functions S+j1 , S

+
j2
, . . . , S+jhj

among S+j1 , S
+
j2
, . . . , S+jkj

with hj ≤ kj .

Using a Gram-Schmidt orthogonalization procedure in the Hilbert space
L
2
+(B2, qdy) we may find our desired eigenfunctions ej1 , . . . , ejhj

such that

(ejl , ejk) =

�

B2

q(y)ejl(y)ejk(y)dy = δjljk (105)

and ejl are even in yn for l = 1, . . . , hj .
It turns out that the system of eigenfunctions

S = {e11 , . . . , e1h1
, e21 , . . . , e2h2

, . . . , ej1 , . . . , ejhj
, . . . } (106)

is an orthonormal system by construction. Finally we wish to prove that S is
complete in L

2
+(B2, qdy) . To this end we assume that f ∈ L

2
+(B2, qdy) is such

that
�

B2

f(y)e(y)q(y)dy = 0 ∀ e ∈ S (107)

and we claim that f ≡ 0.
In order to prove the claim above, we observe that by (107) we have

that for any j ∈ N the function f in (107) is orthogonal with respect the
L
2
+(B2, qdy) scalar product to the span{ej1 , . . . , ejhj

} and as a consequence to

the span{S+j1 , . . . , S
+
jkj
} as well. In particular the following holds

�

B2

f(y)q(y)S+ji (y)dy = 0 , j = 1, . . . , kj . (108)

On the other hand since q and f are even w.r.t. yn we have that
�

B2

f(y)q(y)S+ji (y)dy =

�

B2

f(y)q(y)Sji(y)dy , j = 1, . . . , kj . (109)

Finally we observe that being the system {S1, S2, . . . , Sj, . . . } complete in
L
2(B2, qdy) then f ≡ 0 as claimed above.

5. Conclusions

Let us conclude by summarizing the main steps of our strategy.
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• We first introduce in Proposition 3.1 a strictly positive solution ψ to the
elliptic problem (16) such that by the change of variable

u
� =

U

ψ
(110)

we reformulate our original problem for a Robin boundary condition (10)-
(11) in terms of a new one (20)-(21) where a Neumann condition arises
instead.

• Second, in (39) we take advantage of the Boman transform [7] in order to
perform a suitable transformation of the wave equation in a nonhomoge-
neous second order elliptic equation (45). Furthermore, we observe that
the solution vk to (45) may be represented as

vk(y, z) =

�

R
ϕµ̄,k(t)Wk(y, t, z)dt , (111)

where ϕµ̄,k is a suitable sequence of mollifiers and Wk(y�, 0, ·, ·) is a solu-
tion to the following two dimensional Cauchy problem for a nonhomoge-
neous elliptic equation






∆t,zWk(y�, 0, t, z) = ∂tFk(y�0, t, z),

Wk(y�, 0, t, 0) =
�∞

j=1 αj cos(
�
λjt)ej(y�, 0) = ũ(y�, 0, t),

∂zWk(y�, 0, t, 0) = 0,

(112)

for any y ∈ B2 .

We furthermore, observe that the Dirichlet datum of the above problem
can be controlled from above by � in view of (38) and (29), whereas
the Neumann datum vanishes in view of the specific choice discussed
in Proposition 4.1 for the eigenfunctions ej . The right hand side of the
elliptic equation in (112), although is in divergence form, it can be handled
as well by gathering a refinements of the arguments in Proposition 3.6
of [31] and in Theorem 1.7 of [4], in order to get the following estimate

�

B�
r0

|Wk(y
�
, 0, t, z)|dy� ≤ (Cr

1
2
0 σk)

2
. (113)

• Finally, by combining the latter with (56) and again the special choice
for the eigenfunctions ej we end up with the Cauchy problem (81) which
in turn leads to the desired estimate (82).
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Abstract. The De Giorgi classes [DG]p(E; γ), defined in (1)± below
encompass, solutions of quasilinear elliptic equations with measurable
coefficients as well as minima and Q-minima of variational integrals.
For these classes we present some new results (§ 2 and § 3.1), and some
known facts scattered in the literature (§ 3–§ 5), and formulate some
open issues (§ 6).
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1. Introduction

Let E be open subset of RN and for y ∈ RN , let Kρ(y) denote a cube of edge 2ρ
centered at y. The De Giorgi classes [DG]±p (E; γ) in E are the collection of

functions u ∈ W
1,p
loc (E), for some p > 1, satisfying

�

Kρ(y)
|D(u− k)±|pdx ≤ γ

(R− ρ)p

�

KR(y)
|(u− k)±|pdx (1)±

for all cubesKρ(y) ⊂ KR(y) ⊂ E, and all k ∈ R, for a given positive constant γ.
We further define

[DG]p(E; γ) = [DG]+p (E; γ) ∩ [DG]−p (E; γ). (2)

A celebrated theorem of De Giorgi [2] states that functions u ∈ [DG]p(E; γ) are
locally bounded and locally Hölder continuous in E. Moreover, non-negative
functions u ∈ [DG]p(E; γ) satisfy the Harnack inequality [7].

Local sub(super)-solutions, in W
1,p
loc (E), of quasi-linear elliptic equations

in divergence form belong to [DG]+(−)
p (E; γ) ([12]), with γ proportional to

the ratio of upper and lower modulus of ellipticity. Local minima and/or Q-
minima of variational integrals with p-growth with respect to |Du| belong to
these classes ([10]). Thus the [DG]p-classes include local solutions of elliptic
equations with merely bounded and measurable coefficients, only subject to
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some upper and lower ellipticity condition. They also include local minima or
Q-minima of rather general functionals, even if not admitting a Euler equation.

The interest in the De Giorgi classes stems from the large class of, seem-
ingly unrelated functions they encompass, and from properties, such as local
Hölder continuity ([2]), and the Harnack inequality ([7]), typically regarded as
properties of solutions of elliptic partial differential equations ([12, 14]).

The purpose of this note is to present some new results on De Giorgi classes
(§ 2 and § 3.1), as well as collecting some known facts scattered in the literature
(§ 3–§ 5), and formulate some open issues (§ 6) to serve as a basis for further
investigations.

2. De Giorgi Classes and Sub(Super)-Harmonic Functions

The generalized De Giorgi classes [GDG]±p (E; γ), are the collection of functions

u ∈ W
1,p
loc (E), for some p > 1, satisfying

�

Kρ(y)
|D(u− k)±|pdx ≤ γ

(R− ρ)p

�
R

R− ρ

�Np �

KR(y)
|(u− k)±|pdx (3)±

for all cubesKρ(y) ⊂ KR(y) ⊂ E, and all k ∈ R, for a given positive constant γ.
Convex, monotone, non-decreasing functions of sub-harmonic functions are
sub-harmonic. Similarly, concave, non-decreasing, functions of super-harmonic
functions are super-harmonic. Similar statements hold for weak, sub(super)-
solutions of linear elliptic equations with measurable coefficients ([14]). The
next lemma establishes analogous properties for functions u ∈ [DG]±p (E; γ).
Given any such class, we refer to the set of parameters {p, γ, N} as the data
and say that a constant C = C(data) depends only on the data if it can be
quantitatively determined a-priori only in terms of the indicated set of param-
eters.

Lemma 2.1. Let ϕ : R → R be convex and non-decreasing, and let u ∈
[DG]+p (E; γ). There exists a positive constant γ depending only on the data,
and independent of u, such that ϕ(u) ∈ [GDG]+p (E; γ).

Likewise let ψ : R → R be concave and non-decreasing, and let u ∈
[DG]−p (E; γ). There exist a positive constant γ depending only on the data,
and independent of u, such that ψ(u) ∈ [GDG]−p (E; γ).

Proof. By De Giorgi’s theorem ([2, 12]), there exists a constant C = C(data),
such that for any u ∈ [DG]±p (E; γ), there holds

�(u− k)±�∞,Kρ(y) ≤
C

(R− ρ)N

�

KR(y)
(u− k)±dx (4)



SOME PROPERTIES OF DE GIORGI CLASSES 247

for every pair of cubes Kρ(y) ⊂ KR(y) ⊂ E and all k ∈ R. It suffices to prove
the first statement for ϕ ∈ C2(R), and verify that ϕ(u) satisfies (3)+ for cubes
Kρ ⊂ KR centered at the origin of RN . For any such ϕ and all h ≤ k

�
ϕ(u)− ϕ(h)

�
+
− ϕ

�(h)(u− h)+ =

�

R+

(u− k)+χ[k>h]ϕ
��(k)dk (5)

From this, a.e. in E

���D
��
ϕ(u)− ϕ(h)

�
+
− ϕ

�(h)(u− h)+
����

p
≤

��

R
|D(u− k)+|χ[k>h]ϕ

��(k)dk

�p

.

Integrate over Kρ, take the p root of both sides, and majorize the resulting
term on the right-hand first by the continuous version of Minkowski inequality,
then by applying the definition (1)+ of the [DG]+p (E; γ)-classes, and finally by
using (4). This gives

���D
��
ϕ(u)− ϕ(h)

�
+
− ϕ

�(h)(u− h)+
����

p,Kρ

≤
�

R
�D(u− k)+�p,Kρχ[k>h]ϕ

��(k)dk

≤ C

R− ρ

�

R
�(u− k)+�p,KR+ρ

2

χ[k>h]ϕ
��(k)dk

≤ CR
N
p

R− ρ

�

R
�(u− k)+�∞,KR+ρ

2

χ[k>h]ϕ
��(k)dk

≤ CR
N
p

(R− ρ)N+1

�

R

��

KR

(u− k)+dx

�
χ[k>h]ϕ

��(k)dk

=
CR

N
p

(R− ρ)N+1

�

KR

��

R
(u− k)+χ[k>h]ϕ

��(k)dk

�
dx

=
CR

N
p

(R− ρ)N+1

�

KR

��
ϕ(u)− ϕ(h)

�
+
− ϕ

�(h)(u− h)+
�
dx

≤ C

R− ρ

�
R

R− ρ

�N ���ϕ(u)− ϕ(h)
�
+
− ϕ

�(h)(u− h)+
��
p,KR

.

In these calculations, we have denoted by C = C(p,N, γ) a generic constant
depending only upon the data, and that might be different from line to line. In
the last two steps we have interchanged the order of integration with the help
of Fubini’s Theorem and have applied Hölder’s inequality. By the convexity
and monotonicity of ϕ,

�
ϕ(u)− ϕ(h)

�
+
≥ ϕ

�(h)(u− h)+ ≥ 0. (6)
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Therefore,

��D
�
ϕ(u)− ϕ(h)

�
+

��
p,Kρ

≤ C

R− ρ

�
R

R− ρ

�N ���ϕ(u)− ϕ(h)
�
+

��
p,KR

+
��ϕ�(h)D(u− h)+

��
p,Kρ

Upon applying the definition of (1)+ of [DG]+p (E; γ), and then (6), the last
term on the right-hand side is majorized by

C

R− ρ

��(ϕ(u)− ϕ(h))+
��
p,KR

.

Combining these estimates yields

�

Kρ(y)

��D
�
ϕ(u)− k

�
+

��pdx ≤ γ

(R− ρ)p

�
R

R− ρ

�N �

KR(y)

�
ϕ(u)− k

�p
+
dx (7)

for all k ∈ R and all Kρ(y) ⊂ KR(y) ⊂ E, for a constant γ = γ(data).

If u ∈ [DG]−p (E; γ) and ϕ is convex, there is no guarantee, in general, that
ϕ(u) ∈ [GDG]+p (E; γ) for some γ = γ(p,N, γ). The next lemma provides some
sufficient conditions on ϕ for this to occur.

Lemma 2.2. Let ϕ : (a,+∞) → R, for some a < ∞ be convex, non-increasing,
and such that

lim
t→+∞

ϕ(t) = lim
t→+∞

tϕ
�(t) = 0, (8)

and let u ∈ [DG]−p (E; γ), with range in (a,+∞). There exists a positive con-
stant γ depending only on the data, such that ϕ(u) ∈ [GDG]+p (E; γ).

Likewise let ψ : (−∞, a) → R, for some a > −∞, be concave, non-
increasing, and satisfying

lim
t→−∞

ψ(t) = lim
t→−∞

tψ
�(t) = 0, (9)

and let u ∈ [DG]+p (E; γ), with range in (−∞, a). There exists a positive con-
stant γ depending only on the data, such that ψ(u) ∈ [GDG]−p (E; γ).

Proof. It suffices to prove the first statement for ϕ ∈ C2(R) over congruent
cubes Kρ ⊂ KR centered at the origin. The starting point is the analog of (5),
i.e.,

ϕ(u) =

�

R
(u− k)−ϕ

��(k)dk. (10)

Since u ∈ [DG]−p (E; γ), by (4) the function u is locally bounded below in E, and
without loss of generality we may assume u ≥ 0. Hence, the representation (10)
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is well defined by virtue of the assumption (8) on ϕ. From this, by taking the
gradient of both sides, then taking the p-power, and finally integrating over Kρ

gives �

Kρ

|Dϕ(u)|pdx =

�

Kρ

����
�

R+

D(u− k)−ϕ
��(k)dk

����
p

dx.

The proof now parallels that of Lemma 2.1. Specifically, apply sequentially the
continuous version of Minkowski’s inequality, the definition (1)− of the classes
[DG]−p (E; γ), the sup-bound (4), interchange the order of integration, and use
Hölder’s inequality. This gives

�Dϕ(u)�p,Kρ ≤
�

R+

�D(u− k)−�p,Kρϕ
��(k)dk

≤ C

R− ρ

�

R+

�(u− k)−�p,KR+ρ
2

ϕ
��(k)dk

≤ CR
N
p

R− ρ

�

R+

�(u− k)−�∞,KR+ρ
2

ϕ
��(k)dk

≤ CR
N
p

(R− ρ)N+1

�

R+

�

KR

(u− k)−ϕ
��(k)dk

=
CR

N
p

(R− ρ)N+1

�

KR

ϕ(u)dx

=
C

(R− ρ)

�
R

R− ρ

�N

�ϕ(u)�p,KR .

Now if ϕ is convex, non-increasing and satisfying (8), the function (ϕ− �)+, for
all � in the range of ϕ, shares the same properties. Hence,

�

Kρ(y)

��D
�
ϕ(u)− �

�
+

��pdx ≤ C

(R− ρ)p

�
R

R− ρ

�Np �

KR(y)

�
ϕ(u)− �

�p
+
dx

for all cubes Kρ(y) ⊂ KR(y) ⊂ E and all � ∈ R.

2.1. Some Consequences

The sup-bound in (4) can be given the following sharper form ([7]).

Lemma 2.3. Let u ∈ [DG]±p (E; γ). Then for all σ > 0 there exists a constant
Cσ depending only upon the data and σ, such that

sup
Kρ(y)

(u− k)± ≤ Cσ

�
R

R− ρ

�N
σ

� �

KR(y)
(u− k)σ±dx

� 1
σ

. (11)
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If u ∈ [DG]−p (E; γ) is non-negative, then Lemma 2.2 with ϕ(u) = u−1 and
a = 0, implies that u−1 ∈ [GDG]+p (E; γ). Therefore Lemma 2.3, with k = 0,
implies that for all τ > 0,

1

inf
Kρ(y)

u
≤ Cτ

�
R

R− ρ

�N
τ

��

KR(y)

1

uτ
dx

� 1
τ

. (12)

Proposition 2.4. Let u be a non-negative function in the De Giorgi classes
[DG]p(E; γ). Then for any pair of positive numbers σ and τ

sup
Kρ(y)

u

inf
Kρ(y)

u
≤ CσCτ

�
R

R− ρ

�N( 1
σ+ 1

τ )
� �

KR(y)
u
σ
dx

� 1
σ
� �

KR(y)

1

uτ
dx

� 1
τ

. (13)

Inequalities of the form (11) are at the basis of Moser’s approach to the
Harnack inequality for non-negative weak solutions to quasilinear elliptic equa-
tions with bounded and measurable coefficients ([14]). The Harnack inequality
will follow from (13) if lnu ∈ BMO(E). This fact is established by Moser for
non-negative weak solutions of elliptic equations. We will establish that for
non-negative functions u ∈ [DG]−p (E; γ), one has lnu ∈ BMO(E) by using the
Harnack inequality established in ([7]).

3. De Giorgi Classes, BMO(E) and Logarithmic Estimates

The proof of the following lemma is in [7].

Lemma 3.1. Let u ∈ [DG]−p (E; γ) be non-negative. There exist positive con-
stants C and σ, depending only upon the data, such that

�

Kρ(y)
u
σ
dx ≤ C inf

Kρ(y)
u
σ
, (14)

for any cube Kρ(y) such that K2ρ(y) ⊂ E.

Such an inequality, referred to as the weak Harnack inequality, was es-
tablished by Moser for non-negative super-solutions of elliptic equations with
bounded and measurable coefficients ([14]). It is noteworthy that it continues
to hold for non-negative functions in [DG]−p (E; γ), with no further reference to
equations.

Lemma 3.2. Let u ∈ [DG]−p (E; γ) be non-negative. Then lnu ∈ BMO.
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Proof. By Lemma 3.1
�

Kρ(y)
u
σ
dx

�

Kρ(y)

1

uσ
dx ≤

�

Kρ(y)
u
σ
dx sup

Kρ(y)

1

uσ

=

�

Kρ(y)
u
σ
dx

1

inf
Kρ(y)

u
σ ≤ C

(15)

for any cube Kρ(y) such that K2ρ(y) ⊂ E. Set

(lnuσ)ρ =

�

Kρ(y)
lnuσ

dx,

and estimate
�

Kρ(y)
e
| lnuσ−(lnuσ)ρ|dx ≤ e

−(lnuσ)ρ

�

Kρ(y)
e
lnuσ

dx

+ e
(lnuσ)ρ

�

Kρ(y)
e
− lnuσ

dx.

The second term on the right-hand side is estimated by Jensen’s inequality
and (15) and yields

e
(lnuσ)ρ

�

Kρ(y)
e
− lnuσ

dx ≤
�

Kρ(y)
e
lnuσ

dx

�

Kρ(y)

1

uσ
dx

≤
�

Kρ(y)
u
σ
dx

�

Kρ(y)

1

uσ
dx ≤ C.

The first term is estimated analogously. Hence, there exists a constant C̄,
depending only upon the data, such that

�

Kρ(y)
e
| lnuσ−(lnuσ)ρ|dx ≤ C̄

for any cube Kρ(y) such that K2ρ(y) ⊂ E. Thus lnu ∈ BMO(E).

3.1. Logarithmic Estimates Revisited

Let u ∈ W
1,p
loc (E) be a non-negative weak super-solution of an elliptic equation

in divergence form, and with only bounded and measurable coefficients. Then
there exists a constant C, depending only on p, N , and the modulus of ellipticity
of the equation, such that

�

Kρ(y)
|D lnu|pdx ≤ C

(R− ρ)p
(16)
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for any pair of cubes Kρ(y) ⊂ KR(y) ⊂ E. Such an estimate, established by
Moser, permits one to prove that lnu ∈ BMO(E), which in turn yields the
Harnack inequality. Our approach for functions in the [DG]−p (E; γ) classes is
somewhat different. For non-negative functions in such classes we first establish
the weak Harnack estimate (14), and then the latter is used to prove Lemma 3.2.
It is not known, whether non-negative functions in [DG]−p (E; γ) satisfy (16).
The next proposition is a partial result in this direction.

Proposition 3.3. Let u ∈ [DG]−p (E; γ) be non-negative and bounded above by
some positive constant M . Then

�

Kρ(y)
|D lnu|pdx ≤ γp

(R− ρ)p

�

KR(y)
ln

M

u
dx (17)

for any pair of cubes Kρ(y) ⊂ KR(y) ⊂ E.

Proof. The arguments being local may assume that y = {0}. By the defini-
tion (1)− of classes, for all 0 < t < M ,

�

Kρ

|D(u− t)−|pdx ≤ γ

(R− ρ)p

�

KR

(u− t)p−dx.

Multiply both sides by t−p−1 and integrate over (0,M). The left-hand side is
transformed as

� M

0

dt

tp+1

�

Kρ

|D(u− t)−|pdx =

�

Kρ

�� M

0
|D(u− t)−|p

1

tp+1
dt

�
dx

=

�

Kρ

|Du|p
�� M

0

1

tp+1
χ[u<t]dt

�
dx

=

�

Kρ

|Du|p
�� M

u

1

tp+1
dt

�
dx

=

�

Kρ

�
−1

p

|Du|p

Mp
+

1

p

|Du|p

up

�
dx

=
1

p

�

Kρ

|D lnu|pdx− 1

pMp

�

Kρ

|Du|pdx.
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The integral on the right-hand side is transformed as

� M

0

1

tp+1

��

KR

(u− t)p−dx

�
dt

=

�

KR

�� M

u

(t− u)p

tp+1
dt

�
dx

=

�

KR

�
−1

p

(t− u)p

tp

���
M

u
+

� M

u

(t− u)p−1

tp−1

dt

t

�
dx

= − 1

pMp

�

KR

(M − u)pdx+

�

KR

�� M

u

�
t− u

t

�p−1
dt

t

�
dx

≤ − 1

pMp

�

KR

(M − u)pdx+

�

KR

ln
M

u
dx.

Combining the previous estimates gives

�

Kρ

|D lnu|pdx ≤ 1

Mp

��

Kρ

|Du|pdx− γ

(R− ρ)p

�

KR

(M − u)pdx

�

+
γp

(R− ρ)p

�

KR

ln
M

u
dx.

Since u ∈ [DG]−p (E; γ), the term in round brackets on the right-hand side is
non-positive and can be discarded.

Remark 3.4. Applying Lemma 2.2 to ϕ(u) = ln+(M/u), gives the weaker
estimate �

Kρ(y)
|D lnu|pdx ≤ γ

(R− ρ)p

�

KR(y)

�
ln

M

u

�p

dx. (18)

4. Higher Integrability of the Gradient of Functions in

the De Giorgi Classes

Proposition 4.1. Let u ∈ [DG]±p (E). Then there exist constants C > 1 and
σ > 0, dependent only upon the data, such that, for any pair of cubes Kρ(y) ⊂
KR(y) ⊂ E, there holds

��

Kρ(y)
|Du|p(1+σ)

dx

� 1
p(1+σ)

≤ C

�
R

ρ

�N
p
�

R

R− ρ

���

KR(y)
|Du|pdx

� 1
p

. (19)
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Proof. Let u be in the classes [DG]p(E; γ) defined in (2). For any pair of cubes
Kρ(y) ⊂ KR(y) ⊂ E, write down (1)+ and (1)− for the choice

k = uR
def
=

�

KR(y)
udx.

Adding the resulting inequalities gives

�

Kρ(y)
|Du|pdx ≤ γ

(R− ρ)p

�

KR(y)
|u− uR|pdx.

By the Sobolev-Poincaré inequality

�

KR(y)
|u− uR|pdx ≤ Cq R

p

��

KR(y)
|Du|qdx

� p
q

, for all q ∈
�

Np

N + p
, p

�

for a constant Cq = Cq(N, q). Hence, for all such q

�

Kρ(y)
|Du|pdx ≤ Cqγ

�
R

R− ρ

�p �
R

ρ

�N
��

KR(y)
|Du|qdx

� p
q

for all pair of congruent cubes Kρ(y) ⊂ KR(y) ⊂ E. The conclusion follows
from this and the local version of Gehring’s lemma ([9]), as appearing in [11].

Remark 4.2. Hence, the higher integrability of the gradient of solutions of
elliptic equations with measurable coefficients ([15]), and more generally of
Q-minima ([10]), continues to hold for function in the De Giorgi classes. If
u ∈ [DG]±p (E; γ), the conclusion is in general false, as one can verify starting
from sub(super)-harmonic functions. However, essentially the same arguments
give the inequality

�

Kρ(y)
|D(u− k)±|pdx ≤ Cqγ

�
R

R− ρ

�p �
R

ρ

�N ��

KR

|Du|qdx
� p

q

for all q ∈
�

Np
N+p , p

�
, and

all k ≥
�

KR(y)
udx if u ∈ [DG]+p (E; γ),

all k ≤
�

KR(y)
udx if u ∈ [DG]−p (E; γ).
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5. Measure Theoretical Decay Estimates of Functions in

De Giorgi Classes

For a non-negative function f ∈ L1
loc(E) one estimates the measure of the set

[f > t] relative to a cube Kρ(y) ⊂ E, as µ
�
[f > t] ∩Kρ(y)

�
≤ t−1�f�1,Kρ(y).

Estimates of the measure of the set [f < t] relative to Kρ(y) are not, in general,
a consequence of the mere integrability of f . One of De Giorgi’s estimates of [2],
is that if u is a non-negative function in [DG]−p (E; γ), then

��[u < t] ∩Kρ(y)
��

|Kρ|
≤ C(N, p, γ)

| ln t|1/p
asymptotically as t → 0, (20)

provided
��[u > t] ∩Kρ(y)

�� ≥ 1
2 |Kρ|. Here |σ| denotes the Lebesgue measure of

a measurable set σ ⊂ RN . The next proposition improves on this estimate.

Proposition 5.1. Let u ∈ [DG]−p (E; γ) be non-negative, and assume that for
some to > 0 and α ∈ (0, 1), there holds

��[u > to] ∩Kρ(y)]
��

|Kρ|
≥ α. (21)

There exist positive constants C, t∗,σ = C, t∗,σ(N, p, γ, to,α), depending only
on the indicated parameters and independent of u, such that

��[u < t] ∩Kρ(y)
��

|Kρ|
≤ C

| ln t|σ| ln t|
1
2

, for t < t∗. (22)

Proof. In what follows we denote by C a generic positive constant that can
be determined a-priori only in terms of {N, p, γ, to,α} and that it may be
different in the same context. The arguments being local to concentric cubes
Kρ(y) ⊂ K2ρ(y) ⊂ E, may assume y = {0} and write Kρ(0) = Kρ. Let no be
the smallest positive integer such that 2−no ≤ to, and for n ≥ no set

An,ρ
def
=

�
u <

1

2n

�
∩Kρ, for n ≥ no.

The discrete isoperimetric inequality ([3, Chapter I, Lemma 2.2]), reads

(�− h)
��[u < h] ∩Kρ

�� ≤ C(N)
ρN+1

��[u > �] ∩Kρ

��

�

[h<u<�]∩Kρ

|Du|dx

for any two levels 0 < h < �. Applying it with

� =
1

2n
, h =

1

2n+1
, so that [h < u < �] ∩Kρ = An,ρ −An+1,ρ,
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and taking into account (21), yields

1

2n+1

��An+1,ρ

�� ≤ C(N)

α
ρ
N

�

An,ρ−An+1,ρ

|Du|dx.

Majorize the right-hand side by the Hölder inequality, then raise both terms
to the power p

p−1 , and majorize the right-hand side by (1)− in the definition

of the classes [DG]−p (E; γ). These sequential estimates yield

1

2n
p

p−1

|An+1,ρ|
p

p−1 ≤ Cρ
p

p−1

��

Kρ

��D
�
u− 1

2n

�
−|

p
dx

� 1
p−1 ��An,ρ −An+1,ρ|

≤ C

��

Kρ

�
u− 1

2n

�p
−dx

� 1
p−1 ��An,ρ −An+1,ρ|

≤ C

2n
p

p−1

|Ano,2ρ|
1

p−1
��An,ρ −An+1,ρ|.

This in turn yields the recursive inequalities
��An+1,ρ

�� p
p−1 ≤ C(N, p, γ,α)

��Ano,2ρ

�� 1
p−1

��An,ρ −An+1,ρ|.

Let n∗ be a positive integer to be chosen. Adding them from no to n∗−1 gives

��An∗,ρ

�� ≤ C(N, p, γ,α)

(n∗ − no)
p−1
p

��Ano,2ρ

�� 1
p
��Ano,ρ|

p−1
p . (23)

Return now to the assumption (21) and estimate
��[u > to] ∩K2ρ(y)]

��
|K2ρ|

≥
��[u > to] ∩Kρ(y)]

��
2N |Kρ|

≥ α

2N
.

Therefore, the same arguments leading to (23) can be repeated over the cube
K2ρ and give

��An∗,2ρ

�� ≤ C(N, p, γ,α)

(n∗ − no)
p−1
p

��Ano,4ρ

�� 1
p
��Ano,2ρ|

p−1
p . (24)

While the constant C in (24) differs from the one in (23), we may take them
to be equal by taking the largest. The assumption (21) continue to hold with
to replaced by 2−n∗ . Hence, the previous arguments can be repeated and yield
the analogues of (23)–(24), i.e.,

��A2n∗,ρ

�� ≤ C(N, p, γ,α)

(n∗ − no)
p−1
p

��An∗,2ρ

�� 1
p
��An∗,ρ|

p−1
p

��A2n∗,2ρ

�� ≤ C(N, p, γ,α)

(n∗ − no)
p−1
p

��An∗,4ρ

�� 1
p
��An∗,2ρ|

p−1
p
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for the same constant C. Combining them gives

��A2n∗,ρ

�� ≤ C242N

(n∗ − no)
2 p−1

p

|Kρ|.

Iteration of this procedure yields

��Ajn∗,ρ

�� ≤ Cj4jN

(n∗ − no)
j p−1

p

|Kρ| for all j ∈ N.

Choose n∗ so large that n∗ − no >
1
2n∗, and then take j = n∗. By possibly

modifying the various constants, the previous inequality yields

��Aj2,ρ

�� ≤ Cj4jN

j
j p−1

p

|Kρ| for all j ∈ N.

The constant C being fixed, for each 0 < ε <
p−1
p there exists j∗ so large that

��Aj2,ρ

�� ≤ 1

jjε
|Kρ| for all j ≥ j

∗
.

Fix now t ≤ 2−j∗2 and let j be the largest integer such that 2−(j+1)2 ≤ t ≤ 2−j2 .
For such choices

��[u < t] ∩Kρ

��
|Kρ|

≤
��Aj2,ρ

��
|Kρ|

≤ C

| ln t| ε2 | ln t|
1
2

.

The parabolic version of this result has been used in [6].

6. Boundary Behavior of Functions in the De Giorgi

Classes

Let h ∈ W
1,p
loc (RN ) ∩ C(RN ). The De Giorgi classes [DG]+(−)

p (Ē; γ, h), in the

closure of E are the collection of functions u ∈ W
1,p
loc (Ē), such that (u − h) ∈

W 1,p
o (E ∩KR(y)), for all cubes KR(y) centered at some y ∈ ∂E, and satisfying

�

Kρ(y)∩E
|D(u− k)+(−)|pdx ≤ γ

(R− ρ)p

�

KR(y)∩E
(u− k)p+(−)dx (25)

for all pairs of congruent cubes Kρ(y) ⊂ KR(y), centered at some y ∈ ∂E and
all levels

k ≥ sup
KR(y)∩∂E

h,

�
k ≤ inf

KR(y)∩∂E
h

�
. (26)
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We let further

[DG]p(Ē; γ, h) = [DG]+p (Ē; γ, h) ∩ [DG]−p (Ē; γ, h).

Functions in [DG]p(Ē; γ, h) are continuous up to points y ∈ ∂E, provided E

satisfies a positive geometric density at y, i.e., there exist ρo and η ∈ (0, 1),
such that (see [12])

��Ec ∩Kρ(y)
�� ≥ η|Kρ(y)|, for all ρ ≤ ρo.

For 1 < p < N , the p-capacity of the compact set Ec ∩ K̄ρ(y) is defined by

cp[E
c ∩ K̄ρ(y)] = inf

ψ∈W
1,p
o (RN )∩C(RN )

Ec∩K̄ρ(y)⊂[ψ≥1]

�

RN

|Dψ|pdx. (27)

For 1 < p < N , the relative p-capacity of Ec ∩ K̄ρ(y) with respect to Kρ(y) is

δy(ρ) =
cp[Ec ∩ K̄ρ(y)]

ρN−p
, (1 < p < N). (28)

If p = N , and for 0 < ρ < 1, the N -capacity of the compact set Ec ∩ K̄ρ(y),
with respect to the cube K2ρ(y), is defined by

cN [Ec ∩ K̄ρ(y)] = inf
ψ∈W

1,N
o (K2ρ(y))∩Co(K2ρ(y))

Ec∩K̄ρ(y)⊂[ψ≥1]

�

K2ρ(y)
|Dψ|Ndx. (29)

The relative capacity δy(ρ) can be formally defined by (28), for all 1 < p ≤ N .
For p = N , we let δy(ρ) ≡ cN [Ec ∩ K̄ρ(y)], as defined by (29). For a positive
parameter � denote by Ip,�(y, ρ) the Wiener integral of ∂E at y ∈ ∂E, i.e.,

Ip,�(y, ρ) =

� 1

ρ
[δy(t)]

1
�
dt

t
. (30)

The celebrated Wiener criterion states that a harmonic function in E is con-
tinuous up to y ∈ ∂E if and only if the Wiener integral I2,1(y, ρ) diverges as
ρ → 0 ([16]).

It is known that weak solutions of quasilinear equations in divergence form,
and with principal part exhibiting a p-growth with respect to |Du|, when
given continuous boundary data h on ∂E, are continuous up to y ∈ ∂E if
Ip,(p−1)(y, ρ) diverges as ρ → 0 ([8]). Since such solutions belong to the bound-
ary [DG]p(Ē; γ, h) classes ([10]), it is natural to ask whether the divergence of
the Wiener integral Ip,(p−1)(y, ρ), is sufficient to insure the boundary continuity
for functions u ∈ [DG]p(Ē; γ, h).
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The only result we are aware of in this direction is due to Ziemer ([17]). It
states that a function u ∈ [DG]p(Ē; γ, h) is continuous up to y ∈ ∂E if

� 1

ρ
exp

�
− 1

δy(t)
1

p−1

�
dt

t
→ ∞ as ρ → 0. (31)

Ziemer’s proof follows from a standard De Giorgi iteration technique. It has
been recently established that local minima of variational integrals when given
continuous boundary data h are continuous up to y ∈ ∂E provided ([5])
Ip,ε(y, ρ) diverges as ρ → 0. Here ε is a number that can be determined a-
priori only in terms of the growth properties of the functional. While such
minima are in the classes [DG]p(Ē; γ, h), the result is not known to hold for
functions merely in such classes. Also the optimal parameter e = (p − 1) re-
mains elusive. A similar result has been recently obtained with a different
approach in [1].

The significance of a Wiener condition for Q-minima, is that the structure
of ∂E near a boundary point y ∈ ∂E, for u to be continuous up to y, hinges
on minimizing a functional, rather than solving an elliptic p.d.e.
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no. 4, 295–308.



260 E. DIBENEDETTO AND U. GIANAZZA

[8] R. Gariepy and W. P. Ziemer, A regularity condition at the boundary for

solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 67 (1977),

no. 1, 25–39.

[9] F. W. Gehring, The Lp
-integrability of the partial derivatives of a quasiconfor-

mal mapping, Acta Math. 130 (1973), 265–277.

[10] M. Giaquinta and E. Giusti, Quasiminima, Ann. Inst. H. Poincaré Anal. Non
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Abstract. We consider the system of partial differential equations of
transversely isotropic elasticity with residual stress. Completing pre-
vious results we derive Carleman estimates for this system containing
time derivatives. This permits to obtain exact observability inequalities
for this system with the Cauchy data on the whole lateral boundary.
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1. Introduction

We consider a transversely isotropic elasticity system with residual stress [2, 15].
We let x ∈ R3 and (x, t) ∈ Ω which is a bounded domain in R4. Let u(x, t) =
(u1, u2, u3)� : Ω → R3 be the displacement vector in Ω. We introduce the
operator of the transversely isotropic elasticity

(ATu)i =
3�

j,k,l=1

∂j

�
Cijkl

1

2
(∂kul + ∂luk)

�
, (1)

where Cijlk are elastic parameters. In general, they enjoy the following sym-
metry properties

Cijkl = Cjikl = Cijlk = Cklij . (2)

In the transversely ((x1, x2)-) isotropic case, in addition,

C1111 = C2222 = c11, C1122 = c12, C1133 = C2233 = c13, C3333 = c33,

C2323 = C3131 = c23, C1212 = 1
2 (c11 − c12), Cijkl = 0 otherwise.

(3)
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We assume that cjk are functions on Ω̄ and impose a sufficient condition of
strict positivity of the elastic tensor:

ε0 < c11, ε0 < c11 − c12, ε0 < c12 + c11,

ε0 < c23, ε0 < c33, ε0 < c13 + c23,

ε0 + 2c213 < (c11 + c12)c33, ε0 + c
2
13 < c11c33 on Ω

(4)

for some ε0 > 0. We also introduce the scalar partial differential operator
R =

�3
j,k=1 rjk∂j∂k used to model the residual stress.

To state the main results we introduce pseudo convexity condition for a
general scalar partial differential operator of second order P =

�n
j,k=1 ajk∂j∂k

in Ω with the real-valued coefficients a
jk ∈ C

1(Ω̄). The principal symbol of
this operator is P (X; ζ) =

�n
j,k=1 ajk(X)ζjζk, X = (x, t). We will assume that

the coefficients of P admit the following bound |ajk|2(Ω) ≤ M.

Let K be a positive constant. A function ψ is called K-pseudo-convex on
Ω with respect to P if ψ ∈ C

2(Ω̄), P (X,∇ψ(X)) �= 0, X ∈ Ω̄, and

4�

j,k=1

�
∂j∂kψ

∂P

∂ζj

∂P

∂ζk

�
(X; ξ)

+
4�

j,k=1

��
∂P

∂ζk
∂k

∂P

∂ζj
− ∂kP

∂
2
P

∂ζj∂ζk

�
∂jψ

�
(X, ξ) ≥ K|ξ|2

for any ξ ∈ Rn and any point X of Ω̄ provided

P (X; ξ) = 0,
4�

j=1

∂P

∂ζj
(X, ξ)∂jψ(X) = 0.

We use the following convention and notations. Let ∂ = (∂1, . . . , ∂4), D =
−i∂, α=(α1, . . . ,α4) is a multi-index with integer components, ζα=ζ

α1
1 · · · ζα4

4 ,
D

α and ∂
α are defined similarly. x4 = t. ∇ denotes the gradient with respect

to spatial variables x1, x2, x3. ν is the outward normal to the boundary of a
domain. Ωε = Ω ∩ {ψ(x) > ε}. We recall that

�u�(k)(Ω) =
� �

|α|≤k

�

Ω
|∂α

u|2
� 1

2

is the norm in the Sobolev space H(k)(Ω) and � �2 = � �(0) is the L
2-norm.

Let C be generic constants (different at different places) depending only on M ,
on K, on the function ψ, on C

2(Ω)-norms of the coefficients ρ, cjk, rjk of the
elasticity system, on ε0, and on the domain Ω. Any additional dependence will
be indicated.
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We let

a1 =
c11 − c12

c11 + c12
, a2 = 2

c23

c11 + c12
, a3 = 2

c13 + c23

c11 + c12
,

a4 =
(c11 − c12)(c13 + c23)

(c11 + c12)c23
,

(5)

and
A = a1(∂

2
1 + ∂

2
2) + a2∂

3
3 , divTu = ∂1u1 + ∂2u2 + a3∂3u3,

curlTu = (∂2u3 − a4∂3u2, a4∂3u1 − ∂1u3, ∂1u2 − ∂2u1) .
(6)

We introduce the following conditions

(c211 − c
2
12)c33 − 2(c13 + c23)2(c11 − c12)− 2c223(c11 + c12) = 0,

c11 − c12 = 2c23 on Ω
(7)

and the weight and scaling functions

ϕ = e
γψ

, σ = γτϕ. (8)

Theorem 1.1. Let ψ ∈ C
3(Ω̄) be K- pseudo convex with respect to ρ∂

2
t −A−

R, ρ∂
2
t −A−∂

2
1−∂

2
2−a3a4∂

2
3−R in Ω̄ and let |ρ|2(Ω)+|cjk|2(Ω)+|rjk|2(Ω) ≤ M .

Let the conditions (7) be satisfied.
Then there are constants C,C0(γ) such that

�

Ω
(γσ2|u|2 + σ(|divTu|2 + |curlTu|2) + γ(|∂tu|2 + |∇u|2))e2τϕ

≤ C

�

Ω
|(ρ∂2

t −AT −R)u|2e2τϕ (9)

for all u ∈ H
2
0 (Ω), C < γ, C0 < τ .

This estimate for isotropic elasticity with residual stress was obtained in [11]
and for more general transversely isotropic elasticity in [10] without the terms
with γ on the left side.

Let us consider the following Cauchy problem

(ρ∂2
t −AT −R)u = f in Ω, u = g0, ∂νu = g1 on Γ ⊂ ∂Ω, (10)

where Γ ∈ C
3. Let Ωδ = Ω∩ {ψ > δ}. The Carleman estimate of Theorem 1.1

by standard argument ([9], section 3.2) implies the following conditional Hölder
stability estimate for (10) in Ω(δ) (and hence uniqueness in Ω(0)).

Theorem 1.2. Let ψ ∈ C
3(Ω̄) be K- pseudo convex with respect to ρ∂

2
t −A−

R, ρ∂
2
t −A−∂

2
1−∂

2
2−a3a4∂

2
3−R in Ω̄ and let |ρ|2(Ω)+|cjk|2(Ω)+|rjk|2(Ω) ≤ M .

Let the condition (7) be satisfied. Assume that Ω̄0 ⊂ Ω ∩ Γ.
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Then there exist C = C(δ),κ = κ(δ) ∈ (0, 1) such that for a solution
u ∈ H

2(Ω) to (10) one has

�u�(0)(Ωδ) + �∇xu�(0)(Ωδ) + �∂tu�(0)(Ωδ) ≤ C(F +M
1−κ
1 F

κ), (11)

where F = �f�(0)(Ω0) + �g0�( 3
2 )
(Γ) + �g1�( 1

2 )
(Γ), M1 = �u�(1)(Ω).

In Theorems 1.3, 1.4 we assume that Ω = G × (−T, T ), ∂G ∈ C
3 and that

R = 0.
Due to (4) the system (10) is t-hyperbolic and from known results (e.g. [3],

III.4, p.123) it follows that the first initial boundary value problem for this sys-
tem is uniquely solvable in standard energy spaces, moreover the conventional
energy integral

E(t;u) =

�

G
(|∂tu|2 + |∇u|2 + |u|2)(, t)

is bounded by the initial energy and the right side (more detail in the proof of
Theorem 1.3). Repeating the argument in [3] one can obtain the same result
when the smallest eigenvalue of the matrix rjk is greater than than − ε0

2 .

Theorem 1.3. Let ψ ∈ C
3(Ω̄) be K- pseudo convex with respect to ρ∂

2
t −A−

R, ρ∂
2
t −A−∂

2
1−∂

2
2−a3a4∂

2
3−R in Ω̄ and let |ρ|2(Ω)+|cjk|2(Ω)+|rjk|2(Ω) ≤ M .

Assume that
ψ < 0 on Ḡ× {−T, T}, 0 < ψ on G× {0}. (12)

Then there exist C such that for a solution u ∈ H
2(Ω) to (10) one has

E(t;u) ≤ C(�f�(0)(Ω) + �g0�( 3
2 )
(Γ) + �g1�( 1

2 )
(Γ)). (13)

Now we state results about identification of a source from additional bound-
ary data.

Let u be a solution to

(ρ∂2
t −AT −R)u = Af in Ω,

u = 0, ∂tu = 0 on G× {0}, u = 0 on ∂G× (−T, T ).
(14)

We will assume that A ∈ C(Ω̄).
We will consider the boundary stress data as measurements (observations).

We introduce the norm of the of the lateral Cauchy data

F = �∂2
t ∂νu�( 1

2 )
(Γ). (15)

To guarantee the uniqueness, we impose some non-degeneracy condition on
the matrix A. We assume that

detA > ε0 > 0 on G× {0}. (16)
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Theorem 1.4. Let ψ ∈ C
3(Ω̄) be K- pseudo convex with respect to ρ∂

2
t −A−

R, ρ∂
2
t −A− ∂

2
1 − ∂

2
2 − a3a4∂

2
3 −R in Ω̄. Assume that ρ, cjk, rjk do not depend

on t and |ρ|2(Ω) + |cjk|2(Ω) + |rjk|2(Ω) + |∂2
tA|0(Ω) ≤ M . Assume that the

condition (12) is satisfied. Let the matrix function A satisfy (16).
Then there exist C such that

�f�(0)(Ω) ≤ CF. (17)

Observe that the classical isotropic elasticity is a particular case of the
system under consideration, when c11 = c33 = λ + 2µ, c12 = c13 = λ, c23 = µ.
In particular, the conditions (7) are satisfied.

Carleman estimates were introduced by Carleman in 1939 to demonstrate
uniqueness in the Cauchy problem for a system of first order in R2 with non
analytic coefficients. Carleman type estimates and uniqueness of the continua-
tion theorems have been obtained for wide classes of scalar partial differential
equations [6, 9]. But useful concept of pseudo convexity is not available for
systems, and Carleman estimates were derived only in particular cases, like
for classical isotropic dynamical Maxwell’s and elasticity systems [5] (by us-
ing principal diagonalization). Two large parameters were introduced in [8].
They were a main tool in the first proof of uniqueness and stability of all three
elastic parameters in dynamical isotropic Lame system from two sets of bound-
ary data [7]. A system of transversely isotropic elasticity with residual stress
was recently studied in [10, 11, 12, 14] where there are Carleman estimates,
uniqueness and stability of the continuation and of the identification of elastic
coefficients.

In this paper for the transversely isotropic system with residual stress we
obtain Carleman estimates including time derivative. Most advanced previous
results [10] handled only spatial derivatives. Observe that our results are new
for the classical isotropic elasticity system. Including temporal derivative en-
ables to obtain exact controllability (Lipschitz) bounds in the lateral Cauchy
and inverse problems under minimal regularity assumptions. So far our results
need a special condition (7). The main idea is to use principal upper triangular
reduction, scalar Carleman estimates with two large parameters, and spatial
smoothing (pseudo-differential) operator with parameter. The crucial part is
L
2 bounds on commutators of this operator and of differential operators with

parameters.
We stated our basic results in section 1. In section 2 we obtain auxil-

iary results where crucial are bounds on commutators of multiplication and of
smoothing operator and especially Lemma 2.4 on certain localization of this
pseudo-differential operator. In section 3 we prove estimates of Theorem 1.1
and in section 4 apply them to stability estimates in the continuation and
inverse problems. We tried to minimize technicalities and refer as much as
possible to known results.
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It is not easy to find functions ψ which are pseudo convex with respect to
a general operator. In an isotropic case explicit and verifiable conditions for
ψ(x, t) = |x− β|2 − θ

2
t
2 were found by Isakov in 1980 and their simplifications

are given in [9], section 3.4. In general anisotropic case Khaidarov [13] showed
that under certain conditions the same ψ is pseudo convex if the speed of the
propagation determined by A is monotone in a certain direction.

In the following Lemma for a general hyperbolic operator we give the con-
dition of K-pseudo convexity of ψ(x, t) = |x− β|2 − θ

2
t
2.

Lemma 1.5. Let

P = ∂
2
t −

3�

j,k=1

ajk∂j∂k, ajk = akj ,

where ajk ∈ C
1 satisfy the uniform ellipticity condition

3�

j,k=1

ajk(X)ξjξk ≥ ε0|ξ|2, X ∈ Ω ξ ∈ R3
, ε0 > 0.

Let
ψ(x, t) = |x− β|2 − θ

2
t
2
, β = (0, 0,β3).

Assume that

3�

j,l=1

�
3�

k=1

a3k∂kajl − 2
2�

k=1

alk∂kaj3

�
ξjξl ≥ ε1|ξ|2, ξ ∈ R3

.

for some ε1 > 0.
Then there is large β3 such that the function ψ is K-pseudo convex with

respect to P in Ω̄.

A proof is given in [11].

2. Auxiliary results.

For a linear partial differential operator A ( with matrix coefficients) we intro-
duce Aϕ by the equality (Aϕv)e−τϕ = A(ve−τϕ). From the Leibniz formula it
follows thatAϕ is the linear partial differential operator with the same principal
part as A. We observe that

(∂j)ϕ = ∂j − σ∂jψ (18)

and
(A1A2)ϕ = (A1)ϕ(A2)ϕ. (19)
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Indeed, according to the definition,

((A1A2)ϕv)e
−τϕ = A1(A2(ve

−τϕ))

= A1(((A2)ϕv)e
−τϕ) = ((A1)ϕ(A2)ϕv)e

−τϕ
.

In particular,

Pϕ(D) = P (D + iτ∇ϕ) = P (D) + τP1(D) + τ
2
P (∇ϕ) (20)

where P1 is a first order differential operator with coefficients depending on
γ. We will use the notation < ξ >= (|ξ|2 + 1)

1
2 and the pseudo-differential

operator Λs
τf = F−1(< ξ > +τ)sFf, where F is the Fourier transform in R3

and ξ ∈ R3
. Let Ω∗ be a bounded domain in R4 with a smooth boundary

such that Ω ⊂ Ω∗. We can extend all coefficients of the operators AT , R and
functions ρ,ψ onto R4 preserving the regularity in such a way that they have
support in Ω∗ and their C2-norms are bounded by C.

In next Lemmas we fix x
0 with (x0

, t
0) ∈ Ω and introduce σ(t) = σ(x0

, t)

Lemma 2.1. There exists a constant C(γ) such that

�Λ−1
σ(t)∂tu− ∂tΛ

−1
σ(t)u�(0)(R

4) ≤ C(γ)�Λ−1
σ(t)u�(0)(R

4), (21)

�σ 1
2 (Λ−1

σ(t)divT,ϕu− divT,ϕΛ
−1
σ(t)(u))�(0)(R

4) ≤ C(γ)τ−
1
2 �u�(0)(Ω),

�σ 1
2 (Λ−1

σ(t)curlT,ϕu− curlT,ϕΛ
−1
σ(t)(u))�(0)(R

4) ≤ C(γ)τ−
1
2 �u�(0)(Ω) (22)

and

�Λ−1
σ(t)(Pϕu)−(PϕΛ

−1
σ(t)u)�(0)(R

4) ≤ C(γ)(�u�(0)(Ω)+�Λ−1
σ(t)∂tu�(0)(R

4)) (23)

for all u,u ∈ H
2
0 (Ω).

Proof. We first prove (21). Observe that σ = τγϕ, ∂tσ = γσ∂tψ, ∂
2
t σ =

γσ(∂2
t ψ + γ(∂tψ)2) , that

∂tΛ
−1
σ(t)u = F−1

�
−∂tσ(t)

(< ξ > +σ(t))2
Fu+

1

< ξ > +σ(t)
F∂tu

�
(24)

and

∂
2
tΛ

−1
σ(t)u = F−1

��
−∂

2
t σ(t)

(< ξ > +σ(t))2
+

(∂tσ(t))2

(< ξ > +σ(t))3

�
Fu

+2
−∂tσ

(< ξ > +σ(t))2
F∂tu+

1

< ξ > +σ(t)
F∂

2
t u

�
. (25)
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Formula (24) implies that

Λ−1
σ(t)∂tu− ∂tΛ

−1
σ(t)u = F−1

�
∂tσ(t)

(< ξ > +σ(t))2
Fu

�
,

so

�Λ−1
σ(t)∂tu− ∂tΛ

−1
σ(t)u�

2
(0)(R

4)

≤
�

R

�

R3

����F
−1(

∂tσ(t)

(< ξ > +σ(t))2
Fu(x, t)

����
2

dxdt

≤
�

R

�

R3

����
∂tσ(t)

(< ξ > +σ(t))2

����
2

|Fu(ξ, t)|2 dξdt

≤ C(γ)

�

R

�

R3

����
1

(< ξ > +σ(t))
Fu(ξ, t)

����
2

dξdt

and again using the Parseval equality we yield (21).
Due to (18), divT,ϕu is the sum of terms a(∂j−σ∂jψ)uk, where j, k = 1, 2, 3,

|a|2(R4) ≤ C, and a = 0 outside Ω∗. Hence it suffices to show that

�Λ−1
σ(t)(b∂

β
u)− b∂

βΛ−1
σ(t)u�(0)(R

4) ≤ C(γ)τ−1�u�(0)(Ω), (26)

for all β with |β| = 1,β4 = 0, and that

�Λ−1
σ(t)(bu)− bΛ−1

σ(t)u�(0)(R
4) ≤ C(γ)τ−2�u�(0)(Ω), (27)

when b ∈ C
1(R4), |b|1(R4) < C(γ), and b = 0 outside Ω∗.

To prove (26) we introduce u1 = Λ−1
σ(t)∂

β
u. Using also that Λσ = Λ0 + σ,

we have

Λ−1
σ(t)b∂

β
u− b∂

βΛ−1
σ(t)u = Λ−1

σ(t)(bΛσ(t) − Λσ(t)b)u1 = Λ−1
σ(t)(bΛ0 − Λ0b)u1.

As above, from the Parseval identity, �u1�(0)(R4) ≤ C�u�(0)(Ω). By known
(e.g. Coifman and Meyer ([1])) estimates of commutators of pseudo-differential
operators and of multiplication operators

�(bΛ0 − Λ0b)u1(, t)�2(0)(R3) ≤ C(γ)�u1(, t)�2(0)(R3).

Using that �Λ−1
σ(t)v�

2
(0)(R

3) ≤ C(γ)τ−2�v�2(0)(Ω) and integrating with respect

to t we complete the proof of (26).
Proofs of (27) and for curl are similar.
Due to (18), (19), Pϕu is the sum of terms

a(∂j − σ∂jψ)(∂k − σ∂kψ)u
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where j, k = 1, 2, 3, 4, |a|2(R4) ≤ C, a = 1 when j = k = 4, a = 0 when
j = 1, 2, 3, k = 4, and a = 0 outside Ω∗ otherwise. Elementary calculations
show that this expression equals to

a∂j∂ku− aσ(∂kψ∂ju+ ∂jψ∂ku) + aσ((σ − 1)∂jψ∂kψ − ∂j∂kψ)u

Hence it suffices to show that

�Λ−1
σ(t)a∂

α
u−a∂

αΛ−1
σ(t)u�(0)(R

4) ≤ C(γ)(�u�(0)(Ω)+�Λ−1
σ(t)∂tu�(1)(R

4)), (28)

for all α with |α| ≤ 2, that

τ�Λ−1
σ(t)b∂

β
u− b∂

βΛ−1
σ(t)u�(0)(R

4) ≤ C(γ)�u�(0)(Ω), for all |β| ≤ 1 (29)

for all β with |β| ≤ 1, and that

τ
2�Λ−1

σ(t)(bu)− bΛ−1
σ(t)u�(0)(R

4) ≤ C(γ)�u�(0)(Ω), (30)

when b ∈ C
1(Ω∗), |b|1(Ω̄) < C, and b = 0 outside Ω∗.

To show (28) let first α4 = 2.
As above, (25) implies that

�Λ−1
σ(t)∂

2
t u− ∂

2
tΛ

−1
σ(t)u�(0)(R

4) ≤ C(γ)(�u�(0)(Ω) + �Λ−1
σ(t)∂tu�(0)(R

4)).

To complete a proof of (28) we now consider α4 = 0. Let αj > 0 and βj = 1
while other components of β be zero. We introduce u1 = Λ−1

σ(t)∂
α−β

u. Using
also that Λσ = Λ0 + σ, we have

Λ−1
σ(t)a∂

α
u− a∂

αΛ−1
σ(t)u = Λ−1

σ(t)(aΛσ(t) − Λσ(t)a)∂ju1

= Λ−1
σ(t)(aΛ0 − Λ0a)∂ju1 = Λ−1

σ(t)(a∂jΛ0 − ∂j(Λ0a) + Λ0∂ja)u1

= Λ−1
σ(t)(∂j(aΛ0 − Λ0a) + (Λ0∂ja− ∂jaΛ0))u1.

As above, from the Parseval identity, �u1�(0)(R4) ≤ C�u�(0)(Ω). By known
(e.g. Coifman and Meyer [1]) estimates of commutators of pseudo-differential
operators and of multiplication operators

�(aΛ0 − Λ0a)u1(, t)�(0)(R3) ≤ C(γ)�u1(, t)�(0)(R3).

A similar estimate is valid when we replace a by ∂ja. Using, as above, that the
norm of the operator Λ−1

σ(t)∂j from L
2(R3) into itself is bounded by C(γ) and

integrating with respect to t we complete the proof of (28).
Next we demonstrate (29). Let first β = (0, 0, 0, 1). Using (24) we have

�∂tΛ−1
σ(t)u− Λ−1

σ(t)∂tu�(0)(R
3) ≤ C(γ)�u�(0)(R3)
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so it suffices to bound Λ−1
σ(t)b∂tu − bΛ−1

σ(t)∂tu. To do this, let u2 = Λ−1
σ(t)∂tu,

then we need to bound

Λ−1
σ(t)bΛσ(t)u2 − bu2 = Λ−1

σ(t)(bΛσ(t)u2 − Λσ(t)(bu2)) = Λ−1
σ(t)(bΛ0u2 − Λ0(bu2))

because Λσ = Λ0 + σ. As above, from known bounds of commutators and the
definition of u2 it follows that

τ�Λ−1
σ(t)(bΛ0u2 − Λ0(bu2))�(0)�(R4) ≤ C(γ)�Λ−1

σ(t)∂tu�(0)(R
4)

Proofs of (29) for general β and of (30) are similar.

Lemma 2.2. Let K(x, y; t) be the Schwartz kernel of the pseudo-differential op-
erator Λ−1

σ(t) with τ > 1.
Then

|∂α
xK(x, y; t)| ≤ C(γ)τ−2|x− y|−8

provided |α| ≤ 2.

A proof is similar to [7], Lemma 3.4.

Proof. The Schwartz kernel K(x, y; t) is the oscillatory integral
�

R3

e
i(x−y)·ξ(< ξ > +σ(t))−1

dξ

= −|x− y|−2

�

R3

(∆ξe
i(x−y)·ξ)(< ξ > +σ(t))−1

dξ

= −|x− y|−2

�

R3

e
i(x−y)·ξ∆ξ(< ξ > +σ(t))−1

dξ

= · · · = (−1)l|x− y|−2l

�

R3

e
i(x−y)·ξ∆l

ξ(< ξ > +σ(t))−1
dξ

where we did integrate by parts. Observing that

|∆l
ξ(< ξ > +σ(t))−1| ≤ C(l)(< ξ > +σ(t))−2

< ξ >
−2l+1

, l = 1, 2, ...,

and letting l = 4 we complete the proof.

We denote by S
� the orthogonal projection of a set S in R4 onto R3 and

let Cyl(x0; δ) = (B�(x0; δ)×R) ∩ Ω∗.

Lemma 2.3. We have
�

R4\Cyl(x0;3δ)

�
τ
3|Λ−1

σ(t)v|
2 + τ

�

|α|=1

|∂αΛ−1
σ(t)v|

2
�

≤ C(γ, δ)τ−1

�

R4

σ

�
|v|2 + |∂tΛ−1

σ(t)v|
2
�

(31)

for all v ∈ H
1
0 (Cyl(x0; δ)), x0 ∈ Ω̄�.
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Proof. We can assume that x0 = 0 and drop x
0.

We first consider the case when α4 = 0. Since suppv ⊂ Cyl(δ),

|∂αΛ−1
σ(t)v(x, t)| ≤

�

B(δ)
|v(y, t)| |∂α

K(x, y; t)| dy

≤ C(γ, δ)τ−2

�

B(δ)
|x− y|−8|v(y, t)| dy

by Lemma 2.2, provided x ∈ R3 \B(3δ). When y ∈ B(2δ),

|x− y| ≥ 1

2
|x− y|+ 1

8
|x− y| ≥ δ

2
+

1

8
|x|− 1

8
|y| ≥ δ

4
+

1

8
|x| ≥ 1 + |x|

C(δ)
. (32)

Hence by using the Schwarz inequality

|∂αΛ−1
σ(t)v(x, t)| ≤ C(γ, δ)τ−2(1 + |x|)−8

��

B(δ)
|v(, t)|2

� 1
2

for all |α| ≤ 1,

provided x ∈ R3 \B(3δ). Using this estimate we conclude that the last integral
on the left side of (31) is less than C(γ, δ)

�
Cyl(δ) |v|

2. Similarly we bound the
first integral.

Now we will handle the most delicate case of α = (0, 0, 0, 1), i.e. ∂
α = ∂t.

Let w = ∂tv. Due to (21), it suffices to show that

τ

�

R3\B(3δ)
|Λ−1

σ(t)w(, t)|
2 ≤ C(γ)

�

R3

|Λ−1
σ(t)w|

2(, t). (33)

To do so we will make use of the integral operator Λ∗
σ(t)w = F−1(|ξ|2 +

σ(t))−1Fw which is obviously a fundamental solution of the differential op-
erator −∆+ σ(t) in R3. So for W = Λ∗

σ(t)w,

(−∆+ σ(t))W = w in R3
.

We have

(|ξ|2 + σ(t))−1 ≤ C(γ)(< ξ > +σ(t))−1

and hence �

R3

|Λ∗
σ(t)w|2 ≤ C(γ)

�

R3

|Λ−1
σ(t)w|

2
. (34)

Let a cut-off function χδ = 1 on B(δ), suppχδ ⊂ B(2δ) and |∂α
χδ| ≤ C(δ)
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when |α| ≤ 2. Due to the definition of K,

Λ−1
σ(t)w(x, t) =

�

B(δ)
K(x− y;σ(t))w(y, t)dy

=

�

B(2δ)
χδ(y)K(x− y;σ(t))(−∆+ σ(t))W (y, t)dy

=

�

B(2δ)
(−∆+ σ(t))(χδ(y)K(x− y;σ(t)))W (y, t)dy.

Therefore, by Lemma 2.2 and (32)

|Λ−1
σ(t)w(x, t)| ≤ C(γ, δ)τ−1

�

B(2δ)
|x− y|−8|W (y, t)|dy

≤ C(γ, δ)τ−1(1 + |x|)−8
��

B(2δ)
|W (y, t)|2dy

� 1
2
.

This combined with (34) completes the proof of (33) and hence of Lemma 2.3.

Since ψ ∈ C
2, using (8) we will choose δ(γ) so that

σ(t)

2
≤ σ ≤ 2σ(t) (35)

on Cyl(x0; 4δ(γ)).

Lemma 2.4. There is C such that
�

R4

|∂jΛ−1
σ(t)v|

2 +

�

R4

|Λ−1
σ(t)(aσv)|

2 ≤ C

�

R4

|v|2, j = 1, 2, 3, (36)

for all v ∈ H
2
0 (Cyl(x0; 4δ(γ))), x0 ∈ Ω̄�

, provided |a|1(R4) < C and a is con-
stant outside Ω∗.

Proof. As above we let x0 = 0 and drop it. Due to the Parseval identity

�

R4

|∂αΛ−1
σ(t)v|

2 ≤
�

R

��

R3

|ξ|2

(< ξ > +σ(t))2
|Fv(ξ, t)|2dξ

�
dt

≤
�

R

��

R3

|Fv(ξ, t)|2dξ
�
dt =

�

R

��

R3

|v(x, t)|2dx
�
dt =

�

Cyl(δ(γ))
|v|2

when |α| = 1,α4 = 0.
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Similarly,

�

R4

|Λ−1
σ(t)(aσv)|

2 =

�

R

��

R3

1

(< ξ > +σ(t))2
|F(aσv)(ξ, t)|2dξ

�
dt

≤
�

R

1

σ(t)2

��

R3

|F(aσv)(ξ, t)|2dξ
�
dt

=

�

R

1

σ(t)2

��

R3

|(aσv)(x, t)|2dx
�
dt

=

�

Cyl(δ(γ))

�
σ

σ(t)

�2

|(av)|2 ≤ C

�

Cyl(δ(γ))
|v|2

since, due to the definition of δ(γ), we have (35).

Lemma 2.5. Let ψ be K pseudo-convex with respect to P on Ω.
Then there is C such that

�

R4

σ
�
|v|2 + |Λ−1

σ(t)∂tv|
2
�
≤ C

�

R4

|Λ−1
σ(t)Pϕv|2

for all v ∈ H
2
0 (Cyl(x0; δ(γ))) provided τ > C, x

0 ∈ Ω̄�.

Proof. We can assume that x
0 = 0 and we let Cyl(δ) = Cyl(x0; δ(γ)). By

Theorem 1.1 in [11] there exists C such that the following Carleman estimate
holds

1�

|α|=0

�

Cyl(4δ)
σ
3−2|α||∂α

v0|2 ≤ C

�

Cyl(4δ)
|Pϕv0|2 for all v0 ∈ H

2
0 (Cyl(4δ))

provided C < γ, C(γ) < τ .
Let χ ∈ C

∞
0 (Cyl(4δ)), is determined only by γ, 0 ≤ χ ≤ 1, annd χ = 1 on

Cyl(3δ). Using this Carleman type estimate for v0 = χΛ−1
σ(t)v, we obtain

�

Cyl(4δ)

�
σ
3
χ
2|Λ−1

σ(t)v|
2 + σ

�

|α|=1

|χ∂α(Λ−1
σ(t)v) + ∂

α
χΛ−1

σ(t)v|
2
�

≤ C

�

Cyl(4δ)
|Pϕ(χΛ

−1
σ(t)v)|

2

≤ C

�

Cyl(4δ)

�
|Pϕ(Λ

−1
σ(t)v)|

2 + C(γ)
�
τ
2|Λ−1

σ(t)v|
2 +

�

|α|=1

|∂α(Λ−1
σ(t)v)|

2
��

. (37)

where we used (20), the Leibniz’ formulas

P (χw) = χPw + P1(;χ)w + P (χ)w, P1(χw;ϕ) = χP1(w;ϕ) + P1(χ;ϕ)w,
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and the triangle inequality.
Using these inequalities, Lemma 2.4, and recalling that χ = 1 on Cyl(3δ)

we derive from the bound (37) that
�

Cyl(3δ)

�
σ
3|Λ−1

σ(t)v|
2 + σ

�

|α|=1

|∂α(Λ−1
σ(t)v)|

2
�
− C(γ)

�

Cyl(δ)
|v|2

≤ C

�

Cyl(4δ)

�
|Pϕ(Λ

−1
σ(t)v)|

2 + C(γ)(|v|2) + |∂tΛ−1
σ(t)v|

2
�
. (38)

The Parseval identity, (35), and the definition of Λσ yield
�

Cyl(δ)
σv

2 ≤ 2

�

Cyl(δ)
σ(t)v2

=

�

R
σ(0)

�

R3

σ(t)2 + 1

< ξ >2 +σ(t)2
|v̂(ξ, t)|2dξdt

+

�

R
σ(t)

�

R3

|ξ|2

< ξ >2 +σ(t)2
|v̂(ξ, t)|2dξdt

= C

�

R
(σ(t))3

�

R3

|Λ−1
σ(t)v|

2 +
�

|α|=1,α4=0

�

R
σ(t)

�

R3

|∂α(Λ−1
σ(t)v)|

2

≤ C

�

Cyl(3δ)
σ
3|Λ−1

σ(t)v|
2 + C

�

|α|=1,α4=0

�

Cyl(3δ)
σ|∂α(Λ−1

σ(t)v)|
2

+C

�

R4\Cyl(3δ)
((σ(t))3|Λ−1

σ(t)v|
2 + σ(t)

�

|α|=1,α4=0

|∂α(Λ−1
σ(t)v)|

2).

Choosing τ > C(γ) and using Lemma 2.3 we will have from (38)
�

R4

σ
�
|v|2 + |∂tΛ−1

σ(t)v|
2
�
≤ C

�

Cyl(4δ)
|Λ−1

σ(t)Pϕv|2

+ C(γ)

�

R4\Cyl(3δ)

�
τ
3|Λ−1

σ(t)v|
2 + τ

�

|α|=1

|∂αΛ−1
σ(t)v|

2
�
. (39)

Now, by using Lemma 2.3 and choosing again τ > C(γ) we will eliminate the
last integral in this bound and complete the proof.

3. Proof of Theorem 1.1

Lemma 3.1. Let |∇ψ| > 0 on Ω̄.
Then for any x ∈ Ω̄ there are δ(γ) and C such that

γ

�

B(δ)
(σ2|v∗|2 + |∂jv∗|2) ≤ C

�

B(δ)
σ(|divT,ϕv

∗|2 + |curlT,ϕv
∗|2), j = 1, 2, 3,
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for all v∗ ∈ H
1
0 (Cyl(x0; δ(γ)) provided τ > C.

Proof is available in [10], Lemma 5, where the spatial bound need to be
integrated with respect to t like in the proof of Lemma 2.1.

Proof of Theorem 1.1. In [10], (25) it was shown that the system (10) implies

P (1)u =
f

ρ
+A(1)u,

P (2)v = divT
f

ρ
+A(2)u,

P (1)w = curlT
f

ρ
+A(3)u,

where

P (1) = ∂
2
t − ρ

−1(A+R), P (2) = ∂
2
t − ρ

−1(A+R+ ∂
2
1 + ∂

2
2 + a3a4∂

2
3),

A(j) are sums of ∂k(A1∂tu), ∂m(A1∂ku), A∂ku, A∂tu Au with the (matrix)
coefficients A,A1, |A|1(Ω) + |A1|0(Ω) ≤ C, j, k,m = 1, 2, 3.

Using the the substitution u∗ = e
τϕu, v∗ = e

τϕ
v,w∗ = e

τϕw, f∗ = e
τϕf

this system is transformed into

Pϕ(1)u
∗ =

f∗

ρ
+Aϕ(1)u

∗
,

Pϕ(2)v
∗ = divT,ϕ

f∗

ρ
+Aϕ(2)u

∗
, (40)

Pϕ(1)w
∗ = curlT,ϕ

f∗

ρ
+Aϕ(3)u

∗
.

Let x
0 ∈ Ω̄� and Cyl(δ) = Cyl(x0; δ(γ)) with δ(γ) defined in (35). Let a

cut off function χ = 1 on Cyl( δ2 ), suppχ ⊂ Cyl(δ)�, 0 ≤ χ ≤ 1, |χ|2|(R4) ≤
C(γ), ∂tχ = 0, then the system (40) implies

Pϕ(1)(χu
∗) = χ

� f∗

ρ
+Aϕ(1)u

∗�+A(1, 1)(u∗)

Pϕ(2)(χv
∗) = χ

�
divT,ϕ

f∗

ρ
+Aϕ(2)u

∗�+A(2, 1)(v∗), (41)

Pϕ(1)(χw
∗) = χ

�
curlT,ϕ

f∗

ρ
+Aϕ(3)u

∗�+A(3, 1)(w∗),

whereA(j, 1) are sums of the terms a(γ)∂ju, a(γ)∂jv, a(γ)∂jw, σa(γ)u,σa(γ)v,
σa(γ)w with |a(γ)|2(Ω) < C(γ).
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Using that v
∗ = divT,ϕu∗

,w∗ = curlT,ϕu∗, applying Lemma 2.5 to each
of 7 scalar equations in this system, and adding the resulting inequalities we
yield

�

R4

σ

�
|χu∗|2 + |Λ−1

σ(t)(χ∂tu
∗)|2 + |χv∗|2 + |χdivT,ϕ(u

∗)|2

+ |Λ−1
σ(t)(χ∂tdivT,ϕ(u

∗))|2 + |χw∗|2 + |χcurlT,ϕ(u
∗)|2

+ |Λ−1
σ(t)(χ∂tcurlT,ϕ(u

∗))|2
�

≤ C

�

R4

χ
2
�
|f∗|2 +

4�

j=1

|∂ju|2 + σ
2|u∗|2

�

+ C(γ)τ−2

�

R4

�
|f∗|2 +

4�

j=1

|∂ju|2 + σ
2|u∗|2

�

+ C(γ)

�

R4

(|u∗|2 + |v∗|2 + |w∗|2). (42)

Observe that for a first order operator P1v =
�3

j=1 bj∂jv we have χP1,ϕv =

P1,ϕ(χv) − P1(χ)v. Since divT,ϕ(ρ−1f) is the sum of terms a∂jfj ,σafj with
|a|1(Ω∗) < C, by using Lemma 2.4 we will have the terms with f∗ on the right
side of (42). Moreover, χAϕ(m)u is the sum of terms (∂k − σ∂kψ)(χ(A1(∂1 −
σ∂jψ)u∗) and of ∂k(A1(∂j −σ∂jψ)u∗), so again using Lemma 2.4 we will have
remaining terms of the first two integrals on the right side of (42).

By standard calculations ∂tdivT,ϕu∗ = divT,ϕ∂tu
∗ + r(1) where r(1) is the

sum of terms a(γ)σu∗
j and a∂ku

∗ with |a(γ)|1(Ω) < C(γ), |a|1(Ω) < C and
χdivT,ϕ∂tu

∗ = divT,ϕ(χ∂tu∗) + r(2) where r(2) is the sum of terms a(γ)∂tu∗
j

with |a(γ)|1(Ω) < C(δ). Hence

Λ−1
σ(t)(χ∂t(divT,ϕu

∗))− divT,ϕ(Λ
−1
σ(t)(χ∂tu

∗))

= Λ−1
σ(t)(χdivT,ϕ∂tu

∗) + Λ−1
σ(t)(χr(1))− divT,ϕ(Λ

−1
σ(t)(χ∂tu

∗))

= Λ−1
σ(t)(divT,ϕ(χ∂tu

∗))− divT,ϕ(Λ
−1
σ(t)(χ∂tu

∗)) + Λ−1
σ(t)(χr(1) + r(2))).

So using Lemma 2.1 we yield

�σ 1
2 (Λ−1

σ(t)(χ∂t(divT,ϕu
∗))− divT,ϕ(Λ

−1
σ(t)(χ∂tu

∗)))�(0)(R4)

≤ C(γ)τ−
1
2 �χ∂tu∗�(0)(R4) + C(γ)(τ−

1
2 �∂tu∗�(0)(R4)

+ τ
− 1

2 �χ∇u∗�(0)(R4) + τ
1
2 �χu∗�(0)(R4)).
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Therefore from (42) we obtain

�

R4

σ(|χu∗|2 + |χv∗|2 + |χu∗|2 + |Λ−1
σ(t)(χ∂tu

∗)|2 + |divT,ϕ(χu
∗)|2

+ |curlT,ϕ(χu
∗)|2 + |divT,ϕΛ

−1
σ(t)(χ∂t(u

∗))|2 + |curlT,ϕΛ
−1
σ(t)(χ∂t(u

∗))|2)

≤ C

�

R4

χ
2
�
|f∗|2 +

4�

j=1

|∂ju∗|2 + σ
2|u∗|2

�

+ C(γ)τ−1

�

R4

�
|f∗|2 +

4�

j=1

|∂ju∗|2 + σ
2|u∗|2

�

+ C(γ)

�

R4

(|u∗|2 + |v∗|2 + |w∗|2). (43)

Introducing another cut off function χ1, ∂tχ1 = 0, supported in B
�(4δ)×R

with χ1 = 1 on B
�(3δ) × R, |χ1|1(R4

< C(γ), and applying Lemma 3.1 we
yield

�

R4

σ

�
|divT,ϕ(χ1(Λ

−1
σ(t)(χ∂tu

∗)))|2 + |curlT,ϕ(χ1(Λ
−1
σ(t)(χ∂tu

∗)))|2
�

≥ C
−1

γ

�

R4

�
σ
2|χ1Λ

−1
σ(t)(χ∂tu

∗)|2 +
3�

j=1

|∂j(χ1(Λ
−1
σ(t)(χ∂tu

∗)))|2
�

≥ C
−1

γ

�

R4

σ
2
�
|Λ−1

σ(t)(χ∂tu
∗)|2 +

3�

j=1

|∂jΛ−1
σ(t)(χ∂tu

∗)|2
�

− C(γ)τ−2

�

R4

σ
2|χ∂tu∗)|2,

because

�

R4

�
σ
2|(1− χ1)Λ

−1
σ(t)(χ∂tu

∗)|2 + |∂j((1− χ1)(Λ
−1
σ(t)(χ∂tu

∗)))|2
�

≤ C(γ)τ−2

�

R4

σ
2|χ∂tu∗|2

due to Lemma 2.1.
As above, by using the basic Fourier analysis we yield

C

�

R4

σ
2
�
|Λ−1

σ(t)(χ∂tu
∗)|2 +

3�

j=1

|∂jΛ−1
σ(t)(χ∂tu

∗)|2
�
≥

�

R4

σ
2|χ∂tu∗|2.
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Using the two previous inequalities, from (43) we obtain

�

R4

�
γ
�
|∂j(χu∗)|2 + σ

2|χu∗|2
�
+ σχ

2
�
|v∗|2 + |w∗|2

��

≤ C

�

R4

χ
2
�
|f∗|2 +

4�

j=1

|∂ju∗|2 + σ
2|u∗|2

�

+ C(γ)τ−2

�

R4

�
|f∗|2 +

4�

j=1

|∂ju∗|2 + σ
2|u∗|2

�

+ C(γ)

�

R4

�
|u∗|2 + |v∗|2 + |w∗|2

�
. (44)

Now the claim follows by partition of the unity argument. Since our choice of δ
depends on γ we give this argument in some detail.

The balls B
�(x0; δ(γ)) form an open covering of the compact set Ω̄�, so

we can find a finite covering of Ω̄� by balls B
�(x(k), δ(γ)), k = 1, ...,K(γ).

Let χ(; k) be a C
∞- partition of the unity subordinated to this covering, i.e.

suppχ(; k) ⊂ B
�(x(k); δ(γ) with

�K
k=1 χ

2(; k) = 1 on Ω.
Summing (44) with x = x(k), δ = δ(γ, k) over k = 1, ...,K and choosing

τ > C(γ) we get

�

Ω



γ

� 4�

j=1

|∂ju∗|2 + σ
2|u∗|2

�
+ σ(|v∗|2 + |w∗|2)





≤ (C + C(γ)τ−2)

�

Ω
|f∗|2 + C

�

Ω

� 4�

j=1

|∂ju∗|2 + σ
2|u∗|2

�

+C(γ)τ−1

�

Ω

� 4�

j=1

|∂ju∗|2 + σ
2|u∗|2

�
+ C(γ)

�

Ω

�
|u∗|2 + v

∗2 + |w∗|2
�
.

By choosing γ > 2C we can absorb the second integral in the right side by the
left side. Then we fix γ and choosing τ > C(γ) absorb the third and the fourth
integral by the left side and complete the proof of (9).

4. Proofs of stability estimates

In this section we will prove Theorems 1.3, 1.4.

Proof of Theorem 1.3. By extension theorems for Sobolev spaces we can find
u∗ ∈ H

2(Ω) so that
u∗ = g0, ∂νu

∗ = g1 on Γ
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and
�u∗�(2)(Ω) ≤ CF. (45)

Let
v = u− u∗

. (46)

The function v solves the Cauchy problem

(ρ∂2
t − (AT +R))v = f∗ in Ω, v = 0, ∂νv = 0 on ∂G× (−T, T ), (47)

where f∗ = f − (ρ∂2
t − (AT +R))u∗.

Due to the strict positivity condition (4) by standard energy estimates for
hyperbolic systems (i.e. [3], p. 128 ) we have

C
−1

�
E(0;v)− ||f∗||(0)(Ω)

�
≤ E(t;v) ≤ C

�
E(0;v) + ||f∗||(0)(Ω)

�
, (48)

when t ∈ (−T, T ).
Let us fix γ in Theorem 1.1. By using (12) we choose δ0 depending on the

same parameters as C so that ϕ < 1 − 2δ0 on {t : T − δ0 < |t| < T} and
1 − δ0 < ϕ on (−δ0, δ0). We choose a smooth cut-off function 0 ≤ χ0(t) ≤ 1
such that χ0(t) = 1 when |t| < T − 2δ0 and χ0(t) = 0 when |t| > T − δ0. It is
clear that

(ρ∂2
t − (AT +R))(χ0v) = χ0f

∗ + 2ρ∂tχ0∂tv + ρ∂
2
t χ0v. (49)

Obviously, χ0v ∈ H
2
0 (Ω), hence by Theorem 1.1

�

Ω

�
|∂2

t (χ0v)|2 + |∇(χ0v)|2 + |χ0v|2
�
e
2τϕ

≤ C

�

Ω

�
|(ρ∂2

t − (AT +R))(χ0v)|2
�
e
2τϕ

≤ C

��

Ω
|f∗|2e2τϕ +

�

G×{T−2δ0<|t|<T}
(|∂tv|2 + |v|2)e2τϕ

�

by (47).
Shrinking the integration domain Ω on the left side to G× (0, δ0) and using

our choice of δ0 we yield

e
2τ(1−δ0)

� δ0

0
E(t;v)dt ≤ C

�

G×(−δ0,δ0)
(|∂tv|2 + |∇v|2 + |v|2)e2τϕ

≤ C

�

Ω
|f∗|2e2τϕ + Ce

2τ(1−2δ0)

�

{T−2δ0<|t|<T}

�

G
(|∂tv|2 + |∇v|2 + |v|2)

≤ C

�

Ω
|f∗|2e2τϕ + Ce

2τ(1−2δ)

� T

T−2δ0

E(t;v)dt.



280 VICTOR ISAKOV

Choosing Φ = sup
Ω

ϕ and using (48)

e
2τ(1−δ0) δ

C
E(0;v)− Ce

2τΦ||f∗||2(1)(Ω)

≤ Ce
2τ(1−2δ0)E(0;v) + Ce

2τΦ||f∗||2(0)(Ω)

To eliminate the first term on the right side we choose τ (depending on C) so
large that e−2τδ0 <

1
C2 and by using energy estimates (48) we finally get

E(t;v) ≤ C||f∗||(0)(Ω)

and

E(t;u) ≤ C
�
||f∗||(0)(Ω) + E(t;u∗)

�

≤ C
�
||f∗||(0)(Ω) + ||u∗||( 3

2 )
(Γ) + ||∂νu∗||( 1

2 )
(Γ)

�

≤ C
�
||f ||(0)(Ω) + ||g0||( 3

2 )
(Γ) + ||g1||( 1

2 )
(Γ)

�
.

The proof is complete.

Proof of Theorem 1.4. By extension theorems for Sobolev spaces we can find
U∗ ∈ H

2(Ω) so that
U∗ = 0, ∂νU

∗ = ∂
2
t ∂νu on Γ

and
�U∗�(2)(Ω) ≤ CF. (50)

Let
V = ∂

2
t u−U∗

. (51)

Differentiating (14) in t and using time-independence of the coefficients of
the system, we get

(ρ∂2
t − (AT +R))V = ∂

2
tAf − F∗ in Ω,

v = 0, ∂νv = 0 on ∂G× (−T, T ),
(52)

where F∗ = (ρ∂2
t − (AT +R))U∗.

By standard energy estimates for hyperbolic systems (i.e. [3])

C
−1

E(0;V)− C

��

G
|f |2 +

�

Ω
|F∗|2

�

≤ E(t;V) ≤ CE(0;V) + C

��

G
|f |2 +

�

Ω
|F∗|2

�
, (53)

when t ∈ (−T, T ).
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Using (12) we choose δ0 depending on the same parameters as C so that
ψ < −δ0 on G × {t : T − δ0 < |t| < T} and 0 < ψ on G × (−δ0, δ0). Then
we fix a smooth cut-off function χ0, 0 ≤ χ0(t) ≤ 1 such that χ0(t) = 1 when
|t| < T−2δ0 and χ0(t) = 0 when |t| > T−δ0, 0 ≤ χ0 ≤ 1, |∂j

tχ0| ≤ C, j = 0, 1, 2.
By the Leibniz formula

(ρ∂2
t − (AT + R))(χ0V) = χ0(∂

2
tAf − ∂

j
t f

∗) + 2ρ∂tχ0∂tV + ρ∂
2
t χ0V.

Obviously, χ0V ∈ H
2
0 (Ω), hence by Theorem 1.1

�

Ω
γ

�
|∂t(χ0V)|2 + |∇(χ0V)|2 + σ

2|(χ0V)|2
�
e
2τϕ

≤ C

��

Ω
(|f |2 + |F∗|2)e2τϕ +

�

G×{T−2δ0<|t|<T}
(|∂tV|2 + |V|2)e2τϕ

�
. (54)

We have

V(, 0)eτϕ(,0) = −
� T

0
∂s

�
(χ0V(, s))eτϕ(,s)

�
ds

= −
� T

0

�
∂s(χ0V(, s)) + σ∂sψ(, s)χ0V(, s)

�
e
τϕ(,s)

ds.

So by splitting the left side in (54) into two equal terms and using the Cauchy-
Schwarz inequality we obtain

γ

�

G
|V(, 0))|2e2τϕ(,0) + e

2τ

� δ0

−δ0

E(, t;V)dt

≤ C

��

Ω
(|f |2 + |F∗|2)e2τϕ + e

2τθ

�

{T−2δ0<|t|<T}
E(t;V)dt

�
,

where θ = e
−γδ0 < 1. Using (53) and the inequality

|f | ≤ C|∂2
t u(, 0)| ≤ C(|U∗(, 0)|+ |V(, 0)|)

(due to (52) at t = 0, the condition (16), and to (51) ) we yield

γ

�

G
|f |2e2τϕ(,0) − Cγ

�

G
|U∗(, 0)|2e2τϕ(,0)

+ e
2τ
E(0;V)− Ce

2τ
��

G
|f |2 +

�

Ω
|F∗|2

�

≤ C

�

G
|f |2e2τϕ(,0) + Ce

2τθ

�

Ω
|F∗|2 + Ce

2τθ
E(0;V) + Ce

2τθ

�

G
|f |2.
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We choose and fix large γ (depending on C only) to absorb three other terms
with f by the first term on the left side. Then we choose and fix τ (depending
on C) so large that Ce

2τθ
< e

2τ to absorb the term with V on the right by the
term with V on the left and arrive at

�

G
|f |2 ≤ C

�

G
|U∗(, 0)|2 + C

�

Ω
|F∗|2.

Using the bound (50), Trace theorems and the definition of F∗, we complete
the proof of Theorem 1.4.

5. Conclusion

One can use Carleman estimates of Theorem 1.1 for coefficients identification
as in [7, 11]. However, for systems in divergent form (like the elasticity system)
most precise results need a weak form of Carleman estimate which is expected
to follow from Theorem 1.1 by using smoothing operators similar to Λ−1

σ . At
present, the condition (7) is essential for our proofs. Geometrical or mechani-
cal meaning of this condition is not clear. A challenge is to obtain Carleman
estimates and identification results for the system of transversely isotropic elas-
ticity, without (or with relaxed) condition (7).
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Generic controllability of the bilinear
Schrödinger equation on 1-D domains:

the case of measurable potentials
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Abstract. Several sufficient conditions for the controllability of the
Schrödinger equation have been proposed in the last few years. In this
article we discuss the genericity of these conditions with respect to the
variation of the controlled or the uncontrolled potential. In the case
where the Schrödinger equation is set on a domain of dimension one,
we improve the results in the literature, removing from the previously
known genericity results some unnecessary technical assumptions on
the regularity of the potentials.
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1. Introduction

In this paper we consider controlled Schrödinger equations of the type

i
∂ψ

∂t
(t, x) = (−∆+ V (x) + u(t)W (x))ψ(t, x), u(t) ∈ U, (1)

where ψ : [0,+∞) × Ω → C for some domain Ω of Rd, d ≥ 1, V,W are real-
valued functions and U = [0, δ) for some δ > 0. We will assume either that
Ω, V,W are bounded and that ψ satisfies Dirichlet boundary conditions on ∂Ω
or that Ω = Rd and −∆+V + uW has discrete spectrum for every u ∈ U . We
look at (1) as at a control system evolving in the unit sphere of L2(Ω,C), whose
state ψ(t, ·) is called the wavefunction of the Schrödinger equation. When W is
in L∞(Ω,R), the multiplication operator L2(Ω,C) � ψ → Wψ ∈ L2(Ω,C) is
bounded and then it is known that the Schrödinger equation (1) is not exactly
controllable (see [5, 33]). In certain cases, when d = 1, a complete description
of reachable sets has been provided (see [7, 9]). In the general case, however,
such a description seems unattainable and one focuses on the analysis of the
approximate controllability of system (1).
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Several approaches have been developed to identify conditions on V and
W which guarantee the approximate controllability of (1). Let us mention in
particular the approaches based on: Lyapunov functions [8, 10, 23, 24, 25, 27],
adiabatic evolution [1, 15, 18], Lie-bracket conditions in Banach spaces and in
partially invariant finite-dimensional subspaces [11, 12, 21].

In this paper we focus on the approach developed in [13, 14, 16, 17], which
is based on the idea of dropping the invariance requirement for the finite-
dimensional spaces and replacing it with some motion planning strategy within
the finite-dimensional space which make it “almost invariant”, in the sense that
the norm of the projection of the solution in the finite-dimensional subspace
stays as close to one as desired. (An analogous approach for the Navier–Stokes
equation has been developed in [3, 31].) An advantage of this approach is that it
also guarantees stronger notions of controllability than approximate controlla-
bility among wavefunctions. Indeed, it also implies approximate controllability
between density matrices, simultaneous controllability for several initial con-
ditions, tracking up to phases, etc (for details, see [14]). Let us mention that
similar notions of controllability have also be obtained in [21].

The aim of this paper is to show that, in the case d = 1, the approximate
controllability of (1) is generic with respect to V (for some suitable topology),
once some non-constant potential W is fixed and, similarly, that it is also
generic with respect to W , once V is fixed. Such results are proved by showing
that the sufficient conditions proposed in [13, 14, 17] are generic.

We improve here the results obtained in [22], by removing the assumption
that the fixed potential (either V or W in the two cases presented above) is
absolutely continuous. We should mention, however, that the results in [22]
concern any dimension d ∈ N of the domain Ω, while the technique developed
here requires d to be equal to 1.

Let us mention that some other genericity results for the approximate con-
trollability of the Schrödinger equation exist in the literature ([6, 25, 26, 28]).
These are typically obtained by allowing variations of the pair (V,W ) or the
triple (Ω, V,W ), instead of a single element.

Our approach, shared with [22, 28], is based on analytic long-range pertur-
bations. The idea is the following: denote by Γ the class of systems on which
the genericity of a certain property P is studied. If we are able to prove the
existence of at least one element of Γ satisfying P , then we can propagate P
if some analytic dependence properties hold true. In this way we can prove
that the property holds in a dense subset of Γ. A key property which allows
this propagation to be performed is a result by Teytel in [32], which guarantees
that between any two discrete-spectrum operators −∆ + V1 and −∆ + V2 (in
a suitably defined class) there exist an analytic path µ �→ −∆ + Vµ such that
all eigenvalues of −∆+ Vµ are simple for all µ ∈ (1, 2).

The paper is organized as follows. In Section 2 we fix the mathematical
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framework, introducing the notion of solutions to the control system (1) and
the notion of genericity that is investigated in the paper. In Section 3 we recall
the sufficient conditions for approximate controllability obtained in [17] and in
[14] and the genericity results already proved in [22]. Section 4 contains the
main technical argument which allows us to improve the results in [22]. In terms
of the discussion above, it contains the proof of the existence of the element
whose good properties can be propagated globally by analytic perturbation.
Finally, in Section 5 we develop the analytic propagation argument showing
that the approximate controllability is generic separately with respect to V
and W .

2. Mathematical framework

2.1. Notation and basic definitions

Let N be the set of positive integers. For d ∈ N, denote by Ξd the set of
nonempty, open, bounded and connected subsets ofRd and let Ξ∞

d = Ξd∪{Rd}.
Take U = [0, δ) ⊂ R for some δ > 0.

In the following we consider the Schrödinger equation (1) assuming that
the potentials V,W are taken in L∞(Ω,R) if Ω belongs to Ξd and that V,W ∈

L∞
loc(R

d,R) and lim�x�→∞ V (x) + uW (x) = +∞ for every u ∈ U if Ω = Rd.
Then, for every u ∈ U , −∆ + V + uW (with Dirichlet boundary conditions if
Ω is bounded) is a skew-adjoint operator on L2(Ω,C) with compact resolvent
and discrete spectrum (see [19, 29]). We denote by σ(Ω, V +uW ) = (λj(Ω, V +
uW ))j∈N the non-decreasing sequence of eigenvalues of −∆+V +uW , counted
according to their multiplicities, and by (φj(Ω, V + uW ))j∈N a corresponding
sequence of eigenfunctions. Without loss of generality we can assume that
φj(Ω, V +uW ) is real-valued for every j ∈ N. Recall moreover that (φj(Ω, V +
uW ))j∈N forms an orthonormal basis of L2(Ω,C). If j ∈ N is such that
λj(Ω, V + uW ) is simple, then φj(Ω, V + uW ) is uniquely defined up to sign.

For every Ω ∈ Ξd let V(Ω) and W(Ω) be equal to L∞(Ω,R). For Ω = Rd

let

V(Rd) = {V ∈ L∞
loc(R

d,R) | lim
�x�→∞

V (x) = +∞},

W(Rd) =

�
W ∈ L∞

loc(R
d,R) | ess sup

x∈Rd

log(|W (x)|+ 1)

�x�+ 1
< ∞

�
.

For every Ω ∈ Ξ∞
d let, moreover,

Z(Ω, U) = {(V,W ) | V ∈ V(Ω), W ∈ W(Ω), V +uW ∈ V(Ω) for every u ∈ U}.

If (V,W ) ∈ Z(Ω, U), each operator −∆ + V + uW , u ∈ U , generates
a group of unitary transformations eit(−∆+V+uW ) : L2(Ω,C) → L2(Ω,C). In
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particular, eit(−∆+V+uW )(S) = S where S denotes the unit sphere of L2(Ω,C).
For every piecewise constant control function u(·) with values in U and every
initial condition ψ0 ∈ L2(Ω,R), we can associate a solution

ψ(t;ψ0, u) =e−i(t−
�j−1

l=1 tl)(−∆+V+ujW )
◦ e−itj−1(−∆+V+uj−1W )

◦ · · ·

· · · ◦ e−it1(−∆+V+u1W )(ψ0),

where 0 ≤
�j−1

l=1 tl ≤ t <
�j

l=1 tl and

u(τ) = uk if
�k−1

l=1 tl ≤ τ <
�k

l=1 tl

for k = 1, . . . , j.

Definition 2.1. Given (V,W )∈Z(Ω, U) we say that the quadruple (Ω, V,W,U)
is approximately controllable if for every ψ0,ψ1 ∈ S and every ε > 0 there exist
T > 0 and u : [0, T ] → U piecewise constant such that �ψ1 − ψ(T ;ψ0, u)� < ε.

2.2. Topologies and genericity

Let us endow V(Ω), W(Ω) with the topology induced by the L∞ distance and
Z(Ω, U) with the corresponding product topology.

We also introduce, for every V ∈ V(Ω) and every W ∈ W(Ω), the topo-
logical subspaces of V(Ω) and W(Ω) defined, with a slight abuse of notation,
by

V(Ω,W,U) = {Ṽ ∈ V(Ω) | (Ṽ ,W ) ∈ Z(Ω, U)},

W(Ω, V, U) = {W̃ ∈ W(Ω) | (V, W̃ ) ∈ Z(Ω, U)}.

Notice that neither V(Ω,W,U) nor W(Ω, V, U) is empty. Moreover, both
V(Ω,W,U) and W(Ω, V, U) are invariant by the set addition with L∞(Ω). In
particular, they are open in V(Ω) and W(Ω) respectively and they coincide
with L∞(Ω) when Ω ∈ Ξd.

Let us recall that a topological space X is called a Baire space if the inter-
section of countably many open and dense subsets of X is dense in X. Every
complete metric space is a Baire space. (In particular, V(Ω), W(Ω), Z(Ω, U),
V(Ω,W,U), and W(Ω, V, U) are Baire spaces.) The intersection of countably
many open and dense subsets of a Baire space is called a residual subset of
X. Given a Baire space X, a boolean function P : X → {0, 1} is said to be a
generic property if there exists a residual subset Y of X such that every x in
Y satisfies property P , that is, P (x) = 1.
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3. Controllability of the discrete-spectrum Schrödinger
equation: sufficient conditions and their genericity

The theorem below recalls the controllability result obtained in [17, Theo-
rem 3.4]. Here and in the following a map h : N → N is called a reordering of
N if it is a bijection.

Theorem 3.1 ([17]). Let Ω ∈ Ξ∞
d and (V,W ) ∈ Z(Ω, U). Assume that the

elements of
�
λk+1(Ω, V ) − λk(Ω, V )

�
k∈N

are Q-linearly independent and that
there exists a reordering h : N → N such that for infinitely many n ∈ N the
matrix

Bh
n(Ω, V,W ) :=

��

Ω
W (x)φh(j)(Ω, V )(x)φh(k)(Ω, V )(x) dx

�n

j,k=1

is connected. Then (Ω, V,W,U) is approximately controllable.

Remark 3.2. Notice that, even in the unbounded case, each of the integrals�
Ω W (x)φj(Ω, V )(x)φk(Ω, V )(x) dx is well defined. Indeed, when Ω = Rd, the

growth of |W | is at most exponential and ea|x|φj(Rd, V ) ∈ L2(Rd,R) for every
a > 0 and j ∈ N (see [2]).

The papers [13] and [14] present relaxed conditions on V and W which are
enough to prove approximate controllability. In particular the Q-linearly inde-
pendence of

�
λk+1(Ω, V ) − λk(Ω, V )

�
k∈N

can be replaced by the assumption

that the elements of the sequence
�
|λk(Ω, V ) − λj(Ω, V )|

�
k,j∈N

are pairwise

distinct, or even less under some additional assumption (see in particular [13,
Theorem 2.6]). However, since our goal is to prove the genericity of the suf-
ficient conditions implying approximate controllability, we prefer to focus on
the conditions stated in Theorem 3.1, which contain more informations on the
potentials V and W . We therefore introduce the following definition.

Definition 3.3. Let V ∈ V(Ω) and W ∈ W(Ω). We say that (Ω, V,W ) is fit
for control if (λk+1(Ω, V )− λk(Ω, V ))k∈N is Q-linearly independent and there
exists a reordering h such that Bh

n(Ω, V,W ) is connected for infinitely many
n ∈ N. Let (V,W ) be an element of Z(Ω, U). We say that the quadruple
(Ω, V,W,U) is effective if (Ω, V + uW,W ) is fit for control for some u ∈ U .

Theorem 3.1 can then be rephrased by saying that being effective is a suf-
ficient condition for approximate controllability.

Let us recall the following result, which can be found in [22, Theorem 3.4].

Theorem 3.4 ([22]). Let Ω belong to Ξ∞
d . Then, generically with respect to

(V,W ) ∈ Z(Ω, U) the triple (Ω, V,W ) is fit for control.
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In the present paper we give new results on the genericity of controllability
when one of the two potentials V and W is fixed. We recall that in [22,
Corollaries 4.4, 4.5, Proposition 4.6] the following was proved.

Theorem 3.5 ([22]). Let Ω belong to Ξ∞
d . Given any absolutely continuous

function V ∈ W(Ω), one has that generically with respect to W ∈ V(Ω,W,U)
the quadruple (Ω, V,W,U) is effective. Similarly, given W ∈ V(Ω) non-constant
and absolutely continuous on Ω, one has that generically with respect to V ∈

V(Ω, V, U) the quadruple (Ω, V,W,U) is effective.

The goal of this paper is to show that the absolute continuity assumption on
the potential that is fixed is purely technical and can be removed. We succeed
in our goal at least in the case d = 1. Our main result is the following.

Theorem 3.6. Let Ω belong to Ξ∞
1 . Given any V ∈ W(Ω), one has that gener-

ically with respect to W ∈ V(Ω,W,U) the quadruple (Ω, V,W,U) is effective.
Similarly, given W ∈ V(Ω) non-constant, one has that generically with respect
to V ∈ V(Ω, V, U) the quadruple (Ω, V,W,U) is effective.

4. The basic one-dimensional technical result

The main goal of the section is to generalize the following result from [22], in
the sense of dropping the assumption of absolute continuity on the function Z.

Lemma 4.1 ([22]). Let Ω belong to Ξ∞
d and Z be a non-constant absolutely

continuous function on Ω. Then there exist ω ∈ Ξd compactly contained in
Ω with Lipschitz continuous boundary and a reordering h : N → N such that
σ(ω, 0) is simple and

�

ω
Z(x)φh(l)(ω, 0)(x)φh(l+1)(ω, 0)(x) dx �= 0 (2)

for every l ∈ N.

We are going to obtain such an extension in the case d = 1, assuming that
Z is just measurable, bounded and non-constant. Let us stress that a function
Z ∈ L∞(Ω,R) is said to be non-constant if no constant function on Ω coincides
with Z almost everywhere.

Proposition 4.2. Let Ω belong to Ξ∞
1 and Z be a non-constant function in

L∞(Ω,R). Then there exists a nonempty interval ω compactly contained in Ω
such that �

ω
Z(x)φl(ω, 0)(x)φl+1(ω, 0)(x) dx �= 0 (3)

for every l ∈ N.



GENERIC CONTROLLABILITY OF THE SCHRÖDINGER EQUATION 291

Proof. We look for ω in the form (a, a+ r), for some a ∈ Ω and r > 0 such that
(a, a+ r) is compactly contained in Ω.

In particular, the simplicity of σ(ω, 0) is guaranteed and

φl(ω, 0)(x) = φa,r
l (x) =

�
2

r
sin

�
lπ(x− a)

r

�
, l ∈ N.

We also define

ψa,r
l (x) =

�
2

r
cos

�
lπ(x− a)

r

�
, l ∈ N.

Let us first show that it is enough to prove that there exists (a, r) as above
such that � a+r

a
Z(x)ψa,r

1 (x) dx �= 0. (4)

Indeed, assume that (4) is true and consider a neighbourhood N of (a, r) in
Ω× (0,+∞) such that, for every (α, ρ) ∈ N , (α,α+ ρ) is compactly contained
in Ω and � α+ρ

α
Z(x)ψα,ρ

1 (x) dx �= 0. (5)

Such neighbourhood exists since the map (α, ρ) �→
� α+ρ
α Z(x)ψα,ρ

1 (x) dx is con-
tinuous. Assume by contradiction that there exists l ∈ N such that (α, ρ) �→� α+ρ
α Z(x)φα,ρ

l (x)φα,ρ
l+1(x) dx ≡ 0 on a nonempty open subset N � of N .

Set

Fl(α, ρ) =

� α+ρ

α
Z(x)φα,ρ

l (x)φα,ρ
l+1(x) dx.

By differentiating Fj with respect to its first variable, we get that

0 ≡
∂

∂α
Fl(α, ρ)

= −
π

ρ

� α+ρ

α
Z(x)

�
lψα,ρ

l (x)φα,ρ
l+1(x) + (l + 1)φα,ρ

l (x)ψα,ρ
l+1(x)

�
dx (6)

onN �. We used in this computation the fact that each function ψα,ρ
j annihilates

at α and α+ ρ.
Differentiating once more with respect to α, we get that, for every (α, ρ) ∈

N �,

0 ≡
∂2

∂α2
Fl(α, ρ)

=
π2

ρ2

� α+ρ

α
Z(x)

�
l(l + 1)ψα,ρ

l (x)ψα,ρ
l+1(x)− (l2 + (l + 1)2)φα,ρ

l (x)φα,ρ
l+1(x)

�
dx

=
l(l + 1)π2

ρ2

� α+ρ

α
Z(x)ψα,ρ

l (x)ψα,ρ
l+1(x) dx,
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where the last identity follows from the relation Fl(α, ρ) = 0.

Differentiating once more ∂2

∂α2Fl(α, ρ) with respect to α, we get, for almost
every (α, ρ) ∈ N �,

0 ≡−
2l(l + 1)π2

ρ3
(Z(α+ ρ) + Z(α))

+
l(l + 1)π3

ρ3

� α+ρ

α
Z(x)

�
lφα,ρ

l (x)ψα,ρ
l+1(x) + (l + 1)ψα,ρ

l (x)φα,ρ
l+1(x)

�
dx.

Combining with (6), we deduce that

Z(α+ ρ) + Z(α) =
π

2

� α+ρ

α
Z(x)

�
−φα,ρ

l (x)ψα,ρ
l+1(x) + ψα,ρ

l (x)φα,ρ
l+1(x)

�
dx

=
π
√
2

2
√
ρ

� α+ρ

α
Z(x)φα,ρ

1 (x) dx (7)

almost everywhere on N �, where the last equality follows by standard trigono-
metric identities.

Let us rewrite (7) as

Z(β) + Z(α) =
π
√
2

2
√
β − α

� β

α
Z(x)φα,β−α

1 (x) dx. (8)

Since the right-hand side of (8) is C1 with respect to (α,β) on {(α,β) ∈ Ω2 |

α < β}, we deduce that Z is C1 on the open set N �
1 ∪N �

2, where

N
�
1 = {α | (α, ρ) ∈ N

� for some ρ > 0}, N
�
2 = {α+ ρ | (α, ρ) ∈ N

�
}.

If there exist x ∈ N �
1 ∪ N �

2 such that d
dxZ(x) �= 0, then the conclusion

follows from Lemma 4.1. (The fact that the reordering h in the statement of
Lemma 4.1 can be taken equal to the identity in the case d = 1 follows directly
from the proof given in [22].) Otherwise, d

dxZ ≡ 0 on N �
1 ∪N �

2.
Differentiating (7) with respect to α, we get that

� α+ρ

α
Z(x)ψα,ρ

1 (x) dx ≡ 0

for every (α, ρ) ∈ N �, contradicting (5).
We are left to prove that either Z is absolutely continuous on Ω (and hence

Lemma 4.1 applies) or there exists (a, r) ∈ Ω × (0,∞) such that (a, a + r) is
compactly contained in Ω and (4) holds true.

By contradiction, assume that for every (a, r) ∈ Ω × (0,∞) such that

(a, a + r) is compactly contained in Ω we have
� a+r
a Z(x)ψa,r

1 (x) dx = 0. By
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differentiating with respect to a, we get that for every r > 0 and almost every
a such that (a, a+ r) ⊂ Ω,

Z(a+ r) + Z(a) =
π

r

� a+r

a
Z(x)φa,r

1 (x) dx.

Reasoning as above, we deduce that Z is C1 on Ω. In particular, Z is absolutely
continuous and the proof of the proposition in concluded.

5. The genericity argument by analytic perturbation

Before proving Theorem 3.6 by considering separately the cases where V or W
is fixed, let us recall some useful result from the literature.

The first is a technical result allowing to obtain the spectral decomposition
of a Laplace–Dirichlet operator on a bounded domain ω as the limit for opera-
tors defined on larger spacial domains, whose potential converge uniformly to
infinity outside ω.

Lemma 5.1 ([22]). Let Ω belong to Ξ∞
d and ω be a nonempty, open subset

compactly contained in Ω and whose boundary is Lipschitz continuous. Let
v ∈ L∞(ω,R) and (Vk)k∈N be a sequence in V(Ω) such that Vk|ω → v in
L∞(ω,R) as k → ∞ and limk→∞ ess infΩ\ω Vk = +∞. Then, for every j ∈

N, limk→∞ λj(Ω, Vk) = λj(ω, v). Moreover, if λj(ω, v) is simple then (up to
the sign) φj(Ω, Vk) and

�
|Vk|φj(Ω, Vk) converge respectively to φj(ω, v) and�

|v|φj(ω, v) in L2(Ω,C) as k goes to infinity, where φj(ω, v) is identified with
its extension by zero outside ω.

The second result states that the Q-linear independence of the spectrum of
−∆+V is a generic property with respect to V . It generalises a classical result
on the generic simplicity of the spectrum of −∆+V obtained by Albert in [4].
It implies in particular that the spectral gaps λj+1(Ω, V )−λj(Ω, V ) of −∆+V
form generically a Q-linear independent family, as required in the hypotheses
of Theorem 3.1.

Proposition 5.2 ([4] and [22]). Let Ω belong to Ξ∞
d . For every K ∈ N and

q = (q1, . . . , qK) ∈ QK \ {0}, the set

Oq(Ω)=




V ∈V(Ω) | λ1(Ω,V ), . . . ,λK(Ω,V ) simple,
K�

j=1

qjλj(Ω, V ) �= 0




 (9)

is open and dense in V(Ω).

The third result, based on the contributions in [32], states the existence of
analytic paths of potentials such that the spectrum is simple along them.
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Proposition 5.3 ([32] and [22]). Let Ω belong to Ξ∞
d and V, Z ∈ V(Ω) be such

that Z − V ∈ L∞(Ω,R). Then there exists an analytic function µ �→ Wµ from
[0, 1] into L∞(Ω,R) such that W0 = 0, W1 = Z − V and the spectrum of
−∆+ V +Wµ is simple for every µ ∈ (0, 1).

5.1. Proof of Theorem 3.6 in the case where W is fixed

Let Ω ∈ Ξ∞
1 and fix W ∈ W(Ω). Let us consider the following subspace of

V(Ω)

V̂(Ω,W ) =

�
V ∈ V(Ω) | ess sup

x∈Ω

|W (x)|

|V (x)|+ 1
< +∞

�
.

Notice that V̂(Ω,W ) is open in V(Ω,W ).

Proposition 5.4. Let Ω belong to Ξ∞
1 and W ∈ W(Ω) be non-constant. Then,

generically with respect to V in V̂(Ω,W ), the triple (Ω, V,W ) is fit for control.

Proof. By applying Proposition 4.2 to Z = W , we deduce that there exists a
nonempty interval ω compactly contained in Ω such that

�

ω
W (x)φl(ω, 0)(x)φl+1(ω, 0)(x) dx �= 0 (10)

for every l ∈ N.
Denote by Qn(Ω,W ) the set of potentials V ∈ V̂(Ω,W ) such that for every

j ∈ {1, . . . , n} the eigenvalue λj(Ω, V ) is simple and

�

Ω
W (x)φj(Ω, V )(x)φj+1(Ω, V )(x) dx �= 0 for j = 1, . . . , n− 1.

In the case where Ω is bounded the openness of Qn(Ω,W ) follows from
classical results on the continuity of eigenvalues and eigenfunctions (see, e.g.,
[20]). For the unbounded case, one should use the fact that each eigenfunction
φr(Ω, V ) goes to zero at infinity faster than any exponential. Since W has
at most exponential growth, one then deduces that V �→

�
|W |φr(Ω, V ) is

continuous, as a function from the open subset of V(Ω) of potentials for which
the r-th eigenvalue of −∆ + V is simple into L2(Ω,C) (for details, see [22,
Proposition 2.9]).

Let us now prove the density of Qn(Ω,W ). Fix V ∈ V̂(Ω,W ). We should
prove that V is in the closure of Qn(Ω,W ).

Let (Vk)k∈N be the sequence in V(Ω) defined by Vk = 0 in ω and Vk = V +k
in Ω \ ω. Then, for every j ∈ N, the sequence �

�
|Vk|φj(Ω, Vk)�L2(Ω\ω,C)

converges to 0 as k goes to infinity (Lemma 5.1). By definition of V̂(Ω,W ),
|W | < C(|V | + 1) on Ω for some C > 0. Hence, for every j ∈ N, also the
sequence �

�
|W |φj(Ω, Vk)�L2(Ω\ω,C) converges to 0 as k goes to infinity.
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Moreover, Lemma 5.1 also implies that, for every j ∈ N, the sequences
λj(Ω, Vk) and φj(Ω, Vk) converge, respectively, to λj(ω, 0) and φj(Ω, 0) (up to
sign) as k goes to infinity. In particular, λ1(Ω, Vk), . . . ,λn(Ω, Vk) are simple for
k large enough and equation (10) allows to conclude that Vk ∈ Qn(Ω,W ) for
k large enough.

Fix k̄ such that Vk̄ ∈ Qn(Ω,W ). It follows from Proposition 5.3 that there
exists an analytic function µ �→ Wµ from [0, 1] into L∞(Ω,R) such thatW0 = 0,
W1 = Vk̄ − V and the spectrum of −∆+ V +Wµ is simple for every µ ∈ (0, 1).

The conclusion of the proof is based on the analytic dependence of the
eigenpairs of −∆ + V +Wµ with respect to µ. The analytic dependence of a
finite set of eigenpairs in a neighbourhood of a given µ is a consequence of the
classical Kato–Rellich theorem (see [20, Chapter VII]). The global analyticity
on the interval (0, 1) of the entire (infinite) family of eigenpairs of −∆+V +Wµ

can be deduced from the analyticity of (0, 1) � µ �→ Wµ in L∞(Ω), which
prevents an analytic branch of the spectrum of −∆+ V +Wµ to go to infinity
as µ tends to some µ0 ∈ [0, 1]. Indeed, since each λj(Ω, V + Wµ), j ∈ N,
µ ∈ (0, 1), is an isolated eigenvalue, one can compute by classical formulas the
derivative of λj(Ω, V +Wµ) with respect to µ and get

����
d

dµ
λj(Ω, V +Wµ)

���� =
����
�

Ω
φ2
j (Ω, V +Wµ)(x)

d

dµ
Wµ(x) dx

���� ≤
����
d

dµ
Wµ

����
∞

(see, for instance, [4]).
We are going to use a stronger analytic dependence property, namely,

that each function µ �→ φj(Ω, V + Wµ) is analytic from (0, 1) to the domain
D(−∆+V ) endowed with the graph norm (see [30, Theorem 5.6] and also [22,
Proposition 2.11]).

Recalling that, by definition of V̂(Ω,W ) and by boundedness of Wµ, |W | <
C(|V +Wµ|+ 1) on Ω for some C > 0, we deduce that

µ �→

�

Ω
W (x)φj(Ω, V +Wµ)(x)φj+1(Ω, V +Wµ)(x) dx

is analytic from (0, 1) to R, for every j ∈ N.
Since, moreover, Vk̄ = V +W1 ∈ Qn(Ω,W ), we get that V +Wµ ∈ Qn(Ω,W )

for almost every µ ∈ (0, 1). Hence V = V + W0 is in the closure Qn(Ω,W ).
We proved that Qn(Ω,W ) is dense in V̂(Ω,W ).

The set ∩n∈NQn(Ω,W ) is then residual in V̂(Ω,W ) and, for every n ∈ N,
the matrix BidN

n (Ω, V,W ) is connected.
The triple (Ω, V,W ) is then fit for control if V belongs to

(∩n∈NQn(Ω,W )) ∩
�
∩q∈∪K∈NQK\{0}Oq(Ω)

�
,

where the sets Oq(Ω) are those introduced in Proposition 5.2, which is the

intersection of countably many open and dense subsets of V̂(Ω,W ).
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The next corollary follows immediately from Proposition 5.4.

Corollary 5.5. Let Ω ∈ Ξ1 and W ∈ L∞(Ω,R) be non-constant. Then,
generically with respect to V in L∞(Ω,R), the triple (Ω, V,W ) is fit for control.

In the unbounded case we deduce the following.

Corollary 5.6. Let Ω = R and W ∈ W(R) be non-constant. Then, generi-
cally with respect to V in V(R,W,U), the quadruple (R, V,W,U) is effective.

Proof. Fix u ∈ (0, δ). Let η > 0 be such that [u − η, u + η] ⊂ U . If V ∈

V(R,W,U) then both V + (u − η)W and V + (u + η)W are positive outside
some bounded subset Ω0 of R. In particular |W | ≤

1
2η |V + uW | outside Ω0.

Since, moreover, W is bounded on Ω0, then V + uW is in V̂(R,W ).
Since uW + V(R,W,U) is an open subset of V̂(R,W ), we deduce from

Proposition 5.4 that there exists a residual subset R of uW +V(R,W,U) such
that (Ω, �V ,W ) is fit for control for every �V ∈ R. This means that the triple
(R, V + uW,W ) is fit for control, generically with respect to V ∈ V(R,W,U).
In particular, the quadruple (R, V,W,U) is effective, generically with respect
to V in V(R,W,U).

5.2. Proof of Theorem 3.6 in the case where V is fixed

We prove in this section that for a fixed potential V , generically with respect to
W ∈ W(Ω, V, U), the quadruple (Ω, V,W,U) is effective. Notice that (Ω, V,W )
cannot be fit for control if the spectrum of −∆+ V is resonant, independently
of W . In this regard the result is necessarily weaker than Proposition 5.4 and
Corollary 5.5, where the genericity of the fitness for control is proved.

Proposition 5.7. Let Ω belong to Ξ∞
1 and V ∈ V(Ω). Then, generically with

respect to W ∈ W(Ω, V, U), the quadruple (Ω, V,W,U) is effective.

Proof. Fix u ∈ (0, δ). Notice that V + uW(Ω, V, U) is an open subset of V(Ω)
and that the map W �→ V +uW is a homeomorphism between W(Ω, V, U) and
V + uW(Ω, V, U). In particular, due to Proposition 5.2, for every K ∈ N and
q ∈ QK \ {0}, the set {W ∈ W(Ω, V, U) | V + uW ∈ Oq(Ω)} is open and dense
in W(Ω, V, U).

For every W ∈ W(Ω, V, U) let, as in the previous section, Qn(Ω,W ) be the
open and dense subset of V̂(Ω,W ) made of all potentials �V ∈ V̂(Ω,W ) such
that for every j ∈ {1, . . . , n} the eigenvalue λj(Ω, �V ) is simple and

�

Ω
W (x)φj(Ω, �V )(x)φj+1(Ω, �V )(x) dx �= 0 for j = 1, . . . , n− 1.

As proved in Corollary 5.6, for every W ∈ W(Ω, V, U) one has V + uW ∈

V̂(Ω,W ). We are going to prove the proposition by showing that for every
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n ∈ N, for each W in a open and dense subset of W(Ω, V, U), V +uW belongs
to Qn(Ω,W ).

Define

Pn = {W ∈ W(Ω, V, U) | V + uW ∈ Qn(Ω,W )}.

Since

W �→

�

Ω
W (x)φj(Ω, V + uW )(x)φk(Ω, V + uW )(x) dx

is continuous on {W ∈ W(Ω, V, U) | λj(Ω, V +uW ), λk(Ω, V +uW ) are simple}
for every j, k ∈ N (see [22, Proposition 2.9] for details), we deduce that Pn is
open.

Fix �W ∈ W(Ω, V, U). We are left to prove that �W belongs to the closure
of Pn.

Consider first the case in which V is constant. In particular, Ω ∈ Ξ1,
W(Ω, V, U) = V + uW(Ω, V, U) = L∞(Ω,R), and

�

Ω
W (x)φj(Ω, V + uW )(x)φk(Ω, V + uW )(x) dx

=

�

Ω
W (x)φj(Ω, uW )(x)φk(Ω, uW )(x) dx

for every j, k ∈ N and W ∈ L∞(Ω,R). Fix an interval ω compactly contained
in Ω. In particular, the spectrum σ(ω, 0) is simple.

Let z ∈ L∞(ω,R) be such that

�

ω
z(x)φj(ω, 0)(x)φk(ω, 0)(x) dx �= 0

for every j, k ∈ N. Then, for every j, k ∈ N, the derivative of

ε �→

�

ω
εz(x)φj(ω, εz)(x)φk(ω, εz)(x) dx

at ε = 0 is equal to

�

ω
z(x)φj(ω, 0)(x)φk(ω, 0)(x) dx �= 0.

By analyticity, there exists ε̃ ∈ R such that the spectrum σ(ω, ε̃z) is simple
and �

ω
ε̃z(x)φj(ω, ε̃z)(x)φk(ω, ε̃z)(x) dx �= 0

for every j, k ∈ N. Set z̃ = ε̃z.
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Let (Wl)l∈N be a sequence in L∞(Ω,R) such that liml→∞ Wl|ω = z̃/u in
L2(ω,R) and liml→∞ ess infΩ\ω Wl = +∞. By Lemma 5.1 we deduce that
there exists l̄ large enough such that

�

Ω
Wl̄(x)φj(Ω, uWl̄)(x)φk(Ω, uWl̄)(x) dx �= 0 for j, k = 1, . . . , n.

By Proposition 5.3 we can consider an analytic curve µ �→ Ŵµ in L∞(Ω,R)

such that Ŵ0 = �W , Ŵ1 = Wl̄ and the spectrum of −∆ + uŴµ is simple for
every µ ∈ (0, 1). Since V is constant and by analytic dependence with respect
to µ, we have
�

Ω
Ŵµ(x)φj(Ω, V + uŴµ)(x)φk(Ω, V + uŴµ)(x) dx

=

�

Ω
Ŵµ(x)φj(Ω, uŴµ)(x)φk(Ω, uŴµ)(x) dx �= 0

for almost every µ ∈ (0, 1) and in particular for some µ arbitrarily small,

implying that �W belongs to the closure of Pn.
Let now V be non-constant. Let ω ⊂ Ω be as in the statement of Proposi-

tion 4.2, with V playing the role of Z.
Take a sequence (Wk)k∈N in W(Ω, V, U) such that Wk − �W belongs to

L∞(Ω,R) for every k and

lim
k→+∞

�V + uWk�L∞(ω,R) = 0, lim
k→+∞

ess inf
Ω\ω

(uWk) = +∞.

According to Lemma 5.1,

lim
k→+∞

φm(Ω, V + uWk) = φm(ω, 0), lim
k→+∞

�
V + uWkφm(Ω, V + uWk) = 0

in L2(Ω,C) for every m ∈ N, where φm(ω, 0) is identified with its extension
by zero on Ω \ ω. In particular, we have that

√
V φm(Ω, V + uWk) converges

in L2(Ω,C) as k tends to infinity to the extension by zero of
√
V φm(ω, 0) on

Ω \ ω. Hence,

lim
k→+∞

�

Ω
Wk(x)φl(Ω, V+uWk)(x)φl+1(Ω, V + uWk)(x) dx

= −
1

u

�

ω
V (x)φl(ω, 0)(x)φl+1(ω, 0)(x) dx �= 0,

for every l ∈ N. For a fixed n ∈ N, we can choose k̄ large enough so that
�

Ω
Wk̄(x)φl(Ω, V + uWk̄)(x)φl+1(Ω, V + uWk̄)(x) dx �= 0
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for l = 1, . . . , n− 1, in order to guarantee that Wk̄ ∈ Pn.
Using again Proposition 5.3, we deduce that there exists an analytic path

µ �→ Ŵµ from [0, 1] into L∞(Ω,R) such that Ŵ0 = 0, Ŵ1 = Wk̄ − �W and the

spectrum of −∆+ V + u�W + uŴµ is simple for every µ ∈ (0, 1). Therefore, by
analyticity, we get that

�

Ω
(�W (x)+Ŵµ(x))φl(Ω, V +u�W+uŴµ)(x)φl+1(Ω, V +u�W+uŴµ)(x)dx �= 0

for almost every µ ∈ (0, 1). Hence, �W belongs to the closure of Pn.

6. Conclusion

In this paper we proved that once (Ω, V ) or (Ω,W ) is fixed (with Ω a one-
dimensional domain andW non-constant), the bilinear Schrödinger equation on
Ω having V as uncontrolled andW as controlled potential is generically approx-
imately controllable with respect to the other element of the triple (Ω, V,W ).
This improves the results in [22], where a technical regularity assumption was
imposed on the potentials. It remains to prove that the regularity assumption
can be dropped also when Ω has dimension larger than one.
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1. Introduction

Let Ω = {(x, y, z) ∈ [−L,L]2 × [0, a] a < 1 � L} represent a uniform thin
plate of given thermal conductivity κ. We are modeling the following experi-
mental framework:

The half plane z > a is a forbidden aggressive environment, while z < 0 is
an accessible laboratory. We are able to heat the specimen Ω from below by
means of a controlled flux of density Φ0 generated by lamps or a laser device
and we are able to get temperature maps at z = 0 by means of an infrared
camera (TMC in Figure 1).

Small corrosion damages due to chemical or mechanical aggression may
appear on the upper inaccessible boundary of Ω. Since they are not accessible
to direct inspection, they must be identified through operations carried out
on the laboratory side. If the defect consists of a loss of matter (LOM), the
damaged domain is modeled by

Ω�θ = {(x, y, z) : (x, y) ∈ [−L,L]2, 0 ≤ z ≤ a− �θ(x, y)}.

We assume that the geometry of the damage is described by a continuous
function (x, y) → �θ(x, y). Here, � � a is a constant dimensional scale factor
while θ(x, y) ∈ [0, 1] is dimensionless.
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Figure 1: Sketch of the experimental setup

The temperature of the damaged domain solves the following Initial Bound-
ary Value Problem in DT = Ω�θ × (0, T ]:

ut = α∆u , (1)

κun(x, y, a− �θ(x, y), t) + ah(u(x, y, a− �θ(x, y), t)− U0) = 0 , (2)

−κuz(x, y, 0, t) = Φ , (3)

ux(−L, y, z, t) = ux(L, y, z, t) = 0 , y ∈ [−L,L], z ∈ [0, a], t ∈ (0, T ] , (4)

uy(x,−L, z, t) = uy(x, L, z, t) = 0 , x ∈ [−L,L], z ∈ [0, a], t ∈ (0, T ] (5)

and
u(x, y, z, 0) = U0 , (6)

for all (x, y, z) ∈ Ω�θ (U0 is a positive constant). Here, α is the thermal diffu-
sivity, ah is the heat transfer coefficient between the specimen and the upper
half-space (see for example [5] and [14]). The positive constant U0 is both
the initial temperature of the specimen and the temperature of the outern en-
vironment. The heat flux density Φ is taken constant in space and time for
simplicity. In what follows we will refer to (4) and (5) as to “adiabatic condi-
tions on the vertical sides”.

Direct model. If �θ is given and it is sufficiently smooth, the IBVP (1)-(6) is
well posed and it has a unique classical solution u� [12]. This notation stresses
the dependence of the solution on the damage. Hence, the solution u0 (cor-
responding to � = 0) is called the background temperature of the undamaged
specimen.

Inverse Problem. If �θ is not known, our goal is to identify it from the knowl-
edge of the thermal contrast G(x, y, t) = u�(x, y, 0, t) − u0(x, y, 0, t) measured
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from the laboratory side z = 0.

This method is called Active Thermography. Thermography is “Active”
when an external heat source (in our case, the heat flux Φ) stimulates the
specimen for inspection.

Bibliographic remark. See [10] for a complete reference book about ther-
mography. Amongst hundreds of research articles about thermal imaging, we
mention [3] because, in our knowledge, it is one of the oldest and [4] because
of the close relationship with the present paper. Since the mathematics of
stationary thermography is the same used in a class of electrostatic models in
nondestructive evaluation, we cite also [1, 7, 8] and references therein.

The idea of loss of matter used in (1)-(6) is very intuitive because LOM is
something real and, possibly, measurable in practice.

However, thermal effects of damages on the inaccessible surface can be
modeled also by means of perturbed boundary conditions. In this case, the
boundary is left unaltered so that the domain (and consequently the mesh in
numerical solution with finite elements!) is not dependent on the unknown �θ.

Here, we assume that �
a is small enough to use the idea of Domain Derivative

([4, 13]). The domain derivative of u� can be obtained by formal differentiation
as u� = du�

d� (� = 0) or derived by means of straightforward calculations as done
in [4]. The LOM model (1)-(6) in Ω�θ is turned into an Initial Boundary Value
Problem in the undamaged domain Ω for the scaled domain derivative w = �u�.
It is remarkable that the unknown damage �θ appears now in the top boundary
condition.

Furthermore, in subsection 2.1, we rescale z and transform it in the new
variable ζ = z

a . Since the temperature of the specimen reaches a stationary
regime for t → ∞, after a time interval Tα (inversely proportional to the
diffusivity α) we focus our attention on the following stationary BVP on the
parallelepiped [−L,L]2 × [0, 1] (see section 3):

a
2(wxx + wyy) + wζ,ζ = 0 , (7)

κwζ(x, y, 1) + a
2
hw(x, y, 1) = −a

2
�θ(x, y)h

Φ

k
, (8)

κwζ(x, y, 0) = 0 , (9)

with adiabatic conditions on the vertical sides.
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We expand w and θ in powers of a2 and plug them into the BVP above:
In this way we obtain a perturbative hierarchy of relations amongst their co-
efficients. This procedure is called Thin Plate Approximation and improves
what was done in [9] where perturbations of the heat transfer coefficient h were
identified.

In section 3, we derive the TPA formally in any order and implement the
following approximated inversion formula for the identification of the damage:

�θ(x, y) ≈ κ2

hΦ
(Gxx +Gyy)−

κ

Φ
G(x, y). (10)

We succesfully tested this formula using synthetic data. Any difficulties
arising from numerical differentiation of an approximately given function like
the thermal contrast G are handled by using local weighted regeression [6]. A
seminal paper about regularized numerical differentiation is [2].

2. Domain derivative

Domain derivative, introduced in [13], is a techinque for studying PDEs on
geometrically perturbed domains. In our case the domain derivative of u� is
the Gateaux derivative of u� in the direction θ taken for � = 0. This derivative
is a function u� that satisfies the heat equation in Ω with boundary conditions

κu
�
z(x, y, a, t) + ahu

�(x, y, a, t) = θ(x, y)

�
ahu

0
z(x, y, a, t) + κ

u0
t (x, y, a, t)

α

�

(derived in [4] in agreement with Theorem 3.2 in [13]),

κu
�
z(x, y, 0, t) = 0

and “adiabatic conditions on the vertical sides”.

Since we assume Φ constant (in t and (x, y)), the background solution is
constant in space variables and, for increasing t, it approaches a stationary
value that, after a suitable time interval Tα, is very close to the linear function
u0
stat(z) = U0 +

Φ
h + Φ

κ (a− z) (stationary background temperature).

2.1. Final form of the BVP: domain derivative and scaling

Since we have to recover �θ from the thermal contrast G(x, y, t) = u�(x, y, 0, t)−
u0(x, y, 0, t) ≈ �u�(x, 0, t), it is convenient to introduce the scaled function
w = �u�. Moreover, Thin Plate Approximation (see for example [9]) requires
the expansion of w in powers of a2. For this reason, we scale the variable
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z → ζ = z
a so that the domain becomes independent of a. Since wζ = wz

a we
have finally

a2

α
wt = a

2(wxx + wyy) + wζζ ,

κwζ(x, y, 1, t) + a
2
hw(x, y, 1, t) = �θ(x, y)

�
a
2
hu

0
z + aκ

u0
t (x, y, a, t)

α

�
,

κwζ(x, y, 0, t) = 0 ,

with adiabatic conditions on the vertical sides. Moreover, we have

w(x, y, 0, t) ≈ G(x, y, t).

3. Stationary model, Thin Plate Approximation of the
domain derivative

Here, we focus our attention to the stationary heat equation. In what follows,
we remove the time variable but, as a rule,we keep the same function names.
The stationary heat equation describes well the behavior of the temperature
in our model for t > Tα. Hence, we introduce a new function w that does not
depend on t and solve the elliptic BVP in [−L,L]2 × [0, 1]

a
2(wxx + wyy) + wζζ = 0 , (11)

κwζ(x, y, 1) + a
2
hw(x, y, 1) = �θ(x, y)a2hu0

z ,

κwy(x, y, 0) = 0 ,

with adiabatic conditions on the vertical sides. Moreover, we have

w(x, y, 0) ≈ G(x, y). (12)

Remark. The remainder R2(h, �) = maxx,y|u�(x, y, 0)−u0−w(x, y, 0)|measures
the precision of (12). In Figure 2 we plot R2(h, �) for � ∈ {.003, .005, .007} and
ah ∈ [20, 200] in the framework of the 2D example described in section 4.
Observe that the domain derivative is very close to thermal contrast not only
for small � (as obviously expected), but also for large values of the heat transfer
coefficient ah. We believe that the stabilizing role of increasing ah is related
to the instability expected when h goes to zero (it is well known that for h = 0
the IBVP (1)-(6) has no stationary solution).
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Figure 2: R2(h, �) measures how much the scaled domain derivative for ζ = 0
is a good approximation of the thermal contrast.

3.1. Thin Plate Approximation

Plugging the formal expansions

w = w0 + a
2
w1 +O(a4) , (13)

θ = θ0 + a
2
θ1 +O(a4) (14)

in the BVP, we obtain a hierarchy of relations amongst coefficients which allows
us to derive an approximate formula for the unknown �θ.

Zeroth order relations give w0ζ(x, y, 1) = w0ζ(x, y, 0) = w0ζζ(x, y, ζ) = 0 so
that w0 is actually independent on ζ. Hence, we set w0(x, y, ζ) ≡ w0(x, y) ≈
u�(x, y, 0)− u0(x, y, 0) as suggested by Figure 2.
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First order relations are

w0xx + w0yy + w1ζζ = 0 ,

κw1ζ(x, y, 1) + hw0(x, y, 1) = −�θ
0(x, y)

Φ

κ
,

κw1ζ(x, y, 0) = 0 ,

so that (from the fundamental theorem of calculus)

−hw0(x, y)− �θ
0(x, y)

Φ

κ
= −κ(w0xx(x, y) + w0yy(x, y)) .

Hence, we have the following approximation of the boundary damage

�θ0(x, y) =
κ2

hΦ0
(w0xx(x, y) + w0yy(x, y))−

κ

Φ
w0(x, y).

3.2. The complete hierachic scheme in 2D

We can iterate the perturbative step just described. For simplicity we limit
ourselves to the 2D model in the variables (x, ζ). We have

w0xx + w1ζζ = 0,

so that it is easy to see that

w1(x, ζ) = −w0xx(x)
ζ2

2
.

Since for all n ≥ 1 we have

wnxx + wn+1ζζ = 0,

we obtain wn(x, ζ) =
d2nw0(x)

dx2n (−1)n ζ2n

(2n)! .
Hence, the coefficients of the expansion of θ are derived plugging expansions

(13), (14) in the BVP (11). We have

�θn(x) = (−1)(n+1) κ
2

hΦ

d2nw0

dx2n
(x)

1

(2n− 1)!

+ (−1)n
κ

Φ0

d2(n−1)w0

dx2(n−1)
(x)

1

2(n− 1)!
. (15)

Since z = aζ, the formal expansion in (13) becomes

w(x, z) =
∞�

n=0

d2nw0(x)

dx2n
(−1)n

z2n

(2n)!
.
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For x fixed in [−L,L], this is a power series in z that converges uniformly in

[−a, a] if, for a positive real number δ, S =
�∞

n=0
d2nw0
dx2n

(a+δ)2n

(2n)! < ∞. Although

the Neumann condition wz(x, 0) = 0 allows us to prove the analiticity of w(x, 0),
we do not know anything about the convergence of S. In agreement with [11]
we must be content of convergence in a smaller interval. It is not a big drawback
as long as we keep the formal character of our result.

4. Recovering surface damages using formal TPA. A
numerical example.

In our numerical experiment, we fix the following geometrical and physical pa-
rameters. The values L = −.5 m, a = .05 m, � = .005 m, θ = e−90x2

define
the domain Ω�θ in R2. As for the conducting material we have κ = 100 W

m K

and α = 10−4 m2

s while the heat exchange coefficient is ah = 100 W
m2 K . The

controlled heat flux is Φ = 1000 W
m2 .

Here we limit ourselves to the second order formal approximation and show
some numerical result. The formula comes directly from (15):

�θ ≈ κ2

hΦ

d2G

dx2
− κ

Φ
G(x) + a

2(− κ2

3!hΦ

d4G

dx4
+

κ

2!Φ

d2G

dx2
)

+ a
4(

κ2

5!hΦ

d6G

dx6
− κ

4!Φ

d4G

dx4
) . (16)

We produce syntetic data of thermal contrast by solving numerically the
IBVP (1)-(6). If t > Tα, we assume that the thermal contrast is the stationary
difference G(x) ≈ u�(x, 0, t)− U0 − ( aκ + 1

h )Φ.

Formula (16) gives a good approximation of �θ: In Figure 3a we show what
we obtained by means of (16) when w(x, 0) = u�(x, 0)− u0(x, 0). Convergence
at orders > 2 seems to be slow in the neigborhood of x = 0 (maximum of
the damage size). In Figure 3b it is w(x, 0) = u�(x, 0) − u0(x, 0) + R2(h, �).
Although the contrast is now affected by noise, TPA still indentify the damage.

We remark that temperature maps at z = 0 allow us to localize the inac-
cessible defect. On the other hand, our goal is to evaluate the health of the
specimen. For this reason, we could consider acceptable also the 3D estimate of
zeroth order that gives a precise evaluation of the scale parameter � (Figure 4).
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(a)

(b)

Figure 3: (a) When the thermal contrast is equal to the Domain Derivative
(R2(h, �) = 0), the unknown defect (bold line) is well approximated by the
zeroth order TPA (dashed). The reconstruction is improved using the first order
TPA (full thin line). The correction due to the second order term (the pointed
line overlaps the first order line) seems to be neglectable. (b)Here the TPA is
constructed from the thermal contrast (that is w0(x) = w(x, 0)+R2(h, �)). It is
equivalent to using noisy data. TPA gives anyhow a quite good approximation
of the defect. When further noise added, some regularization is required.
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(a) (b)

(c)

Figure 4: (a) Temperature map on the accessibile side: there is a damage
spread around the origin of axes. It seems a regular gaussian hole. This image
gives an idea of the diameter but we have no information about its depth �.
(b) Level sets of the damage as reconstructed in (10). The damaged area is
clearly revealed. (c) Section y = 0 of the damage (full line) compared to the
reconstruction mapped in Figure 4b. The depth is fully identified by (10).

5. Conclusions

We derive here an explicit formal inversion rule for recovering an unknown sur-
face damage from uncomplete thermal data. Our formula is based on the Thin
Plate Approximation of the Direct Model. Numerical results are encouraging,
but much work is still required: in particular, regularization of numerical dif-
ferentiation and Cauchy problem for Laplace’s equation are expected in the
perspective of using real data.
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Abstract. We study the inverse conductivity problem with discontin-
uous conductivities. We consider, simultaneously, a regularisation and
a discretisation for a variational approach to solve the inverse problem.
We show that, under suitable choices of the regularisation and discreti-
sation parameters, the discrete regularised solutions converge, as the
noise level on the measurements goes to zero, to the looked for solution
of the inverse problem.
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1. Introduction

In this paper we consider the inverse conductivity problem with discontinuous
conductivity. For a given conducting body contained in a bounded domain
Ω ⊂ RN , N ≥ 2, we call X the space of admissible conductivities, or better
conductivity tensors, in Ω. For any σ ∈ X, we call Λ(σ) either the Dirichlet-
to-Neumann map, or the Neumann-to-Dirichlet map, corresponding to σ. It
is a well-known fact that Λ(σ) is a bounded linear operator between suitable
Banach spaces defined on the boundary of Ω, and we call Y the space of these
bounded linear operators. The forward operator Λ : X → Y is the one that to
each σ ∈ X associates Λ(σ) ∈ Y .

The aim of the inverse problem is to determine an unknown conductivity
in Ω by performing suitable electrostatic measurements of current and voltage
type on the boundary. If σ0 is the conductivity we aim to recover by solving
our inverse problem, then we measure its corresponding Λ(σ0) ∈ Y . Due to the
noise that is present in the measurements, actually the information that we are
able to collect is Λ̂ ∈ Y , which is a perturbation of Λ(σ0). We call �Λ̂−Λ(σ0)�Y
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the noise level of the measurements and we notice that the choice of the space
Y corresponds to the way we measure the errors in our measurements.

The inverse problem may be stated, at least formally, in the following way.
Given our measurements Λ̂, we wish to find σ ∈ X such that

Λ(σ) = Λ̂. (1)

Due to the noise, such a problem may not have any solution, therefore we better
consider a least-square formulation

min
σ∈X

�Λ(σ)− Λ̂�Y . (2)

Unfortunately, the inverse conductivity problem is ill-posed, therefore to solve
(2) numerically, a regularisation strategy need to be implemented. Considering
a regularisation à la Tikhonov, this means to choose a regularisation operator
R, usually a norm or a seminorm, and a regularisation parameter a and solve

min
σ∈X

�Λ(σ)− Λ̂�Y + aR(σ). (3)

A solution to (3) is called a regularised solution. A good regularisation op-
erator need to satisfy the following two criteria. First of all, it should make
the minimisation process stable from a numerical point of view. Second, the
regularised solution should be a good approximation of the looked for solution
of the inverse problem.

For the nonsmooth case, often this second requirement is not proved an-
alytically but rather it is (not rigorously) justified by numerical tests only.
However, a convergence analysis, using techniques inspired by variational con-
vergences such as Γ-convergence, allows to rigorously justify the choice of the
regularisation operator, [38]. For the inverse conductivity problem with dis-
continuous conductivity, by this technique, in the same paper [38], the use of
some of the usually employed regularisation methods was rigorously justified.
For instance, a convergence analysis was developed for regularisations such as
the total variation penalisation or the Mumford-Shah functional. Several other
works followed this approach, for instance it was extended to smoothness or
sparsity penalty regularisations for the inverse conductivity problem in [28],
whereas in [27] the analysis for the Mumford-Shah functional was slightly re-
fined and applied to other inverse problems.

Once the regularisation operator is chosen, and proved to be effective, the
issue of the numerical approximation for the regularised problem comes into
play. One of the key points of the numerical approximation is represented by
the discretisation of the regularised minimum problem. Again, two issues come
forward. The first one is the choice of the kind of space of discrete unknowns we
intend to use. The second important issue is how fine the discretization should
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be. A compromise is necessary between a better resolution (finer discretization)
and a more stable reconstruction (coarser discretization). Again, the discrete
regularised solution, that is, the solution to the regularised problem (3) with
σ varying in such a discrete subset, should be a good approximation of the
solution of the inverse problem. Actually, for inverse problems, this may not
be necessarily so, as an example in [36] shows. Therefore, studying the effect
of the discretisation when solving an inverse problem is not at all an easy task.
This fundamental and nontrivial issue went rather unlooked, at least for the
inverse conductivity problem and other classical inverse problems dealing with
nonsmooth unknowns.

The crucial point we wish to address here is the following. We want to
simultaneously fix both the regularisation parameter and the discretisation
parameter, in correspondence to the given noise level, such that the discrete
regularised solutions converge, as the noise level goes to zero, to the solution
of the inverse problem. Previously, only the analysis of the approximation of
the regularised problem with discrete ones, with a fixed regularisation param-
eter, was performed. For instance, a nice finite element approximation for the
inverse conductivity problem, with the total variation as regularisation, may
be found in [23]. In [40], instead, it was proved that the regularised inverse
conductivity problem, with the Mumford-Shah as a regularisation term, could
be well approximated by replacing the Mumford-Shah with its approximating
Ambrosio-Tortorelli functionals developed in [6, 7]. Here the approximating pa-
rameter for the Ambrosio-Tortorelli functionals may be seen as another version
of the discretisation parameter.

Actually, the first attempt to vary, in a suitable way, the regularisation
and discretisation parameters simultaneously, may be found in a Master the-
sis supervised by the author, [14]. There the Ambrosio-Tortorelli functionals
were considered, and their approximating parameter and the regularisation pa-
rameter were chosen accordingly to the noise level to guarantee the required
convergence of this type of regularised solutions. For the convenience of the
reader, we present a brief summary of this result in Subsection 3.2 of the present
paper.

The main result of the paper, Theorems 3.5 and 3.6, is contained in Subsec-
tion 3.1. We consider the inverse conductivity problem and its regularisation
by a total variation penalisation. We consider a discrete subset of admissible
conductivities which is simply given by standard conforming piecewise linear
finite elements over a regular triangulation. The triangulation is characterised
by a discretisation parameter h, which is an upper bound for the diameter of
any simplex forming the triangulation.

We show that, if we choose the regularisation parameter a and the discreti-
sation parameter h according to the noise level, then the discrete regularised
solution would converge to a solution of the inverse problem. An interesting
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feature of this result is that it shows that the discretisation parameter should
go to zero in a polynomial way with respect to the noise level.

We remark that in this paper we limit ourselves to a very simple scenario
but we believe that this is just a first step to tackle a full discretisation of the
inverse conductivity problem, in a more general setting as well. This will be
the object of future work.

It would also be very interesting to address the issue of convergence esti-
mates. In the smooth case they may be obtained by using Tikhonov regularisa-
tion for nonlinear operators, see for instance [20]. Actually, for the inverse con-
ductivity problem in the smooth case, some convergence estimates are available
for the regularised solutions, without adding the discretisation, see for instance
[31] and [28]. We notice that our technique involves Γ-convergence, which is of
a qualitative nature thus does not lead easily to convergence estimates.

Finally we wish to mention that, for discrete sets of unknowns, that is, un-
knowns depending on a finite number of parameters, the usual ill-posedness of
these kinds of inverse problems considerably reduces. In fact, Lipschitz stabil-
ity estimates may be obtained instead of the classical logarithmic ones. Such
an important line of research was initiated in [3] and pursued in several other
paper (let us mention the recent one [2] which is the closest to the setting we
use in this paper). Unfortunately, the behaviour of the Lipschitz constant as
the discretisation parameter approaches zero is extremely bad, as it explodes
exponentially with respect to h, a fact firstly noted in [37]. This fact seems to
prevent the use of these kinds of estimates at the discrete level to prove con-
vergence estimate, or even just convergence, of discrete regularised solutions.

The plan of the paper is the following. In Section 2, besides fixing the
notation and stating the inverse conductivity problem, we present a rather
complete introduction to the regularisation issue for this inverse problem. Most
of the material here is not new, a part from a few instances that we point out
in a while, but our aim is to present a self-contained review to this line of
research that is scattered in several papers. We begin with uniqueness results
for scalar conductivities, that is, for the isotropic case, and nonuniqueness for
symmetric conductivity tensors, that is, for the anisotropic case, Subsection 2.1.
We recall that nonuniqueness is due to the invariance of the boundary operators
by smooth changes of variables of the domain Ω that keep fixed the boundary.

In Subsection 2.2, we study the existence of a solution to (1). This part
is mostly from [39]. We show that existence is true in the anisotropic case,
whereas it may fail in the isotropic case, see Example 2.5. We notice that
Example 2.5 appeared in a Master thesis supervised by the author, [18], and
it is a slight generalisation of a similar example in [39]. The crucial ingredient
for both is a nice construction due to Giovanni that may be found in [39,
Example 4.4]. Even if existence of (1) is guaranteed, the ill-posedness nature
of this inverse problem implies that minimiser to (1) may fail to converge to the
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looked for solution to the inverse problem, as the noise level goes to zero. This
is shown in three different examples, Examples 2.8, 2.10 and 2.11. Example 2.8
shows how nonuniqueness in the anisotropic case leads to instability, see also
Proposition 2.9 which is taken from [22] for a corresponding partial stability
result. Examples 2.10 and 2.11 deal with the isotropic case. The latter is new
and slightly improves the former, which is taken from [1].

In Subsection 2.3, we recall the approach to regularisation for inverse prob-
lems with nonsmooth unknowns, and in particular for the inverse conductivity
problem with discontinuous conductivities, that was developed in [38].

Section 3 is the main of the paper. We investigate simultaneous numerical
approximation and regularisation for the inverse conductivity problem with
discontinuous conductivities. In Subsection 3.1, we present our main result, the
convergence analysis of the discretisation by the finite element method coupled
with a total variation regularisation. Finally, in Subsection 3.2, we present
the result of [14], that is, the convergence analysis for the regularisation by
Ambrosio-Tortorelli functionals.

2. Statement of the inverse problem, preliminary
considerations, and previous results

Throughout the paper we shall keep fixed positive constants λ0, λ1, and λ̃1,
with 0 < λ0 ≤ λ1, λ̃1. The integer N ≥ 2 will always denote the space dimen-
sion and we recall that we shall usually drop the dependence of any constant
on N . For any Borel set E ⊂ RN , we denote with |E| its Lebesgue measure,
whereas HN−1(E) denotes its (N − 1)-dimensional Hausdorff measure.

Throughout the paper we also fix Ω, a bounded connected open set con-
tained in RN , N ≥ 2. We assume that Ω has a Lipschitz boundary in the
following usual sense. For any x ∈ ∂Ω there exist r > 0 and a Lipschitz
function ϕ : RN−1 → R such that, up to a rigid change of coordinates, we have

Ω ∩Br(x) = {y = (y1, . . . , yN−1, yN ) ∈ Br(x) : yN < ϕ(y1, . . . , yN−1)}.

We call MN×N (R) the space of real valued N × N matrices. For any σ ∈

MN×N (R), with N ≥ 2, several equivalent ellipticity conditions may be used.
For example �

σξ · ξ ≥ λ0�ξ�
2 for any ξ ∈ RN

σ
−1

ξ · ξ ≥ λ
−1
1 �ξ�2 for any ξ ∈ RN

.
(4)

Otherwise we can use
�

σξ · ξ ≥ λ0�ξ�
2 for any ξ ∈ RN

�σ� ≤ λ̃1
(5)
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where �σ� denotes its norm as a linear operator of RN into itself.
The following remark shows that these two conditions are equivalent. If σ

satisfies (4) with constants λ0 and λ1, then it also satisfies (5) with constants λ0

and λ̃1 = λ1. If σ satisfies (5) with constants λ0 and λ̃1, then it also satisfies (4)
with constants λ0 and λ1 = λ̃

2
1/λ0. If σ is symmetric then, picking λ̃1 = λ1,

(4) and (5) are exactly equivalent and coincide with the condition

λ0�ξ�
2
≤ σξ · ξ ≤ λ1�ξ�

2 for any ξ ∈ RN
,

that we write in short as follows

λ0IN ≤ σ ≤ λ1IN ,

where IN is the N ×N identity matrix. Finally, if σ = sIN , where s is a real
number, the condition simply reduces to

λ0 ≤ s ≤ λ1.

We use the following classes of conductivity tensors in Ω. For positive
constants λ0 ≤ λ1 we call M(λ0,λ1) the set of σ = σ(x), x ∈ Ω, an N × N

matrix whose entries are real valued measurable functions in Ω, such that,
for almost any x ∈ Ω, σ(x) satisfies (4). We call Msym(λ0,λ1), respectively
Mscal(λ0,λ1), the set of σ ∈ M(λ0,λ1) such that, for almost any x ∈ Ω, σ(x) is
symmetric, respectively σ(x) = s(x)IN with s(x) a real number. We say that σ
is a conductivity tensor in Ω if σ ∈ M(λ0,λ1) for some constants 0 < λ0 ≤ λ1.
We call M the class of conductivity tensors in Ω. We say that σ is a symmetric
conductivity tensor in Ω if σ ∈ M and σ(x) is symmetric for almost any x ∈ Ω.
We call Msym the class of conductivity tensors in Ω. We say that σ is a scalar
conductivity in Ω if σ ∈ M and σ(x) = s(x)IN , with s(x) ∈ R, for almost any
x ∈ Ω. We call Mscal the class of scalar conductivities in Ω.

Since M ⊂ L
∞(Ω,MN×N (R)), we may measure the distance between any

two conductivity tensors σ1 and σ2 in Ω with an L
p metric, for any p, 1 ≤ p ≤

+∞, as follows
�σ1 − σ2�Lp(Ω) = �(�σ1 − σ2�)�Lp(Ω).

With any of these Lp metrics, any of the classes M(λ0,λ1), Msym(λ0,λ1), and
Mscal(λ0,λ1) is a complete metric space.

For any p, 1 ≤ p ≤ +∞, we denote with p
� its conjugate exponent, that

is 1/p + 1/p� = 1. For any p, 1 < p < +∞, we call W
1−1/p,p(∂Ω) the

space of traces of W 1,p(Ω) functions on ∂Ω. We recall that W
1−1/p,p(∂Ω) ⊂

L
p(∂Ω), with compact immersion. For simplicity, we denoteH1(Ω) = W

1,2(Ω),
H

1/2(∂Ω) = W
1/2,2(∂Ω) and H

−1/2(∂Ω) its dual.
We call L2

∗(∂Ω) the subspace of functions f ∈ L
2(∂Ω) such that

�
∂Ω f = 0.

We set H−1/2
∗ (∂Ω) the subspace of g ∈ H

−1/2(∂Ω) such that

�g, 1�(H−1/2(∂Ω),H1/2(∂Ω)) = 0.
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We recall that L
2
∗(∂Ω) ⊂ H

−1/2
∗ (∂Ω), with compact immersion, if for any

g ∈ L
2
∗(∂Ω) and any ψ ∈ H

1/2(∂Ω) we define

�g,ψ�(H−1/2(∂Ω),H1/2(∂Ω)) =

�

∂Ω
gψ. (6)

Analogously, H1/2
∗ (∂Ω) is the subspace of ψ ∈ H

1/2(∂Ω) such that
�
∂Ω ψ = 0.

We have H
1/2
∗ (∂Ω) ⊂ L

2
∗(∂Ω), with compact immersion.

For any two Banach spaces B1, B2, L(B1, B2) will denote the Banach space
of bounded linear operators from B1 to B2 with the usual operator norm.

2.1. Statement of the problem and uniqueness results

For any conductivity tensor σ in Ω, we define its Dirichlet-to-Neumann map
DN(σ) : H1/2(∂Ω) → H

−1/2(∂Ω) where for each ϕ ∈ H
1/2(∂Ω),

DN(σ)(ϕ)[ψ] =

�

Ω
σ∇u ·∇ψ̃ for any ψ ∈ H

1/2(∂Ω)

where u solves �
div(σ∇u) = 0 in Ω
u = ϕ on ∂Ω

(7)

and ψ̃ ∈ H
1(Ω) is such that ψ̃ = ψ on ∂Ω in the trace sense. We have that

DN(σ) is a well-defined bounded linear operator, whose norm is bounded by
a constant depending on N , Ω, λ0, and λ1 only, for any σ ∈ M(λ0,λ1). Let

us notice that, actually, we have DN(σ) : H1/2(∂Ω) → H
−1/2
∗ (∂Ω). More-

over, since for any constant function ϕ on Ω we have that ϕ ∈ H
1/2(Ω) and

DN(σ)(ϕ) = 0, no matter what σ is, without loss of generality, we actually
define

DN(σ) : H1/2
∗ (∂Ω) → H

−1/2
∗ (∂Ω). (8)

For any conductivity tensor σ in Ω, we define its Neumann-to-Dirichlet map

ND(σ) : H−1/2
∗ (∂Ω) → H

1/2
∗ (∂Ω)

where for each g ∈ H
−1/2
∗ (∂Ω),

ND(σ)(g) = v|∂Ω

where v solves 




div(σ∇v) = 0 in Ω

σ∇v · ν = g on ∂Ω�
∂Ω v = 0.

(9)
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We have that ND(σ) is a well-defined bounded linear operator, it is the inverse
of DN(σ) as defined in (8), and its norm is bounded by a constant depending
on N , Ω, and λ0 only, for any σ ∈ M(λ0,λ1).

We consider the following forward operators

DN : M(λ0,λ1) → L(H1/2
∗ (∂Ω), H−1/2

∗ (∂Ω))

and
ND : M(λ0,λ1) → L(H−1/2

∗ (∂Ω), H1/2
∗ (∂Ω)).

We can state the inverse conductivity problem in the following way. We wish
to determine an unknown conductivity tensor σ in Ω by performing electrostatic
measurements at the boundary of voltage and current type. If all boundary
measurements are performed, this is equivalent to say that we are measuring
either its Dirichlet-to-Neumann map DN(σ) or its Neumann-to-Dirichlet map
ND(σ). In other words, given either DN(σ) or ND(σ), we wish to recover σ.

Such an inverse problem has a long history, it was in fact proposed by
Calderón [11] in 1980. About uniqueness, there are several result for scalar,
that is isotropic, conductivities. In dimension 3 and higher, already in the 80’s,
uniqueness was proved in [29, 30] for the determination of the conductivity at
the boundary and for the analytic case, and then in [42] for C2 conductivities.
Slightly later it appeared the first uniqueness result for smooth conductivities
in dimension 2, [35].

Recently, the two dimensional case was completely solved, [8], for L∞ scalar
conductivities. Also for the N dimensional case, with N ≥ 3, there has been a
great improvement. In [26], the regularity has been reduced to C

1 or Lipschitz
but close to a constant. The case of general Lipschitz conductivities is treated
in [12]. The most general result is the one in [25], where conductivities with un-
bounded gradient are allowed and uniqueness is shown for W 1,N conductivities,
at least for N = 3, 4.

For what concerns anisotropic conductivities, for instance when we consider
symmetric conductivity tensors in Msym, uniqueness is never achieved. In fact,
let ϕ : Ω → Ω be a bi-Lipschitz mapping, that is a bijective map such that
ϕ and its inverse ϕ

−1 are Lipschitz functions. Clearly ϕ can be extended to
a Lipschitz function defined on Ω. For any σ ∈ Msym in Ω and any of these
bi-Lipschitz mapping ϕ from Ω onto itself, we define the push-forward of the
conductivity tensor σ by ϕ as

ϕ∗(σ)(y) =
J(x)σ(x)J(x)T

| det J(x)|
for almost any y ∈ Ω (10)

where J(x) = Jϕ(x) is the Jacobian matrix of ϕ in x and x = ϕ
−1(y). We

have that ϕ∗(σ) ∈ Msym and that

DN(σ) = DN(ϕ∗(σ)) and ND(σ) = ND(ϕ∗(σ)) if ϕ|∂Ω = Id. (11)
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In dimension N = 2 and for Ω simply connected, (10) and (11) still hold even
if we consider ϕ : Ω → Ω to be a quasiconformal mapping. We recall that, for
Ω ⊂ R2, simply connected bounded open set with Lipschitz boundary, we say
that ϕ : Ω → Ω is a quasiconformal mapping if ϕ is bijective, ϕ ∈ W

1,2(Ω),
and, for some K ≥ 1, we have

�Jϕ(x)�2 ≤ K det(Jϕ(x)) for a.e. x ∈ Ω.

By (11), it is immediate to notice that our inverse problem can not have a
unique solution if we consider symmetric conductivity tensors. On the other
hand, in dimension 2, this is the only obstruction to uniqueness for symmetric
conductivity tensors, as proved in [41] in the smooth case and in [9] in the
general L∞ case.

We summarise these results in the following theorem.

Theorem 2.1. Let Ω ⊂ RN , N = 2, 3, 4, be a bounded, connected domain with
Lipschitz boundary. Let σ1 and σ2 belong to Mscal.

If N = 3, 4 and σ1, σ2 ∈ W
1,N (Ω), then we have, see [25],

DN(σ1) = DN(σ2) or ND(σ1) = ND(σ2) implies σ1 = σ2.

If N = 2 and Ω is simply connected, then we have, see [8],

DN(σ1) = DN(σ2) or ND(σ1) = ND(σ2) implies σ1 = σ2.

If N = 2 and Ω is simply connected, for any σ ∈ Msym we define

Σ(σ) = {σ1 ∈ Msym : σ1 = ϕ∗(σ)

where ϕ : Ω → Ω is a quasiconformal mapping and ϕ|∂Ω = Id}.

Then DN(σ), or equivalently ND(σ), uniquely determines the class Σ(σ),
see [9].

2.2. Variational formulation and ill-posedness

In practice, the inverse problem consists in the following. Let σ0 be a con-
ductivity tensor in Ω that we wish to determine. Considering for example the
Dirichlet-to-Neumann case, we measure DN(σ0). Since our measurements are
obviously noisy, the information that is actually available is a perturbation of
DN(σ0), that we may call Λ̂. Therefore our inverse problem consists in finding
a conductivity σ such that DN(σ) = Λ̂. Due to the noise in the measurements
this problem may not have any solution. We should therefore solve the problem
in a least-square-type way, namely solve

min
σ

�DN(σ)− Λ̂�.
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The fact that such a minimum problem admits a solution depends on several
aspects. In particular it depends on the class of conductivity tensors on which
we consider the minimisation and, in part, also on the kind of norm we use to
measure the distance between DN(σ) and Λ̂. Next we discuss in details these
issues.

Occasionally, we shall use the so-called H-convergence. For a definition and
its basic properties we refer to [4, 34, 33]. We recall that G- or H-convergence
was shown to be quite useful for the inverse conductivity problem, see for
instance [1, 22, 39]. Here we just remark a few of its properties. This is
a very weak kind of convergence, in fact it is weaker than L

1
loc

convergence.
For symmetric conductivity tensors H-convergence reduces to the more usual
G-convergence. The most important fact is that M(λ0,λ1) is compact with
respect to H-convergence and Msym(λ0,λ1) is also compact with respect to
H-convergence, or equivalently G-convergence. Furthermore, Mscal(λ0,λ1) is
not closed with respect to G-convergence, actually any symmetric conductivity
tensor is the limit, in the G-convergence sense, of scalar conductivities assuming
only two different positive values.

We use the following notation. Let B1 and B2 be two Banach spaces such

that B1 ⊂ H
1/2
∗ (∂Ω) andH

−1/2
∗ (∂Ω) ⊂ B2, with continuous immersions. More-

over, let B̃1 and B̃2 be two Banach spaces such that B̃1 ⊂ H
−1/2
∗ (∂Ω) and

H
1/2
∗ (∂Ω) ⊂ B̃2, with continuous immersions.
We denote with X the space M(λ0,λ1), Msym(λ0,λ1), or Mscal(λ0,λ1).

The natural metric on X will be the one induced by the L
1 metric.

In the Dirichlet-to-Neumann case, we call Y = L(B1, B2), with the distance
induced by its norm, and denote Λ = DN : X → Y .

We speak of the natural norm of the Dirichlet-to-Neumann map when B1 =

H
1/2
∗ (∂Ω) and B2 = H

−1/2
∗ (∂Ω) and we denote it with � ·�nat or � ·�H1/2,H−1/2 .

We have a canonical continuous linear map from L(H1/2
∗ (∂Ω), H−1/2

∗ (∂Ω)) into

Y . If we assume that B1 is dense in H
1/2
∗ (∂Ω), then this map is injective, thus

L(H1/2
∗ (∂Ω), H−1/2

∗ (∂Ω)) ⊂ Y , with continuous immersion, and, if y ∈ Y is

such that �y�Y = 0, then y ∈ L(H1/2
∗ (∂Ω), H−1/2

∗ (∂Ω)) and also �y�nat = 0.
In the Neumann-to-Dirichlet case, we call Y = L(B̃1, B̃2), with the distance

induced by its norm, and denote Λ = ND : X → Y .
We speak of the natural norm of the Neumann-to-Dirichlet map when B̃1 =

H
−1/2
∗ (∂Ω) and B̃2 = H

1/2
∗ (∂Ω) and we denote it with � ·�nat or � ·�H−1/2,H1/2 .

We have a canonical continuous linear map from L(H−1/2
∗ (∂Ω), H1/2

∗ (∂Ω)) into

Y . If we assume that B̃1 is dense in H
−1/2
∗ (∂Ω), then this map is injective, thus

L(H−1/2
∗ (∂Ω), H1/2

∗ (∂Ω)) ⊂ Y , with continuous immersion, and, if if y ∈ Y is

such that �y�Y = 0, then y ∈ L(H−1/2
∗ (∂Ω), H1/2

∗ (∂Ω)) and also �y�nat = 0.
Another interesting and useful choice for B̃1 and B̃2 is given by B̃1 = B̃2 =
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L
2
∗(∂Ω), see the discussion in [39], and we denote its norm with � · �L2,L2 . We

remark that L2
∗(∂Ω) is clearly dense in H

−1/2
∗ (∂Ω).

Let us notice in the following remark that, when we consider the natu-
ral norms, then all results related to the Dirichlet-to-Neumann maps may be
proved also for the Neumann-to-Dirichlet maps, and viceversa.

Remark 2.2. Let σ1, σ2 ∈ M(λ0,λ1). Then there exist positive constants C1

and C2, depending on N , Ω, λ0, and λ1 only, such that

C1�ND(σ1)−ND(σ2)�H−1/2,H1/2 ≤ �DN(σ1)−DN(σ2)�H1/2,H−1/2

≤ C2�ND(σ1)−ND(σ2)�H−1/2,H1/2 .

In fact, we have

DN(σ1)−DN(σ2) = DN(σ1)(ND(σ2)−ND(σ1))DN(σ2)

and the same formula holds if we swap DN with ND.

If we call Λ̂ ∈ Y either the measured Dirichlet-to-Neumann map or the mea-
sured Neumann-to-Dirichlet map, then the inverse problem consists in finding
σ ∈ X such that Λ(σ) = Λ̂. However, since Λ̂ is a measured, therefore noisy,
quantity, this problem may not have any solution and we thus solve the problem
in a least-square-type way, namely solve

min{�Λ(σ)− Λ̂�Y : σ ∈ X}. (12)

Such a problem always admits a solution either if X = M(λ0,λ1) or if
X = Msym(λ0,λ1). In fact the following is proved in [39].

Proposition 2.3. Under the previous notation and assumptions, let us con-
sider a sequence of conductivity tensors {σn}n∈N ⊂ M(λ0,λ1) and a conduc-
tivity tensor σ in the same set.

If, as n → ∞, σn converges to σ strongly in L
1
loc

or in the H-convergence
sense, then

�Λ̂− Λ(σ)�Y ≤ lim inf
n

�Λ̂− Λ(σn)�Y .

If X is equal to M(λ0,λ1) or to Msym(λ0,λ1), by compactness of X with
respect to H-convergence, we deduce that (12) admits a solution.

On the other hand, if X is equal to Mscal(λ0,λ1) then (12) may fail to have
a solution as we shall see later on in Example 2.5.

We notice that Proposition 2.3 contains a lower semicontinuity result. For
certain application, instead, continuity is needed. For our purposes it will be
enough the following result, proved in [1].
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Proposition 2.4. Under the previous notation and assumptions, let us con-
sider a sequence of symmetric conductivity tensors {σn}n∈N ⊂ Msym(λ0,λ1)
and a conductivity tensor σ in the same set. We assume that for some Ω�

compactly contained in Ω we have σn = σ almost everywhere in Ω\Ω� for any
n ∈ N.

If, as n → ∞, σn converges to σ strongly in L
1
loc

or in the G-convergence
sense, then

lim
n

�Λ(σ)− Λ(σn)�nat = 0

as well as in � · �Y for any Y as above.

We notice that a certain control of the conductivity tensors near the bound-
ary is indeed needed, see [22, Theorem 4.9]. In the same paper a more general
and essentially optimal version of Proposition 2.4 is proved, see [22, Theo-
rem 1.1].

Proposition 2.4 is enough to show that (12) may fail to have a solution if
X = Mscal(λ0,λ1). We slightly generalise [39, Example 3.4], which is based
on a nice remark by Giovanni, which is presented in [39] as Example 4.4. This
generalisation shows that existence may fail for both the Dirichlet-to-Neumann
and Neumann-to-Dirichlet case and for the natural norms, as well as for any

� ·�Y with Y as above, if B1 is dense in H
1/2
∗ (∂Ω) or B̃1 is dense in H

−1/2
∗ (∂Ω),

respectively. It firstly appeared in [18], and we present its proof here for the
convenience of the reader.

Example 2.5. Let Ω = B1(0) ⊂ R2. Under the previous notation and assump-

tions, let us assume that B1 is dense in H
1/2
∗ (∂Ω) or B̃1 is dense in H

−1/2
∗ (∂Ω),

respectively.
Let a > 0 be a positive constant with a �= 1. We define the conductivity

tensor σ̃ ∈ Msym(λ0,λ1)\Mscal(λ0,λ1) in B1(0) ⊂ R2 as follows

σ̃ =






I2 in B1(0)\B1/2(0)
�
a 0
0 a

−1

�
in B1/2(0).

(13)

Let us set Λ̂ = Λ(σ̃). There exist 0 < λ0 < λ1 such that the minimum
problem

min
σ∈Mscal(λ0,λ1)

�Λ(σ̃)− Λ(σ)�Y

does not have any solution, for any Y as above, thus including the natural
norms.

Proof. The crucial point is the following. By density of scalar conductivities
inside symmetric conductivity tensors that follows by the results in [33], see
[39, Proposition 2.2] for a convenient version, we can find 0 < λ0 < λ1 and
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{σn}n∈N ⊂ Mscal(λ0,λ1) such that σn G-converges to σ̃ as n → ∞ and σn = I2

in B1(0)\B1/2(0) for any n ∈ N. Therefore, by Proposition 2.4, we immediately
conclude that

inf
σ∈Mscal(λ0,λ1)

�Λ(σ̃)− Λ(σ)�Y = 0.

In order for a minimiser to exist, then we need to find a scalar conductivity
σ̂ such that �Λ(σ̂) − Λ(σ̃)�Y = 0, hence, by our density assumptions, such
that Λ(σ̂) = Λ(σ̃). By the main result of [9], recalled in Theorem 2.1, there
exists a quasiconformal mapping ϕ : B1(0) → B1(0) such that ϕ|∂B1(0) = Id

and ϕ∗(σ̂) = σ̃. We recall that actually ϕ : B1(0) → B1(0), it is continuous,
bijective and its inverse is continuous as well. We assume that σ̂(x) = s(x)I2,
x ∈ B1(0), with s ∈ L

∞(B1(0)) and bounded away from 0. Then ϕ∗(σ̂) = σ̃

means that for almost any y ∈ B1(0) we have

σ̃(y) =
J(x)(s(x)I2)J(x)T

| det J(x)|

=
s(x)

| det J(x)|

�
|∇ϕ1(x)|2 ∇ϕ1(x) ·∇ϕ2(x)

∇ϕ1(x) ·∇ϕ2(x) |∇ϕ2(x)|2

�
,

where ϕ = (ϕ1,ϕ2), J(x) is the Jacobian matrix of ϕ in x, and x = ϕ
−1(y).

Since det(σ̃(y)) = 1 for almost any y ∈ B1(0), we conclude that, for almost
any x ∈ B1(0), s(x) = 1, that is σ̂ ≡ I2 in B1(0). We also note that, since ϕ is
quasiconformal, then det J(x) > 0 for almost any x ∈ B1(0).

By the structure of σ̃, we infer that for almost any x ∈ B1(0) we have
∇ϕ2(x) = λ(x)

�
0 −1
1 0

�
∇ϕ1(x) with λ(x) > 0, since det J(x) > 0, satisfying the

following

λ =

�
1 in D = ϕ

−1(B1(0)\B1/2(0))

a
−1 in D1 = B1(0)\D = ϕ

−1(B1/2(0)).

We conclude that

∆ϕ1 = ∆ϕ2 = 0 in D and in D1.

More precisely, we have that ϕ1+iϕ2 is holomorphic inD. Since ϕ1(x1, x2) = x1

and ϕ2(x1, x2) = x2 on ∂B1(0), by the unique continuation from Cauchy data,
we infer that ϕ = Id in D as well. Therefore B1(0)\B1/2(0) = ϕ(D) = D.
We conclude that D1 = B1/2(0), ϕ1 and ϕ2 are harmonic in B1/2(0), and
ϕ1(x1, x2) = x1 and ϕ2(x1, x2) = x2 on ∂B1/2(0). We immediately conclude
that ϕ = Id on the whole B1(0) and we obtain a contradiction.

If we have no control on the conductivity tensors near the boundary, then
continuity of our forward operators may be achieved by suitably choosing the
spaces B1, B2, and B̃1, B̃2, that is by changing the distance, thus the space Y ,
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with respect to which we measure the error on our measurements. Namely we
have the following results, see [39].

Proposition 2.6. Under the previous notation and assumptions, there exists
Q1 > 2, depending on N , Ω, λ0, and λ1 only, such that the following holds for
any 2 < p < Q1.

In the Dirichlet-to-Neumann case, we assume that B1 ⊂ W
1−1/p,p
∗ (∂Ω),

with continuous immersion.
In the Neumann-to-Dirichlet case, we assume that B̃1 ⊂ (W 1−1/p�

,p
�
(∂Ω))�∗,

with continuous immersion, where (W 1−1/p�
,p

�
(∂Ω))�∗ is the subspace of g be-

longing to the dual of W 1−1/p�
,p

�
(∂Ω) such that �g, 1� = 0.

Then Λ is Hölder continuous with respect to the L
1 distance in M(λ0,λ1)

and the distance d on Y given by its norm. The Hölder exponent β is equal to
(p− 2)/(2p).

A particularly interesting case for Neumann-to-Dirichlet maps is to choose
B̃1 = B̃2 = L

2
∗(∂Ω) since L

2(∂Ω) is contained in the dual of W 1−1/p�
,p

�
(∂Ω) for

some p, 2 < p < Q1, with p close enough to 2, and H
1/2
∗ (∂Ω) ⊂ L

2
∗(∂Ω), with

continuous immersions. Moreover, L2
∗(∂Ω) is dense in H

−1/2
∗ (∂Ω). In this case

we also have continuity with respect to H-convergence, see again [39].

Proposition 2.7. Under the previous notation and assumptions, let us con-
sider a sequence of conductivity tensors {σn}n∈N ⊂ M(λ0,λ1) and a conduc-
tivity tensor σ in the same set.

If, as n → ∞, σn converges to σ strongly in L
1
loc

or in the H-convergence
sense, then

lim
n

�ND(σ)−ND(σn)�L2,L2 = 0.

Let us consider that σ0 ∈ X is the conductivity tensor in Ω that we wish to
determine. Given the noise level ε > 0, our measurement is given by Λ̂ε ∈ Y ,
satisfying

�Λ̂ε − Λ(σ0)�Y ≤ ε. (14)

For consistency, we call Λ̂0 = Λ(σ0). Assume that our minimisation problem

min{�Λ(σ)− Λ̂ε�Y : σ ∈ X} (15)

admits a solution and let us call σ̃ε a minimiser for (15). The main question is
whether σ̃ε is a good approximation of the looked for conductivity tensor σ0,
namely we ask whether limε→0+ σ̃ε = σ0, where the limit is to be intended in a
suitable sense. Unfortunately this may not be true, in fact our inverse problem
is ill-posed, that is, we have no stability. There are two serious obstructions
to stability. In the anisotropic case, that is, when X = Msym(λ0,λ1), for
instance, the obstruction is due to invariance by changes of coordinates that
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keep fixed the boundary. In the isotropic case, that is, whenX = Mscal(λ0,λ1),
the obstruction is due to the fact that this class is not closed with respect to
G-convergence.

Let us illustrate these difficulties in the following three examples.

Example 2.8. Let Ω = B1(0) ⊂ R2. Let X = Msym(λ0,λ1), for some 0 <

λ0 < 1 < λ1 to be fixed later. We set σ̃0 ≡ I2 in B1(0) ⊂ R2. We fix a
C

1 diffeomorphism ϕ : B1(0) → B1(0) such that ϕ is identically equal to the
identity in B1(0)\B1/2(0). We call σ0 = ϕ∗(σ̃0) and we assume that σ0 is the
conductivity tensor to be recovered. We notice that, if ϕ is not trivial, we have
that σ0 �= σ̃0.

Let σ̃ε, 0 < ε ≤ ε0, be a scalar conductivity satisfying �σ̃ε − σ̃0�L∞(Ω) ≤ ε.
We notice that, choosing in a suitable way λ0 and λ1, we have σ0 ∈ X, and,
for any 0 ≤ ε ≤ ε0, also σ̃ε ∈ X.

We notice that Λ(σ0) = Λ(σ̃0) and, for some constant C, depending on λ0,
λ1, and Y only, we have

�Λ(σ̃ε)− Λ(σ0)�Y ≤ Cε.

If, for any 0 < ε ≤ ε0, we assume that Λ̂ε = Λ(σ̃ε), then, unfortunately, we
have

σ̃ε ∈ argmin
σ∈X

�Λ(σ)− Λ̂ε�Y ,

and, obviously, for any sequence {εn}n∈N ⊂ (0, ε0] such that limn εn = 0, σ̃εn

does not converge, not even in the G-convergence sense or in the weak L1 sense,
to σ0.

In dimension 2, in [22], it has been proved that this is the only obstruction
in the symmetric conductivity tensor case, if we consider the natural norms.
Namely, from [22, Theorem 1.3], we can immediately deduce the following.

Proposition 2.9. Let N = 2 and let Ω ⊂ R2 be a bounded, simply connected
open set with Lipschitz boundary. Let σ0 ∈ X = Msym(λ0,λ1). We pick either

Y = L(H1/2
∗ (∂Ω), H−1/2

∗ (∂Ω)), for the Dirichlet-to-Neumman case, or Y =

L(H−1/2
∗ (∂Ω), H1/2

∗ (∂Ω)), for the Neumann-to-Dirichlet case, respectively. For
any n ∈ N, let Λ̂n ∈ Y be such that

�Λ̂n − Λ(σ0)�Y = �Λ̂n − Λ(σ0)�nat → 0 as n → ∞.

Let σn ∈ argmin
σ∈X

�Λ̂n −Λ(σ0)�Y , n ∈ N. Then, for any n ∈ N, there exists
a quasiconfomal mapping ϕn : Ω → Ω such that (ϕn)|∂Ω = Id and

(ϕn)∗(σn) → σ0 as n → ∞

in the G-convergence sense.
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Proof. We have that

�Λ(σn)− Λ(σ0)�Y ≤ �Λ̂n − Λ(σn)�Y + �Λ(σ0)− Λ̂n�Y

≤ 2�Λ(σ0)− Λ̂n�Y → 0 as n → ∞.

Then the conclusion follows by [22, Theorem 1.3].

We notice that the kind of convergence we have in Proposition 2.9 is really
weak, in several respects. First, it is only up to a change of variables, second it
is in the sense of G-convergence, only. We recall that G-convergence does not
imply convergence not even in the weak L

1 sense. In fact, let us consider the
following example. Let D be an open set such that D ⊂ Q = (0, 1)N ⊂ RN ,
N ≥ 2, and let us consider, for two given constants 0 < a < b,

σ =

�
a in D

b in Q\D.
(16)

We also assume that D and Q\D have positive measure. Then we have

a < mh =

��

Q

σ
−1

�−1

<

�

Q

σ = m < b

where mh is the so-called harmonic mean of σ on Q and m is the usual mean
of σ on Q.

We extend σ all over RN by periodicity and define, for any ε > 0,

σε(x) = σ(x/ε)IN , x ∈ RN
.

Given Ω a bounded connected open set with Lipschitz boundary, it is a classical
fact in homogenisation theory that in Ω

σε G-converges to σhom as ε → 0+

where σhom is a constant symmetric matrix satisfying

mhIN ≤ σhom < mIN .

On the other hand, σε converges to amIN in the weak∗ L
∞(Ω) sense, therefore

also weakly in L
1(Ω).

Moreover, if N = 2 and

D = {(x1, x2) ∈ Q : (x1 − 1/2)(x2 − 1/2) > 0}, (17)

then σhom can be computed explicitly and we have that σhom =
√
abI2.
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Instead, if N = 2 and

D = {(x1, x2) ∈ Q : (x1 − 1/2) > 0}, (18)

then also in this case σhom can be computed explicitly and we have that

σhom =

�
mh 0
0 m

�
.

These explicit formulas are the bases for the next examples. The next one
was introduced in [1] and we state it here. This and the next example show
that in the scalar case, when, at least in dimension 2, uniqueness is not an
issue, instability phenomena may occur, no matter what we choose as Y .

Example 2.10. Let Ω = B1(0) ⊂ R2. Let X = Mscal(λ0,λ1), for some 0 <

λ0 < 1 < λ1 to be fixed later. Let us assume that B1 is dense in H
1/2
∗ (∂Ω) or

B̃1 is dense in H
−1/2
∗ (∂Ω), respectively.

We fix N = 2 and two positive constants 0 < a < b. We take Q = (0, 1)2

and D as in (17). We call

σ0 =

�
I2 in B1(0)\B1/2(0)
√
ab in B1/2(0).

We define σ as in (16), we extend it by periodicity all over R2, and define, for
any ε, 0 < ε ≤ 1/2,

σε =

�
I2 in B1(0)\B1/2(0)

σ(x/ε)IN if x ∈ B1/2(0).

We have that σε G-converges to σ0 as ε → 0+, therefore, by Proposition 2.4,
we immediately conclude that

�Λ(σ̃ε)− Λ(σ0)�Y → 0 as ε → 0+.

Therefore, if σ0 is the conductivity to be determined, and our measured data
are Λ̂ε = Λ(σε), for any ε ∈ (0, 1/2], then we have that

{σε} = argmin
σ∈Mscal(λ0,λ1)

�Λ(σ)− Λ̂ε�Y .

On the other hand, we have that σε converges to mIN in the weak∗ L
∞(Ω)

sense, therefore also weakly in L
1(Ω). Since

√
ab < m, we obtain that, as

ε → 0+, σε does not converge to σ0 even weakly in L
1(Ω), but only G-converges

to σ0.
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The third and final example, inspired by the one in [1] we just presented,
shows that even G-convergence may not be guaranteed.

Example 2.11. Let Ω = B1(0) ⊂ R2. Let X = Mscal(λ0,λ1), for some 0 <

λ0 < 1 < λ1 to be fixed later. Let us assume that B1 is dense in H
1/2
∗ (∂Ω) or

B̃1 is dense in H
−1/2
∗ (∂Ω), respectively.

We set the conductivity to be determined as σ0 ≡ I2 in B1(0) ⊂ R2. Let
ϕ : B1(0) → B1(0) be a C

1 diffeomorphism such that ϕ ≡ Id in B1(0)\B1/2(0)
and ϕ(x1, x2) = (x1/2, x2) on B1/4(0). We call σ̃0 = ϕ∗(σ0). We have that

σ̃0 �= σ0. In particular, σ̃0 = I2 in B1(0)\B1/2(0) and σ̃0(y) =
�
1/2 0
0 2

�
for any

y ∈ B1/8(0).

We pick Q = (0, 1)2, D as in (18), and σ as in (16), with a = 2−
√
3 and

b = 2 +
√
3, so that σhom =

�
1/2 0
0 2

�
.

Then, again by density of scalar conductivities inside symmetric conductiv-
ity tensors, we can find 0 < λ0 < λ1 and {σ̃n}n∈N ⊂ Mscal(λ0,λ1) such that
σ̃n G-converges to σ̃0 as n → ∞ and such that, for any n ∈ N, σ̃n = I2 in
B1(0)\B1/2(0) and

σ̃n(y) = σ(ny) for any y ∈ B1/8(0),

where as usual σ is extended by periodicity all over R2.
We notice that, as n → ∞, in B1/8(0), σ̃n converges to 2IN in the weak∗

L
∞ sense, hence also weakly in L

1(B1/8(0)). Therefore, σn can not converge,
not even up to subsequences, to σ0, not even weakly in L

1(B1(0)).
By Proposition 2.4, we immediately conclude that

�Λ(σ̃n)− Λ(σ0)�Y = �Λ(σ̃n)− Λ(σ̃0)�Y → 0 as n → ∞.

If we pick as our measured data Λ̂n = Λ(σ̃n), for any n ∈ N, then we have that

{σ̃n} = argmin
σ∈Mscal(λ0,λ1)

�Λ(σ)− Λ̂n�Y .

Then we have that, as n → ∞, σ̃n can not converge, not even up to subse-
quences, to the looked for scalar conductivity σ0 either in the G-convergence
sense or locally weakly in L

1, hence, a fortiori, in the L
1
loc

sense as well.

2.3. Regularisation

The issues for this inverse problem previous highlighted, in particular the ill-
posedness, lead naturally to consider a suitable regularisation of the minimisa-
tion problem (12). To fix the ideas we consider a regularisation à la Tikhonov.
For a general introduction to Tikhonov regularisation, we refer for instance
to [20]. Here we are interested in the case of nonsmooth and possibly discon-
tinuous unknown conductivity tensors, therefore we shall follow the approach
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developed in [38]. We notice that, in the smooth case, the general theory for
convergence of Tikhonov regularised solutions for nonlinear operators, as it was
developed in [21], see also [20], may be used and leads also to convergence es-
timates. For example, for the electrical impedance tomography this approach
was used in [31], see also [28].

Instead, in the nonsmooth case, our starting point is the regularisation strat-
egy proved in [38], which we recall now. The key ingredient is Γ-convergence,
see [17] for a detailed introduction. Here we just recall the definition and basic
properties of Γ-convergence.

Let (X, d) be a metric space. Then a sequence Fn : X → [−∞,+∞], n ∈ N,
Γ-converges as n → ∞ to a function F : X → [−∞,+∞] if for every x ∈ X we
have

for every sequence {xn}n∈N converging to x we have (19)

F (x) ≤ lim inf
n

Fn(xn);

there exists a sequence {xn}n∈N converging to x such that (20)

F (x) = lim
n

Fn(xn).

The function F will be called the Γ-limit of the sequence {Fn}n∈N as n → ∞

with respect to the metric d and we denote it by F = Γ-limn Fn. We recall
that condition (19) above is usually called the Γ-liminf inequality, whereas
condition (20) is usually referred to as the existence of a recovery sequence.

We say that the functionals Fn, n ∈ N, are equicoercive if there exists a
compact set K ⊂ X such that infK Fn = infX Fn for any n ∈ N.

The following theorem, usually known as the Fundamental Theorem of Γ-
convergence, illustrates the motivations for the definition of such a kind of
convergence.

Theorem 2.12. Let (X, d) be a metric space and let Fn : X → [−∞,+∞],
n ∈ N, be a sequence of functions defined on X. If the functionals Fn, n ∈ N,
are equicoercive and F = Γ-limn Fn, then F admits a minimum over X and
we have

min
X

F = lim
n

inf
X

Fn.

Furthermore, if {xn}n∈N is a sequence of points in X which converges to a
point x ∈ X and satisfies limn Fn(xn) = limn infX Fn, then x is a minimum
point for F .

The definition of Γ-convergence may be extended in a natural way to fam-
ilies depending on a continuous parameter. The family of functions Fε, de-
fined for every ε > 0, Γ-converges to a function F as ε → 0+ if for every
sequence {εn}n∈N of positive numbers converging to 0 as n → ∞, we have
F = Γ-limn Fεn .
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We begin with an abstract framework. We consider two metric spaces
(X, dX) and (Y, dY ) and a continuous function Λ : X → Y . We also fix x0 ∈ X

and Λ0 = Λ(x0) ∈ Y .
For any ε > 0, we consider a perturbation of Λ0 given by Λε ∈ Y such that

dY (Λε,Λ0) ≤ ε. Here, and in the sequel, ε plays the role of the noise level.
A function R : X → R ∪ {+∞} is called a regularisation operator for the

metric space X if R �≡ +∞ and, with respect to the metric induced by dX , R
is a lower semicontinuous function such that for any constant C > 0 the set
{x ∈ X : R(x) ≤ C} is a compact subset of X.

We consider the following regularised minimum problem, for some ε > 0,

min
x∈X

(dY (Λ(x),Λε))
α + ãR(x) (21)

where ã > 0 is the regularisation parameter and α is a positive parameter. In
order to make the regularisation meaningful, we need to choose the regular-
isation parameter in terms of the noise level ε, namely we choose ã = ã(ε).
A solution to (21) will be called a regularised solution. To fix the ideas, given
ε0 > 0, we assume that for any ε, 0 < ε ≤ ε0, ã(ε) = ãε

γ , for some positive con-
stants ã and γ. By a simple rescaling argument the minimisation problem (21)
is equivalent to solve

min
x∈X

Fε(x) (22)

where Fε : X → R ∪ {+∞} is defined as follows

Fε(x) =
(dY (Λ(x),Λε))α

εγ
+ ãR(x) for any x ∈ X. (23)

We also define F0 : X → R ∪ {+∞} as follows

F0(x) =

�
ãR(x) if Λ(x) = Λ(x0) = Λ0 in Y

+∞ otherwise
(24)

for any x ∈ X.
The following result is proved in [38], by exploiting Γ-convergence tech-

niques.

Theorem 2.13. Let Λ be continuous and R be a regularisation operator for X.
Let us also assume that R(x0) < +∞ and γ < α.

Then we have that there exists minX Fε, for any ε, 0 ≤ ε ≤ ε0, and

min
X

F0 = lim
ε→0+

min
X

Fε < +∞.

Let {x̃ε}0<ε≤ε0 satisfy limε→0+ Fε(x̃ε) = limε→0+ minX Fε (for example we
may pick as {x̃ε}0<ε≤ε0 a family {xε}0<ε≤ε0 of minimisers of Fε).
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Let {εn}n∈N be a sequence of positive numbers converging to 0 as n → ∞.
Then, up to a subsequence, x̃εn converges to a point x̃ ∈ X such that x̃ is
a minimiser of F0, that is, in particular, Λ(x̃) = Λ(x0) in Y and R(x̃) =
min{R(x) : x ∈ X such that Λ(x) = Λ(x0) in Y }.

Furthermore, if F0 admits a unique minimiser x̃, then we have that

lim
ε→0+

x̃ε = x̃. (25)

Finally, if on the set {x ∈ X : R(x) < +∞} the map Λ is injective, then
we have

lim
ε→0+

x̃ε = x0,

even if we only have lim sup
ε→0+ Fε(x̃ε) < +∞.

Following again [38] we show the applicability of this abstract result to the
inverse conductivity problem with discontinuous conductivities.

We observe that, in order to guarantee convergence of the regularised solu-
tions to the looked for solution, we need to find a metric on the space X such
that the following properties are satisfied:

1) the forward operator Λ is continuous;

2) R is a regularisation operator for X;

3) Λ is injective (uniqueness of the inverse problem).

We consider in this subsection X equal to M(λ0,λ1), or Msym(λ0,λ1), or
Mscal(λ0,λ1).

On X we consider the metric given by the L
1 norm, in all cases. In fact

we wish to have a convergence in a rather strong sense, being for instance
H-convergence too weak for applications.

Therefore, we take as Y the usual space where we assume that, for some
p > 2, in the Dirichlet-to-Neumann case, B1 ⊂ W

1−1/p,p(∂Ω), with con-
tinuous immersion, and, in the Neumann-to-Dirichlet case, we assume that
B̃1 ⊂ (W 1−1/p�

,p
�
(∂Ω))�∗, with continuous immersion.

As a regularisation operator, there are several possibilities. One is to con-
sider a kind of total variation regularisation. For instance, we define, for any
σ ∈ X, TV (σ) as the matrix such that TV (σ)ij = TV (σij) = |Dσij |(Ω) and
set |σ|BV (Ω) = �TV (σ)� for any σ ∈ X. For any σ ∈ X we define

�σ�BV (Ω) = �σ�L1(Ω) + |σ|BV (Ω).

Then we may pick as R either | · |BV (Ω) or � · �BV (Ω).
The total variation regularisation has been widely used in the literature for

solving numerically the inverse conductivity problem, for example in [19], with
a discretisation method, and in [13, 15], with level set methods.
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Another option is the so-called Mumford-Shah operator. In this case we
limit ourselves to scalar conductivities, that is, to X = Mscal(λ0,λ1), and
define, for any σ ∈ Mscal(λ0,λ1),

R(σ) =






b

�

Ω
�∇σ�

2 +H
N−1(J(σ)) if σ ∈ SBV (Ω)

+∞ otherwise.
(26)

Here b is a positive constant, HN−1 denotes the (N −1)-dimensional Hausdorff
measure, J(σ) is the jump set of σ, and SBV denotes the space of special func-
tions of bounded variations. The functional R here defined is referred to as the
Mumford-Shah functional and was introduced in the context of image segmen-
tation in [32]. We refer, for instance, to [5] for a detailed discussion on these
topics. The compactness and semicontinuity theorem for special functions of
bounded variation due to Ambrosio, see for instance [5, Theorem 4.7 and The-
orem 4.8], guarantees that also in this case R is a regularisation operator for
X. In the context of inverse problems, and in particular for the inverse conduc-
tivity problem, the Mumford-Shah functional has been used as regularisation
for the first time in [40], with an implementation exploiting the approximation
of the Mumford-Shah functional by functionals defined on smoother functions
due to Ambrosio and Tortorelli, [6, 7].

We now recall the results in [38], that immediately follows from the previous
abstract results.

Theorem 2.14. Under the previous notation and assumptions, let Λ : X → Y

be the forward operator. Let R be either | · |BV (Ω) or � · �BV (Ω). If X =
Mscal(λ0,λ1), R may be also chosen as in (26).

Let σ0 ∈ X be such that R(σ0) < +∞ and Λ̂0 = Λ(σ0). For any ε, 0 < ε ≤

ε0, let Λ̂ε ∈ Y be such that �Λ̂ε − Λ̂0� ≤ ε.
Let us fix positive constants α, γ, and ã, such that 0 < γ < α. For any ε,

0 < ε ≤ ε0, let Fε be defined as in (23) and F0 be defined as in (24).
Then we have that there exists minX Fε, for any ε, 0 ≤ ε ≤ ε0, and

min
X

F0 = lim
ε→0+

min
X

Fε < +∞.

Let {εn}n∈N be a sequence of positive numbers converging to 0 as n → ∞.
Let {σ̃n}n∈N be such that lim sup

n
Fεn(σ̃n) < +∞. Then, up to a subse-

quence, σ̃n converges in the L
1 norm to σ̃ ∈ X such that σ̃ satisfies �Λ(σ̃) −

Λ(σ0)�Y = 0.
Let {σ̃n}n∈N be such that limFεn(σ̃n) = limn minX Fεn . Then, up to a

subsequence, σ̃n converges in the L
1 norm to σ̃ ∈ X such that σ̃ is a minimizer

of F0, that is, in particular, �Λ(σ̃)−Λ(σ0)�Y = 0 and R(σ̃) = min{R(σ) : σ ∈

X such that �Λ(σ)− Λ(σ0)�Y = 0}.
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In dimension 2 and for scalar conductivities we have the following.

Theorem 2.15. Under the notation and assumptions of Theorem 2.14, let us
further assume that the space dimension is 2, that is N = 2. We pick X =

Mscal(λ0,λ1) and we assume that either B1 is dense in H
1/2
∗ (∂Ω) or B̃1 is

dense in H
−1/2
∗ (∂Ω), respectively.

Let {σ̃ε}0<ε≤ε0 satisfy lim sup
ε→0+ Fε(σ̃ε) < +∞. Then we have that

lim
ε→0+

�

Ω
|σ̃ε − σ0| = 0.

We notice that, when N ≥ 3, even if, recently, a great improvement has
been achieved in the uniqueness issue, still we do not have a uniqueness result
for scalar BV or SBV functions. To prove uniqueness, or nonuniqueness, in
this case is an extremely interesting and challenging open problem.

We recall that the approach to regularisation developed in [38] has been
followed in other works. In [27] the Mumford-Shah approach has been made
slightly more precise, for instance it was proved convergence of the jump sets,
and it has been applied to other inverse problems, such as image deblurring
or X-ray tomography. In [28], instead, other regularisation strategies for the
inverse conductivity problem have been considered, for example the sparsity
or smoothness penalty was used. In this case the theory for convergence of
Tikhonov regularised solutions for nonlinear operators may be used and, in
fact, in [28] some convergence estimates were derived.

3. Numerical approximation and regularisation for the
inverse conductivity problem

After the regularisation strategy has been decided, and it has been proved
to be effective, the second step is to proceed in finding a suitable numerical
approach to solve the regularised minimum problem. For example, in [40],
the Ambrosio and Tortorelli approximation of the Mumford-Shah functional
was used to tackle numerically the minimisation problem. For total variation
regularisation, besides the early paper where a discretisation method, [19], or
level set methods, [13, 15], were used, an interesting analysis of a finite element
approximation has been developed in [23].

However, the approximations in [40] and in [23] have been performed just for
the regularised minimum problem, that is, for a fixed regularisation parameter.
Instead, we believe that it is very important to study how the approximation
parameter (for example the size of the mesh in the finite element approxima-
tion) and the regularisation parameter interact. In other words, we wish to
find, for a corresponding noise level ε, what are the right regularisation and
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approximation parameters that allow to prove that the solutions to the ap-
proximated regularised minimum problems converge, in a suitable sense, to the
looked for solution of the inverse problem. Therefore we wish to include in the
convergence analysis developed in [38], and here recalled in Subsection 2.3, the
approximation of the regularised minimum problem, simultaneously.

Such an approach has been developed for the Ambrosio-Tortorelli approx-
imation of the Mumford-Shah functional in [14]. For the convenience of the
reader we recall the result of [14] in Subsection 3.2.

In the next Subsection 3.1, we consider the approximation by finite element
discretisation and we investigate how the discretisation parameter should be
linked to the noise level and the regularisation parameter. We present here a
very simple setting, in future work we will consider a much more general and
complete discretisation of the inverse conductivity problem.

Let us begin by introducing the common setting for the whole section.
Throughout this section we fix Ω, a bounded connected open set with Lip-

schitz boundary, contained in RN , N ≥ 2, and two constants λ0, λ1, with
0 < λ0 ≤ λ1.

We consider only the case of scalar conductivities, namely we call X =
Mscal(λ0,λ1).

We fix a real number p > 2. In the Dirichlet-to-Neumann case, we assume

that B1 ⊂ W
1−1/p,p
∗ (∂Ω) and H

−1/2
∗ (∂Ω) ⊂ B2, with continuous immersions.

In the Neumann-to-Dirichlet case, we assume that B̃1 ⊂ (W 1−1/p�
,p

�
(∂Ω))�∗ and

H
1/2
∗ (∂Ω) ⊂ B̃2, with continuous immersions.
In the Dirichlet-to-Neumann case, we call Y = L(B1, B2) and define Λ :

X → Y as follows
Λ(σ) = DN(σ)|B1 : B1 → B2.

In the Neumann-to-Dirichlet case, we call Y = L(B̃1, B̃2) and define Λ :
X → Y as follows

Λ(σ) = ND(σ)|
B̃1

: B̃1 → B̃2.

The important fact is the following. We know that Λ : X → Y is Hölder
continuous, that is, there exists constant C0 > 0 and β, 0 < β < 1, such that,
for any σ, σ̃ ∈ X, we have

�Λ(σ)− Λ(σ̃)�Y ≤ C0�σ − σ̃�
β

L1(Ω). (27)

Here β depends on p only and it will play a crucial role in the next analysis.
We consider σ0 ∈ X to be the scalar conductivity in Ω that we wish to

determine and call Λ̂0 = Λ(σ0) ∈ Y .
Fixed a positive constant ε0, for any ε, 0 < ε ≤ ε0, let us assume that there

exists Λ̂ε ∈ Y such that
�Λ̂ε − Λ̂0�Y ≤ ε. (28)
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Here ε plays the role of the noise level and Λ̂ε plays the role of the measured
Dirichlet-to-Neumann, or Neumann-to-Dirichlet respectively, map.

3.1. Discrete approximation and regularisation of the
inverse conductivity problem

Since we wish to consider a discretisation of the problem, we shall make the
following assumptions on Ω. We further assume that Ω is polygonal, that is, Ω
is a polyhedron in RN .

We use standard conforming piecewise linear finite elements, for which we
refer for instance to [16]. We shall keep fixed a positive parameter s and a
positive constant h0. We consider, for a fixed parameter h, 0 < h ≤ h0, a
triangulation Th of Ω, that is, Ω =

�
K∈Th

K, where each K ∈ Th is a nonde-
generate N -simplex, and Th satisfies assumption (FEM 1) in [16, Chapter 2]

We then define the finite element space Xh as follows

Xh = {vh ∈ C(Ω) : vh|K ∈ P1(K) for any K ∈ Th}

where P1(K) is the space of polynomials of order at most 1 restricted to K,
that is, Xh is the finite element space associated to N -simplices of type (1).
By [16, Theorem 2.2.3] we have that Xh ⊂ C(Ω) ∩ H

1(Ω). It is also clear
that X0h = {vh ∈ Xh : vh|∂Ω = 0} is contained in H

1
0 (Ω). We call Πh the

associated interpolation operator defined on C(Ω).
We assume that Th is regular in the following classical sense. For anyK ∈ Th

we call hK = diam(K) and ρK = sup{diam(B) : B is a ball contained in K}.
Then we assume that

hK ≤ h and hK ≤ sρK for any K ∈ Th. (29)

The following estimate is an immediate consequence of [16, Theorem 3.1.6].

Theorem 3.1. Let us consider q ≥ 2 such that q > N/2. Then there exists a
constant C such that for any u ∈ W

2,q(Ω) we have

�u−Πhu�W 1,q(Ω) ≤ Ch�D
2
u�Lq(Ω). (30)

Our approach to discretisation is the following. As a regularisation operator
we consider a total variation penalisation, that is R is given by, for any σ ∈ X,

R(σ) = |σ|BV (Ω) = TV (σ) = |Dσ|(Ω) or R(σ) = �σ�BV (Ω). (31)

Furthermore we shall assume that R(σ0) < +∞, that is, σ0 ∈ BV (Ω).
For fixed ã, 0 < γ < α, let us define, for any ε, 0 < ε ≤ ε0, and h,

0 < h ≤ h0, the functional Fε,h : X → R ∪ {+∞} such that for any σ ∈ X

Fε,h(σ) =






�Λ(σ)− Λ̂ε�
α

Y

εγ
+ ãR(σ) if σ ∈ Xh

+∞ otherwise.
(32)
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Let us immediately notice that any of these functionals Fε,h admits a min-
imum over X.

We also define F0 : X → R ∪ {+∞} as before

F0(σ) =

�
ãR(σ) if �Λ(σ)− Λ(σ0)�Y = 0

+∞ otherwise
(33)

for any σ ∈ X.
Our aim is to choose h = h(ε) such that Fε,h are equicoercive and Γ-

converge, as ε → 0+, to F0.
Therefore, let us consider two sequences {εn}n∈N ⊂ (0, ε0] and {hn}n∈N ⊂

(0, h0] and we assume that limn εn = 0. We define Fn = Fεn,hn .
The Γ-liminf inequality is easy to prove. In fact we have the following.

Proposition 3.2. Let {σn}n∈N ⊂ X be such that limn σn = σ in X, that is,
limn �σn − σ�L1(Ω) = 0.

Then
F0(σ) ≤ lim inf

n

Fn(σn).

Proof. If lim infn Fn(σn) = +∞, then there is nothing to prove. We therefore
assume, without loss of generality, that lim infn Fn(σn) = limn Fn(σn) < +∞.
In particular, for some constant C, we have Fn(σn) ≤ C for any n ∈ N.
Therefore, σn ∈ Xhn for any n ∈ N.

By semicontinuity of the total variation, it is easy to see that

ãR(σ) ≤ lim inf
n

(ãR(σn)) ≤ lim inf
n

Fn(σn).

It remains to prove that �Λ(σ)− Λ(σ0)�Y = 0. But, by continuity of Λ, it
is easy to see that

�Λ(σ)− Λ(σ0)�Y = lim
n

�Λ(σn)− Λ(σ0)�Y

≤ lim inf
n

�
�Λ(σn)− Λ̂εn�Y + �Λ̂εn−Λ(σ0)�Y

�
≤ lim inf

n

�
(Cε

γ

n
)1/α + εn

�

which is obviously equal to 0.

The difficult part is to find a recovery sequence. Clearly the existence of
the recovery sequence is trivial, by the Γ-liminf inequality, if F0(σ) = +∞.
Therefore, it is enough to prove the existence of a recovery sequence when
F0(σ) is finite.

Proposition 3.3. We define h(ε) = ε
3/β, for any ε, 0 < ε ≤ ε0, and recall

that γ < α.
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Let σ ∈ X be such that F0(σ) < +∞, that is, σ ∈ BV (Ω)∩X and it satisfies
�Λ(σ)− Λ(σ0)�Y = 0.

Then there exists σε ∈ X, for any ε, 0 < ε ≤ ε0, such that

F0(σ) = lim
ε→0+

Fε,h(ε)(σε).

Before proving this proposition, let us observe that it implies the following
corollary.

Corollary 3.4. Under the notation and assumptions of Proposition 3.3, we
have that Fε,h(ε) Γ-converges to F0 as ε → 0+.

Moreover, the family of functionals {Fε,h(ε)}0<ε≤ε0 is equicoercive.

Proof. The Γ-convergence result follows immediately from Propositions 3.2
and 3.3.

About equicoerciveness, we start with the following remark. By Proposi-
tion 3.3, we can find a constant C such that

min
X

Fε,h(ε) ≤ C for any 0 < ε ≤ ε0. (34)

Then we define K = {σε}0<ε≤ε0 , where σε is a minimiser for Fε,h(ε), for
any 0 < ε ≤ ε0. We prove that K is relatively compact in X. In fact, by (34),
we obtain that, for some constant C1, R(σε) ≤ C1 for any 0 < ε ≤ ε0. Then
the fact that K is relatively compact follows immediately by the properties of
the regularisation operator R.

We now complete the proof of the existence of the recovery sequence.

Proof of Proposition 3.3. The difficult part is that we need to build the func-
tion σε in such a way that it belongs to the discrete space Xh(ε), for any
0 < ε ≤ ε0.

The construction is the following. First of all we use the fact that Ω is
an extension domain, since it has Lipschitz boundary. Therefore, for any u ∈

BV (Ω)∩X, we can find a function ũ ∈ L
∞(RN ) such that ũ|Ω = u, λ0 ≤ ũ ≤ λ1

almost everywhere in RN , and, for a constant C depending on Ω only,

|Dũ|(RN ) ≤ C|Du|(Ω),

and, moreover, |Dũ|(∂Ω) = 0. This follows immediately by using [5, Defini-
tion 3.20], for instance.

We consider our function σ and, by a slight abuse of notation, we still call
σ its extension σ̃ to the whole RN . We fix a positive symmetric mollifier η,
that is, η ∈ C

∞
0 (B1(0)), η ≥ 0,

�
B1(0)

η = 1, and such that η(x) depends only
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on �x� for any x ∈ B1(0). Clearly η ∈ C
∞
0 (RN ) by extending it to 0 oustide

B1(0). For any δ > 0, we call

ηδ(x) = δ
−N

η(x/δ), x ∈ RN
,

and, for any u ∈ L
1
loc

(RN ), we call

uδ = ηδ ∗ u,

where as usual ∗ denotes the convolution.
We immediately obtain that, for any δ > 0, σδ ∈ C

∞(RN ) and λ0 ≤ σδ ≤ λ1

almost everywhere in RN . We also have that, locally, σδ converges to σ as
δ → 0+ in the L

1 norm. By [24, Proposition 1.15], we conclude that

lim
δ→0+

�σδ − σ�L1(Ω) = 0 and lim
δ→0+

|Dσδ|(Ω) = |Dσ|(Ω). (35)

Actually, by [5, Lemma 3.24], the L
1 convergence may be made much more

precise. In fact, for a constant C1 depending on Ω only, we have, for any δ,
0 < δ ≤ 1,

�σ − σδ�L1(Ω) ≤ C1|Dσ|(Ω)δ. (36)

We choose q as in Theorem 3.1. Since σδ ∈ C
∞(RN ), we obviously have

that σδ ∈ W
2,q(Ω), for any δ > 0. We need to control its norm in dependence

of δ. We notice that, for any multiindex α, we have D
α
σδ = (Dα

ηδ) ∗ σ.
Therefore, for any δ, 0 < δ ≤ 1, and any p, 1 ≤ p ≤ +∞,

�D
α
σδ�Lp(Ω) ≤ C2δ

−|α|
,

where C2 depends on Ω, p, |α|, η, and λ1 only. We conclude that, for a constant
C3 depending on Ω, q, η, and λ1 only, we have, for any 0 < δ ≤ 1,

�σδ�W 2,q(Ω) ≤ C3δ
−2

. (37)

By Theorem 3.1, we obtain that

�σδ −Πh(σδ)�W 1,q(Ω) ≤ C4hδ
−2 (38)

where C4 = C3C, with C as in (30). We have that Πh(σδ) ∈ Xh. Furthermore,

�σ −Πh(σδ)�L1(Ω) ≤ �σ − σδ�L1(Ω) + �σδ −Πh(σδ)�L1(Ω)

≤ C1|Dσ|(Ω)δ + C5C4hδ
−2

,

with C5 depending on Ω and q only. By picking δ = h
1/3, we conclude that,

for the constant C6 = C1|Dσ|(Ω) + C5C4,

�σ −Πh(σδ)�L1(Ω) ≤ C6h
1/3

. (39)
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Furthermore,

|D(Πh(σδ))|(Ω) =

�

Ω
�∇(Πh(σδ))�

=

��

Ω
�∇(Πh(σδ))� −

�

Ω
�∇σδ�

�
+

�

Ω
�∇σδ�.

The first term of the right hand side goes to 0, as h, and thus δ, goes to 0,
by (38). The second term of the right hand side is exactly |Dσδ|(Ω), therefore
it goes to |Dσ|(Ω), as h goes to 0, by (35).

We have therefore constructed, for any 0 < h ≤ h0, σh ∈ Xh such that

�σ − σh�L1(Ω) ≤ C6h
1/3 and lim

h→0+
|Dσh|(Ω) = |Dσ|(Ω). (40)

By (27), we conclude that

�Λ(σ)− Λ(σh)�Y ≤ C0C
β

6 h
β/3 and lim

h→0+
R(σh) = R(σ). (41)

Then we easily compute, since �Λ(σ)− Λ(σ0)�Y = 0,

�Λ(σh)− Λ̂ε�
α

Y
≤

�
�Λ(σh)− Λ(σ)�Y + �Λ(σ)− Λ̂ε�Y

�α

≤

�
C0C

β

6 h
β/3 + ε

�α

.

If we choose γ < α and h(ε) such that h(ε) = ε
3/β , then we obtain that

lim
ε→0+

Fε,h(ε)(σh(ε)) = F0(σ).

The proof is concluded.

By Corollary 3.4 and the Fundamental Theorem of Γ-convergence, Theo-
rem 2.12, the next theorems, which are the main results of the paper, immedi-
ately follow.

Theorem 3.5. Under the previous notation and assumptions, we consider X =
Mscal(λ0,λ1) and let Λ : X → Y be the forward operator. Let R be either
| · |BV (Ω) or � · �BV (Ω).

Let σ0 ∈ X be such that R(σ0) < +∞ and Λ̂0 = Λ(σ0). For any ε, 0 < ε ≤

ε0, let Λ̂ε ∈ Y be such that �Λ̂ε − Λ̂0� ≤ ε.
Let us fix positive constants α, γ, and ã, such that 0 < γ < α. For any

ε, 0 < ε ≤ ε0, let h = h(ε) be given by h(ε) = ε
3/β, and Fε,h(ε) be defined as

in (32) and F0 be defined as in (33).
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Then we have that there exists minX Fε,h(ε), for any ε, 0 ≤ ε ≤ ε0, and

min
X

F0 = lim
ε→0+

min
X

Fε,h(ε) < +∞.

Let {εn}n∈N be a sequence of positive numbers converging to 0 as n → ∞.
Let {σ̃n}n∈N be such that lim sup

n
Fεn,h(εn)(σ̃n) < +∞. Then, up to a

subsequence, σ̃n converges in the L
1 norm to σ̃ ∈ X such that σ̃ satisfies

�Λ(σ̃)− Λ(σ0)�Y = 0.
Let {σ̃n}n∈N be such that limn Fεn,h(εn)(σ̃n) = limn minX Fεn,h(ε). Then,

up to a subsequence, σ̃n converges in the L
1 norm to σ̃ ∈ X such that σ̃ is

a minimiser of F0, that is, in particular, �Λ(σ̃) − Λ(σ0)�Y = 0 and R(σ̃) =
min{R(σ) : σ ∈ X such that �Λ(σ)− Λ(σ0)�Y = 0}.

In the two dimensional case, as before, the result may be made more precise.

Theorem 3.6. Under the notation and assumptions of Theorem 3.5, let us
further assume that the space dimension is 2, that is N = 2. We assume that

either B1 is dense in H
1/2
∗ (∂Ω) or B̃1 is dense in H

−1/2
∗ (∂Ω), respectively.

Let {σ̃ε}0<ε≤ε0 satisfy lim sup
ε→0+ Fε,h(ε)(σ̃ε) < +∞. Then we have that

lim
ε→0+

�

Ω
|σ̃ε − σ0| = 0.

3.2. Regularisation by the Ambrosio-Tortorelli functionals

In this subsection we present the approach to regularisation by using the so-
called Ambrosio-Tortorelli functionals that was developed in [14]. These func-
tionals were introduced in [6, 7] in order to solve numerically the difficult task of
minimising the Mumford-Shah functional. In fact the Ambrosio-Tortorelli func-
tionals are a good approximation, in the Γ-convergence sense, of the Mumford-
Shah functional and they are much easier to compute with.

We recall that Ω is a fixed bounded connected open set with Lipschitz
boundary, contained in RN , N ≥ 2. We consider only the case of scalar con-
ductivities, namely we call X = Mscal(λ0,λ1), for two constants λ0, λ1, with
0 < λ0 ≤ λ1.

Let us begin with the following definition. We fix a continuous function
V : R → R such that V ≥ 0 everywhere in R and V (t) = 0 if and only if

t = 1. We call cV =
� 1
0

�
V (t)dt. Let ψ : R → R be a lower semicontinuous,

nondecreasing function such that ψ(0) = 0, ψ(1) = 1, and ψ(t) > 0 for any
t > 0. For any η > 0, we fix oη ≥ 0 such that limη→0+ oη/η = 0, and
we call ψη = ψ + oη. Given a positive parameter b, and for any η > 0,
we define the functional ATη : L1(Ω) × L

1(Ω) → [0,+∞] as follows, for any
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(u, v) ∈ L
1(Ω)× L

1(Ω),

ATη(u, v) =

=






�

Ω

�
bψη(v)�∇u�

2 +
1

η
V (v) + η�∇v�

2

�
if u ∈ H

1(Ω) ∩X

and v ∈ H
1(Ω, [0, 1])

+∞ otherwise.

(42)

Here H
1(Ω, [0, 1]) = {v ∈ H

1(Ω) : 0 ≤ v ≤ 1 a.e. in Ω}.

We define a new version of the Mumford-Shah functional as follow. We
call MS : L1(Ω) × L

1(Ω) → [0,+∞] the functional such that, for any (u, v) ∈
L
1(Ω)× L

1(Ω),

MS(u, v) =






b

�

Ω
�∇u�

2 + 4cV H
N−1(J(u))

if u ∈ SBV (Ω) ∩X

and v = 1 a.e. in Ω

+∞ otherwise.

(43)

Notice that here v just plays the role of a formal variable.

We have the following result.

Theorem 3.7. We have that, as η → 0+, ATη Γ-converges to MS in the
L
1(Ω)× L

1(Ω) distance.

Moreover, we assume that, for a positive constant C0, we have ψ(t) ≥ C0t
2

for any t ∈ [0, 1]. We consider two sequences {ηn}n∈N ⊂ (0, 1], such that
limn ηn = 0, and {(un, vn)}n∈N ⊂ L

1(Ω)× L
1(Ω). If there exists a constant C

such that ATηn(un, vn) ≤ C for any n ∈ N, then, as n → ∞, vn converges to
v ≡ 1 in L

1(Ω) and, up to a subsequence, un converges to u ∈ X in L
1(Ω).

Proof. The Γ-convergence follows from [6, 7], see also [10].

For the compactness result of the second part, the argument is the following.
The fact that limn vn = v ≡ 1 in L

1(Ω) is trivial. For the compactness of the
sequence {un}n∈N, first of all we notice that λ0 ≤ un ≤ λ1 for any n ∈ N. We

call Ṽ (t) =
�
t

0

�
V (s)ds, for any t ∈ [0, 1]. We notice that, for any t ∈ [0, 1],

we have c1t ≤ Ṽ (t) ≤ C1t, for some constants 0 < c1 < C1. Therefore, for any
t ∈ (0, 1], we have

Ṽ (t)�
ψ(t)

≤ C2.

For any n ∈ N, we define the auxiliary function wn = Ṽ (vn)un and no-
tice that �wn�L∞(Ω) is uniformly bounded. Then ∇wn =

�
V (vn)un∇vn +
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Ṽ (vn)∇un. We obtain that

�

Ω
�∇wn� ≤ �un�L∞(Ω)

��

Ω

1

ηn
V (vn)

�1/2 ��

Ω
ηn�∇vn�

2

�1/2

+




�

{x∈Ω: vn(x)>0}

�
Ṽ (vn)�
ψ(vn)

)

�2



1/2 ��

Ω
ψ(vn)�∇un�

2

�1/2

.

We easily conclude that {wn}n∈N is bounded in W
1,1(Ω), therefore, up to

a subsequence that we do not relabel, we have that wn → w ∈ L
1(Ω) and

vn → v ≡ 1, in both cases in L
1(Ω) and almost everywhere in Ω. For al-

most any x ∈ Ω, we have that, as n → ∞, wn(x) → w(x) and vn(x) → 1,
thus Ṽ (vn(x)) → Ṽ (1) > 0. Therefore, for any of these x ∈ Ω, we have
limn un(x) = w(x)/Ṽ (1) = u(x). We conclude that u ∈ X and that, up to the
same subsequence, as n → ∞, un converges to u almost everywhere in Ω, thus,
by the uniform L

∞ bound and the Lebesgue theorem, in L
1(Ω) as well.

We now consider the following definition. For fixed ã, 0 < γ < α, let
us define, for any ε, 0 < ε ≤ ε0, and η, 0 < η ≤ η0, the functional Fε,η :
X × L

1(Ω) → R ∪ {+∞} such that, for any (σ, v) ∈ X × L
1(Ω), we have

Fε,η(σ, v) =
�Λ(σ)− Λ̂ε�

α

Y

εγ
+ ãATη(σ, v). (44)

We also define F0 : X × L
1(Ω) → R ∪ {+∞} as follows, for any (σ, v) ∈

X × L
1(Ω),

F0(σ, v) =

�
ãMS(σ, v) if �Λ(σ)− Λ(σ0)�Y = 0
+∞ otherwise

(45)

where MS is defined in (43). We notice that, equivalently, we can consider
F̃0 : X → R ∪ {+∞} such that, for any σ ∈ X,

F̃0(σ) =

=






ã

�
b

�

Ω
�∇σ�

2 + 4cV H
N−1(J(σ))

�
if σ ∈ SBV (Ω) ∩X

and �Λ(σ)−Λ(σ0)�Y =0

+∞ otherwise.

(46)

Remark 3.8. We notice that F0, or equivalently F̃0, admits a minimum over
X × L

1(Ω), or X respectively. Notice that (σ̃, ṽ) is a minimiser for F0 if and
only if σ̃ is a minimiser for F̃0 and ṽ ≡ 1. Moreover, any of these functionals
Fε,η admits a minimum over X × L

1(Ω) provided oη > 0.
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We shall need the following definition.

Definition 3.9. For any Borel set E ⊂ RN , we define its (N −1)-dimensional
Minkowski content as

M
N−1(E) = lim

δ→0+

1

2δ
|{x ∈ RN : dist(x,E) < δ}|,

provided the limit exists.
We say that a conductivity σ ∈ X is admissible if σ ∈ SBV (Ω), and it

satisfies
�

Ω
�∇σ�

2 +H
N−1(J(σ)) < +∞ and M

N−1(J(σ)) = H
N−1(J(σ)).

With this definition at hand, we consider the following lemma.

Lemma 3.10. Let σ ∈ X be admissible in the sense of Definition 3.9. Then we
can find (ση, vη) ∈ L

1(Ω)×L
1(Ω), 0 < η ≤ η0, such that, for some constant C,

�ση − σ�L1(Ω) ≤ Cη and lim
η→0+

�vη − 1�L1(Ω) = 0, (47)

and
lim

η→0+
ATη(ση, vη) = MS(σ, 1). (48)

Proof. Let φ : R → R be a C
∞ function that is nondecreasing and such that

φ(t) = 0 for any t ≤ 1/8 and φ(t) = 1 for any t ≥ 7/8.
For the time being, we consider the case in which oη > 0 and we define

ξη =
√
ηoη.

We define, for any η, 0 < η ≤ η0, and any x ∈ Ω,

φη(x) = φ

�
dist(x, J(σ))

ξη

�
.

Then we define
ση = φησ + (1− φη)λ0

and, for any x ∈ Ω, and any δ > 0,

v
δ

η
(x) =






0 if dist(x, J(σ)) < ξη

v
δ

�
dist(x, J(σ))− ξη

η

�
if ξη ≤ dist(x, J(σ)) < ξη + Tη

1 if dist(x, J(σ)) ≥ ξη + Tη.

Here the function v = v
δ, and the constant T > 0, are chosen in such a way

v ∈ C
1([0, T ]), v(0) = 0, v(T ) = 1, and

�
T

0
(V (v) + |v

�
|
2) ≤ 2cV + δ.
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We call, for any positive r > 0, Sr = {x ∈ RN : dist(x, J(σ)) < r}. First
of all we notice that, for some constant C,

�ση − σ�L1(Ω) ≤ (λ1 − λ0)|Sξη ∩ Ω| ≤ Cξη ≤ Cη for any 0 < η ≤ η0.

Since |Sξη+Tη| → 0, as η → 0+, we also deduce that vδ
η
→ 1 almost every-

where in Ω and in L
1(Ω) as well, in a completely independent way from the

constant δ that may be chosen as depending from η.
Then we can compute, since obviously we have that ση ∈ H

1(Ω) ∩X and
vη ∈ H

1(Ω, [0, 1]),

ATη(ση, v
δ

η
) =

�

Ω

�
bψη(v

δ

η
)�∇ση�

2 +
1

η
V (vδ

η
) + η�∇v

δ

η
�
2

�

= b

�

Ω\Sξη

ψη(v
δ

η
)�∇σ�

2 + boη

�

Sξη

�∇ση�
2 +

1

η
V (0)|Sξη ∩ Ω|

+

�

(Sξη+Tη\Sξη )∩Ω

�
1

η
V (vδ

η
) + η�∇v

δ

η
�
2

�
.

Since v
δ

η
converges to 1 almost everywhere in Ω, it is straightforward to see

that the first three terms converge, as η → 0+, to
�
Ω b�∇σ�2, in a completely

independent way from the constant δ that may be chosen as depending from η.
By the coarea formula, the definition of the Minkowski content, and the

properties of σ, we can prove that

lim
η→0+

�

Sξη+Tη\Sξη

�
1

η
V (vδ

η
) + η�∇v

δ

η
�
2

�

= 2

��
T

0
V (vδ) + |(vδ)�|2

�
M

N−1(J(σ)).

Since MN−1(J(σ)) = HN−1(J(σ)), we easily deduce that, even if oη = 0,

lim sup
η→0+

ATη(ση, v
δ

η
) ≤

�

Ω
b�∇σ�

2 + (4cV + 2δ)HN−1(J(σ)).

It is then easy to choose δ = δ(η) and define vη = v
δ(η)
η , 0 < η ≤ η0, in such a

way that

lim sup
η→0+

ATη(ση, vη) ≤

�

Ω
b�∇σ�

2 + 4cV H
N−1(J(σ)).

Clearly limη→0+ �vη − 1�L1(Ω) = 0. Hence, by the corresponding Γ-liminf
inequality proved in [10, Proposition 4.5], we conclude that

lim
η→0+

ATη(ση, vη) =

�

Ω
b�∇σ�

2 + 4cV H
N−1(J(σ)) = MS(σ, 1).
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Thus the proof is complete.

We are ready to state the final convergence result.

Theorem 3.11. Under the previous assumptions, let us assume that σ0 is ad-
missible in the sense of Definition 3.9. Let us also assume that, for a positive
constant C0, we have ψ(t) ≥ C0t

2 for any t ∈ [0, 1].
If we pick η = η(ε) = ε

1/β, and we call Fε = Fε,η(ε) as in (44), then we
obtain that

min
X

F̃0 ≤ lim inf
ε→0+

�
inf

X×L1(Ω)
Fε

�
≤ lim sup

ε→0+

�
inf

X×L1(Ω)
Fε

�
< +∞.

Furthermore, let us consider two sequences {εn}n∈N ⊂ (0, ε0], such that
limn εn = 0, and {(σn, vn)}n∈N ⊂ X × L

1(Ω).
If there exists a constant C such that Fεn(σn, vn) ≤ C for any n ∈ N, then,

as n → ∞, vn converges to v ≡ 1 in L
1(Ω) and, up to a subsequence, σn

converges to σ̃ ∈ X in L
1(Ω). Moreover, σ̃ ∈ SBV (Ω), MS(σ̃, 1) is finite, and

�Λ(σ̃)−Λ(σ0)�Y = 0. Finally, if N = 2 and we assume that either B1 is dense

in H
1/2
∗ (∂Ω) or B̃1 is dense in H

−1/2
∗ (∂Ω), respectively, the whole sequence σn

converges, as n → ∞, to σ0 in L
1(Ω).

Proof. First of all, by applying Lemma 3.10 to σ = σ0, we conclude that

lim sup
ε→0+

�
inf

X×L1(Ω)
Fε

�
< +∞.

In fact, for any 0 < ε ≤ ε0, we have

�Λ(ση(ε))−Λ̂ε�Y ≤ �Λ(ση(ε))−Λ(σ0)�Y +�Λ(σ0)−Λ̂ε�Y ≤ C(η(ε))β+ε ≤ C1ε,

for some constants C and C1.
By the Γ-limif inequality, [10, Proposition 4.5], and the compactness stated

in the second part of Theorem 3.7, we can immediately prove that

min
X

F̃0 ≤ lim inf
ε→0+

�
inf

X×L1(Ω)
Fε

�
.

The second part of the theorem follows immediately, again by exploiting
the compactness result in Theorem 3.7.
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Matemática, Rio de Janeiro, 1980, pp. 65–73.

[12] P. Caro and K.M. Rogers, Global uniqueness for the Calderón’s problem with

Lipschitz conductivities, Forum Math. Pi 4 (2016), e2 (28 pp).
[13] T.F. Chan and X.-C. Tai, Level set and total variation regularization for el-

liptic inverse problems with discontinuous coefficients, J. Comput. Phys. 193
(2003), 40–66.

[14] A. Cherini, Regolarizzazione del problema inverso della conduttività per con-
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Abstract. The neutral inclusion problem in two dimensional isotropic
elasticity is considered. The neutral inclusion, when inserted in a ma-
trix having a uniform applied field, does not disturb the field outside
the inclusion. The inclusion consists of the core and shell of arbitrary
shapes, and their elasticity tensors are isotropic. We show that if the
coated inclusion is neutral to a uniform bulk field, then the core and
shell must be concentric disks, provided that the shear and bulk moduli
satisfy certain conditions.
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1. Introduction

Some inclusions, when inserted in a matrix having a uniform field, do not dis-
turb the field outside the inclusion. Such inclusions are called neutral inclusions
(to the given field). A typical neutral inclusion consists of a core coated by a
shell having the material property different from that of the core.

It is easy to construct neutral inclusions of circular shapes in the context of
conductivity (or anti-plane elasticity). LetD = { |x| < r1 } and Ω = { |x| < r2 }
(r1 < r2) so that D is the core and Ω \D is the shell. The conductivity is σc

in the core, σs in the shell, and σm in the matrix (R2 \Ω). So the conductivity
distribution is given by

σ = σcχ(D) + σsχ(Ω \D) + σmχ(R2 \ Ω)

where χ is the characteristic function. If σc, σs and σm satisfy the relation

r
2
2(σs + σc)(σm − σs)− r

2
1(σs − σc)(σm + σs) = 0, (1)

then Ω is neutral to uniform fields. In other words, for any constant vector a,
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the solution u to the problem
�

∇ · σ∇u = 0 in R2,

u(x)− a · x = O(|x|−1) as |x| → ∞

satisfies u(x)− a · x = 0 in R2 \ Ω.
Much interest in neutral inclusions was aroused by the work of Hashin [6, 7],

where it is shown that since insertion of neutral inclusions does not perturb the
outside uniform field, the effective conductivity of the assemblage filled with
neutral inclusions of many different scales is σm satisfying (1). It is also proved
that this effective conductivity is a bound of the Hashin-Shtrikman bounds on
the effective conductivity of arbitrary two phase composites. We refer to a
book of Milton [13] for development on neutral inclusions in relation to theory
of composites.

Another interest in neutral inclusions has aroused in relation to the invis-
ibility cloaking by transformation optics. In this regard, we first observe that
in general the solution u to

�
∇ · σ∇u = 0 in R2,

u(x)− h(x) = O(|x|−1) as |x| → ∞ (2)

for a given harmonic function h satisfies u(x) − h(x) = O(|x|−1) as |x| → ∞.
But, if the inclusion is neutral to all uniform fields, then the linear part of
h is unperturbed and one can show using multi-polar expansions that u(x) −
h(x) = O(|x|−2) as |x| → ∞ for any h (not necessarily linear). Recently,
Ammari et al [2] extended the idea of neutral inclusions to construct multi-
coated circular structures which are neutral not only to uniform fields but also
to fields of higher order, so that the solution u to (2) satisfies u(x) − h(x) =
O(|x|−N ) as |x| → ∞ for any given N and any h (such structures are called
GPT vanishing structures). Such structures have a strong connection to the
cloaking by transformation optics. The transformation optics proposed by
Pendry et al [16] transforms a punctured disk (or a sphere) to an annulus to
achieve perfect cloaking. The same transform was used to show non-uniqueness
of the Calderón’s problem by Greenleaf et al [5]. Kohn et al [12] showed that
if one transforms a disk with small hole, then one can avoid singularity of the
conductivity which occurs on the inner boundary of the annulus and achieve
near-cloaking instead of perfect cloaking. In [2] it is shown that if we coat
the core by multiple layers so that the structure becomes neutral to fields of
higher order (and transform the structure), then the near-cloaking effect is
dramatically improved.

All above mentioned neutral inclusions have circular shapes and it is of
interest to consider neutral inclusions of arbitrary shapes. For a given core
of arbitrary shape, the shape of the outer boundary of the shell has been
constructed by Milton & Serkov [14] so that the coated inclusion is neutral to a
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single uniform field. This is done when the conductivity σc of the core is either 0
or ∞. See [9] for an extension to the case when σc is finite. It is also proved
in [14] that if an inclusion is neutral to all uniform field (or equivalently, to
two linearly independent uniform fields), then the inclusion is concentric disks
(confocal ellipses if the conductivity of the matrix is anisotropic), when σc is 0
or ∞. In recent paper [10], Kang and Lee proved that this is the case even
when σc is finite. See also [11] for an extension to three dimensions.

In this paper the problem of neutral inclusions in two dimensional linear
isotropic elasticity is considered. Let the shear and bulk moduli of the core, the
shell, and the matrix be (µc,κc), (µs,κs), and (µm,κm), respectively, and let µ
and κ denote their distributions in R2. Define the elasticity tensor C = (Cijkl)
by

Cijkl = (κ− µ)δijδk� + µ(δikδj� + δi�δjk), i, j, k, l = 1, 2 , (3)

where δij is the Kronecker’s delta. Let h(x) = x, whose gradient represents
the bulk strain field, and consider the following interface problem:

�
divC�∇u = 0 in R2,

u(x)− h(x) = O(|x|−1) as |x| → ∞,

(4)

where �∇u is the symmetric gradient (or the strain tensor), i.e.,

�∇u :=
1

2
(∇u+ (∇u)T ) (T for transpose).

The inclusion is neutral to the (strain) field ∇h if the solution u to (4) satisfies
u(x)−h(x) = 0 in R2 \Ω. Inclusions neutral to the bulk field was found using
the exact effective bulk modulus of the assemblage of coated disks which was
derived by Hashin and Rosen [8]. The purpose of this paper is to prove that
concentric disks are the only coated inclusions neutral to bulk fields under some
conditions on the shear and bulk moduli.

The following is the main theorem of this paper.

Theorem 1.1. Let Ω and D be bounded simply connected domains in R2 with
Lipschitz boundaries such that D ⊂ Ω. Suppose that

µc �= µs, κm �= κs, and κc < 2κs + µs. (5)

If (Ω, D) is neutral to the bulk field, or equivalently, if the solution u to (4)
with h(x) = x satisfies u(x) − x = 0 in R2 \ Ω, then D and Ω are concentric
disks.

The conditions in (5) are required to show that the solution is linear in the
core. The first two conditions seem natural because the elasticity properties of
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the core, the shell, and the matrix must be different. However, we don’t know
if the third condition is necessary.

It is worth mentioning that inclusions consisting of the concentric disks are
not neutral to shear fields: for example, if h(x) = (y, x)T , then u(x) − h(x)
has a term of order |x|−1 and a term of order |x|−3 as |x| → ∞, and it is not
possible to make both terms vanish. Christensen and Lo [3] constructed circular
inclusions such that the term of order |x|−1 vanishes and derived an effective
transverse shear modulus of the assemblage of coated disks. It is interesting to
construct coated inclusions neutral to shear fields or to prove non-existence of
such inclusions.

The rest of the paper is organized as follows: In the next section we show
that if (Ω, D) is neutral to the bulk field, then ∇u is symmetric and divu is
constant in the shell. The main theorem is proved in section 3 by showing
that u is linear in the core. To do so we use a complex representation of the
displacement vector.

2. Properties of the solution in the shell

In this section we prove the following proposition. We emphasize that (5) is
not required for this proposition.

Proposition 2.1. Let Ω and D be bounded simply connected domains in R2

with Lipschitz boundaries such that D ⊂ Ω. If (Ω, D) is neutral to the bulk
field, then the solution u to (4) satisfies the following:

(i) ∆u = 0, or equivalently divu = constant in Ω \D.

(ii) ∇u is symmetric in Ω \D, namely, ∂1u2 = ∂2u1.

To prove Proposition 2.1, we need some preparartion. The Kelvin matrix
Γ(x) = (Γij(x))2i,j=1 of the fundamental solution to the Lamé operator divC�∇
in two dimensions is given by

Γij(x) :=
α1

2π
δij log |x|−

α2

2π

xixj

|x|2 , x �= 0 , (6)

where

α1 =
1

2

�
1

µ
+

1

µ+ κ

�
and α2 =

1

2

�
1

µ
− 1

µ+ κ

�
. (7)

A straight-forward computation shows that

divy Γ(x− y) =
α2 − α1

2π
∇x log |x− y| = − 1

2π(µ+ κ)
∇x log |x− y| . (8)
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In particular, we have
�

Ω
divy Γ(x− y)dy = − 1

2π(µ+ κ)
∇

�

Ω
log |x− y|dy. (9)

Since
1

2π
∆

�

Ω
log |x− y|dy =

�
1 if x ∈ Ω,

0 if x ∈ R2 \ Ω,

we have

div

�

Ω
divy Γ(x− y)dy =





− 1

µ+ κ
if x ∈ Ω,

0 if x ∈ R2 \ Ω.
(10)

We also have

rot

�

Ω
divy Γ(x− y)dy = 0 . (11)

Proof of Proposition 2.1. Suppose that (Ω, D) is neutral to the bulk field. Then
the following over-determined problem admits a solution:

�
∇ · (C�∇u) = 0 in Ω,

u(x) = x, (Cs
�∇u)n = (CmI)n on ∂Ω.

(12)

Here and throughout this paper, n denotes the outward normal to ∂Ω (and ∂D).
Let uc and us denote the solution on D and Ω \ D, respectively. Then the
transmission conditions along ∂D are given by

uc = us and (Cc
�∇uc)n = (Cs

�∇us)n on ∂D. (13)

Let v be a smooth vector field in Ω. Then we have
�

∂Ω
(Cs

�∇u)n · v dσ =

�

Ω
C�∇u : �∇v dy.

Here and afterwards, A : B denotes the contraction of two matrices A and
B, i.e., A : B =

�
aijbij = tr(ATB). On the other hand, we have from the

Neumann boundary condition in (12)
�

∂Ω
(C�∇u)n · v dσ =

�

Ω
CmI : �∇v dy.

So, we have
�

Ω\D
Cs

�∇u : �∇v dy +

�

D
Cc

�∇u : �∇v dy =

�

Ω
CmI : �∇v dy. (14)
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Using the Dirichlet boundary condition in (12) we have for any elasticity
tensor C0

�

∂Ω
u · (C0

�∇v)n dσ =

�

Ω
C0

�∇u : �∇v dy +

�

Ω
u · div(C0

�∇v) dy

and
�

∂Ω
u · (C0

�∇v)n dσ =

�

∂Ω
y · (C0

�∇v)n dσ

=

�

Ω
C0I : �∇v dy +

�

Ω
y · div(C0

�∇v) dy.

Thus we have
�

Ω
C0

�∇u : �∇v dy +

�

Ω
u · div(C0

�∇v) dy

=

�

Ω
C0I : �∇v dy +

�

Ω
y · div(C0

�∇v) dy. (15)

Subtracting (15) with C0 = Cs from (14) we obtain

�

D
(Cc − Cs)�∇u : �∇v dy −

�

Ω
u · div(Cs

�∇v) dy

=

�

Ω
(Cm − Cs)I : �∇v dy −

�

Ω
y · div(Cs

�∇v) dy. (16)

Let Γs and Γc be the Kelvin matrices for divCs
�∇ and divCc

�∇, respectively.
For x ∈ Ω, let v(y) be a column of Γs(x − y). Then we may apply the same
argument of integration by parts (over Ω with an � ball around x deleted) as
above and obtain from (16) the following representation of the solution:

u(x) = x+

�

D
(Cc − Cs)�∇u(y) : �∇Γs(x− y) dy

+

�

Ω
(Cs − Cm)I : �∇Γs(x− y) dy, x ∈ Ω. (17)

Since (Cm − Cs)I : �∇v = 2(κm − κs)divv, the identity (16) takes the form

�

D
(Cc − Cs)�∇u : �∇v dy −

�

Ω
u · div(Cs

�∇v) dy

= 2(κm − κs)

�

Ω
divv dy −

�

Ω
y · div(Cs

�∇v) dy, (18)
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One can also see from (9) that the representation formula (17) takes the form

u(x) = x+

�

D
(Cc − Cs)�∇u(y) : �∇yΓ

s(x− y) dy

+
κm − κs

π(µs + κs)
∇

�

Ω
log |x− y| dy, x ∈ Ω. (19)

Let Γs,j be the j-th column of Γs. Let x ∈ R2 \ Ω. Substitute vj(y) :=
∂

∂xj
Γs,j(x − y) for v in (18) and add the identities for j = 1, 2. Note that

div(Cs
�∇vj) = 0 in Ω since x /∈ Ω. We infer from (10) that

2�

j=1

�

Ω
divvj =

2�

j=1

∂

∂xj

�

Ω
divy Γ

s,j(x− y) dy = 0.

It then follows from (18) that

2�

j=1

∂

∂xj

�

D
(Cc − Cs)�∇u(y) : �∇Γs,j(x− y) dy = 0, x ∈ R2 \ Ω. (20)

Observe that the left-hand side in the above is a real analytic function in R2\D.
So, by unique continuation (20) holds for all x ∈ R2\D. We then infer from (10)
and (19) that

divu = α in Ω \D, (21)

where α is the constant given by

α = 2 +
2(κm − κs)

µs + κs
. (22)

Since div(Cs
�∇u) = µs∆u+ κs∇divu = 0, we also have

∆u = 0 in Ω \D. (23)

We now prove (ii). Let x ∈ R2 \ Ω and substitute ∂
∂x2

Γs,1(x − y) for v
in (18) to obtain from (9) that

∂

∂x2

�

D
(Cc − Cs)�∇u(y) : �∇Γs,1(x− y) dy

= 2(κm − κs)
∂

∂x2

�

Ω
divy Γ

s,1(x− y) dy

= − (κm − κs)

π(µs + κs)

∂2

∂x1∂x2

�

Ω
log |x− y| dy ,
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By substituting ∂
∂x1

Γs,2(x− y) for v in (18), we also obtain

∂

∂x1

�

D
(Cc − Cs)�∇u(y) : �∇Γs,2(x− y) dy

= − (κm − κs)

π(µs + κs)

∂2

∂x1∂x2

�

Ω
log |x− y| dy .

So, we have using unique continuation again that

∂

∂x2

�

D
(Cc − Cs)�∇u(y) : �∇Γs,1(x− y) dy

=
∂

∂x1

�

D
(Cc − Cs)�∇u(y) : �∇Γs,2(x− y) dy, x ∈ R2 \D,

and so (ii) is proved.

3. Neutral Inclusions to the bulk field

3.1. Complex representation of the solution and a lemma

Let u = (u1, u2)T be the solution to (4). There are functions ϕ and ψ which
are analytic in D, Ω \D, and C \D, separately, such that

u1 + iu2 =
1

2µ

�
kϕ(z)− zϕ�(z)− ψ(z)

�
, (24)

where

k = 1 +
2µ

κ
. (25)

See for example [1, 15] for derivation of (24). Conversely, one can see that
u = (u1, u2)T of the form (24) with k > 1 for a pair of analytic functions ϕ and
ψ in D is a solution in D of the Lamé system determined by the shear modulus
µ and the bulk modulus κ = 2µ/(k − 1).

We denote ϕ and ψ by ϕc and ψc in the core, ϕs and ψs in the shell, and ϕm

and ψm in the matrix. Then the transmission conditions (12) and (13) along
the interfaces ∂D and ∂Ω take the following forms: along ∂D,

1

2µs

�
ksϕs(z)− zϕ�

s(z)− ψs(z)

�
=

1

2µc

�
kcϕc(z)− zϕ�

c(z)− ψc(z)

�
,

d(ϕs(z) + zϕ�
s(z) + ψs(z)) = d(ϕc(z) + zϕ�

c(z) + ψc(z)),

and similar conditions on ∂Ω, where d is the exterior differential. The first
condition is the continuity of the displacement and the second one is that of
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the traction. Using complex notation dz = dx + idy and dz = dx − idy, the
exterior differential is given by

df =
∂f

∂z
dz +

∂f

∂z
dz.

It is convenient to use notation

U(z) := u1 + iu2 =
1

2µ

�
kϕ(z)− zϕ�(z)− ψ(z)

�
, (26)

and
DU(z) := d(ϕ+ zϕ� + ψ) = (ϕ� + ϕ�)dz + (zϕ�� + ψ�)dz. (27)

Then the transmission conditions read

Uc = Us, DUc = DUs on ∂D, (28)

and
Um = Us, DUm = DUs on ∂Ω. (29)

The proofs in the subsequent subsection use the following lemma, which
may be well-known. We include a short proof for readers’ sake.

Lemma 3.1. Let D be a simply connected bounded domain with the Lipschitz
boundary, and let g be a square integrable function on ∂D. If

�

∂D
g(z)f �(z)dz = 0 (30)

for any function f analytic in a neighborhood of D, then there is an analytic
function G in D such that G = g on ∂D.

Proof. Define the Cauchy transform by

C[g](w) :=
1

2πi

�

∂D

g(z)

z − w
dz, w ∈ C \ ∂D.

Then by Plemelj’s jump formula (see [15]), we have

g(w) = C[g]|−(w)− C[g]|+(w), w ∈ ∂D,

where C[g]|− and C[g]|+ denote the limits from inside and outside of D, re-
spectively. Since D is simply connected, f(z) = log(z − w) is well-defined and
analytic in a neighborhood of D if w /∈ D. So, C[g](w) = 0 if w /∈ D by (30).
Thus, we have

g(w) = C[g]|−(w), w ∈ ∂D.

So, G := C[g] in D is the desired analytic function.
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3.2. Proof of Theorem 1.1

Let us prove the following proposition first.

Proposition 3.2. Let Ω and D be bounded simply connected domains in R2

with Lipschitz boundaries such that D ⊂ Ω, and assume that (5) holds. If
(Ω, D) is neutral to the bulk field, then the solution u to (4) is linear in D and
of the form

u(x) = ax+ b (31)

for a constant a and a constant vector b.

Proof. Let u be the solution to (4) when h(x) = x, and U be defined by (26).
Since (Ω, D) is neutral to the bulk field, u(x) = x in R2 \Ω, and hence we have

Um(z) = z, ϕm(z) = κmz, ψm(z) = 0, DUm(z) = 2κmdz.

Moreover, Proposition 2.1 implies that

ϕs(z) = βz + constant, z ∈ Ω \D, (32)

where β is a real constant. In fact, we see from Proposition 2.1 that

∂

∂z
Us =

1

2

�
∂

∂x1
− i

∂

∂x2

�
(u1 + iu2) =

1

2

�
divu+ i

�
∂u2

∂x1
− ∂u1

∂x2

��
=

α

2
,

where α is the constant in (22). Thus we have

α

2
=

∂

∂z
Us(z) =

1

2µs

�
ksϕ

�
s(z)− ϕ�

s(z)
�
,

which implies that ϕ�
s(z) = β = κsα/2 by (25). One can see from (22) that

κm − β =
(κm − κs)(2κs + µs)

κs + µs
. (33)

Let f and g be functions analytic on Ω, and let F (z) = f(z) + g(z). We
have from the first identity in (29), Cauchy’s theorem and Stokes’ theorem that

�

∂Ω
UsdF =

�

∂Ω
UmdF =

�

∂Ω
zg� dz = −

�

Ω
g� dm ,

where dm := dz ∧ dz. We also have from Stokes’ theorem that
�

∂Ω
UsdF =

�

Ω
d(UdF ) =

�

Ω

�
∂

∂z
(Uf

�)− ∂

∂z

�
Ug�

��
dm

= −
�

Ω

1

2µ

��
zϕ�� + ψ�

�
f
� + (kϕ� − ϕ�)g�

�
dm . (34)
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Equating above two identities, we have

�

Ω
g� dm =

1

2µs

�

Ω\D

��
zϕ��

s + ψ�
s

�
f
� + (ksϕ

�
s − ϕ�

s)g
�
�
dm

+
1

2µc

�

D

��
zϕ��

c + ψ�
c

�
f
� + (kcϕ

�
c − ϕ�

c)g
�
�
dm .

It then follows from (25) and (32) that

�

Ω
g� dm− β

κs

�

Ω\D
g� dm

=
1

2µs

�

Ω\D
ψ�
sf

�
dm+

1

2µc

�

D

�
zϕ��

c + ψ�
c

�
f
�
dm+

1

2µc

�

D
(kcϕ

�
c − ϕ�

c)g
� dm .

Since f and g are arbitrary, we have

1

µs

�

Ω\D
ψ�
sf

�
dm+

1

µc

�

D

�
zϕ��

c + ψ�
c

�
f
�
dm = 0 , (35)

and
1

2µc

�

D
(kcϕ

�
c − ϕ�

c)g
� dm =

�

Ω
g� dm− β

κs

�

Ω\D
g� dm . (36)

Similarly, we have from the second identity in (29)

�

∂Ω
FDUs =

�

∂Ω
FDUm = 2κm

�

∂Ω
g dz = 2κm

�

Ω
g� dm ,

and hence

2κm

�

Ω
g� dm =

�

Ω
d(FDU)

=

�

Ω

�
∂

∂z

�
(f + g)(ϕ� + ϕ�)

�
− ∂

∂z

�
(f + g)(zϕ�� + ψ�)

��
dm

=

�

Ω

�
g�(ϕ� + ϕ�)− f

� �
zϕ�� + ψ�

��
dm .

Since f and g are arbitrary and (32) holds, we obtain

�

Ω\D
ψ�
sf

�
dm+

�

D

�
zϕ��

c + ψ�
c

�
f
�
dm = 0 , (37)

and �

D
(ϕ�

c + ϕ�
c)g

�dm = 2κm

�

Ω
g� dm− 2β

�

Ω\D
g�dm . (38)
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Since µs �= µc by the assumption (5), we infer from (35) and (37) that
�

D

�
zϕ��

c + ψ�
c

�
f
�
dm = 0 ,

or equivalently, �

∂D

�
zϕ�

c + ψc

�
f
�
dz = 0 . (39)

Note that (39) holds for all functions f analytic in Ω. However, one can in-
fer using Runge’s approximation theorem that it holds for all f analytic in a
neighborhood of D. So, by Lemma 3.1, there is an analytic function η1 in D

such that
zϕ�

c + ψc = η1 on ∂D. (40)

On the other hand, (36) can be rewritten as

1

2µc

�

D
(kϕ�

c − ϕ�
c −

2βµc

κs
)g� dm =

�
1− β

κs

��

Ω
g� dm , (41)

while (38) as
�

D
(ϕ�

c + ϕ�
c − 2β)g�dm = 2(κm − β)

�

Ω
g� dm . (42)

Since κm−β �= 0 by the assumption (5) and (33), we see from (41) and (42)
that �

D
(kcϕ

�
c − ϕ�

c −
2βµc

κs
)g� dm− γ

�

D
(ϕ�

c + ϕ�
c − 2β)g�dm = 0.

where

γ :=
2µc

�
1− β

κs

�

2(κm − β)
=

2µc

�
1− α

2

�

2(κm − β)
. (43)

So by the same argument as above, we infer that the function

�
kcϕc − zϕ�

c −
2βµc

κs
z

�
− γ(ϕc + zϕ�

c − 2βz)

can be continued analytically to D, namely, there is an analytic function η2

in D such that
�
kcϕc − zϕ�

c −
2βµc

κs
z

�
− γ(ϕc + zϕ�

c − 2βz) = η2 on ∂D,

which can be rephrased as

kc − γ

1 + γ
ϕc − zϕ�

c = (1 + γ)−1
η2 + δz on ∂D, (44)
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for some real constant δ. Observe that if f is analytic in D, then f is a solution
(in the complex representation) to the Lamé system for any shear modulus
µ > 0 and bulk modulus κ > 0. So, (1+ γ)−1η2 + δz is a solution to any Lamé
system. We claim (leaving the proof to the end of this proof) that

k∗ :=
kc − γ

1 + γ
> 1. (45)

It implies that k∗ϕc − zϕ�
c is a solution to the Lamé system with the shear

modulus µ = 1 and the bulk modulus 2(k∗ − 1)−1. So, it follows from (44) and
uniqueness of the Dirichlet boundary value problem for the Lamé system that

k∗ϕc − zϕ�
c = (1 + γ)−1

η2 + δz in D.

By differentiating both sides with respect to z, we see that ϕ�
c is (real) constant

in D. We also see from (40) that ψc is constant in D. In fact, we have from (40)
that

ψc = η1 + cz on ∂D

for some constant c. Since ψc and η1 + cz are analytic in D, it implies that
they are constant in D.

Let us now prove (45). We see easily from (22), (33) and (43) that

γ =
µc

2κs + µs
.

So we have

(kc − γ)− (1 + γ) = 2µc

�
1

κc
− 1

2κs + µs

�
.

Then (45) follows by the third condition in (5). This completes the proof.

Proof of Theorem 1.1. According to Proposition 3.2, the solution u takes the
form (31). Substituting this into the representation formula (19) yields

u(x) = x+ 2a(κc − κs)

�

D
I : �∇yΓ

s(x−y) dy +
κm − κs

π(µs + κs)
∇
�

Ω
log |x−y| dy

= x+ 2a(κc − κs)

�

D
div�∇yΓ

s(x−y) dy +
κm − κs

π(µs + κs)
∇
�

Ω
log |x−y| dy

for x ∈ Ω. It then follows from (9) that

u = ∇χ in Ω \D,

where

χ(x) =
1

2
|x|2 + a(κs − κc)

π(µs + κs)

�

D
log |x− y| dy +

κm − κs

π(µs + κs)

�

Ω
log |x− y| dy.
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Since u = x on ∂Ω, u = ax + b on ∂D by (31), and divu is constant in
Ω \D, χ is a solution of the following over-determined problem:






∆χ = constant in Ω \D,

∇χ = x on ∂Ω,

∇χ = ax+ b on ∂D.

(46)

It is proved in [10] (see also [11]) that if the problem (46) admits a solution if
and only if Ω and D are concentric disks. This completes the proof.

Conclusion

In this paper we prove that if a coated inclusion in two dimensions is neutral
to a bulk field, the core and the shell are concentric disks, provided that the
assumption (5) on elastic moduli holds. It is not clear whether or not there is a
coated structure neutral to shear fields, and it is of interest to clarify this. The
shear field is the gradient of h(x) = Ax where A is a symmetric matrix whose
trace is zero. An extension to three dimensions is also interesting. One can show
by the same proof that Proposition 2.1 holds to be true in three dimensions.
But, we do not know how to prove Proposition 3.2 in three dimensions.
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partial measurements
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We dedicate this work to Giovanni Alessandrini for his 60th birthday and for
his pioneering contribution in the stability estimates of inverse problems

Abstract. This manuscript was originally uploaded to arXiv in 2007 
(arXiv:0708.3289v1). In the current version, we expand the Introduc-
tion and the list of references which are related to the results of this pa-
per after 2007. In this work we establish log type stability estimates for 
the inverse potential and conductivity problems with partial Dirichlet-
to-Neumann map, where the Dirichlet data is homogeneous on the inac-
cessible part. The proof is based on the uniqueness result of the inverse 
boundary value problem in Isakov’s work [17].

Keywords: Schrödinger equation, stability, inverse problems.
MS Classification 2010: 35R30, 65N21.

1. Introduction

In this paper we study the stability question of the inverse boundary value
problem for the Schrödinger equation with a potential and the conductiv-
ity equation by partial Cauchy data. This type of inverse problem with full
data, i.e., Dirichlet-to-Neumann map, were first proposed by Calderón [6]. For
three or higher dimensions, the uniqueness issue was settled by Sylvester and
Uhlmann [29] and a reconstruction procedure was given by Nachman [27]. For
two dimensions, Calderón’s problem was solved by Nachman [28] for W 2,p con-
ductivities and by Astala and Päivärinta [3] for L∞ conductivities. This inverse
problem is known to be ill-posed. A log-type stability estimate was derived by
Alessandrini [1]. On the other hand, it was shown by Mandache [26] that the
log-type estimate is optimal.

All results mentioned above are concerned with the full data. Over the last
decade, the inverse problems with partial data have received a lot of attention.
We list several earlier results [5, 12, 13, 15, 17, 18, 19, 21, 22, 24] and refer the
reader to the survey article [20] for its detailed development and for related ref-
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erences. After the uniqueness proof comes stability estimates. We summarize
related results in the following.

• log log type: [8, 9, 10, 11, 16, 23, 31].

• log type: [2, 4, 7, 14, 25].

The method in [16] was based on [5] and a stability estimate for the analytic
continuation proved in [32]. We believe that the log type estimate should be
the right estimate for the inverse boundary problem, even with partial data. In
this paper, motivated by the uniqueness proof in Isakov’s work [17], we prove
a log type estimate for the inverse boundary value problem under the same a
priori assumption on the boundary as given in [17]. Precisely, the inaccessible
part of the boundary is either a part of a sphere or a plane. Also, one is able
to use zero data on the inaccessible part of the boundary. The strategy of the
proof in [17] follows the framework in [29] where complex geometrical optics
solutions are key elements. A key observation in [17] is that when Γ0 is a part of
a sphere or a plane, we are able to use a reflection argument to guarantee that
complex geometrical optics solutions have homogeneous data on Γ0. Caro in [7]
also used Isakov’s idea to derive a log type estimate for the Maxwell equations.
The articles [2, 4, 14] have a common feature that the undetermined coefficients
are known near the boundary.

Now we would like to describe the results in this work. Let n ≥ 3 and
Ω ⊂ Rn be an open domain with smooth boundary ∂Ω. Given q ∈ L

∞(Ω), we
consider the boundary value problem:

(∆− q)u = 0 in Ω

u = f on ∂Ω,
(1)

where f ∈ H
1/2(∂Ω). Assume that 0 is not a Dirichlet eigenvalue of ∆ − q

on Ω. Then (1) has a unique solution u ∈ H
1(Ω). The usual definition of the

Dirichlet-to-Neumann map is given by

Λqf = ∂νu|∂Ω

where ∂νu = ∇u · ν and ν is the unit outer normal of ∂Ω.
Let Γ0 ⊂ ∂Ω be an open part of the boundary of Ω. We set Γ = ∂Ω\Γ0. We

further set H
1/2
0 (Γ) := {f ∈ H

1/2(∂Ω) : supp f ⊂ Γ} and H
−1/2(Γ) the dual

space of H1/2
0 (Γ). Then the partial Dirichlet-to-Neumann map Λq,Γ is defined

as
Λq,Γf := ∂νu|Γ ∈ H

−1/2(Γ)

where u is the unique weak solution of (1) with Dirichlet Data f ∈ H
1/2
0 (Γ).

In what follows, we denote the operator norm by

�Λq,Γ�∗ := �Λq,Γ�
H

1/2
0 (Γ)→H−1/2(Γ)

.
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We consider two types of domains in this paper:

(a) Ω is a bounded domain in {xn < 0} and Γ0 = ∂Ω ∩ {xn = 0};

(b) Ω is a subdomain of B(a,R) and Γ0 = ∂B(a,R)∩∂Ω with Γ0 �= ∂B(a,R),
where B(a,R) is a ball centered at a with radius R.

The main result of the paper reads as follows:

Theorem 1.1. Assume that Ω is given as in either (a) or (b). Let N > 0,
s >

n

2 and qj ∈ H
s(Ω) such that

�qj�Hs(Ω) ≤ N (2)

for j = 1, 2, and 0 is not a Dirichlet eigenvalue of ∆ − qj for j = 1, 2. Then
there exist constants C > 0 and σ > 0 such that

�q1 − q2�L∞(Ω) ≤ C
�� log �Λq1,Γ − Λq2,Γ�∗

��−σ

(3)

where C depends on Ω, N, n, s and σ depends on n and s.

Theorem 1.1 can be generalized to the conductivity equation. Let γ ∈
H

s(Ω) with s > 3 + n

2 be a strictly positive function on Ω. The equation for
the electrical potential in the interior without sinks or sources is

div(γ∇u) = 0 in Ω

u = f on ∂Ω.

As above, we take f ∈ H
1/2
0 (Γ). The partial Dirichlet-to-Neumann map defined

in this case is
Λγ,Γ : f �→ γ∂νu|Γ.

Corollary 1.2. Let the domain Ω satisfy (a) or (b). Assume that γj ≥ N
−1

>

0, s > n

2 , and
�γj�Hs+3(Ω) ≤ N (4)

for j = 1, 2, and

∂
β

ν
γ1|Γ = ∂

β

ν
γ2|Γ on ∂Ω, ∀ 0 ≤ β ≤ 1. (5)

Then there exist constants C > 0 and σ > 0 such that

�γ1 − γ2�L∞(Ω) ≤ C
�� log �Λγ1,Γ − Λγ2,Γ�∗

��−σ

(6)

where C depend on Ω, N, n, s and σ depend on n, s.

Remark 1.3. For the sake of simplicity, we impose the boundary identification
condition (5) on conductivities. However, using the arguments in [1] (also see
[16]), this condition can be removed. The resulting estimate is still in the form
of (6) with possible different constant C and σ.
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2. Preliminaries

We first prove an estimate of the Riemann-Lebesgue lemma for a certain class
of functions. Let us define

g(y) = �f(·− y)− f(·)�L1(Rn)

for any f ∈ L
1(Rn). It is known that lim|y|→0 g(y) = 0.

Lemma 2.1. Assume that f ∈ L
1(Rn) and there exist δ > 0, C0 > 0, and

α ∈ (0, 1) such that

g(y) ≤ C0|y|α (7)

whenever |y| < δ. Then there exists a constant C > 0 and ε0 > 0 such that for
any 0 < ε < ε0 the inequality

|Ff(ξ)| ≤ C
�
exp(−πε

2|ξ|2) + ε
α
�

(8)

holds with C = C(C0, �f�L1 , n, δ,α).

Proof. Let G(x) := exp(−π|x|2) and set Gε(x) := ε
−n

G(x
ε
). Then we define

fε := f ∗Gε. Next we write

|Ff(ξ)| ≤ |Ffε(ξ)|+ |F(fε − f)(ξ)|.

For the first term on the right hand side we get

|Ffε(ξ)| ≤ |Ff(ξ)| · |FGε(ξ)|
≤ �f�1|ε−n

ε
nFG(εξ)|

≤ �f�1 exp(−πε
2|ξ|2).

(9)

To estimate the second term, we use the assumption (7) and derive

|F(fε − f)(ξ)| ≤ �fε − f�1

≤
�

Rn

�

Rn

|f(x− y)− f(x)|Gε(y) dy dx

=

�

|y|<δ

�

Rn

|f(x− y)− f(x)|Gε(y) dx dy

+

�

|y|≥δ

�

Rn

|f(x− y)− f(x)|Gε(y) dx dy

= I + II.
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In view of (7) we can estimate

I =

�

|y|<δ

g(y)Gε(y) dy

≤ C0

�

|y|<δ

|y|αGε(y) dy

= C0

�

Sn−1

�
δ

0
r
α
ε
−n exp(−πε

−2
r
2)rn−1 dr dψ

= C1

�
δ

0
ε
α
u
α
ε
−n exp(−u

2)εn−1
u
u−1

ε du

= C2ε
α

�
δ

0
u
n+α−1 exp(−u

2) du = C3ε
α
,

where C3 = C3(C0, n, δ,α).
As for II, we obtain that for ε sufficiently small

II =

�

|y|≥δ

g(y)Gε(y) dy

≤ 2�f�L1

�

|y|≥δ

Gε(y) dy

≤ C4�f�1
� ∞

δ

ε
−n exp(−πε

−2
r
2)rn−1 dr

= C4�f�1
� ∞

δε−1

u
n−1 exp(−πu

2) du

≤ C4�f�1
� ∞

δε−1

exp(−πu) du

≤ C4�f�1
1

π
exp(−πδε

−1) ≤ C5ε
α
,

where C5 = C5(�f�L1 , n, δ,α). Combining the estimates for I, II, and (9), we
immediately get (8).

We now provide a sufficient condition on f , defined on Ω, such that (7) in
the previous lemma holds.

Lemma 2.2. Let Ω ⊂ Rn be a bounded domain with C
1 boundary. Let f ∈

C
α(Ω) for some α ∈ (0, 1) and denote by f̂ the zero extension of f to Rn.

Then there exists δ > 0 and C > 0 such that

�f̂(·− y)− f̂(·)�L1(Rn) ≤ C|y|α

for any y ∈ Rn with |y| ≤ δ.
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Proof. Since Ω is bounded and of class C1, there exist a finite number of balls,
say m ∈ N, Bi(xi) with center xi ∈ ∂Ω, i = 1, . . . ,m and associated C

1-
diffeomorphisms ϕi : Bi(xi) → Q where Q = {x� ∈ Rn−1 : �x�� ≤ 1}× (−1, 1).
Set d = dist (∂Ω, ∂(

�
m

i=1 Bi(xi))) > 0 and Ω̃ε =
�

x∈∂Ω B(x, ε), where B(x, ε)
denotes the ball with center x and radius ε > 0. Obviously, for ε < d, it
holds that Ω̃ε ⊂

�
m

i=1 Bi(xi). Let x ∈ ∂Ω and 0 < |y| < δ ≤ d, then for any
z1, z2 ∈ B(x, |y|) ∩Bi(xi) we get that

|ϕi(z1)− ϕi(z2)| ≤ �∇ϕi�L∞ |z1 − z2| ≤ C|y|

for some constant C > 0. Therefore, ϕi(Ω̃|y| ∩ Bi(xi)) ⊂ {x� ∈ Rn−1 : �x�� ≤
1}× (−C|y|, C|y|). By the transformation formula this yields vol(Ω̃|y|) ≤ C|y|.

Since |y| < δ we have f̂(x− y)− f̂(x) = 0 for x �∈ Ω ∪ Ω̃|y|. Now we write

�f̂(·− y)− f̂�L1(Rn) =

�

Ω\Ω̃|y|

|f̂(x− y)− f̂(x)| dx

+

�

Ω̃|y|

|f̂(x− y)− f̂(x)| dx

≤ C vol(Ω)|y|α + 2�f�L∞ vol(Ω̃|y|)

≤ C(|y|α + |y|) ≤ C|y|α

for δ ≤ 1.

Now let q1 and q2 be two potentials and their corresponding partial Dirichlet-
to-Neumann maps are denoted by Λ1,Γ and Λ2,Γ, respectively. The following
identity plays a key role in the derivation of the stability estimate.

Lemma 2.3. Let vj solve (1) with q = qj for j = 1, 2. Further assume that
v1 = v2 = 0 on Γ0. Then

�

Ω
(q1 − q2)v1v2 dx = �(Λ1,Γ − Λ2,Γ)v1, v2� .

Proof. Let u2 denote the solution of (1) with q = q2 and u2 = v1 on ∂Ω.
Therefore

�

Ω
∇v1 ·∇v2 + q1v1v2 dx = �∂νv1, v2� ,

�

Ω
∇u2 ·∇v2 + q2u2v2 dx = �∂νu2, v2�.

Setting v := v1 − u2 and q0 = q1 − q2 we get after subtracting these identities
�

Ω
∇v ·∇v2 + q2vv2 + q0v1v2 = �(Λ1 − Λ2)v1, v2�.
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Since v2 solves (∆− q2)v2 = 0, v = 0 on ∂Ω and v2 = 0 on Γ0, we have
�

Ω
∇v ·∇v2 + q2vv2 = 0,

�(Λ1 − Λ2)v1, v2� = �(Λ1,Γ − Λ2,Γ)v1, v2�,
and the assertion follows.

In treating inverse boundary value problems, complex geometrical optics
solutions play a very important role. We now describe the complex geometrical
optics solutions that we are going to use in our proofs. We will follow the idea
in [17]. Assume that q1, q2 ∈ L

∞(Rn) are compactly supported and are even
in xn, i.e.

q
∗
1(x1, · · · , xn−1, xn) = q1(x1, · · · , xn−1, xn)

and
q
∗
2(x1, · · · , xn−1, xn) = q2(x1, · · · , xn−1, xn).

Hereafter, we denote

h
∗(x1, · · · , xn−1, xn) = h(x1, · · · , xn−1,−xn).

Given ξ = (ξ1, · · · , ξn) ∈ Rn. Let us first introduce new coordinates ob-
tained by rotating the standard Euclidean coordinates around the xn axis such
that the representation of ξ in the new coordinates, denoted by ξ̃, satisfies

ξ̃ = (ξ̃1, 0, · · · , 0, ξ̃n) with ξ̃1 =
�

ξ
2
1 + · · ·+ ξ

2
n−1 and ξ̃n = ξn. In the following

we also denote by x̃ the representation of x in the new coordinates. Then we
define for τ > 0

ρ̃1 :=

�
ξ̃1

2
− τ ξ̃n, i|ξ̃|

�1
4
+ τ

2
�1/2

, 0, · · · , 0, ξ̃n
2

+ τ ξ̃1

�
,

ρ̃2 :=

�
ξ̃1

2
+ τ ξ̃n,−i|ξ̃|

�1
4
+ τ

2
�1/2

, 0, · · · , 0, ξ̃n
2

− τ ξ̃1

�
,

(10)

and let ρ1 and ρ2 be representations of ρ̃1 and ρ̃2 in the original coordinates.
Note that xn = x̃n and

�
n

i=1 xiyi =
�

n

i=1 x̃iỹi. It is clear that, for j = 1, 2,
ρj · ρj = 0 as well as ρ∗

j
· ρ∗

j
= 0 hold.

The construction given in [29] ensures that there are complex geometrical
optics solutions uj = e

iρj ·x(1 + wj) of (∆− qj)uj = 0 in Rn, j = 1, 2, and the
functions wj satisfy �wj�L2(K) ≤ CKτ

−1 for any compact set K ⊂ Rn. We
then set

v1(x) = e
iρ1·x(1 + w1)− e

iρ
∗
1 ·x(1 + w

∗
1) ,

v2(x) = e
−iρ2·x(1 + w2)− e

−iρ
∗
2 ·x(1 + w

∗
2).

(11)

From this definition it is clear that these functions are solutions of (∆−qj)vj = 0
in Rn

+ with vj = 0 on xn = 0.
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3. Stability estimate for the potential

Now we are in the position to prove Theorem 1.1. We first consider the case (a)
where Γ0 is a part of a hyperplane. To construct the special solutions described
in the previous section, we first perform zero extension of q1 and q2 to R+

n
and

then even extension to the whole Rn. As in the last section, we can construct
special geometrical optics solutions vj of the form (11) to (∆− qj)vj = 0 in Ω
for j = 1, 2. Note that v1 = v2 = 0 on Γ0. We now plug in these solutions into
the identity (2.3) and write q0 = q1 − q2. This gives

�(Λ1,Γ − Λ2,Γ)v1, v2�

=

�

Ω
q0v1v2 dx

=

�

Ω
q0(x)

�
e
i(ρ1+ρ2)·x(1 + w1)(1 + w2) + e

i(ρ∗
1+ρ

∗
2)·x(1 + w

∗
1)(1 + w

∗
2)

− e
i(ρ1+ρ

∗
2)·x(1 + w1)(1 + w

∗
2)− e

i(ρ∗
1+ρ2)·x(1 + w

∗
1)(1 + w2)

�
dx

=

�

Ω
q0(x)(e

iξ·x + e
iξ

∗·x) dx+

�

Ω
q0(x)f(x,w1, w2, w

∗
1 , w

∗
2) dx

−
�

Ω
q0(x)

�
e
i(ρ1+ρ

∗
2)·x + e

i(ρ∗
1+ρ2)·x

�
dx,

(12)

where

f = e
iξ·x(w1 + w2 + w1w2) + e

iξ
∗·x(w∗

1 + w
∗
2 + w

∗
1w

∗
2)

− e
i(ρ∗

1+ρ2)·x(w∗
1 + w2 + w

∗
1w2)− e

i(ρ1+ρ
∗
2)·x(w1 + w

∗
2 + w1w

∗
2).

The first term on the right hand side of (12) is equal to
�

Rn

q0(x)e
iξ·x dx = Fq0(ξ)

because q0 is even in xn. For the second term, we use the estimate

�w1�2 + �w∗
1�2 + �w2�2 + �w∗

2�2 ≤ Cτ
−1

to obtain ����
�

Ω
q0f(x,w1, w2, w

∗
1 , w

∗
2) dx

���� ≤ C�q0�2τ−1
. (13)

As for the last term on the right hand side of (12), we first observe that

(ρ1 + ρ
∗
2) · x = (ρ̃1 + ρ̃

∗
2) · x̃ = ξ̃1x̃1 + 2τ ξ̃1x̃n = ξ

� · x� + 2τ |ξ�|xn

and

(ρ∗1 + ρ2) · x = (ρ̃∗1 + ρ̃2) · x̃ = ξ̃1x̃1 − 2τ ξ̃1x̃n = ξ
� · x� − 2τ |ξ�|xn,
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where ξ
� = (ξ1, · · · , ξn−1) and x

� = (x1, · · · , xn−1). Therefore, we can write

�

Ω
q0(x)e

i(ρ1+ρ
∗
2)·x dx = Fq0(ξ

�
, 2τ |ξ�|)

as well as �

Ω
q0(x)e

i(ρ∗
1+ρ2)·x dx = Fq0(ξ

�
,−2τ |ξ�|).

The Sobolev embedding and the assumptions on qj ensure that q0 ∈ C
α(Ω) for

α = s − n

2 and therefore q0 satisfies the assumption of Lemma 2.2. Applying
Lemma 2.1 to q0 yields that for ε < ε0

|Fq0(ξ
�
, 2τ |ξ�|)|+ |Fq0(ξ

�
,−2τ |ξ�|)| ≤ C(exp(−πε

2(1 + 4τ2)|ξ�|2) + ε
α). (14)

Finally, we estimate the boundary integral

����
�

Γ
(Λ1,Γ − Λ2,Γ)v1 · v2 dσ

���� ≤ �Λ1,Γ − Λ2,Γ�∗�v1�
H

1
2 (Γ)

�v2�
H

1
2 (Γ)

≤ �Λ1,Γ − Λ2,Γ�∗�v1�H1(Ω)�v2�H1(Ω)

≤ C exp(|ξ|τ)�Λ1 − Λ2�∗.

(15)

Combining (12), (13), (14), and (15) leads to the inequality

|Fq0(ξ)| ≤ C

�
exp(|ξ|τ)�Λ1 −Λ2�∗ +exp(−πε

2(1+ 4τ2)|ξ�|2)+ ε
α +

1

τ

�
(16)

for all ξ ∈ Rn and ε < ε0, where C only depends on a priori data on the
potentials.

Next we would like to estimate the norm of q0 in H
−1. As usual, other

estimates of q0 in more regular norms can be obtained by interpolation. To
begin, we set ZR = {ξ ∈ Rn : |ξn| < R and |ξ�| < R}. Note that B(0, R) ⊂
ZR ⊂ B(0, cR) for some c > 0. Now we use the a priori assumption on
potentials and (16) and calculate

�q0�2H−1 ≤
�

ZR

|Fq0(ξ)|2(1 + |ξ|2)−1 dξ +

�

ZR
c

|Fq0(ξ)|2(1 + |ξ|2)−1 dξ

≤
�

ZR

|Fq0(ξ)|2(1 + |ξ|2)−1 dξ + CR
−2

≤ C

�
R

n exp(cRτ)�Λ1 − Λ2�2∗ +R
n
ε
2α +R

n
τ
−2 +R

−2

+

�
R

−R

�

B�(0,R)
exp(−2πε2(1 + 4τ2)|ξ�|2) dξ� dξn

�
,

(17)
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here B
�(x�

, R) denotes the ball in Rn−1 with center x
� and radius R > 0. For

the second term on the right hand side of (17), we choose ε = (1 + 4τ2)−1/4

with τ ≥ τ0 � 1 and integrate

�
R

−R

�

B�(0,R)
exp(−2πε2(1 + 4τ2)|ξ�|2) dξ� dξn

= 2R

�

B�(0,R)
exp(−2π(1 + 4τ2)1/2|ξ�|2) dξ�

= 2R

�

Sn−2

�
R

0
r
n−2 exp(−2π((1 + 4τ2)1/4r)2) dr dω

≤ CR(1 + 4τ2)−(n−1)/4

� ∞

0
u
n−2 exp(−2πu2) du

≤ CRτ
−(n−1)/2

.

(18)

Plugging (18) into (17) with the choice of ε = (1 + 4τ2)−1/4 we get for R > 1

�q0�2H−1 ≤ C{Rn exp(cRτ)�Λ1 − Λ2�2∗ +R
n
τ
−α +Rτ

−(n−1)/2 +R
−2}

≤ C{Rn exp(cRτ)�Λ1 − Λ2�2∗ +R
n
τ
−α̃ +R

−2},
(19)

where α̃ = min{α, (n− 1)/2}.
Observing from (19), we now choose τ such that R

n
τ
−α̃ = R

−2
, namely,

τ = R
(n+2)/α̃. Substituting such τ back to (19) yields

�q0�2H−1 ≤ C{Rn exp(cR
n+2
α̃ +1)�Λ1 − Λ2�2∗ +R

−2}. (20)

Finally, we choose a suitable R so that

R
n exp(cR

n+2
α̃ +1)�Λ1 − Λ2�2∗ = R

−2
,

i.e., R =
�� log �Λ1−Λ2�∗

��γ for some 0 < γ = γ(n, α̃). Thus, we obtain from (20)
that

�q1 − q2�H−1(Ω) ≤ C
�� log �Λ1 − Λ2�∗

��−γ

. (21)

The derivation of (21) is legitimate under the assumption that τ is large. To
make sure that it is true, we need to take R sufficiently large, i.e. R > R0 for
some large R0. Consequently, there exists δ̃ > 0 such that if �Λ1 − Λ2�∗ < δ̃

then (21) holds. For �Λ1−Λ2�∗ ≥ δ̃, (21) is automatically true with a suitable
constant C when we take into account the a priori bound (2).

The estimate (3) is now an easy consequence of the interpolation theorem.
Precisely, let � > 0 such that s = n

2 + 2�. Using that [Ht0(Ω), Ht1(Ω)]β =
H

t(Ω) with t = (1 − β)t0 + βt1 (see e.g. [30, Theorem 1 in 4.3.1]) and the
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Sobolev embedding theorem, we get �q1 − q2�L∞ ≤ C�q1 − q2�
H

n
2 +� ≤ C�q1 −

q2�(1−β)
Ht0

�q1 − q2�βHt1
. Setting t0 = −1 and t1 = s we end up with

�q1 − q2�L∞(Ω) ≤ C�q1 − q2�
�

s+1

H−1(Ω)

which yields the desired estimate (3) with σ = γ
�

s+1 .
We now turn to case (b). With a suitable translation and rotation, it

suffices to assume a = (0, · · · , 0, R) and 0 /∈ Ω. As in [17], we shall use Kelvin’s
transform:

y =

�
2R

|x|

�2

x and x =

�
2R

|y|

�2

y. (22)

Let

ũ(y) =

�
2R

|y|

�n−2

u(x(y)),

then �
|y|
2R

�n+2

∆yũ(y) = ∆xu(x).

Denote by Ω̃ the transformed domain of Ω. In view of this transform, Γ0 now
becomes Γ̃0 ⊂ {yn = 2R} and Γ is transformed to Γ̃ and Γ̃ = ∂Ω̃ ∩ {yn > 2R}.
On the other hand, if u(x) satisfies ∆u− q(x)u = 0 in Ω, then ũ satisfies

∆ũ− q̃ũ = 0 in Ω̃, (23)

where

q̃(y) =

�
2R

|y|

�4

q(x(y)).

Therefore, for (23) we can define the partial Dirichlet-to-Neumann map Λ̃
q̃,Γ̃

acting boundary functions with homogeneous data on Γ̃0.
We now want to find the relation between Λq,Γ and Λ̃

q̃,Γ̃. It is easy to see

that for f, g ∈ H
1/2
0 (Γ)

�Λq,Γf, g� =
�

Ω
(∇u ·∇v + quv) dx,

where u solves

∆u− qu = 0 in Ω,

u = f on ∂Γ

and v ∈ H
1(Ω) with v|∂Ω = g. Defining

f̃ =

�
2R

|y|

�n−2 ���
∂Ω̃

f, g̃ =

�
2R

|y|

�n−2 ���
∂Ω̃

g,
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and

ṽ(y) =

�
2R

|y|

�n−2

v(x(y)).

Then we have f̃ , g̃ ∈ H
1/2
0 (Γ̃) and

�Λq,Γf, g� = �Λ̃
q̃,Γ̃f̃ , g̃�,

in particular,

�(Λq1,Γ − Λq2,Γ)f, g� = �(Λ̃
q̃1,Γ̃

− Λ̃
q̃2,Γ̃

)f̃ , g̃�. (24)

With the assumption 0 /∈ Ω, the change of coordinates x → y by (22) is a

diffeomorphism from Ω onto Ω̃. Note that (2R/|y|)n−2 is a positive smooth
function on ∂Ω̃. Recall a fundamental fact from Functional Analysis:

�Λq1,Γ − Λq2,Γ�∗ = sup

�
|�(Λq1,Γ − Λq2,Γ)f, g�|
�f�

H
1/2
0 (Γ)

�g�
H

1/2
0 (Γ)

: f, g ∈ H
1/2
0 (Γ)

�
. (25)

The same formula holds for �Λ̃
q̃1,Γ̃

− Λ̃
q̃2,Γ̃

�∗. On the other hand, it is not

difficult to check that �f�
H

1/2
0 (Γ)

and �f̃�
H

1/2
0 (Γ̃)

, �g�
H

1/2
0 (Γ)

and �g̃�
H

1/2
0 (Γ̃)

are equivalent, namely, there exists C depending on ∂Ω such that

1

C
�f�

H
1/2
0 (Γ)

≤ �f̃�
H

1/2
0 (Γ̃)

≤ C�f�
H

1/2
0 (Γ)

,

1

C
�g�

H
1/2
0 (Γ)

≤ �g̃�
H

1/2
0 (Γ̃)

≤ C�g�
H

1/2
0 (Γ)

.

(26)

Putting together (24), (25), and (26) leads to

�Λ̃
q̃1,Γ̃

− Λ̃
q̃2,Γ̃

�∗ ≤ C�Λq1,Γ − Λq2,Γ�∗ (27)

with C only depending on ∂Ω.
With all the preparations described above, we use case (a) for the domain

Ω̃ with the partial Dirichlet-to-Neumann map Λ̃
q̃,Γ̃. Therefore, we immediately

obtain the estimate:

�q̃1 − q̃2�L∞(Ω̃) ≤ C
�� log �Λ̃

q̃1,Γ̃
− Λ̃

q̃2,Γ̃
�∗
��−σ

.

Finally, rewinding q̃ and using (27) yields the estimate (3).

4. Stability estimate for the conductivity

We aim to prove Corollary 1.2 in this section. We recall the following well-

known relation: let q =
∆
√
γ√
γ

then

Λq,Γ(f) = γ
−1/2|ΓΛγ,Γ(γ

−1/2|Γf) +
1

2
(γ−1

∂νγ)|Γf.
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In view of the a priori assumption (5), we have that

(Λq1,Γ − Λq2,Γ)(f) = γ
−1/2|Γ(Λγ1,Γ − Λγ2,Γ)(γ

−1/2|Γf)

where γ
−1/2|Γ := γ

−1/2
1 |Γ = γ

−1/2
2 |Γ, which implies

�Λq1,Γ − Λq2,Γ�∗ ≤ C�Λγ1,Γ − Λγ2,Γ�∗ (28)

for some C = C(N) > 0. Hereafter, we set qj =
∆
√
γj√
γj

, j = 1, 2. The regularity

assumption (4) and Sobolev’s embedding theorem imply that q1, q2 ∈ C
1(Ω).

Using this and (5), we conclude that q̂1 − q̂2 satisfies the assumptions of
Lemma 2.2 with α = 1. Therefore, Theorem 1.1 and (28) imply that

�q1 − q2�L∞(Ω) ≤ C
�� log �Λγ1,Γ − Λγ2,Γ�∗

��−σ1 (29)

where C depend on Ω, N, n, s and σ1 depend on n, s. Next, we recall from [1,
(26) on page 168] that

�γ1 − γ2�L∞(Ω) ≤ C�q1 − q2�σ2

L∞(Ω) (30)

for some 0 < σ2 < 1, where C = C(N,Ω) and σ2 = σ2(n, s). Finally, putting
together (29) and (30) yields (6) with σ = σ1σ2 and the proof of Corollary 1.2
is complete.
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Abstract. Considering a geometry made of three concentric spheri-
cal nested layers (brain, skull, scalp), each with constant homogeneous
conductivity, we establish a uniqueness result in inverse conductivity
estimation, from partial boundary data in presence of a known source
term. We make use of spherical harmonics and linear algebra computa-
tions, that also provide us with stability results and a robust reconstruc-
tion algorithm. As an application to electroencephalography (EEG), in
a spherical 3-layer head model (brain, skull, scalp), we numerically es-
timate the skull conductivity from available data (electrical potential
at electrodes locations on the scalp, vanishing current flux) and given
pointwise dipolar sources in the brain.
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1. Introduction

We study an inverse conductivity recovery problem in the particular case of a
spherical 3D domain Ω (a ball in R3) and for piecewise constant conductivity
functions, of which one value is unknown. More precisely, we assume Ω to be
made of 3 nested spherical layers, whose conductivity values are known in the
innermost and outermost layers. We assume that the elliptic partial differential
conductivity equation (conductivity PDE) holds with a given source term in
divergence form supported in the innermost layer.

Provided a single measurement as a pair of Cauchy data on the bound-
ary (open subset of the sphere ∂Ω), we will establish uniqueness and stability
properties together with a reconstruction algorithm for the intermediate con-
ductivity. We will also perform some analysis in order to investigate robustness
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of the reconstruction with respect to available measurements and sources in-
formation.

We face a very specific version of the many inverse conductivity issues for
second order elliptic PDE under study nowadays. This one is related to piece-
wise constant conductivities in a spherical geometry in R3, and set from a
single (Cauchy pair of partial) boundary measurement. Similar inverse con-
ductivity recovery problems may be formulated in more general (Lipschitz
smooth) domains of arbitrary dimension, with more general conductivities.
They are often considered from (several or) infinitely many boundary measure-
ments (pairs of Cauchy data, related Dirichlet-to-Neumann operator), and are
called after Calderón, or after medical imaging processes (Electrical Impedance
Tomography). Uniqueness and stability conductivity recovery issues are deeply
discussed in [1, 2, 3, 6, 19, 29, 24].

More general inverse problems for elliptic PDEs, in particular transmission
issues, are discussed in [20, 25]. Stability properties of Cauchy boundary value
problems are described in [5] (see also references therein).

A fundamental problem in experimental neuroscience is the inverse problem
of source localization, which aims at locating the sources of the electric activ-
ity of the functioning human brain using non-invasive measurements, such as
electroencephalography (EEG), see [10, 14, 16, 17, 18, 21].

EEG measures the effect of the electric activity of active brain regions
through values of the electric potential obtained by a set of electrodes placed
at the surface of the scalp [14] and serves for clinical (location of epilepsy foci)
and cognitive studies of the living human brain.

The inverse source localization problem in EEG is influenced by the electric
conductivities of the several head tissues and especially by the conductivity of
the skull [30]. The human skull is a bony tissue consisting of compact and
spongy bone compartments, whose distribution and density varies across in-
dividuals, and according to age, since humidity of tissues, and therefore their
conductivity tends to decrease [28]. Therefore conductivity estimation tech-
niques are required to minimize the uncertainty in source reconstruction due
to the skull conductivity.

Typically, an inverse conductivity estimation problem aims at determining
an unknown conductivity value inside a domain Ω from measurements acquired
on the boundary ∂Ω. In the EEG case, the measurements can be modeled as
pointwise values obtained on a portion of the boundary ∂Ω (the upper part
of the scalp) but they are also affected by noise and measurement errors. The
questions arising are: the uniqueness of the skull conductivity for known sources
inside the brain; the stability of this estimation; and a constructive estimation
method.

Quite frequently, for piecewise constant conductivities, the sub-domain (sup-
porting the unknown conductivity value) is also to be determined, in some cases
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more importantly than the constant conductivity value itself (for example for
tumor detection, see [7, Ch. 3] and references therein, [22, 23]). But in the
case of EEG, the sub-domains containing the various tissues can be consid-
ered known, because they can be extracted from magnetic resonance images.
And for simplicity, we only consider the inverse skull conductivity estimation
problem in a three-layer spherical head geometry, using partial boundary EEG
data. The dipolar sources positions and moments will be considered to be
known. This may appear to be an unrealistic assumption because sources
reconstruction is itself a difficult inverse problem. But in fact, in some situa-
tions there are prior assumptions as to the positions of the sources (in primary
evoked electrical potentials), and the position of a source also constrains its
orientation, because to the laminar organization of pyramidal neurons in the
grey matter.

The overview of this work is as follows. In Section 2, we precise the model
and the considered inverse conductivity recovery issue. Our main uniqueness
and stability results are stated and proved in Section 3, while an application
to EEG and a numerical study are given in Section 4. We then provide a short
conclusion in Section 5.

2. Model, problems

2.1. Domain geometry, conductivity

We consider the inverse conductivity estimation problem in a spherical domain
Ω ⊂ R3 made of 3 concentric spherical layers (centered at 0), a ball Ω0, and
2 consecutive surrounding spherical shells Ω1, Ω2. Their respective boundaries
are the spheres denoted as S0, S1, and S2, with Si of radius ri such that
0 < r0 < r1 < r2. We also put Ω3 = R3 \ Ω = R3 \ (Ω ∪ S2).

For i = 0, 1, 2, we assume that σ is a real valued piecewise constant con-
ductivity coefficient with values σi > 0 in Ωi. Let also σ3 = 0.

Note that in the present work, the values σi of the conductivity in Ωi for
i �= 1 outermost layers Ω0, Ω2 are assumed to be known.

In the EEG framework and for spherical three-layer head models, the do-
mains Ωi respectively represent the brain, the skull and the scalp tissues for
i = 0, 1, 2, as shown in Figure 1, see [17, 18]. There, under isotropic assumption,
it holds that 0 < σ1 < σ0 � σ2.

Throughout the present work, the geometry Ω and the conductivity σ will
be assumed to satisfy the above assumptions.

More general situations are briefly discussed in Remark 3.2 and Section 5.
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Figure 1: Spherical head model, with one source Cq, pq.

2.2. PDE, source terms, statement of the problem

We consider conductivity Poisson equations

∇ ·
�
σ∇u

�
= S or div (σ gradu) = S in R3 , (1)

(in the distributional sense), with a source term S taken to be a distribution
on R3 compactly supported in Ω0.

We investigate situations where source terms S are of divergence form:

S = ∇ · JP = divJP ,

for distributions JP made of Q pointwise dipolar sources located at Cq ∈ Ω0

with (non zero) moments pq ∈ R3:

JP =
Q�

q=1

pq δCq , whence S =
Q�

q=1

pq ·∇δCq , (2)

where δCq is the Dirac distribution supported at Cq ∈ Ω0. Therefore, in R3,

∇ ·
�
σ∇u

�
=

Q�

q=1

pq ·∇δCq . (3)

For the EEG case, under the quasi-static approximation and modeling the
primary cerebral current JP as in (2), Maxwell’s equations imply that the con-
ductivity PDE (3) drives the behaviour of the electric potential u [17].
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In this work, we consider the following inverse conductivity estimation prob-
lem in the 3-layered spherical framework of Section 2.1.

From (a single pair of) Cauchy boundary data u = g in a (non-empty) open
subset Γ of ∂Ω = S2 and ∂nu = 0 on S2 of a solution to (3), and from a (known)
source term S given by (2), we want to recover the constant value σ1 of the
conductivity σ in the intermediate layer Ω1.

In Section 3, we establish uniqueness properties of σ1 from Cauchy data u
on Γ ⊂ S2, ∂nu on S2 and from the source term S. A stability result is also
given for Γ = S2 and equation (1) for more general source terms S will be
discussed as well.

Before, we still need to describe the PDE and associated boundary value
problems in each of the consecutive layers Ωi.

2.3. Laplace-Poisson PDE and transmission issues

For i = 0, 1, 2, 3, write u|Ωi
= ui for the restriction to Ωi of the solution u to

(3). We put ∂nui for the normal derivative of ui on spheres in Ωi, the unit
normal vector being taken towards the exterior direction (pointing to Ωi+1).
In the present spherical setting, we actually have ∂n = ∂r.

For i = 1, 2, 3, the following transmission conditions hold on Si−1, in par-
ticular in L2(Si−1), see [10, 14, 16] (and Section 2.4):

ui−1 = ui , σi−1 ∂nui−1 = σi ∂nui .

Linked by those boundary conditions, the solutions ui to (3) in Ωi satisfy the
following Laplace and Laplace-Poisson equations:






∆ui = 0 in Ωi , i > 0 ,

∆u0 =
1

σ0

Q�

q=1

pq ·∇δCq in Ω0 .
(4)

We will see (in Section 3.2.2) that the transmission from

�
ui

∂nui

�
on Si to

�
ui−1

∂nui−1

�
on Si−1, for i = 1, 2, may be written

�
ui−1

∂nui−1

�

|Si−1

=

�
1 0

0 σi
σi−1

�
T (Si−1, Si)

�
ui

∂nui

�

|Si

.

for some operator T (Si−1, Si) that accounts for the harmonicity of ui in Ωi and
that we will express using spherical harmonics.
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Provided (a single pair of non identically vanishing smooth enough) Cauchy
boundary data u, ∂nu on Γ ⊂ S2, whenever Γ �= ∅ is open, and for given
conductivity values σ0, σ1, σ2, uniqueness of u holds on S2, then on S1 and S0,
as ensured by the above formulation and Holmgren’s theorem. It is enough to
assume that u ∈ W 1,2(Γ) (the Sobolev-Hilbert space of L2(Γ) functions with
first derivative in L2(Γ)) and ∂nu ∈ L2(Γ), see [11, 13, 15].

We then face a preliminary data transmission issue from Γ to S0, a Cauchy
boundary value problem for Laplace equation, which needs to be regularized in
order to be well-posed [20]. This is usually done by Thykonov regularization or
the addition of an appropriate constraint and may be solved using boundary
elements methods, see [8, 14] and references therein.

In EEG, data are provided as pointwise values of g at points in Γ (electrodes
measurements), and yet another extension step is needed in order to compute
an estimate of g on S2, using best constrained approximation, see Section 4.

Concerning the source term S, note that it’s knowledge only determines u0

on S0 up to the addition of a harmonic function in Ω0. Indeed, by convolution
with a fundamental solution of Laplace equation in R3, we see that

us(x) =
1

4π

Q�

q=1

< pq,x−Cq >

|x−Cq|3
, x �∈ {Cq} , (5)

satisfies us(x) → 0 at |x| → ∞,

∆us =
Q�

q=1

pq ·∇δCq ,

in R3, whence in Ω and Ω0, and ∆us = 0 outside Ω0. Solutions u0 to (4) in
Ω0 are then provided by us/σ0 up to the addition of a harmonic function in
Ω0. The later is in fact (uniquely) determined by the (transmitted) boundary
conditions, see [10, Sec. 1.2], [14, 16, 21] where inverse source problems in the
EEG setting are discussed, together with reconstruction algorithms.

2.4. Associated forward Neumann problem

Let φ ∈ L2(S2) (actually it is enough to take φ ∈ W−1/2,2(S2)) of vanishing
mean value on S2. Then, there exists a solution u to (3) in Ω, Hölder con-
tinuous in Ω \ {Cq}, which satisfies ∂nu = φ on S2; it is unique up to an
additive constant. In particular, the associated Dirichlet boundary trace u|S2

is Hölder continuous on S2. Indeed, looking to u−us as a (weak) solution to a
strictly elliptic PDE in a bounded smooth domain Ω or to a sequence of Laplace
equations in the domains Ωi, variational formulation and Lax-Milgram theo-
rem imply that u−us ∈ W 1,2(Ω) and the uniqueness property, see [11, 13, 15].
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Hence u−us belongs to W 1/2,2(S2) and actually to W 1,2(S2). That u possesses
yet more regularity properties is established in [10, Prop. 1], see also [5] for
stability results of Cauchy boundary transmission problems.

3. Conductivity recovery

3.1. Uniqueness result

Recall that the geometry Ω and the conductivity coefficients satisfy the hy-
potheses of Section 2.1. Let Γ ⊂ S2 a (non empty) open set.

Assume the source term S given by (2) to be known, and not to be reduced
to a single dipolar pointwise source located at the origin (S �= p ·∇δ0).

Theorem 3.1. Let σ, σ� be piecewise constant conductivities in Ω associated
to two values σ1, σ�

1 in Ω1 and equal values σ0, σ2 in Ω0, Ω2. If two solutions
u, u� to (3) associated with σ, σ� and such that ∂nu = ∂nu� = 0 on S2 coincide
on Γ: u|Γ = u�

|Γ, then σ1 = σ�
1.

This implies that a single pair of partial boundary Dirichlet data u|Γ on Γ
and Neumann data ∂nu = 0 (vanishing) on S2 of a solution u to (3) uniquely
determines σ1 > 0.

As the proof in Section 3.3 will show, source terms S that guarantee unique-
ness are such that associated Dirichlet data u|Γ on Γ do not identically vanish.
Notice also that if no source is present, uniqueness fails (boundary data iden-
tically vanish on S2). However, Theorem 3.1 would also hold true for non
identically vanishing Neumann on S2. We will discuss more general statements
the Theorem in Remark 3.2 after the proof, see also Section 5.

In order to establish the result, we use spherical harmonics expansions that
we now precise.

3.2. Spherical harmonics expansions

In order to express harmonic functions in the spherical shells and balls Ωi and
their boundary values on Si, we use the spherical harmonics basis rk Ykm(θ,ϕ),
r−(k+1) Ykm(θ,ϕ), k ≥ 0, |m| ≤ k, in the spherical coordinates (r, θ,ϕ). These
are homogeneous harmonic and anti-harmonic polynomials for which we refer
to [9, Ch. 9, 10],[15, Ch. II, Sec. 7.3] as for their properties. (the basis
functions Ykm(θ,ϕ) are products beteween associated Legendre functions of
indices k ≥ 0, |m| ≤ k, applied to cos θ and elements of the Fourier basis of
index m on circles in ϕ (real or complex valued, cos mϕ, sin mϕ or e±imϕ).
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3.2.1. Source term, boundary data

The decomposition theorem [9, Thm 9.6], [15, Ch. II, Sec. 7.3, Prop. 6], is to
the effect that the restriction ui of u to Ωi for i = 1, 2 may be expanded on the
spherical harmonics basis as follows, at (r, θ,ϕ) ∈ Ωi:

ui(r, θ,ϕ) =
∞�

k=0

k�

m=−k

�
αikmrk + βikmr−(k+1)

�
Ykm(θ,ϕ) ∈ Ωi , (6)

where αikm and βikm are the spherical harmonic coefficients of the harmonic
and anti-harmonic parts of ui, respectively (harmonic inside or outside ∪j≤iΩi).
Similarly, because it is harmonic in a spherical layer surrounding S0, the re-
striction u0 of u to Ω0 is given at points (r, θ,ϕ) with r > maxq |Cq| > 0
by

u0(r, θ,ϕ) =
∞�

k=0

k�

m=−k

α0kmrk Ykm(θ,ϕ) + us(r, θ,ϕ) ,

where us given by (5) is expanded there as: r−(k+1) Ykm(θ,ϕ):

us(r, θ,ϕ) =
�

k,m

β0kmr−(k+1)Ykm(θ,ϕ) . (7)

Here, β0km are the spherical harmonic coefficients of the anti-harmonic (har-
monic outside Ω0) function uS .

The normal derivative of ui, i = 0, 1, 2, is then given in Ωi (with r >
maxq |Cq| for i = 0) by:

∂nui(r, θ,ϕ) =
�

k,m

�
αikmkrk−1 − βikm(k + 1)r−(k+2)

�
Ykm(θ,ϕ) (8)

On Si, we put (because ui ∈ L2(Si) where the spherical harmonics form an
orthogonal basis [9, Thm 5.12]):

ui(ri, θ,ϕ) =
∞�

k=0

k�

m=−k

γikmYkm(θ,ϕ),

∂nui(ri, θ,ϕ) =
∞�

k=0

k�

m=−k

δikmYkm(θ,ϕ),

with l2 summable coefficients γikm, δikm (that may be real or complex valued
depending on the choice for Ykm).

In particular, once the boundary data u2 = g is extended from Γ to S2

(see [8, 14] and the discussion in Section 2.3), we have:

u2(r2, θ,ϕ) =
�

k,m

γ2kmYkm(θ,ϕ) =
�

k,m

gkmYkm(θ,ϕ) ,
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with gkm = γ2km, whereas the corresponding δ2km = 0 since ∂nu2 = 0 on S2

(because σ3 = 0).

3.2.2. Preliminary computations

Below, we write for sake of simplicity, for i = 0, 1, 2: αik = αikm, βik = βikm,
γik = γikm, δik = δikm, gk = gkm, for all k ≥ 0, and every |m| ≤ k (we could
also take the sums over |m| ≤ k).

Recall from Section 2.3 that the following transmission conditions hold on
Si−1 for i = 1, 2, 3:

Σi−1

�
ui−1

∂nui−1

�

|Si−1

= Σi

�
ui

∂nui

�

|Si−1

, (9)

with

Σi =

�
1 0

0 σi

�
hence Σ−1

i =

�
1 0

0 1
σi

�
and σi Σ

−1
i =

�
σi 0

0 1

�
.

By projection of (6), (8), onto (the orthogonal L2(Si) basis of) spherical har-
monics, and with

Tk(ri) =

�
rki r−(k+1)

i

krk−1
i −(k + 1)r−(k+2)

i

�
,

we obtain for all k ≥ 0 the following relations on Si:

�
γik

δik

�
= Tk(ri)

�
αik

βik

�
.

In particular:

βik =
rk+1
i

2k + 1
(k γik − δik) . (10)

The transmission conditions (9) through Si−1 express as:

Σi−1

�
γi−1k

δi−1k

�
= Σi Tk(ri−1)

�
αik

βik

�
.

Because Tk(ri) is invertible (ri > 0), this implies that:

�
γi−1k

δi−1k

�
= Σ−1

i−1 Σi Tk(ri−1)Tk(ri)
−1

�
γik

δik

�
.
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Therefore, in the spherical geometry, T (Si−1, Si) = Tk(ri−1)Tk(ri)−1 for the
operator T (Si−1, Si) introduced at the end of Section 2.3.

Hence, because γ2k = gk and δ2k = 0:
�
δ0k

γ0k

�
= Σ−1

0 Σ1 Tk(r0)Tk(r1)
−1 Σ−1

1 Σ2 Tk(r1)Tk(r2)
−1

�
gk

0

�
, (11)

while

β0k = [0 1]Tk(r0)
−1

�
δ0k

γ0k

�
. (12)

These formula express a linear relation between the source term coefficients
β0k and the boundary Dirichlet data with coefficients gk, which is studied in
Appendix and gives rise to (13) below. We already see the particular role of
σ1 that appears through Σ−1

1 and Σ1. This explains why, after multiplication
by σ1 and algebraic manipulations, we obtain in (13) a polynomial of degree 2
in σ1.

3.2.3. Algebraic equations

As computed in Appendix, equations (11), (12) can be rewritten, for all k ≥ 0,
as:

B1(k)σ1 β0k =
�
A2(k)σ

2
1 +A1(k)σ1 +A0(k)

�
gk , (13)

with non negative quantities Ai(k), i = 0, 1, 2, B1(k) that depend only on
the geometry, on the given conductivity values σ0, σ2, and on k. Actu-
ally, A1(k), B1(k) > 0 for all k ≥ 0 while A0(k), A2(k) > 0 for k > 0 but
A0(0) = A2(0) = 0. In particular, for all k ≥ 0 and for σ1 > 0, we have
A2(k)σ2

1 +A1(k)σ1 +A0(k) > 0.

This implies that β0k = 0 ⇔ gk = 0 and that for all k such that gk �= 0,
β0k/gk is real valued positive: the spherical harmonics basis diagonalizes the
transmission relations.

3.3. Uniqueness proof

Proof. (Theorem 3.1) Assume that there exists another value σ�
1 > 0 of the

conductivity in Ω1 that gives rise to the same potential (and vanishing current
flux) on Γ ⊂ S2, from the same source term us (same boundary measurements
and coefficients gk = gkm, same sources term coefficients β0k = β0km, given).
Equation (13) then holds for both σ1,σ�

1 > 0. We thus get that either β0k =
gk = 0 or

β0k

gk
=

A2(k)σ2
1 +A1(k)σ1 +A0(k)

B1(k)σ1
=

A2(k)σ
�,2
1 +A1(k)σ�

1 +A0(k)

B1(k)σ�
1

,
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whence

A2(k)σ2
1 +A1(k)σ1 +A0(k)

B1(k)σ1
− A2(k)σ

�,2
1 +A1(k)σ�

1 +A0(k)

B1(k)σ�
1

= 0 ,

hence multiplying by B1(k)σ1 σ�
1 > 0:

(σ1 − σ�
1) (A2(k)σ1 σ

�
1 −A0(k)) = 0 .

Thus either σ�
1 = σ1 and uniqueness holds or, for all values of k ≥ 0 such that

β0k �= 0,
A0(k) = σ1 σ

�
1 A2(k) .

This holds for k = 0 but for k > 0 it implies that

A0(k)

A2(k)
= σ1 σ

�
1 ,

which could not be true for more than a single value of k > 0. Indeed, the
product σ1 σ�

1 is constant while A0(k)/A2(k) stricly increases with k, as we now
show. We have:

A0(k)

A2(k)
= σ0 σ2 k

1−
�

r1
r2

�2k+1

(k + 1)
�

r1
r2

�2k+1
+ k

= σ0 σ2 k
1− �2k+1

(k + 1) �2k+1 + k
, (14)

with � = r1/r2 < 1, and we put:

E(k) =
1

σ0 σ2

A0(k)

A2(k)
=

1− �2k+1

1 + k+1
k �2k+1

, k > 0 , E(0) = 0 .

Because for k > 0, k + 2/(k + 1) < (k + 1)/k and �2k+3 < �2k+1, the numer-
ator of E(k) strictly increases with k while its denominator strictly decreases.
Thus, E is a strictly increasing function of k, which converges to 1 as k → ∞.

Hence, among the k > 0, the equation E(k) = σ1σ
�
1

σ0 σ2
admits at most one so-

lution, and pairs σ1,σ�
1 > 0 cannot solve A2(k)σ1σ�

1 − A0(k) = 0 for more
than 1 value of k > 0 (actually, a necessary condition for σ1,σ�

1 to solve
A2(k)σ1σ�

1 − A0(k) = 0 for 1 value of k > 0 is that σ1 σ�
1 ∈ (0 , σ0 σ2)). So we

must have σ�
1 = σ1, as soon as β0k (or gk) does not vanish for at least 2 distinct

values of k.

Finally, we show that potentials us associated to pointwise dipolar source
terms S �= p · ∇δ0 have at least 2 non-null coefficients β0k in their spherical
harmonic expansion. Indeed, assume that all the coefficients β0km are 0, except
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for a single value of k > 0, say k0. From (7), the function us is then a anti-
harmonic homogeneous polynomial of degree k0 and for r > maxq |Cq| > 0,

us(r, θ,ϕ) =
�

|m|≤k0

β0k0mr−(k0+1)Yk0m(θ,ϕ)

=
1

r2k0+1

�

|m|≤k0

β0k0mrk0Yk0m(θ,ϕ) .

From [9, Ch. 5], the distribution S = ∆us also coincides far from {0} with a
polynomial divided by an odd power of r. This contradicts the assumptions on
S, which has a pointwise support in Ω0 not reduced to {0}.

Remark 3.2. Theorem 3.1 is in fact valid for solutions to Equation (1) with
more general source terms S. To ensure uniqueness, it is indeed enough to
assume that us does not coincide with some homogeneous anti-harmonic poly-
nomial of positive degree, so that it admits on S0 at least two coefficients
β0k �= 0.

In the present spherical geometry, note that us is equal on S0 to a homo-
geneous harmonic polynomial if and only if so is u on S2.

The last part of the proof actually implies that potentials us issued from
pointwise dipolar source terms S with support in Ω0 not reduced to {0} have
infiniteley many coefficients β0k �= 0.

3.4. Stability properties

We now establish a stability result for the inverse conductivity estimation prob-
lem with respect to the source term whenever Γ = S2.

Proposition 3.3. Assume the source terms S, S � and the conductivities σ,
σ� to satisfy the assumptions of Theorem 3.1. Let us, u�

s be the associated
potentials through (5). Let u, u� be the associated solutions to (3) such that
∂nu = ∂nu� = 0 on S2. Put g, g� for their boundary values on S2. Then, there
exist c, cs > 0 such that

|σ1 − σ�
1| ≤ c �g − g��L2(S2) + cs �us − u�

s�L2(S0) .

Whenever 0 < sm ≤ σ1 , σ�
1 ≤ sM for constants sm, sM , then c, cs do not

depend on σ1 , σ�
1 but on sm, sM .

Remark 3.4. For ordered lists of sources (pq,Cq) , (p�
q,C

�
q) with length Q, we

can define the geometric distance

d(S,S �) =
Q�

q=1

�
|pq − p�

q|+ |Cq −C�
q|
�
.
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If the sources are located far enough from S0 in the sense that max(|Cq|, |C�
q|) ≤

ρ < r0, and because us is on S0 a continuous function of pq,Cq, we can rewrite
the inequality in Proposition 3.3 as:

|σ1 − σ�
1| ≤ c �g − g��L2(S2) + c�s d(S,S �) ,

with c�s = K(ρ) cs for some constant K(ρ) which depends on ρ. Hence, the
conductivity σ1 depends continuously on the (complete) Dirichlet boundary
data g (in L2(S2)) and on the source term S, with appropriate topology.

Notice also the relation:

β0km =
1

2k + 1

Q�

q=1

�pq , ∇
�
rk Ykm(θ,ϕ)

�
(Cq)�L2(S0) .

Finally, observe that the constants c, cs, c�s in the above inequalities also depend
on the data g� whence on S �. The dependence between Dirichlet data g� on S2

and the source term S � can be precised by using, for instance, the last equality
together with relation (13) between their coefficients (g�k) and (β0k), and then
recalling the assumption sm ≤ σ�

1 ≤ sM .

Proof. Let

εk(σ1,β0k, gk) = B1(k)σ1 β0k −
�
A2(k)σ

2
1 +A1(k)σ1 +A0(k)

�
gk , (15)

It follows from (13) that σ�
1 εk(σ1,β0k, gk)− σ1 εk(σ�

1,β
�
0k, g

�
k) = 0 , whence we

get

0 = σ�
1 εk(σ1,β0k − β�

0k, gk − g�k) + σ�
1 εk(σ1,β

�
0k, g

�
k)− σ1 εk(σ

�
1,β

�
0k, g

�
k) .

But

σ�
1 εk(σ1,β

�
0k, g

�
k)− σ1 εk(σ

�
1,β

�
0k, g

�
k) = g�k(σ1 − σ�

1) [A2(k)σ1σ
�
1 −A0(k)] ,

so

g�k(σ1 − σ�
1) [A2(k)σ1σ

�
1 −A0(k)] =

− σ�
1

�
B1(k)σ1(β0k − β�

0k)− (A2(k)σ
2
1 +A1(k)σ1 +A0(k))(gk − g�k)

�
.

Recall that A2(k) > 0 for k > 0 and other arguments of Section 3.3 together
with the computations in Appendix show that A0(k)/A2(k), A1(k)/A2(k),
rk+1
0 B1(k)/A2(k) are uniformely bounded in k from above and from below
(by strictly positive constants). We can then divide by A2(k), in order to
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obtain

|σ1 − σ�
1|




�

k,m

|g�k|2
����σ1 σ

�
1 −

A0(k)

A2(k)

����
2




1
2

≤
√
2σ�

1




�

k,m

�
σ2
1 +

A1(k)

A2(k)
σ1 +

A0(k)

A2(k)

�2

|gk − g�k|
2





1
2

+
√
2σ1 σ

�
1




�

k,m

B2
1(k)

A2
2(k)

|β0k − β�
0k|

2





1
2

.

In order to establish an upper bound, note that

�

k,m

B2
1(k)

A2
2(k)

|β0k − β�
0k|

2 ≤ sup
k

r2(k+1)
0 B2

1(k)

A2
2(k)

�

k,m

r−2(k+1)
0 |β0k − β�

0k|
2
,

with �

k,m

r−2(k+1)
0 |β0k − β�

0k|
2
= �us − u�

s�2L2(S0) .

Moreover, since gk (as β0k) possess non vanishing values for infinitely many
(at least two) values of k, and σ1 σ�

1 −A0(k)/A2(k) can vanish for at most one
value of k, it holds that:

�

k,m

|g�k|2 |σ1 σ
�
1 −A0(k)/A2(k)|

2
> 0 ,

can be bounded from below under the assumptions on σ1 σ�
1.

4. Application to EEG

In order to illustrate Proposition 3.3, we now perform a short numerical analy-
sis of the inverse conductivity estimation problem in the spherical domain and
the EEG setting described in Section 2. Measurements of the Dirichlet data g
on the scalp S2 (pointwise values at electrodes locations) and known sources ac-
tivity are expanded on the spherical harmonics basis, using the FindSources3D
software1 (FS3D), see also [14]. We therefore have at our disposal the spherical
harmonics coefficients (gkm,β0km) for 0 ≤ k ≤ K for some K > 0 and |m| ≤ k.

1See http://www-sop.inria.fr/apics/FindSources3D/.
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4.1. Reconstruction algorithm

As the reconstruction of the conductivity σ1 does not depend on the spherical
harmonics indices m, in order to increase the robustness of our reconstruction
algorithm, the following normalization is applied over the different spherical
harmonics indices k:






g̃k =
�

|m|≤k

gkm β̄0km ,

β̃0k =
�

|m|≤k

β0km β̄0km =
�

|m|≤k

|β0km|2 .

There, β̄0km is the complex conjugate number to β0km (indeed, β0km could be
complex valued if the basis elements Ykm are taken in their complex valued
form).

The procedure is a least square minimization of the error equation obtained
from (15) as a truncated finite sum for K > 0:

σest
1 = argmin

s

K�

k=0

���εk(s, β̃0k, g̃k)
���
2
. (16)

4.2. Numerical illustrations

We consider the EEG framework in the spherical three-layer head model, as
described in Section 2.1, where the layers represent the brain, the skull and
the scalp tissues, respectively. The radii of the spheres used in the numerical
analysis are normalized to the values r0 = 0.87, r1 = 0.92 and r2 = 1. In the
present analysis, the brain and scalp tissue conductivities are set to σ0 = σ2 =
0.33 S/m, while the skull conductivity σ1 is to be recovered. When generating
simulated EEG data through the associated forward simulation, we will set
σ1 = 0.0042 S/m.

Our study uses simulated data associated to a single dipole and the mini-
mization of (16) for the conductivity estimation. The algorithm is written as a
MATLAB code and the forward simulations are run with the FS3D software.

We validate our reconstruction algorithm using simulated EEG data by
FS3D (for solving the direct EEG problem). Of course, the EEG data are sub-
ject to some ambient noise and measurements errors, and the a priori knowledge
on the sources is not perfect. The inverse conductivity estimation problem is
sensitive to such perturbations though it possesses the stability property de-
scribed in Proposition 3.3.

To investigate the stability of our algorithm with respect to the source
term, we select a source term S made of a single dipole located at C1 =
(0.019, 0.667, 0.1), mimicking an EEG source at the frontal lobe of the brain,
with moment p1 = (0.027, 0.959, 0.28). The associated spherical harmonics
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coefficients g̃k and β̃0k are computed for 0 ≤ k ≤ K = 30. The original source
location C1 is replaced by inexact locations Cn

1 for n = 1, · · · , 20 located at
a constant distance from C1 (a percentage of the inner sphere radius r0), as
illustrated in Figure 2, while the source moment p1 is retained. For each
new dipole location Cn

1 , the associated spherical harmonics coefficients β̃n
0k are

simulated. We perform conductivity estimation from the pairs g̃k, β̃n
0k (recall

that g̃k correspond to the actual β̃0k).

Figure 2: Locations (in Ω0) of C1 (red bullet) and of the 20 points Cn
1 (blue

cross) surrounding it, for |C1 −Cn
1 | equal to 10% of r0.

The effect of the source mislocation on the conductivity estimation is sum-
marized in Figure 3 and Table 4.2 which respectively shows and lists the values
and other characteristics of the estimated conductivities with respect to the
distance between actual and inexact sources.

These preliminary results illustrate the influence of source mislocation on
conductivity estimation, and the robustness character of our algorithm, in ac-
cordance with the stability result of Proposition 3.3. In order to penalize high
frequencies and to get more accurate estimations, we will in particular intro-
duce in the above criterion (16) appropriate multiplicative weights (decreasing
with the index k).
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Figure 3: Conductivity estimation results for various mislocations of the actual
dipole used to simulate the EEG data: 20 dipole locations Cn

1 are selected by
displacing C1 by a constant distance, computed as a percent of the brain radius
r0 (on the abcissa axis). Displayed are: σ1, the actual conductivity value used
in the EEG data simulation, σest

1 , the estimated conductivity value for each
dipole position Cn

1 , and σ̃est
1 , the mean value of σest

1 among n = 1, · · · , 20.

Dipole mislocation
(% of radius r0)

σ̃est
1

Standard
deviation

Mean of
relative errors

0 4.200e-03 0 1.858e-15
0.1 4.195e-03 1.450e-05 3.123e-03
1 4.187e-03 1.629e-04 3.318e-02
5 4.160e-03 7.703e-04 1.511e-01
10 4.741e-03 1.512e-03 3.350e-01

Table 1: Conductivity estimation results, continued; Listed in columns are: (i)
the distance between C1 and Cn

1 , (ii) the mean estimated conductivity value
σ̃est
1 , (iii) the standard deviation of σest

1 , (iv) the mean value of the relative
errors between σ1 and σest

1 .

5. Conclusion

Observe that our uniqueness result, Theorem 3.1, may be expressed as an
identifiability property of the conductivity value (model parameter) σ1 in the
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relation (transfer function) from boundary data to sources (control to obser-
vation), [12, 26]. This could be useful in order to couple EEG with additional
modalities, like EIT (where ∂nu �= 0 is known on Γ) or even MEG (magne-
toencephalography, which measures the magnetic field outside the head), and
to simultaneously estimate both σ1 and the source term S in situations where
the latter is (partially) unknown.

Following Remark 3.2, we may also wish to recover possibly unknown in-
formation about the (spherical) geometry of Ω1 (like r1 or/and r0).

Situations with more than 3 spherical layers could be described similarly,
which may help to consider more general conductivities (smooth but non con-
stant) by piecewise constant discretization.

As Theorem 3.1, Proposition 3.3 would still hold true under a weaker suffi-
cient condition for the source terms, according to which the associated potential
on S0 through (5) should admit at least 2 non-null coefficients (this is equiva-
lent to the same property for g on S2, see Remark 3.2). Moreover, it could be
extended to a stability property with respect to boundary data with close and
non vanishing Neumann data on S2. However, stability properties for situa-
tions with partial Dirichlet boundary data only (on Γ ⊂ S2) would be weaker,
see e.g. [8, 5, 14].

We have also begun to study the same uniqueness and stability issues in
more general (non-spherical) nested geometries, see [7, 22, 23, 27], and also [4]
for a number of open problems.
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Appendix: More computations related to Section 3.2.2

From (11), (12), we get for all k ≥ 0,

β0k = gk ×[0 1]Tk(r0)
−1 Σ−1

0 Σ1 Tk(r0)Tk(r1)
−1 Σ−1

1 Σ2 Tk(r1)Tk(r2)
−1

�
1

0

�
.

The matrices Tk(ri) and Tk(ri)−1 can be written:

Tk(ri) =

�
1 0

0 1
ri

� �
1 1

k −(k + 1)

� �
rki 0

0 r−(k+1)
i

�
,
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Tk(rj)
−1 =

1

2k + 1

�
r−k
j 0

0 r(k+1)
j

� �
k + 1 1

k −1

� �
1 0

0 rj

�
.

Their products that give an expression of T (Si−1, Si) in the spherical geometry
are then such that:

Tk(ri−1)Tk(ri)
−1 =

1

2k + 1
×

�
1 0

0 r−1
i−1

� �
1 1

k −(k + 1)

� 



�
ri−1

ri

�k
0

0
�

ri
ri−1

�k+1





�
k + 1 1

k −1

� �
1 0

0 ri

�

=
1

2k + 1

�
ri

ri−1

�k+1

×
�
1 0

0 r−1
i−1

� �
1 1

k −(k + 1)

� ��
ri−1

ri

�2k+1
0

0 1

� �
k + 1 1

k −1

� �
1 0

0 ri

�
.

We can write

Tk(ri−1)Tk(ri)
−1 = ρ(i)k




a(i)k b(i)k

c(i)k d(i)k



 ,

with

ρ(i)k =
1

2k + 1

�
ri

ri−1

�k+1

, i = 1, 2 , ρ(0)k =
rk+1
0

2k + 1
,

and the real valued quantities, with their equivalent asymptotic behaviours as
k → ∞: 





a(i)k = (k + 1)
�

ri−1

ri

�2k+1
+ k ∼ k ,

b(i)k = ri

��
ri−1

ri

�2k+1
− 1

�
∼ −ri ,

c(i)k = k (k+1)
ri−1 ri

b(i)k ∼ − k2

ri−1
,

d(i)k = ri
ri−1

�
k
�

ri−1

ri

�2k+1
+k + 1

�
∼ kri

ri−1
.

Define also the real valued quantities e(0)k , f (0)
k :

e(0)k = k , f (0)
k = f (0) = −r0 .

We have
[0 1]Tk(r0)

−1 = ρ(0)k

�
e(0)k f (0)

k

�
.
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Then, equation (13) holds true with:

B1(k) =
σ0

ρ(0)k ρ(1)k ρ(2)k

whence rk+1
0 B1(k) = σ0 (2k + 1)3

�
r0
r2

�k+1

∼ 8k3
�
r0
r2

�k+1

,

and 




A1(k) = σ0 e
(0)
k a(1)k a(2)k + σ2 f

(0)
k d(1)k c(2)k ∼ k3(σ0 + σ2) ,

A2(k) = f (0)
k c(1)k a(2)k ∼ k3 ,

A0(k) = σ0 σ2 e
(0)
k b(1)k c(2)k ∼ k3σ0σ2 .

Observe that rk+1
0 B1(k) acts on r−(k+1)

0 β0k that are members of an l2 sequence
(see Section 3.2.1 and equation (10) with i = 0).

As in (14), one can show with the above expressions that the behaviours
of the ratios Ai(k)/A2(k), B1(k)/A2(k) ensure that they all are uniformly
bounded from below on from above by positive constants, for k > 0 .

Note also that





B1(k) = σ0 B̃1(k) ,

A1(k) = σ0 Ã10(k) + σ2 Ã12(k) ,

A2(k) = Ã2(k) ,

A0(k) = σ0 σ2 Ã0(k) ,

where Ãi, Ãij , B̃1 only depend on the spherical geometry.
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Abstract. The problem of the stable determination of the coefficients
of second order elliptic partial differential equations arising in inverse
problems is considered. Results of uniqueness and stability at the bound-
ary were obtained in [3] and extended in [8, 9] for the conductivity equa-
tion. The common features of these papers are the employment of the
singular solutions and the monotonicity assumption introduced in [3].
We revisit the techniques adopted in these papers to stably determine
the absorption coefficient in anisotropic media by means of Optical To-
mography (OT) in the so-called static case. This also shows that the
monotonicity assumption is realistic at least in the context of OT.

Keywords: Stability at the boundary, EIT, OT.

MS Classification 2010: 35J25, 35R30.

1. Introduction

We start by considering the well known inverse conductivity problem. In ab-
sence of internal sources, the electrostatic potential u in a conducting body,
described by a domain Ω ⊂ Rn, is governed by the elliptic equation

div(σ∇u) = 0 in Ω, (1)

where the symmetric, positive definite matrix σ = σ(x), x ∈ Ω, represents the
(possibly anisotropic) electric conductivity. The inverse conductivity problem
consists of finding σ when the so called Dirichlet-to-Neumann (D-N) map

Λσ : u|∂Ω ∈ H
1
2 (∂Ω) −→ σ∇u · ν|∂Ω ∈ H− 1

2 (∂Ω)
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is given for any u ∈ H1(Ω) solution to (1.1). Here, ν denotes the unit outer
normal to ∂Ω. If measurements can be taken only on one portion Γ of ∂Ω, then
the relevant map is called the local D-N map.

This problem arises in electrical resistivity tomography (ERT) (or more
generally electrical impedance tomography EIT), a method used for subsur-
face geophysical imaging, industrial process monitoring and as an experimen-
tal medical imaging technique. Different materials display different electrical
properties, so that a map of the conductivity σ(x), x ∈ Ω can be used to in-
vestigate internal properties of Ω. The first mathematical formulation of the
inverse conductivity problem is due to A. P. Calderón [19], where he addressed
the problem of whether it is possible to determine the (isotropic) conductivity
by the D-N map.
The case when measurements can be taken all over the boundary has been
studied extensively in the past and fundamental papers like [3, 37, 38, 54]
show that the isotropic case can be considered solved. On the other hand the
anisotropic case is still open and different lines of research have been pursued.
One direction has been to find the conductivity up to a diffeomorphism which
keeps the boundary fixed (see [39, 40, 41, 46, 53]). The original work of [41]
assumed that the metric was real-analytic with topological assumptions sub-
sequently relaxed in [39, 40] in the context of local data. We also refer to
the work [22] which introduced methods for studying the anisotropic Calderón
problem on manifolds which are not real-analytic, but where the metric has a
certain form. This result is based on the concept of limiting Carleman weights,
earlier introduced in [36] for the Euclidean case and partial data. We refer to
[20] and [35] for related works on the stability and reconstruction respectively
of anisotropic conductivities. We also mention that the results obtained in [22]
have been improved in [23]. Another direction has been the one to assume
that the anisotropic conductivity is a priori known to depend on a restricted
number of spatially–dependent parameters (see [3, 8, 9, 24, 25, 42]).
Alessandrini [3] considered the case when σ(x) is anisotropic and it is a priori
known to have the structure σ(x) = σ(a(x)), where t → σ(t) is a given matrix-
valued function and a = a(x) is an unknown scalar function. In [3] results of
uniqueness and stability at the boundary are proven by using the method of
singular solutions under the additional assumption of monotonicity

Dtσ(t) ≥ Const.I > 0.

These results have been extended in [8] and[9] to the case when σ has the more
general structure

σ(x) = σ(x, a(x)), (2)

where a(x) is an unknown scalar function and σ(x, t) is given and satisfies the
monotonicity assumption

Dtσ(x, t) ≥ Const.I > 0, (3)
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in the case of full and local data respectively. The singular solutions introduced
in [3] have been extended in [51] for the more general operator of type

Lu = −div(σ∇u+ Pu) +Q ·∇u+ qu, (4)

where the leading order coefficients matrix σ = σ(x) is merely Hölder contin-
uous and some positivity condition is imposed on the lower order terms. We
recall that singular solutions have also been used by Isakov [31] to determine
discontinuities in the conductivity for the isotropic case. However, only Green’s
function type singularities were needed for this purpose.
In the present paper the author considers the inverse problem of determining
the optical properties of a medium and shows that the structure (2) introduced
in [8, 9] is appropriate in optical tomography (OT). This is the problem of
determining the spacially dependent optical properties (the absorption and the
scattering coefficients µa, µs respectively) when light in a narrow-wavelength
band in the near infrared is employed to transilluminate tissue (see [11, 13, 14]).
We also refer to [28, 29, 30] for related topis in OT. The resulting measure-
ments of intensity on the tissue boundary are then used to reconstruct a map
of the optical properties within the tissue. In the so-called OT static case
the integral equation (Radiative Transfer Equation) typically used to model
this problem can be reduced (under certain conditions) to an elliptic partial
differential equation of type

div(σ∇u)− qu = 0 in Ω, (5)

with
σ = σ(x, µa(x)), q = µa(x), (6)

where µa(x) is a function (the absorption coefficient) to be determined and
σ(x, t) is given and satisfies the monotonicity assumption

Dtσ(x, t) ≤ Const.I < 0. (7)

Notice that although Dtσ(x, t) is a negative definite matrix in (7), whereas
the case of a positive definite Dtσ(x, t) was considered in [8, 9], the arguments
used in the current paper and in [8, 9] continue to work if Dtσ(x, t) satisfies
either (3) or (7). In other words a monotonicity assumption of either type
(3) or (7) seems to be a realistic hypothesis that is satisfied for example in
the OT problem considered in this manuscript. The result presented here also
shows that the machinery of the stability proofs at the boundary via singular
solutions introduced in [3] works also in the more general case (5), where the
equation has an extra zero order term. The OT formulation given by (5), (6) is
achieved in the static case if it is assumed that the scattering coefficient µs has
been determined by employing a different imaging modality (like MRI) prior
to the application of OT and the structural information we are interested in
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is the determination of µa. The main focus of the present paper is indeed on
the stable determination at the boundary of µa and its derivatives by pursuing
the same line of investigation of [8, 9]. This is done by considering anisotropic
diffusion tensors σ(x, t) arising in OT that are real matrix-valued functions.
The time-harmonic case where σ(x, t) is a complex matrix-valued function will
be investigated in future work. The case in which µa is known and the scat-
tering coefficient µs is to be determined can be treated in a similar manner to
the one considered in this work. In medical applications, while the scattering
coefficient µs varies from tissue to tissue, it is the absorption coefficient µa

that carries the more interesting physiological information as it is related to
the global concentrations of certain metabolites in their oxygenated and de-
oxygenated states. Moreover, many tissues including parts of the brain, muscle
and breast tissue have a fibrous structure on a microscopic scale which results
in anisotropic physical properties on a larger scale.
We shall also emphasize that the stable determination of µa (or equivalently
of µs) and its derivatives at the boundary are useful tools to infer uniqueness
and stability of µa (or µs) in the interior, which represents the preliminary
goal to achieve an image of the interior of Ω (the body under investigation).
On the other hands, it is well known that the inverse boundary value prob-
lem of determining σ in (1) from the knowledge of the D-N map is severely
ill-posed. Indeed, regarding the stability of the inverse conductivity problem,
Alessandrini [2] proved that, assuming n ≥ 3 and a-priori bounds on σ of the
form

||σ||Hs(Ω) ≤ E, for some s >
n

2
+ 2, (8)

σ depends continuously on Λσ with a modulus of continuity of logarithmic type.
For subsequent results of this type we also refer to [3, 4] and to [15, 16, 43] for
the two-dimensional case. The common logarithmic type of stability cannot be
avoided ([5, 44]). However, the ill-posed nature of this problem can be mod-
ified to be conditionally well-posed by restricting the conductivity to certain
function subspaces. Well-posedness is here expressed by Lipschitz stability. A
first result of this kind was established by Alessandrini and Vessella [10], where
the authors proved global stability of σ in terms of the local D-N map, for the
case when σ is isotropic and piecewise constant on a given finite partition of
Ω. This fundamental result was extended later on to different types of inverse
problems. In the context of the inverse conductivity problem to which we refer
in this work, we wish to recall the results of [7, 17] for the cases of real piece-
wise linear and complex piecewise constant isotropic conductivity respectively
and to [25] for the case of a conformal class of piecewise anisotropic conduc-
tivities. All of these results are obtained in terms of local data. We also refer
to [50] where it was shown that the Lipschitz stability constant appearing in
the above mentioned results grows exponentially with the number of domains
partitioning Ω and to [6] for a recent result of global uniqueness for anisotropic
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conductivities that are piecewise constant in the context of local data too.
To conclude, we shall point out that the problem of recovering the conductivity
σ by local measurements has been treated more recently. In this context we
wish to recall also [18, 21, 27, 33, 34, 47, 48, 49]. The results obtained in the
current paper could be adapted to the case of local data too.
The paper is organized as follows. Section 2 contains the formulation of the
problem in OT for the static case (subsection 2.1) and the main results (subsec-
tion 2.2, Theorems 2.5, 2.6). Section 3 is devoted to a review of the construction
of singular solutions for equations of type (5) having a singularity of arbitrarily
high order at a given point. This is done by following the same line of [3] (see
also [51] for the more general case (4)). The proofs of Theorems 2.5, 2.6 are
given in section 4.

2. The main result

2.1. Formulation of the problem

Although Maxwell’s equations provide a complete model for the light propaga-
tion in a scattering medium on a micro scale, on the scale suitable for medical
OT an appropriate model is given by the Radiative Transfer Equation (or Boltz-
mann equation)[14]. If Ω is a domain in Rn, with n ≥ 2 with smooth boundary
∂Ω and radiation is considered in the body Ω, then it is well known that if
the input field is modulated with a fixed harmonic frequency ω, the so-called
Diffusion Approximation leads to the elliptic equation (see [11]) for the energy
current density u

div (K∇u)− (µa − ik)u = 0, in Ω, (9)

where k = ω

c
is the wave number and K is the complex matrix valued function

K =
1

n

�
(µa − ik)I + (I −B)µs

�−1
,

where Bij(x) = Bji(x) is a real matrix valued function and I − B is positive
definite ([11, 29, 30]). The spacially varying coefficients µa and µs are called
the absorption and the scattering coefficients of the medium Ω and represent
the optical properties of Ω. Here we consider the simpler static case k = 0 for
which K reduces to the real matrix valued function

K =
1

n

�
µaI + (I −B)µs

�−1
. (10)

Although it is common practise in OT to use the Robin-to-Robin map to de-
scribe the boundary measurements (see [11]), the D-N map will be employed
in this manuscript instead. The rigorous definition of this map for an equation
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of type (9) will be given in subsection 2.1.1. For now, we just recall that pre-
scribing its inverse, called the Neumann-to-Dirichlet (N-D) map, is equivalent
to prescribe in OT the more commonly used Robin-to-Robin map. It can also
be shown that prescribing the N-D map is insufficient to recover both coef-
ficients µa and µs uniquely [13] unless a priori smoothness assumptions are
employed [26]. In this paper we consider the problem of determining µa and its
derivatives when µs and B are assumed known. More precisely, we show that
µa and its derivatives at the boundary depend upon ΛK,µa with a modulus
of continuity of Lipschitz and Hölder type respectively. These are the main
results of this paper and are contained in Theorems 2.5, 2.6.
We rigorously formulate the problem by introducing the following notation,
definitions and assumptions.
For n ≥ 3, a point x ∈ Rn will be denoted by x = (x�, xn), where x� ∈ Rn−1

and xn ∈ R. Moreover, given a point x ∈ Rn, we will denote with Br(x), B�
r
(x�)

the open balls in Rn,Rn−1 respectively centred at x and x� with radius r and
by Qr(x) the cylinder

Qr(x) = B�
r
(x�)× (xn − r, xn + r).

We will also denote Br = Br(0), B�
r
= B�

r
(0) and Qr = Qr(0).

Definition 2.1. Let Ω be a domain in Rn. We say that ∂Ω is of Lipschitz class
with constants L, r > 0 if for any P ∈ ∂Ω there exists a rigid transformation
of Rn under which we have P = 0 and

Ω ∩Qr = {x ∈ Qr : xn > ϕ(x�)},

where ϕ is a Lipschitz function on B�
r0

satisfying

ϕ(0) = 0; �ϕ�C0,1(B�
r)

≤ Lr.

Assumption (on the known parameters µs and B): we assume that µs, B ∈

W 1,∞(Ω) and that for some positive constants λ, E

λ−1
≤ µs(x) ≤ λ, for every x ∈ Ω, (11)

and

||µs||W 1, ∞(Ω) ≤ E, (12)

||B||W 1, ∞(Ω) ≤ E. (13)

We introduce the following class of matrix valued functions σ(x, t) on Ω ×

[λ−1,λ].
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Definition 2.2. Given p > n , we say that σ(·, ·) ∈ H�
p if there are positive

constants λ, E , F > 0, such that, denoting by Sym
n
the class of n × n real

symmetric matrices, the following conditions are satisfied

σ ∈ W 1, p(Ω× [λ−1, λ] , Sym
n
), (14)

D tσ ∈ W 1, p(Ω× [λ−1, λ] , Sym
n
), (15)

ess sup
t∈ [λ−1,λ]

�
� σ(·, t) �Lp(Ω) + � Dxσ(·, t) �Lp(Ω)

+ � Dtσ(·, t) �Lp(Ω) + � DtDxσ(·, t) �Lp(Ω)

�
≤ E , (16)

λ−1
|ξ|2 ≤ σ(x, t)ξ · ξ ≤ λ|ξ|2, for almost every x ∈ Ω,

for every t ∈ [λ−1,λ], ξ ∈ Rn, (17)

Dtσ(x, t) ξ · ξ ≤ −F|ξ|2, for almost every x ∈ Ω ,

for every t ∈ [λ−1,λ] , ξ ∈ Rn. (18)

Remark 2.3. We observe that properties (14) - (17) were satisfied by the one-
parameter family of conductivities σ(x, t) belonging to the class H introduced
in [8, 9]. Property (18), which is a property of monotonicity of Dtσ(x, t) with
respect to the variable t, replaces the monotonicity assumption (3) in H. (18)
states that Dtσ(x, t) is a negative definite matrix for almost every x ∈ Ω, where
the monotonicity assumption (3) of H in [8, 9] required Dtσ(x, t) to be positive
definite instead. In this work we will show that the results obtained in [8, 9] can
be similarly obtained when (3) is replaced by (18) and equation (1) is replaced
by the more general one in (5).

Let us rigorously define the D-N map for (5).

2.1.1. The Dirichlet-to-Neumann map.

If n ≥ 3 and Ω is a domain in Rn with Lipschitz boundary ∂Ω (with constants
L, r) as in Definition 2.1, we assume that σ ∈ L∞(Ω, Symn), q ∈ L∞(Ω) satisfy
the ellipticity condition

λ−1
|ξ|2 ≤ σ(x)ξ · ξ ≤ λ|ξ|2, for almost every x ∈ Ω,

for every ξ ∈ Rn. (19)

and
λ−1

≤ q(x) ≤ λ, for almost every x ∈ Ω (20)

respectively. We denote by �·, ·� the L2(∂Ω)-pairing between H
1
2 (∂Ω) and its

dual H− 1
2 (∂Ω).
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Definition 2.4. The Dirichlet-to-Neumann (D-N) map associated with σ, q is
the operator

Λσ, q : H
1
2 (∂Ω) −→ H− 1

2 (∂Ω) (21)

defined by

�Λσ, q f, g� =

�

Ω

�
σ(x)∇u(x) ·∇ϕ(x) + q(x)u(x)ϕ(x)

�
dx, (22)

for any f , g ∈ H
1
2 (∂Ω), where u ∈ H1(Ω) is the weak solution to

�
div(σ(x)∇u(x))− q(x)u(x) = 0, in Ω,

u = f, on ∂Ω

and ϕ ∈ H1(Ω) is any function such that ϕ|∂Ω = g in the trace sense.

Note that, by (22), it is easily verified that Λσ, q is selfadjoint and that
given σi ∈ L∞(Ω , Symn), for i = 1, 2, qi ∈ L∞(Ω), satisfying (19) and (20)
respectively, the well known Alessandrini’s identity (see [32, (5.0.4), p.129])

�Λσ1, q1 − Λσ2, q2f1, f2� =

�

Ω
(σ1(x)− σ2(x))∇u1(x) ·∇u2(x) dx

+

�

Ω
(q1(x)− q2(x))u1(x)u2(x) dx, (23)

holds true for any fi ∈ H
1
2 (∂Ω), where ui ∈ H1(Ω) is the unique weak solution

to the Dirichlet problem

�
div(σi(x)∇ui(x))− qi(x)ui(x) = 0, in Ω,

ui = fi, on ∂Ω,

for i = 1, 2.
In the sequel we will denote the D-N map ΛK,µa corresponding to (9) (for
k = 0) by

Λµa

to simplify our notation. We will also denote by � · �∗ the norm on the Banach
space of bounded linear operators between H

1
2 (∂Ω) and H− 1

2 (∂Ω).

2.2. The main result

The following theorems are the main results of this paper.
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Theorem 2.5 (Lipschitz stability of boundary values). Let n ≥ 3, p > n
and Ω be a bounded domain with Lipschitz boundary with constants L, r as in
Definition 2.1. Let µsi satisfy (11), (12), i = 1, 2 and B satisfy (13). If µai

satisfies
λ−1

≤ µai(x) ≤ λ, for every x ∈ Ω, (24)

� µai �W 1,p(Ω)≤ E, (25)

for i = 1, 2, then we have

� µa1(x)− µa2(x) �L∞ (∂Ω)≤ C � Λµa1
− Λµa2

�∗ . (26)

Here C > 0 is a constant depending on n, p, L, r, diam(Ω), λ, E, F and E.

Theorem 2.6 (Hölder stability of derivatives at the boundary). Let n ≥ 3,
p, Ω, µai , µsi , i = 1, 2 and B be as in Theorem 2.5. Given y ∈ ∂Ω and a
neighborhood U of y in Ω, assume that for some positive integer k and some
α, 0 < α < 1 we have

� µsi �Ck,α(Ū), � B �Ck,α(Ū)≤ Ek, (27)

for i = 1, 2 and
� µa1 − µa2 �Ck,α(Ū)≤ Ek. (28)

Then, for every neighborhood W of y in Ω such that W ⊂ U ,

� Dk(µa1 − µa2) �L∞(∂Ω∩W )≤ C � Λµa1
− Λµa2

�
δkα
∗ , (29)

where

δk =
k�

j=0

α

α+ j
. (30)

Here C > 0 is a constant which depends only on n, p, L, r, diam(Ω), dist(W ∩

∂Ω,Ω \ U), λ, E, F , E α, k, and Ek.

3. Singular solutions

This section is devoted to a review of the construction of singular solutions of
an elliptic equation in divergence form with a lower extra term of order zero.
This type of solutions were introduced by Alessandrini in [3] for an equation
of type (1) and have been extended to solutions of a more general equation of
type (4). The decision to expose in this manuscript the key-points necessary
for the constructions of such solutions in the OT context is driven by the
willingness of keeping the manuscript as self-contained as possible. It is also
hoped that the details highlighted here will be of use for the more physically
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relevant time-harmonic case in OT, where the matrix valued function K is
complex and the zero order term in (9) is complex too. Here we consider an
operator of type

L =
∂

∂xi

�
σij

∂

∂xj

�
− q, in BR, (31)

where the leading order coefficients σij(x), i, j = 1, . . . , n and the zero order
coefficient q(x) satisfy

λ−1
|ξ|2 ≤ σij(x)ξiξj ≤ λ |ξ|2, for every x, ξ, x ∈ BR, ξ ∈ Rn, (32)

� σij �W 1, p(BR)≤ E, i, j = 1, . . . ,n, (33)

for some p > n and

λ−1
≤ q(x) ≤ λ, for any x, x ∈ BR. (34)

Theorem 3.1 (Singular solutions for L = div(σ∇·) − q). Let L satisfy (31)-
(34). For any spherical harmonic Sm of degree m = 0, 1, 2, . . . , there exists
u ∈ W 2, p

loc
(BR \ {0}) such that

Lu = 0, in BR \ {0} (35)

and furthermore

u(x) = log |Jx|S0

�
Jx

|Jx|

�
+ w(x), when n = 2 and m = 0, (36)

u(x) = |Jx|2−n−m Sm

�
Jx

|Jx|

�
+ w(x) otherwise, (37)

where J is a positive definite symmetric matrix such that J =
�

(σij(0))−1 and
w satisfies

| w(x)|+ | x | |Dw(x)| ≤ C | x |
2−n−m+α, in Br \ {0}, (38)

��

r<|x|<2r
|D2w|p

� 1
p

≤ C r−n−m+α+n
p , for every r, 0 < r < R/2. (39)

Here α is any number such that 0 < α < 1− n

p
, and C is a constant depending

only on α, n, p, r, λ, and E.

Next we consider three technical lemmas. The proofs of these results for
the case where L = div(σ∇·) are treated in details in [2] and their extension
to the more general case L = div(σ∇·) − q is quite straightforward, therefore
only the key points of their proofs will be highlighted here. In what follows A
denotes a positive constant.
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Lemma 3.2. Let p > n and u ∈ W 2,p
loc

(BR\{0}) be such that, for some positive s,

|u(x)| ≤ |x|2−s, for any x ∈ BR \ {0}, (40)

��

r<|x|<2r
|Lu|p

� 1
p

≤ Ar
n
p −s, for any r, 0 < r <

R

2
. (41)

Then we have

|Du(x)| ≤ C|x|1−s, for any x ∈ BR \ {0}, (42)

��

r<|x|<2r
|D2u|p

� 1
p

≤ Cr
n
p −s for any r, 0 < r <

R

4
, (43)

where C is a positive constant depending only on A, n, p, λ and E.

Proof of Lemma 3.2. The proof is a consequence of the Lp interior Schauder
estimate

||D2u||Lp(Bρ1ρ2 )
≤

C

(1− ρ21)ρ
2
2

�
ρ22||Lu||Lp(Bρ2 )

+ ||u||Lp(Bρ2 )

�
, (44)

where C = C(n, p,λ, E) is a positive constant, 0 < ρ1 < 1 and Bρ2 , Bρ1ρ2 are
two concentric balls such that u ∈ W 2,p(Bρ2) (see [45, Lemma 5.6.1]). We refer
to [2, Proof of Lemma 2.1] for a detailed proof of this lemma.

Lemma 3.3. Let f ∈ Lp

loc
(BR \ {0}) satisfy

��

r<|x|<2r
|f |p

� 1
p

≤ Ar
n
p −s, for any r, 0 < r <

R

2
, (45)

with 2 < s < n < p. Then there exists u ∈ W 2,p
loc

(BR \ {0}) satisfying

Lu = f, in BR \ {0} (46)

and
|u(x)| ≤ C|x|2−s, for any x ∈ BR \ {0}, (47)

where C is a positive constant depending only on A, s, n, p, R, λ and E.

Proof of Lemma 3.3. The proof is based on the construction of a fundamental
solution Γ of the equation Lu = 0 so that

|Γ(x, y)| ≤ C(n,λ)|x− y|2−n, for any x �= y (48)

(see [52]). See also [1, section 4] for a brief description of this construction and
[2, Proof of Lemma 2.2] for a complete proof of this lemma.
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Definition 3.4. We shall denote solution u of (46) by

u = TLu.

The last technical result that we recall involves pointwise estimates of some
solution of the Laplace equation and we refer to [2, Proof of Lemma 2.3] for its
proof.

Lemma 3.5. Let s > n be a non-integer real number. Let f be as in lemma 3.3
and satisfying (45) with p > n. Then there exists u ∈ W 2,p

loc
(BR\{0}) satisfying

∆u = f, in BR \ {0} (49)

and such that (47) holds true with C > 0 a constant depending only on A, s, n, p
and R.

Definition 3.6. We shall denote solution u of (49) by

u = TSu.

We proceed next with the proof of 3.1.

Proof of Theorem 3.1. The proof follows the same line of [2, Proof of Theo-
rem 1.1]. We will therefore only rephrase the key points of this proof showing
how it can be adapted to the more general case treated here. For simplicity
we first assume that σ(0) = I, where I denotes the n× n identity matrix and
prove that, under this additional assumption, for any spherical harmonic Sm

of degree m = 0, 1, 2, . . . , there exists u ∈ W 2, p
loc

(BR \ {0}) such that

Lu = 0, in BR \ {0} (50)

and

u(x) = log |x|S0

�
x

|x|

�
+ w(x), when n = 2 and m = 0, (51)

u(x) = |x|2−n−m Sm

�
x

|x|

�
+ w(x) otherwise, (52)

where w satisfies (38), (39). For this, we consider in BR \ {0} the harmonic

H(x) = |x|2−n−m Sm

�
x

|x|

�
.

As in [2, Proof of Theorem 1.1] the idea is to find w satisfying (38), (39) and
such that

Lw = −LH, in BR \ {0}.
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We have

−LH = (∆− L)H = (δij − aij)
∂2H

∂xi∂xj

−
∂aij
∂xi

∂H

∂xj

− qH. (53)

From [2, Proof of Theorem 1.1] we have

��

r<|x|<2r
|δij − aij |

p

����
∂2H

∂xi∂xj

����
p
� 1

p

≤ Cr
n
p −n−m+β , (54)

��

r<|x|<2r

����
∂aij
∂xi

����
p
����
∂H

∂xj

����
p
� 1

p

≤ Cr
n
p −n−m+β , (55)

where β = 1 − n

p
. Here the extra lower order term −qH can be estimated as

follows

��

r<|x|<2r
|qH|

p

� 1
p

≤ C(λ, R)

��

r<|x|<2r
|x|(2−n−m)p

� 1
p

≤ C(λ, R)

�� 2r

r

ρ(2−n−m)p+n−1

� 1
p

≤ Cr
n
p −n−m+β (56)

and by combining (54)-(56) together we obtain

��

r<|x|<2r
|LH|

p

� 1
p

≤ Cr
n
p −n−m+β . (57)

Let α be an irrational number such that 0 < α < β and define

K =
�m
α

�
.

If w0 = TS(−LH), then we have

|w0(x)| ≤ C|x|2−n−m+β , for any x, x ∈ BR \ {0}.

We define

wj =

�
w0, j = 0

TSf, f = (∆− L)wj−1, j = 1, . . . ,K − 1.
(58)
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Lemma 3.7. For any j = 0, . . . ,K − 1 we have

|wj(x)| ≤ C|x|2−n−m+(j+1)α, (59)
��

r<|x|<2r
|(∆− L)wj |

p

� 1
p

≤ Cr
n
p −n−m+(j+2)α. (60)

Proof of Lemma 3.7. . We prove (59), (60) by induction on j. For j = 0 we
have

|w0(x)| ≤ C|x|2−n−m+β
≤ C|x|2−n−m+α

and
��

r<|x|<2r
|(∆−L)wj |

p

� 1
p

≤ Cr
n
p −n−m+2α + C

��

r<|x|<2r
|(cw0|

p

�1
p

≤ Cr
n
p −n−m+2α + C

��

r<|x|<2r
|x|(2−n−m+α)p

�1
p

≤ Cr
n
p −n−m+2α + Cr

n
p −n−m+α

≤ Cr
n
p −n−m+α.

Suppose now that (59), (60) are true for j, i.e.

|wj(x)| ≤ C|x|2−n−m+(j+1)α,
��

r<|x|<2r
|(∆− L)wj |

p

� 1
p

≤ Cr
n
p −n−m+(j+2)α,

then if we define s = n+m− (j + 2)α, we have that s > n and if we take

wj+1 = TSf, with f = (∆− L)wj ,

then
|wj+1(x)| ≤ C|x|2−n−m+(j+2)α (61)

and
��

r<|x|<2r
|(∆−L)wj+1|

p

� 1
p

≤ Cr
n
p −n−m+(j+3)α + C

��

r<|x|<2r
|cwj+1|

p

�1
p

≤ Cr
n
p −n−m+(j+3)α

+C

��

r<|x|<2r
|x|(2−n−m+(j+2)α) p

� 1
p

≤ Cr
n
p −n−m+(j+3)α + Cr

n
p −n−m+(j+2)α

≤ Cr
n
p −n−m+(j+3)α, (62)
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which conclude the proof.

(60) with j = K − 1 gives

��

r<|x|<2r
|(∆− L)wK−1|

p

� 1
p

≤ Cr
n
p −n−m+(K+1)α

and if we define s = n+m− (K + 1)α, we have s < n. If we define

WK = TLf, with f = (∆− L)wK−1,

we have

|WK(x)| ≤ C|x|2−n−m+(K+1)α, for any x ∈ BR \ {0}. (63)

We define as in [2, Proof of Theorem 1.1] the function w

w =
K−1�

j=0

wj +WK . (64)

w ∈ W 2,p
loc

(BR \ {0}) and satisfies

|w(x)| ≤ C|x|2−n−m+α for any x ∈ BR \ {0},

moreover
��

r<|x|<2r
|Lw|p

� 1
p

≤ Cr
n
p −n−m+α +

��

r<|x|<2r
|qw|p

� 1
p

≤ Cr
n
p −n−m+α + C

��

r<|x|<2r
|x|(2−n−m+α)p

� 1
p

≤ Cr
n
p −n−m+α + Cr

n
p +2−n−m+α

≤ Cr
n
p −n−m+α. (65)

Estimate (65), together with Lemma 3.2, leads to

|Dw(x)| ≤ C|x|1−n−m+α, (66)
��

r<|x|<2r

��D2w
��p
� 1

p

≤ Cr
n
p −n−m+α. (67)

In the general case in which the extra assumption σ(0) = I is not satisfied,
we consider the linear change of variable ξ = Jx, with J =

�
(σij(0))−1, so

that in the new coordinate system the above mentioned extra assumption is
satisfied. In this case (51), (52) must be replaced by (36), (37) respectively,
which concludes the proof.
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We shall also need the following lemma.

Lemma 3.8. Let the hypotheses of Theorem 3.1 be satisfied. For every m =
1, 2, . . . there exists a spherical harmonic Sm of degree m such that the solution
u given by Theorem 3.1 also satisfies

|Du(x)| > |x|1−(n+m), for every x, 0 < |x| < r0, (68)

where r0 depends only on λ, E, p, m and R.

Proof. The proof of this lemma can be obtained along the same lines as of [2,
Lemma 3.1] and [8, Section 3].

4. Proof of the main result.

Since the boundary ∂Ω is Lipschitz, the normal unit vector field might not be
defined on ∂Ω. We shall therefore introduce a unitary vector field �ν locally
defined near ∂Ω such that: (i) �ν is C∞ smooth, (ii) �ν is non-tangential to ∂Ω.
At this point we would need to quantify ∂Ω in terms of its compactness and
the constants L, r introduced in definition 2.1. We think that this goes beyond
the scope of this paper, therefore we choose to refer to [8, Lemmas 3.1-3.3] for a
precise introduction of �ν. Here we will simply recall that the point zτ = x0+τ�ν,
where x0 ∈ ∂Ω, satisfies

C τ ≤ d(zτ , ∂Ω) ≤ τ, for any τ, 0 ≤ τ ≤ τ0, (69)

where τ0 and C depend on L and r only.

Lemma 4.1. If µs, B satisfy conditions (11), (12) and (13) respectively, then
K(x, t) given by (10) belongs to the class H�

∞ with E being a positive constant
depending only on n, λ and E.

Proof of Lemma 4.1. Notice that if µs and B satisfy (11), (12) and (13) re-
spectively, then

K(x, t) ∈ L∞(Ω). (70)

We also have

DtK(x, t) = −nK2(x, t) (71)

DxK(x, t) = nK(x, t)
�
(DxB)µs − (I −B)Dxµs

�
K(x, t) (72)

DtDxK(x, t) = −2n2K2(x, t)
�
(DxB)µs − (I −B)Dxµs

�
K(x, t). (73)

By combining (70) together with (71)-(73) and recalling that I −B is positive
definite, we obtain that K ∈ H�

∞.
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Note that if K is given by (10), µs, B satisfy conditions (11), (12) and (13)
respectively and µa satisfies (24), (25), then

K(·, µa(·)) ∈ W 1,p(Ω, Sym
n
), (74)

where p is the number introduced in (25). Furthermore

||K(·, µa(·))||W 1,p(Ω) ≤ CE(1 + ||µa||W 1,p(Ω)), (75)

where C is a positive constant depending only on λ, Ω, n and p (see for instance
[8, Lemma 3.6]).
In the following two proofs of the main result the appearance of positive con-
stants that depend on the various quantities n, p, α, β, k L, r, E, E , F and
Ω will be common. These quantities represent our a-priori information, there-
fore, we will denote by C any of these positive constants arising in the proofs
in order to keep the notation simple.

Proof of Theorem 2.5. Let x0 ∈ ∂Ω be such that

(µa2 − µa1)(x
0) = � µa1 − µa2 �L∞(∂Ω)

and zτ = x0 + τ�ν, with 0 < τ ≤ min
�
τ0,

r0
4

�
, where τ0 is the number fixed

in (69) and r0 is the number appearing in (68). We set σi = K(·, µai), qi = µai ,
for i = 1, 2 and m = 0 in Theorem 3.1. The corresponding singular solution
ui ∈ W 2,p(Ω) of

div (K(·, µai)∇ui)− µaiui = 0 in Ω

have a Green’s function type of singularity at zτ outside Ω

ui(x) =
��Jµai

(x− zτ )
��2−n

+O
�
|x− zτ |

2−n+α

�
, (76)

for i = 1, 2. By setting ρ = r0 we have that Bρ(zτ )∩Ω �= ∅ and, recalling (23),
we have

�����

�

Ω∩Bρ(zτ )

�
K(x, µa1)−K(x, µa2)

�
∇u1 ·∇u2

�����

≤

�

Ω∩Bρ(zτ )
|µa1 − µa2 | |u1||u2|

+

�

Ω\Bρ(zτ )
|K(x, µa1)−K(x, µa2)| |∇u1| |∇u2|

+

�

Ω\Bρ(zτ )
|µa1 − µa2 | |u1||u2|

+||Λµa1
− Λµa2

||∗ ||u1||
H

1
2 (∂Ω)

||u2||
H

1
2 (∂Ω)

. (77)
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By combining (76) with (77) and the fact that K(x, µai) is Hölder continuous
with exponent β = 1− n

p
, we obtain

�

Ω∩Bρ(zτ )

J2
µa2

�
K(x0, µa1)−K(x0, µa2

�
J2
µa1

(x− zτ ) · (x− zτ )

|Jµa1
(x− zτ )|n |Jµa2

(x− zτ )|n

≤ C

��

Ω∩Bρ(zτ )
|x− zτ |

2−2n+α

+

�

Ω∩Bρ(zτ )
|x− zτ |

2−2n
|x− x0

|
β

+

�

Ω∩Bρ(zτ )
|x− zτ |

4−2n

+

�

Ω\Bρ(zτ )
|K(x, µa2)−K(x, µa1)| |x− zτ |

2−2n

+

�

Ω\Bρ(zτ )
|µa1 − µa2 | |x− zτ |

4−2n
�

+ � Λµa1
− Λµa2

�∗ � u1 �
H

1
2 (∂Ω)

� u2 �
H

1
2 (∂Ω)

.

Since
��Jµai

−K(x0, µai)
−1

�� ≤ Cτβ , for i = 1, 2, we have

J2
µa2

�
K(x0, µa1)−K(x0, µa2)

�
J2
µ1

(x− zτ ) · (x− zτ )

≥
�
K(x0, µa2)

−1
−K(x0, µa1)

−1)(x− zτ
�
· (x− zτ )

− Cτβ(µa1 − µa2)(x
0) |x− zτ |

2 (78)
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and
�
K(x0, µa2)

−1
−K(x0, µa1)

−1)(x− zτ
�
· (x− zτ )

=

�
µa2 (x

0)

µa1 (x
0)

Dt

�
K(x0, t)

�−1
(x− zτ ) · (x− zτ ) dt

=

�
µa2 (x

0)

µa1 (x
0)

−K−1(x0, t)Dt K(x0, t)K−1(x0, t)(x− zτ ) · (x− zτ ) dt

=

�
µa1 (x

0)

µa2 (x
0)

−Dt K(x0, t)K−1(x0, t)(x− zτ ) ·K
−1(x0, t) (x− zτ ) dt

≥ F

�
µa2 (x

0)

µa1 (x
0)

��K−1(x0, t)(x− zτ )
��2 dt

≥ Fλ−2
�
µa2(x

0)− µa1(x
0)
�
|x− zτ |

2 . (79)

By combining (78) together with (79) we obtain

J2
µa2

�
K(x0, µa1)−K(x0, µa2)

�
J2
µa1

(x− zτ ) · (x− zτ )

≥
�
Fλ−2 + Cτβ

� �
µa2(x

0)− µa1(x
0)
�
|x− zτ |

2

≥ C
�
µa2(x

0)− µa1(x
0)
�
|x− zτ |

2. (80)

Hence, we have

� µa1 − µa2 �L∞(∂Ω)

�

Ω∩Bρ(zτ )
|x− zτ |

2−2n

≤ C

��

Ω∩Bρ(zτ )
|x− zτ |

2−2n+α

+

�

Ω∩Bρ(zτ )
|x− zτ |

2−2n
|x− x0

|
β

+

�

Ω∩Bρ(zτ )
|µa2 − µa1 | |x− zτ |

4−2n

+

�

Ω\Bρ(zτ )
|K(x, µa2)−K(x, µa1)| |x− zτ |

2−2n

+

�

Ω\Bρ(zτ )
|µa2 − µa1 | |x− zτ |

4−2n
�

+ � Λµa1
− Λµa2

�∗ � u1 �
H

1
2 (∂Ω)

� u2 �
H

1
2 (∂Ω)
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and by estimating the above integrals and the H
1
2 (∂Ω) norm of ui for i = 1, 2

(see [2, 8]) we obtain

� µa1 − µa2 �L∞(∂Ω) τ
2−n

≤ C
�
τ2−n+α + τ2−n+β + τ4−n + C

+ � Λµa1
− Λµa2 )

�∗ τ2−n

�
, (81)

which leads to

� µa1 − µa2 �L∞(∂Ω)≤ C
�
ω(τ)+ � Λµa1

− Λµa2
�∗
�
, (82)

where ω(τ) → 0 as τ → 0, which concludes the proof.

Proof of Theorem 2.6. Let �ν be the unit vector field introduced in this section.
We shall prove that

����

����
∂j

∂�νj (µa1 − µa2)

����

����
L∞(∂Ω∩W )

≤ C � Λ1 − Λ2) �
δj
∗ , for every j ≤ k, (83)

where δj is given by (30). We proceed by induction on k by following the same
line of [8, Proof of Theorem 2.2] and therefore only the points where the two
proofs differ will be highlighted. From theorem 2.5 we have that (83) holds
true for k = 0. Let us assume that (83) holds true for j = k− 1 and prove that
it is true for j = k too.
Let m be a positive integer and x0 ∈ ∂Ω ∩W be such that

(−1)k
∂k

∂�νk (µa2 − µa1)(x
0) =

����

����
∂k

∂�νk (µa1 − µa2)

����

����
L∞(∂Ω∩W )

. (84)

Let zτ = x0 + τ�ν, with τ ≤ min
�
τ0,

ρ

2

�
, where τ0 is the number fixed in (69)

and ρ = min
�
r0,

h

4L

�
, where r0 is the number depending on the choice of m

which was introduced in (68). With these choices Bρ(zτ )∩ Ω̄ is nonempty and

Bρ(zτ ) ∩ Ω ⊂ U. (85)

For the choice of ρ and (85) we recall [8, Lemmas 3.1-33] as explained at
the beginning of this section. Let ui be the singular solution of Theorem 3.1
corresponding to µai , for i = 1, 2 and m. By Lagrange theorem, for every
x ∈ U there exists t(x), 0 < t(x) < 1, such that

K(x, µa1)−K(x, µa2) = (µa1(x)− µa2(x))DtK(x, t)|t=c(x), (86)

where c(x) = a(x) + t(x)(µa2(x)− µa1(x)) and

|Du1−Du2| ≤ C
�
|x− zτ |

1−n−m
|µa1(x

0)− µa2(x
0)|+ |x− zτ |

1−n−m+α
�
, (87)
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which leads to

DtK(x, t)|t=c(x)Du1 ·Du2 ≤ −C|x− zτ |
2−2(n+m), (88)

for almost every x ∈ Bρ(zτ ) ∩ Ω. Noting that every x ∈ U can be uniquely
represented as x = y − s�ν, where y ∈ ∂Ω, 0 ≤ s ≤ τ0, with 0 < τ0 < h − Lr,
Taylor’s formula for µa2 − µa1 leads to

k! (µa2 − µa1)(x) ≥

����

����
∂k

∂�νk
(µa1 − µa2)

����

����
L∞(∂Ω∩W̄ )

−C

�
k−1�

j=0

����

����
∂j

∂ν̃j
(µa1 − µa2)

����

���� s
j

− sk |x− x0
|
α

�
(89)

and by combining Alessandrini’s identity (23) together with (88) and (89) we
obtain

||Λµ1 − Λµ2 ||∗||u1||
H

1
2 (∂Ω)

||u2||
H

1
2 (∂Ω)

≥

����

����
∂k

∂�νk
(µa1 − µa2)

����

����
L∞(∂Ω∩W̄ )

�

Ω∩Bρ(zτ )
(d(x, ∂Ω))k|x− zτ |

2−2(n+m)

−

k−1�

j=0

����

����
∂j

∂�νj
(µa1−µa2)

����

����
L∞(∂Ω∩W̄ )

�

Ω∩Bρ(zτ )
(d(x, ∂Ω))j |x−zτ |

2−2(n+m)

−

�

Ω∩Bρ(zτ )
(d(x, ∂Ω))k |x− x0

|
α
|x− zτ |

2−2(n+m)

−

�

Ω\Bρ(zτ )
|K(x, µa1)−K(x, µa2)| |x− zτ |

2−2(n+m)

−

�

Ω∩Bρ(zτ )
|(µa1 − µa2)(x)||x− zτ |

4−2(n+m)

−

�

Ω\Bρ(zτ )
|(µa1 − µa2)(x)||x− zτ |

4−2(n+m). (90)

Estimating the above integrals and the norms ||ui||
H

1
2 (∂Ω)

, for i = 1, 2 as
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in [8, Proof of Theorem 2.2] leads to

����

����
∂k

∂�νk
(µa1−µa2)

����

����
L∞(∂Ω∩W̄ )

τ2−n−2m+k
≤ C

� k−1�

j=0

||Λµa1
− Λµa2

||
δj
∗ τ2−n−2m+j

+ τ2−n−2m+α+k + C + τ4−n−2m

+ ||Λµa1
−Λµa2

||
δj
∗ τ2−n−2m

�
, (91)

therefore to
����

����
∂k

∂�νk
(µa1 − µa2)

����

����
L∞(∂Ω∩W )

≤ C
�
||Λµa1

− Λµa2
||
δk−1
∗ τ−k + τα

�
. (92)

(83) is then derived for j = k by optimizing the choice of τ in (92). We recall
for sake of completeness that (29) is obtained by combining (83) together with
an iterated use of the following interpolation inequality

||Df ||
L∞(∂Ω∩U) ≤ C

� ����

����
∂

∂�ν f
����

����
L∞(∂Ω

+ ||f ||
α

1−α

L∞(∂Ω∩U)
||f ||

α
1+α

C1+α(U)

�
, (93)

for every f ∈ C1,α(Ω). Such an interpolation inequality can be found for
example in [2, Lemma 3.2].
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1. Introduction

In this note we consider the inverse problem of determining an inclusion D
contained in a domain Ω. More precisely we aim to locate a region of a specimen
whose physical properties are different from the properties of the surrounding
material. For instance, if we consider an electrical conductor Ω of constant
conductivity 1, the inclusion D has a conductivity equals to some unknown
constant k, different from 1.

Prescribing a voltage f ∈ H1/2(∂Ω) on the boundary of Ω, the induced
potential u ∈ H1(Ω) is the solution of the problem

�
div((1 + (k − 1)χD)∇u) = 0 in Ω,
u = f on ∂Ω,

(1)

where χD denotes the characteristic function of the set D.
The normal derivative of the solution u on the boundary ∂u

∂ν |∂Ω
corresponds

to the current density measured. The pair of Cauchy data
�
f, ∂u

∂ν |∂Ω

�
repre-

sents the electrostatic measurements performed on the boundary. We define
the so called Dirichlet–to–Neumann map ΛD as

ΛD : H1/2(∂Ω) → H−1/2(∂Ω)
f → ∂u

∂ν |∂Ω
.
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Its knowledge corresponds to performing infinitely many boundary measure-
ments.

The inverse problem we are addressing to is to recover information on the
inclusion D from a knowledge of the map ΛD.

This problem is a special instance of the well-known Calderon’s inverse
conductivity problem [11]. Uniqueness was established in 1988 by Isakov [21],
whose approach makes use of the Runge approximation Theorem and solutions
of the equation with Green’s function type singularities.

In 2005 Alessandrini and Di Cristo [4] have studied the stability issue, that
is the continuous dependance of the solution D from the given data ΛD. Con-
verting Isakov’s argument in a quantitative form, the authors prove that under
mild a priori assumptions on the regularity and the topology of the inclusion,
the modulus of continuity is of logarithmic type. Though such a modulus of
continuity is weak, in [14] it is shown that, keeping as minimal as possible, the
a priori information on the solution, it turns out to be optimal. To improve
this rate of continuity, more a priori information on the inclusion are needed
(see for instance [8]).

The argument proposed in [4] is very flexible and it can be extended to other
problems like locating a scattered object by the knowledge of the near field
data [13] or an inclusion in an elastic body by measuring the displacement and
the traction on the boundary [5] or in a thermal conductor from the knowledge
of the temperature and the heat flux on the boundary [15].

Let us mention here that in all these papers a crucial role is played by
the explicit representation of the fundamental solution of the operator div(1+
(k − 1)χ+∇·)), where χ+ is the characteristic function of the half space. It
would be interesting generalize such argument when different information on
the fundamental solution are available. Some ideas in this direction can be
found in the parabolic case (see Section 4) but still it is not clear what kind of
analysis is needed.

In this review note we illustrate the main step to get stability in the
impedance tomography case (Section 2). Then in the subsequent Section 3
we analyze the elastic body context, emphasizing the main differences and the
new tools needed. We conclude in the last Section 4 with the parabolic case.

2. Electrical Conductors

Let us first premise some notations and definitions we will use later on. In
places we denote a point x ∈ Rn by x = (x�, xn), where x� ∈ Rn−1, xn ∈ R.

Definition 2.1. Let Ω be a bounded domain in Rn
. Given α, 0 < α ≤ 1, we

shall say that a portion S of ∂Ω is of class C1,α
with constants r0, M0 > 0 if,

for any P ∈ S, there exists a rigid transformation of coordinates under which
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we have P = 0 and

Ω ∩Br0(0) = {x ∈ Br0 : xn > ϕ(x�)},

where ϕ is a C1,α
function on Br0(0) ⊂ Rn−1

satisfying ϕ(0) = |∇ϕ(0)| = 0
and �ϕ�C1,α(Br0 (0))

≤ M0r0.

Definition 2.2. We shall say that a portion S of ∂Ω is of Lipschitz class with

constants r0, M0 > 0 if for any P ∈ S, there exists a rigid transformation of

coordinates under which we have P = 0 and

Ω ∩Br0(0) = {x ∈ Br : xn > ϕ(x�)},

where ϕ is a Lipschitz continuous function on Br0(0) ⊂ Rn−1
satisfying ϕ(0) =

0 and �ϕ�C0,1(Br0 (0))
≤ M0r0.

Assumptions on the domain
Given r0,M0,M1 > 0 and 0 < α < 1 as constants, we assume that Ω ⊂ Rn is
of class C1,α class with constants r0,M0 such that

|Ω| ≤ M1r
n

0 ,

where | · | denotes the Lebesgue measure of Ω.

Assumptions on the inclusion
Let D be a domain contained in Ω such that Rn \ D is connected, ∂D is of
C1,α class with constants r0,M0 and, for a given δ0 > 0, dist(D, ∂Ω) ≥ δ0.

In what follows we will refer to constants k, n, r0,M0,M1,α, δ0 as to the a priori
data. We recall that n ≥ 2 is the dimension and k is the conductivity inside
the inclusion.

We denote by D1 and D2 two possible inclusions in Ω both satisfying the
aforementioned properties and by ΛD1 and ΛD2 the corresponding Dirichlet–
to–Neumann maps.

Remark 2.3. As it is well known, the Dirichlet–to–Neumann map ΛD associ-
ated to problem (1) is defined by

< ΛDu, v >=

�

Ω
(1 + (k − 1)χD)∇u ·∇v,

for every u ∈ H1(Ω) solution to (1) and v ∈ H1(Ω). Here < ·, · > denotes
the duality pairing between H−1/2(∂Ω) and H1/2(∂Ω). With a slight abuse of
notation, we will write

< g, f >=

�

∂Ω
gfdσ,

for any f ∈ H1/2(∂Ω) and g ∈ H−1/2(∂Ω).
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Theorem 2.4. Let Ω ⊂ Rn
, n ≥ 2, be as above, k > 0, k �= 1 be given and D1

and D2 be two inclusions in Ω as above. If, given ε > 0, we have

�ΛD1 − ΛD2�L(H1/2,H−1/2) ≤ ε, (2)

then

dH(∂D1, ∂D2) ≤ ω(ε), (3)

where ω is an increasing function on [0,+∞), which satisfies

ω(t) ≤ C| log t|−η, for every 0 < t < 1

and C, η, C > 0, 0 < η ≤ 1, are constants only depending on the a priori data.

Here dH denotes the Hausdorff distance between bounded closed sets of Rn

and � ·�L(H1/2H−1/2) denotes the operator norm on the space of bounded linear

operators between H1/2(∂Ω) and H−1/2(∂Ω). Let us also stress here that this
theorem holds in any dimension n ≥ 2 as the proof is based on singular solutions
arguments that are not related to the dimension.

Remark 2.5. For the sake of simplicity we have chosen to present the theorem
in the case of piecewise constant conductivity with the knowledge of the full
Dirichlet–to–Neumann map- It is possible to consider a slightly more general
case with conductivities of the form

γ(x) = a(x) + b(x)χD,

where a ∈ C0,1(Ω) and b ∈ Cα(Ω), and when only a portion of the boundary
∂Ω is available to perform measurements. We refer to [12] for a detailed study
of this problem.

Let us sketch the argument to prove this theorem. For the reader conve-
nience we divide it into several steps.

Step 1: modified distance.
Let G be the connected component of Rn\(D1 ∪D2) which contains Rn\Ω and
let us denote ΩD = Rn \ G. As we shall see later, one of the key ingredients of
the stability proof consists in propagating the smallness appearing in the mea-
surements (2) from the boundary ∂Ω inside Ω. Since the value dH(∂D1, ∂D2)
may be attained at some point not belonging to G and, therefore, not reachable
from the exterior, it is necessary to introduce a modified distance following the
ideas developed in [4]. Precisely, let us introduce the modified distance between
D1 and D2

dµ(D1, D2) = max

�
max

x∈∂D1∩∂ΩD

dist(x,D2), max
x∈∂D2∩∂ΩD

dist(x,D1)

�
. (4)
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We remark here that dµ is not a metric and, in general, it does not dominate the
Hausdorff distance. However, under our a priori assumptions on the inclusion,
the following lemma holds true.

Lemma 2.6. Under the assumptions of Theorem 2.4, there exists a constant

c0 ≥ 1 only depending on M0 and α such that

dH(∂D1, ∂D2) ≤ c0dµ(D1, D2). (5)

Proof. See [4, Proposition 3.3].

It is easy to verify that

max
x∈∂D1∩∂ΩD

dist(x,D2) = max
x∈∂D1∩∂ΩD

dist(x, ∂D2)

max
x∈∂D2∩∂ΩD

dist(x,D1) = max
x∈∂D2∩∂ΩD

dist(x, ∂D1),

so that dµ(D1, D2) ≤ dH(∂D1, ∂D2), and therefore, in view of Lemma 2.6,
these two quantities are comparable.

Another obstacle comes out from the fact that the propagation of smallness
arguments are based on an iterated application of the three-spheres inequality
for solutions of the equation over chains of balls contained in G and, in this
step, it is crucial to control from below the radii of these balls. In the following
Lemma 2.7 we treat the case of points of ∂ΩD that are not reachable by such
chains of balls. This problem was originally considered by [7] in the context of
cracks detection in electrical conductors and was underestimated in the papers
[4, 12, 13, 15, 16]. The procedure developed here enables to fill the possible
gaps in the proofs.

Let us premise some notation. Given O = (0, . . . , 0) the origin, v a unit
vector, h > 0 and ϑ ∈

�
0, π

2

�
, we denote

C(O, v, h,ϑ) = {x ∈ Rn| |x− (x · v)v| ≤ sinϑ|x|, 0 ≤ x · v ≤ h} (6)

the closed truncated cone with vertex at O, axis along the direction v, height
h and aperture 2ϑ. Given R, d, 0 < R < d and Q = −den, where en =

(0, . . . , 0, 1), let us consider the cone C
�
O,−en,

d
2
−R

2

d
, arcsin R

d

�
.

From now on, for simplicity, we assume that

dµ(D1, D2) = max
x∈∂D1∩∂ΩD

dist(x, ∂D2) (7)

and we write dµ = dµ(D1, D2).
Let us define

S2ρ0 =
�
x ∈ Rn |ρ0 < dist(x,Ω) < 2ρ0

�
. (8)
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We shall make use of paths connecting points in order that appropriate
tubular neighborhoods of such paths still remain within Rn \ ΩD.

Let us pick a point P ∈ ∂D1 ∩ ∂ΩD, let ν be the outer unit normal to
∂D1 at P and let d > 0 be such that the segment [(P + dν), P ] is contained
in Rn \ ΩD. Given P0 ∈ Rn \ ΩD, let γ be a path in Rn \ ΩD joining P0 to
P + dν. We consider the following neighborhood of γ ∪ [(P + dν), P ] \ {P}
formed by a tubular neighborhood of γ attached to a cone with vertex at P
and axis along ν

V (γ) =
�

S∈γ

BR(S) ∪ C

�
P, ν,

d2 −R2

d
, arcsin

R

d

�
. (9)

Note that two significant parameters are associated to such a set, the radius R
of the tubular neighborhood of γ, ∪S∈γBR(S), and the half-aperture arcsin R

d

of the cone C
�
P, ν, d

2
−R

2

d
, arcsin R

d

�
. In other terms, V (γ) depends on γ and

also on the parameters R and d. At each of the following steps, such two
parameters shall be appropriately chosen and shall be accurately specified. For
the sake of simplicity we convene to maintain the notation V (γ) also when
different values of R, d are introduced.

Also we warn the reader that it will be convenient at various stages to use
a reference frame such that P = O = (0, . . . , 0) and ν = −en.

Lemma 2.7. Under the above notation, there exist positive constants d, c1,

where
d

ρ0
only depends on M0 and α, and c1 only depends on M0, α, M1, and

there exists a point P ∈ ∂D1 satisfying

c1dµ ≤ dist(P,D2), (10)

and such that, giving any point P0 ∈ S2ρ0 , there exists a path γ ⊂ (Ωρ0 ∪S2ρ0)\
ΩD joining P0 to P + dν, where ν is the unit outer normal to D1 at P , such

that, choosing a coordinate system with origin O at P and axis en = −ν, the
set V (γ) introduced in (9) satisfies

V (γ) ⊂ Rn \ ΩD, (11)

provided R = d√
1+L

2
0

, where L0, 0 < L0 ≤ M0, is a constant only depending

on M0 and α.

In order to prove Lemma 2.7, we shall use the following results.

Lemma 2.8 (Lemma 5.5 in [6]). Let U be a Lipschitz domain in Rn
with con-

stants ρ0, M0. There exists h0, 0 < h0 < 1, only depending on M0, such

that

Uhρ0 is connected for every h, 0 < h ≤ h0. (12)
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Theorem 2.9 (Theorem 3.6 in [3]). There exist positive constants d0, r0, L0,

L0 ≤ M0, with
d0
ρ0
,

r0
ρ0

only depending on M0 and L0 only depending on α and

M0, such that if

dH(∂D1, ∂D2) ≤ d0, (13)

then ∂ΩD is Lipschitz with constants r0 and L0. Moreover, for every P ∈
∂ΩD ∩∂D1, up to a rigid transformation of coordinates which maps P into the

origin and en = −ν, where ν is the outer unit normal to D1 at P , we have

Di ∩Br0(P ) = {x ∈ Br0(0)| xn > ϕi(x
�)} , i = 1, 2, (14)

ϕ1(0) = 0, ∇ϕ1(0) = 0, (15)

�ϕi�C0,1(B�
r0

(0)) ≤ L0r0, i = 1, 2. (16)

An analogous representation holds for every P ∈ ∂ΩD ∩ ∂D2.

Proof of Lemma 2.7. Let

d1 =
d0
c0

, (17)

where c0 is the constant introduced in Lemma 2.6, and let

d2 = min{d1, h0ρ0}, (18)

where h0, 0<h0<1, only depending on M0, has been introduced in Lemma 2.8.
We shall distinguish two cases.

Case i) Let dµ ≤ d1.
Then, by Lemma 2.6 we have dH(∂D1, ∂D2) ≤ d0. Therefore, by Theo-

rem 2.9, ∂ΩD is Lipschitz with constants r0, L0, where
r0
ρ0

only depends on

M0, and L0 only depends on M0 and α. We may apply Lemma 2.8 to Rn \ΩD

obtaining that there exists �h0, 0 < �h0 < 1, only depending on α and M0, such
that (Rn \ ΩD)hr0 is connected for every h ≤ �h0.

Let P ∈ ∂D1 ∩ ∂ΩD be such that

dµ(D1, D2) = dist(P,D2). (19)

Under the coordinate system introduced in Theorem 2.9, let us consider the

point Q = P − �h0r0
2 en. We have that

dist(Q,ΩD) ≥
�h0r0

2
�
1 + L2

0

. (20)

Let us denote h1 =
�h0

2
√

1+L
2
0

. Since h1 < �h0, the set (Rn \ ΩD)h1r0 is connected

and contains Q. Therefore, there exists a path γ ⊂ (Rn \ ΩD)h1r0 joining any
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point P0 ∈ S2ρ0 with Q. Therefore, in the above coordinate system, the set
V (γ) satisfies

V (γ) ⊂ Rn \ ΩD, (21)

provided

d =
�h0r0
2

, R =
d�

1 + L2
0

. (22)

Case ii) Let dµ ≥ d1.

Then, trivially, dµ ≥ d2. Let �P ∈ ∂D1 ∩ ∂ΩD be such that

dµ(D1, D2) = dist( �P ,D2). (23)

Since d2 ≤ h0ρ0, by Lemma 2.8, (Rn \ D2)d2 is connected. Therefore, given
any point P0 ∈ S2ρ0 , there exists a path γ, γ : [0, 1] → (Rn \ D2)d2 such

that γ(0) ∈ S2ρ0 and γ(1) = �P . Let t = inft∈[0,1]

�
t| dist(γ(t), ∂D1) >

d2
2

�
.

By definition, dist(γ(t), ∂D1) = d2
2 , so that there exists P ∈ ∂D1 satisfying

|P − γ(t)| = d2
2 . We have that

dist(P,D2) ≥ dist(γ(t), D2)− |γ(t)− P | ≥ d2 −
d2
2

=
d2
2
. (24)

Let γ = γ|[0,t] and let us choose a cartesian coordinate system with origin O at
P , and en = −ν, where ν is the outer unit normal to D1 at P . We have that

V (γ) ⊂ Rn \ ΩD, (25)

assuming

d =
d2
2
, R =

d�
1 +M2

0

. (26)

Let

d = min

�
�h0r0
2

,
d0
2c0

,
h0ρ0
2

�
, (27)

and let us notice that d

ρ0
only depends on M0, α. Observing that L0 ≤ M0,

formula (11) follows with d given in (27). Since there exists a positive constant
C only depending on M0, M1 such that diam(Ω) ≤ Cρ0, we have that

dµ ≤
�
diam(Ω)

d2
2

�
d2
2

≤ �c1
d2
2
, (28)

with �c1 only depending on M0, α and M1. Letting c1 = min
�
1, 1

�c1

�
, inequal-

ity (10) follows.
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From now on we will denote by P = O ∈ ∂D1 ∩ ∂Ω the point such that

dµ(D1, D2) = dist(P,D2). (29)

Step 2: Alessandrini’s identity.
Let ui ∈ H1(Ω), i = 1, 2, be solutions to (1) when D = D1, D2 respectively,
the following identity holds.

�

Ω
(1 + (k − 1)χD1)∇u1 ·∇u2 −

�

Ω
(1 + (k − 1)χD2)∇u1 ·∇u2

=

�

∂Ω
u1[ΛD1 − ΛD2 ]u2. (30)

This identity can be obtained by using repeatedly Green’s formula. In the
context of inverse problems, the prototype of this identity can be traced back
to Alessandrini, who first used in [1].

Let ΓD(x, y) be the fundamental solution for the operator div((1 + (k −
1)χD)∇·), thus

div((1 + (k − 1)χD)∇ΓD(·, y)) = −δ(·− y), (31)

where y ∈ Rn, δ denotes the Dirac distribution . We shall denote by ΓD1 , ΓD2

such fundamental solutions when D = D1, D2 respectively. Replacing u1, u2

with ΓD1 ,ΓD2 in (30), we get

�

Ω
(1 + (k − 1)χD1)∇ΓD1(·, y) ·∇ΓD2(·, w)

−
�

Ω
(1 + (k − 1)χD2)∇ΓD1(·, y) ·∇ΓD2(·, w)

=

�

∂Ω
ΓD1(·, y)[ΛD1 − ΛD2 ](ΓD2(·, w))dσ, (32)

for any singularities y and w taken in the complement CΩ of Ω. Let us define,
for y, w ∈ G ∪ CΩ

SD1(y, w) = (k − 1)

�

D1

∇ΓD1(·, y) ·∇ΓD2(·, w), (33)

SD2(y, w) = (k − 1)

�

D2

∇ΓD1(·, y) ·∇ΓD2(·, w), (34)

f(y, w) = SD1(y, w)− SD2(y, w). (35)
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Thus (32) can be rewritten as

f(y, w) =

�

∂Ω
ΓD1(·, y)[ΛD1 − ΛD2 ](ΓD2(·, w))dσ ∀ y, w ∈ CΩ. (36)

For y, w ∈ CΩ, since (2), f(y, w) is small. The idea to get stability is to evaluate
how this smallness propagates as y and w move toward the inclusion To perform
such analysis, a crucial step is the study of the behavior of the fundamental
solution.

Step 3: fundamental solutions.
For x = (x�, xn), where x� ∈ Rn−1 and xn ∈ R, we set x� = (x�,−xn). We
shall denote with χ+ the characteristic function of the half-space {xn > 0} and
with Γ+ the fundamental solution of the operator div((1+ (k− 1)χ+)∇·). If Γ
is the standard fundamental solution of the Laplace operator, we have that

Γ+(x, y) =






1
k
Γ(x, y) + k−1

k(k+1)Γ(x, y
�) for xn > 0, yn > 0,

2
k+1Γ(x, y) for xnyn < 0, ,

Γ(x, y)− k−1
k+1Γ(x, y

�) for xn < 0, yn < 0.

(37)

The following Proposition holds.

Proposition 2.10. Let D ⊂ Rn
be an open set whose boundary is of class

C1,α
, with constants r0, M0.

(i) There exists a constant c1 > 0 depending on k, n, α and M0 only, such

that

|∇xΓD(x, y)| ≤ c1|x− y|1−n, (38)

for every x, y ∈ Rn
,

(ii) There exist constants c2, c3 > 0 depending on k, n, α and M0 only, such

that

��ΓD(x, y)− Γ+(x, y)
�� ≤ c2

rα
|x− y|2−n+α, (39)

��∇xΓD(x, y)−∇xΓ+(x, y)
�� ≤ c3

rα
2 |x− y|1−n+α

2

, (40)

for every x ∈ D ∩ Br(P ), and for every y = hν(P ), with 0 < r < r0,
0 < h < r0, where r0 =

�
min

�
1
2 (8M0)−1/α, 1

2

��
r0
2 .

Proof. The proof of i) is based on the C1,α regularity of ΓD proved in [17], see
also [24], and the pointwise bounds of ΓD with Γ contained in [25].
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To prove ii) we first flatten the boundary ∂D around the point P through
a C1,α diffeomorphism Φ from Rn into itself. Defining Γ̃D(ξ, η) = ΓD(x, y)
where ξ = Φ(x), η = Φ(y), it is not difficult to check that Γ̃D solves

divξ((1 + (k − 1)χ+)B(ξ)∇ξ
�ΓD(ξ, η)) = −δ(ξ − η),

where B is a Cα matrix such that B(0) = I. Considering

R̃(x, y) = Γ̃D(x, y)− Γ+(x, y),

by the properties of Γ+, R̃ satisfies

divx((1 + (k − 1)χ+)∇x
�R(x, y)) = divx((1 + (k − 1)χ+)(I −B)∇x

�ΓD(x, y)).

Using the fundamental solution Γ+ of the above operator and estimating the
integral that represents the solution R̃, it is possible to show that

|R̃(x, y)| ≤ c|x− y|α+2−n.

Estimate (39) follows going back to the original coordinates and estimate (40)
follows by using the interpolation inequality

�∇ �R(·, y)�L∞(Q) ≤ c� �R(·, y)�1−δ

L∞(Q)|∇ �R(·, y)|δ
α,Q

,

where δ = 1
1+α

and

|∇ �R|α,Q = sup
x,x�∈Q,x �=x�

|∇ �R(x, y)−∇ �R(x�, y)|
|x− x�|α .

We refer to [4, Proposition 3.4] for details.

Step 4: quantitative estimates.
The next two Propositions provide quantitative estimates on f and SD1 when
we move y towards O, along ν(O).

Proposition 2.11. Let Ω be an open set in Rn
satisfying the above properties.

Let D1, D2 be two inclusions in Ω verifying the above properties and let y =
hν(O), with O defined in (29). If, given ε > 0, we have

�ΛD1 − ΛD2�L(H1/2,H−1/2) ≤ ε,

then for every h, 0 < h < c r0, where 0 < c < 1, depends on M0,

|f(y, y)| ≤ C
εBh

F

hA
, (41)

where 0 < A < 1 and C,B, F > 0 are constants that depend only on the a

priori data.
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Proof. To get this upper bound, the procedure is to fix one of the two singu-
larities, say w, in CΩ. It is not difficult to check that f(y, w) is harmonic with
respect to y in CΩD and, therefore, we can apply iteratively the three spheres
inequality to evaluate the propagation of the ε−smallness as we drag y toward
ΩD. Finally employing this procedure for w, we get the bound. We refer the
reader to [4, Proposition 3.5] for details.

Proposition 2.12. Let Ω be an open set in Rn
satisfying the above properties.

Let D1, D2 be two inclusions in Ω verifying the above properties and y = hν(O).
Then for every h, 0 < h < r0/2,

|SD1(y, y)| ≥ c1h
2−n − c2d

2−2n
µ

+ c3, (42)

where c1, c2 and c3 are positive constants only depending on the a priori data.

Here r0 is the number introduced in Proposition 2.10.

Proof. Choosing y = hν(O), where ν(O) is the exterior outer normal to ΩD in
O, with O defined as in (29), with h sufficiently small, to get the lower bound
(42), the crucial ingredient is the following inequality

∇xΓD1(x, y) ·∇xΓD1(x, y) ≥ c|x− y|2−2n,

with x ∈ D1 sufficiently close to y. This estimate can be derived from [2,
Lemma 3.1] once one has at disposal the asymptotic behavior (40) (see [4,
Proposition 3.6] for details).

Step 5: proof of Theorem 2.4.
Let O ∈ ∂D1 satisfying (29), that is

dµ(D1, D2) = dist(O,D2) = dµ.

Then, for y = hν(O), with 0 < h < h1, where h1 = min {dµ, c r0, r0/2},
using (38), we have

|SD2(y, y)| ≤ c

�

D2

1

(dµ − h)n−1

1

(dµ − h)n−1
dx = c

1

(dµ − h)2n−2
|D2|. (43)

Using Proposition 2.11, we have

|SD1(y, y)|− |SD2(y, y)| ≤ |SD1(y, y)− SD2(y, y)|

= |f(y, y)| ≤ c
εBh

F

hA
.

On the other hand, by Proposition 2.12 and (43)

|SD1(y, y)|− |SD2(y, y)| ≥ c1h
2−n − c2(dµ − h)2−2n.
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Thus we have

c3h
2−n − c4(dµ − h)2−2n ≤ εBh

F

hA
.

That is

c4(dµ − h)2−2n ≥ c3h
2−n − εBh

F

hA
= h2−n(c3 − εBh

F

h
�A)

≥ c5h
2−n

�
1− εBh

F

h
�A�, (44)

where �A = n − 2 − A, �A > 0. Let h = h(ε) where h(ε) = min{| ln ε|− 1
2F , dµ},

for 0 < ε ≤ ε1, with ε1 ∈ (0, 1) such that exp(−B| ln ε1|1/2) = 1/2. If dµ ≤
| ln ε|− 1

2F , since, by Lemma 2.6, the Hausdorff distance is dominated by dµ,
estimate (3) follows trivially. In the other case we have

εBh(ε)F h(ε)
�A ≤ εB| ln ε|

−1/2

≤ exp
�
−B| ln ε|1/2

�
.

Then, for any ε, 0 < ε < ε1,

(dµ − h(ε))2−2n ≥ c6h(ε)
2−n,

that is, solving for dµ, and recalling that, in this case, h(ε) = | ln ε|− 1
2F

dµ ≤ c7| ln ε|−δ
n−2
2n−2 (45)

where δ = 1/(2F ). When ε ≥ ε1, then

dµ ≤ diamΩ

and, in particular when ε1 ≤ ε < 1

dµ ≤ diamΩ
| ln ε|− 1

2F

| ln ε1|−
1

2F

.

Finally, using Lemma 2.6, the theorem follows.

3. Elastic Bodies

Let us consider now the determination of an inclusion D in an elastic body
Ω by measuring the displacements and traction on the boundary ∂Ω. More
precisely, let Ω be a bounded domain in R3 and let D be an open set contained
in Ω. We deal with the dimension n = 3 as it is more relevant for applications.
Everything works in any dimension. Assume that both the body Ω and the
inclusion D are made by different homogeneous, isotropic, elastic materials,
with Lamé moduli µ, λ and µD, λD, respectively, satisfying the strong convexity
conditions µ > 0, 2µ + 3λ > 0, µD > 0, 2µD + 3λD > 0. For a given f ∈
H

1
2 (∂Ω), consider the weak solution u ∈ H1(Ω) to the Dirichlet problem
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�
div((C+ (CD −C)χD)∇u) = 0, in Ω,

u = f, on ∂Ω,

(46)

(47)

where C, CD are the elastic tensors of the body and of the inclusion, respec-
tively, and χD is the characteristic function of D. We denote by ΛD : H

1
2 →

H− 1
2 the Dirichlet-to-Neumann map associated to the problem (46)–(47), that

is the operator which maps the Dirichlet data u|∂Ω onto the corresponding
Neumann data (C∇u)ν|∂Ω, where ν is the outer unit normal to Ω. The inverse
problem is to determine D when ΛD is given. In the recent paper [5] it is
shown the modulus of continuity of the continuous dependance of the inclusion
D from the map ΛD under mild a priori assumptions on the regularity and the
topology. In this section we review the main steps of the proof that is inspired
by the argument shown in Section 2. Let us mention here that one of the main
difference between the scalar conductivity equation and the vector Lamé is the
study of the asymptotic of the fundamental solution. In fact in the scalar case
it was possible to prove that (ΓD1 − ΓD2)(y, y) blows up as y = w tends non-
tangentially to P ∈ ∂D1 \D2, and to evaluate quantitatively the blowup rate.
In the present case the situation is more complicated for a number of reasons.
First of all the fundamental solutions of the elastic operator are matrix valued
(not scalar) functions and, therefore, it is crucial to understand which of the
entries of ΓD1 −ΓD2 has the desired blowup behavior. Second, we are assuming
that either µD �= µ or λD �= λ with no order condition between such parame-
ters. Hence, we cannot expect, in general, that the difference matrix ΓD1 −ΓD2

may satisfy any positivity condition. For these reasons we have chosen to ex-
amine each diagonal entry of ΓD1 − ΓD2 separately. Similarly to the scalar
case, we can show that, as y, w tend to P ∈ ∂D1 \D2, (ΓD1 − ΓD2)(y, w) has,
in a suitable reference frame, the same asymptotic behavior of (Γ+ − Γ)(y, w).
Here Γ is the standard Kelvin fundamental solution with Lamé moduli µ, λ
and Γ+ is the fundamental solution ΓD when D is replaced by the upper half
plane {x3 > 0}.

We can take advantage of the fact that Γ+ is explicitly known, in fact
its expression, although complicated, was calculated by Rongved [26] in 1955.
With the aid of Rongved’s formulas it is possible to estimate the blowup rate of
(Γ+ −Γ)ii(y, w), i = 1, 2, 3, as y, w → 0 vertically along the line {x1 = x2 = 0}
for suitable choices of y, w. The peculiar fact is that we are obliged to pick
up very specific choices of y, w, with w �= y. In fact we have found explicit
examples of moduli (λ, µ) �= (λD, µD) for which (Γ+ − Γ)ii(y, y) = 0.

Let us consider a elastic body Ω ⊂ R3 and an inclusion D satisfying the
assumptions of the previous sections. Moreover we assume the following con-
ditions.
Assumptions on the domain
The body Ω is assumed to be made of linearly elastic, isotropic and homoge-
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neous material, with elastic tensor C of components

Cijkl = λδijδkl + µ(δkiδlj + δliδkj), (48)

where δij is the Kronecker’s delta. The constant Lamé moduli λ, µ satisfy the
strong convexity conditions

µ ≥ α0, 2µ+ 3λ ≥ γ0, (49)

where α0 > 0, γ0 > 0 are given constants. We shall also assume upper bounds
on the Lamé moduli

µ ≤ µ, λ ≤ λ, (50)

where also µ > 0, λ ∈ R are known quantities. In some points of our analysis,
we will express the constitutive equation (48) in terms of µ and of Poisson’s
ratio ν, instead of the Lamé moduli µ, λ. Recalling that

ν =
λ

2(λ+ µ)
, (51)

by (49), (50) we have

−1 < ν0 ≤ ν ≤ ν1 <
1

2
, (52)

where ν0, ν1 only depend on α0, γ0, µ, λ. Let us notice that (48) trivially
implies that

Cijkl = Cklij = Clkij , i, j, k, l = 1, 2, 3. (53)

We recall that the first equality in (53) is usually named as the major symmetry
of the tensor C, whereas the second equality is called the minor symmetry.

Also we note that (49) is equivalent to

CA ·A ≥ ξ0|A|2 (54)

for every 3× 3 symmetric matrix A, where ξ0 = min{2α0, γ0}.
Assumptions on the inclusion
The inclusion D is made of isotropic homogeneous material having elasticity
tensor CD, with constant Lamé moduli λD, µD satisfying the conditions (49),
(50) and such that

(λ− λD)2 + (µ− µD)2 ≥ η20 > 0, (55)

for a given constant η0 > 0.

In what follows we shall refer to the constants M0, α, M1, α0, γ0, µ, λ, η0
as to the a-priori data.
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Observe that, in view of (51) and of the a-priori bounds on the Lamé moduli,
from (55) it also follows

(ν − νD)2 + (µ− µD)2 ≥ Cη20 > 0, (56)

where C only depends on α0, γ0, µ, λ.
Finally, note that the jump condition (55) does not imply any kind of

monotonicity relation between C and CD.
Before state the stability theorem, we remind that the Dirichlet–to–Neu-

mann map associated to problem (46)–(47) is defined similarly as in Remark 2.3.
The stability theorem reads as follows.

Theorem 3.1. Let Ω ⊂ R3
and let D1, D2 be as above Let C and CD

be

the constant elastic tensors of the material of Ω and of the inclusions Di,

i = 1, 2, respectively, where C and CD
satisfy (48)–(50) and (55). If, for some

ε, 0 < ε < 1,

�ΛD1 − ΛD2�L(H1/2(∂Ω),H−1/2(∂Ω)) ≤
ε

r0
, (57)

then

dH(∂D1, ∂D2) ≤ r0ω(ε), (58)

where ω is an increasing function on [0,+∞) satisfying

ω(t) ≤ C| log t|−η, for every 0 < t < 1, (59)

where C > 0 and η, 0 < η ≤ 1, are constants only depending on the a-priori

data.

We will go through the proof of the theorem dividing it in to the same steps
of the conductivity problems and underlying the main differences.

Step 1: modified distance.
This part does not change with respect to the impedance tomography case.

Step 2: Alessandrini’s identity.
Also in this framework, using Green’s formula and the symmetry properties of
C, CD, it is not difficult to get

�

Ω
(C+ (CD −C)χD1)∇u1 ·∇u2 −

�

Ω
(C+ (CD −C)χD2)∇u1 ·∇u2 =

=

�

∂Ω
u1 · (ΛD1 − ΛD2)u2. (60)

Arguing similarly as in the previous case, we want to use (60) replacing solutions
u1, u2 with fundamental solutions with singularities outside Ω. For this purpose
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let us define them precisely. Given y ∈ R3 and a concentrated force l ∈ R3

applied at y, |l| = 1, let us consider the normalized fundamental solution uD ∈
L1
loc

(R3,R3) defined by





divx
�
(C+ (CD −C)χD)∇xuD(x, y; l)

�
= −lδ(x− y), in R3 \ {y},

lim|x|→∞ uD(x, y; l) = 0,

(61)

where δ(·− y) is the Dirac distribution supported at y, that is

�

R3

(C+ (CD −C)χD)∇xu
D(x, y; l) ·∇xϕ(x) = l · ϕ(y),

for every ϕ ∈ C∞

c
(R3,R3). (62)

It is well-known that
uD(x, y; l) = ΓD(x, y)l, (63)

where ΓD = ΓD(·, y) ∈ L1
loc

(R3,L(R3,R3)) is the normalized fundamental

matrix for the operator divx((C + (CD −C)χD)∇x(·)). The existence of ΓD

is ensured by the following Proposition.

Proposition 3.2. Under the above assumptions, there exists a unique funda-

mental matrix ΓD(·, y) ∈ C0(R3 \ {y}). Moreover, we have

ΓD(x, y) = (ΓD(y, x))T , for every x ∈ R3, x �= y, (64)

|ΓD(x, y)| ≤ C|x− y|−1, for every x ∈ R3, x �= y, (65)

|∇xΓ
D(x, y)| ≤ C|x− y|−2, for every x ∈ R3, x �= y, (66)

where the constant C > 0 only depends on M0, α, α0, γ0, λ, µ.

Proof. Using a result contained in [23] combined with the results presented
in [20] it is possible to get the thesis. See [5, Proposition 5.1] for details.

Let us choose y, w ∈ R3, y �= w, and l, m ∈ R3 such that |l| = |m| = 1.
We define the functions

SD1(y, w; l,m) =

�

D1

(CD −C)∇x(Γ
D1(x, y)l) ·∇x(Γ

D2(x,w)m), (67)

SD2(y, w; l,m) =

�

D2

(CD −C)∇x(Γ
D1(x, y)l) ·∇x(Γ

D2(x,w)m), (68)

f(y, w; l,m) = SD1(y, w; l,m)− SD2(y, w; l,m). (69)

Again the leading argument to get stability is to evaluate the function f as
we move the singularities y, w quantifying the propagation of the boundary
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information we have from the measurements. A key ingredient in this analysis
is the behavior of fundamental solutions.

Step 3: fundamental solutions.
Let O ∈ ∂D and ν = ν(O) the outer unit normal to D at O. Let us choose a

coordinate system with originO and axis e3 = −ν, and let Γ+(x, y) = ΓR3
+(x, y)

the normalized fundamental matrix associated to D = R3
+. We recall that its

explicit expression was found by Rongved [26].
Recalling the notation uD(x, y) = ΓD(x, y)l (see (63)) and defining similarly

u+(x, y) = Γ+(x, y)l, for any l ∈ R3, |l| = 1, the asymptotic approximation of
uD in terms of u+ reads as follows.

Theorem 3.3. Let y = (0, 0,−h), 0 < h < r0M0

8
√

1+M
2
0

. Under the above assump-

tions and notation, we have

|uD(x, y)− u+(x, y)| ≤ C

r0

�
|x− y|
r0

�−1+α

,

for every x ∈ Q r0

8
√

1+M2
0

,
r0M0

8
√

1+M2
0

∩D, (70)

|∇xu
D(x, y)−∇xu

+(x, y)| ≤ C

r20

�
|x− y|
r0

�−2+ α2

3α+2

,

for every x ∈ Q+
r0

12
√

1+M2
0

,
r0M0

12
√

1+M2
0

∩D, (71)

where C > 0 only depends on M0, α, α0, γ0, λ, µ.

Proof. The thesis can be obtained defining the function

R(x, y) = ud(x, y)− u+(x, y)

and flattening the boundary ∂D. See [5, Theorem 8.1] for details.

Step 4: quantitative estimates.
As in the impedance tomography case, in this step we show how the boundary
information and the asymptotic behavior of the fundamental solution can be
used to estimate the auxiliary function f .

Theorem 3.4 (Upper bound on the function f). Under the notation of Lemma

2.7, let

yh = P − he3, (72)

wh = P − λwhe3, 0 < λw < 1, (73)
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with

0 < h ≤ d

�
1− sin �ϑ0

4

�
, (74)

where �ϑ0 = arctan 1
L0

and ν = −e3 is the outer unit normal to D1 at P . Then,

for every l, m ∈ R3
, |l| = |m| = 1, we have

|f(yh, wh; l,m)| ≤ C

λwh
�
C1

�
h
ρ0

�C2

, (75)

where the constant C > 0 only depends on M0, α, M1, α0, γ0, λ, µ;

C1 = γδ2+2 | log A|
| log χ| , C2 = 2

| log δ|
| logχ| , A =

λw

d

ρ0
(1− ϑ∗ sin �ϑ0

8 )
, χ =

1− sin �ϑ0
8

1 + sin �ϑ0
8

, (76)

where δ, 0 < δ < 1, ϑ∗
, 0 < ϑ∗ ≤ 1, only depend on α0, γ0, λ, µ; γ > 0 only

depends on M0, α, M1, α0, γ0, λ, µ.

Proof. Similarly to the impedance tomography case, the proof is based on the
use of the three spheres inequality for solution to the Lamé system. We refer
to [5, Theorem 6.4] for details.

Theorem 3.5 (Lower bound on the function f). Under the notation of Lemma

2.7, let

yh = P − he3. (77)

For every i = 1, 2, 3, there exists λw ∈
�

2
3 ,

3
4 ,

4
5

�
and there exists h ∈

�
0, 1

2

�

only depending on M0, α, α0, γ0, λ, µ, η0, such that

|f(yh, wh; ei, ei)| ≥
C

h
, for every h, 0 < h < hρ, (78)

where

wh = P − λwhe3, (79)

ρ = min

�
dist(P,D2),

r0

12
�

1 +M2
0

·min{1,M0}
�
, (80)

and C > 0 only depends on M0, α, α0, γ0, λ, µ, η0.

Proof. To obtain such a bound we refer to Theorem 6.5 of [5]. Let us only
mention that besides the use of the asymptotic os ΓD (Theorem 3.3) other
ingredients are needed. In particular we point out the identity

�

R3
+

(CD−C)∇x(Γ
+(x, y0)l) ·∇x(Γ(x,w0)m) = (Γ(y0, w0)−Γ+(y0, w0))m ·l,

for every y0, w0 ∈ R3, y0 �= w0,
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(See [5, Lemma 9.2]) that is a special case of [10, Prposition 3.2] and the bound
��(Γ+(y0, w0)− Γ(y0, w0))ei · ei

�� ≥ C,

where y0 = (0, 0,−1), w0 = (0, 0,−λw), with λw ∈
�

2
3 ,

3
4 ,

4
5

�
for i = 1, 2, 3 (see

[5, Proposition 9.3]).

Step 5: proof of Theorem 3.1.
From the combination of the upper bound (75), with l = m = ei for i ∈ {1, 2, 3},
and from the lower bound (78), we have

C ≤ ε
C1

�
h
r0

�C2

, for every h, 0 < h ≤ hρ, (81)

where ρ is given in (80), the constants C1 > 0, C2 > 0 are defined in (76)
and depend only on M0, α, M1, α0, γ0, λ, µ, and the constants C ∈ (0, 1),
h ∈

�
0, 1

2

�
only depend on M0, α, α0, γ0, λ, µ, η0.

Passing to the logarithm and recalling that ε ∈ (0, 1), we have

h ≤ Cr0

�
1

| log ε|

� 1
C2

, for every h, 0 < h ≤ hρ, (82)

In particular, choosing h = hρ, we have

ρ ≤ Cr0

�
1

| log ε|

� 1
C2

. (83)

If ρ = dist(P,D2), by Lemmas 2.6 and 2.7, the thesis follows. If, otherwise,
ρ = r0

12
√

1+M
2
0

min{1,M0}, the thesis follows by noticing that dH(∂D1, ∂D2) ≤
diam(Ω) ≤ Cr0, with C > 0 only depending on M0, M1.

4. Thermal Conductors

In this section we go through the problem of determining an inclusion, whose
shape can vary with the time, within a thermal conductor. Let T be a given
positive number. Let Ω be a bounded domain of Rn with a sufficiently smooth
boundary and let Q be a domain contained in Ω × (0, T ). Assume that for
every τ ∈ (0, T ) the intersection of Q with the hyperplane t = τ is a nonempty
set and denote by k, k �= 1 a positive constant. Let u be the weak solution to
the following parabolic initial-boundary value problem






∂tu− div((1 + (k − 1)χQ)∇u) = 0 in Ω× (0, T ),

u(·, 0) = 0 in Ω,

u = g on ∂Ω× (0, T ),

(84)
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where g is a prescribed function on ∂Ω × (0, T ). The inverse problem we are
addressing to is to determine the region Q when infinitely many boundary

measurements

�
g,

∂u

∂ν |∂Ω×(0,T )

�
are available. A uniqueness result was proved

in 1997 by Elayyan and Isakov [18]. We want to discuss the stability issue
proved in [15]. We will show that also in this case the stability estimates are
of logarithmic type. The argument to get such a rate of continuity follows
the line of the impedance tomography case, using singular solutions of Green’s
type. Let us emphasize here that one of the main difference with respect to
the previous cases is the lack of an explicit representation of the fundamental
solution when the interface is flat. To overcome this difficulty we will use some
formulas proved by [22] involving the Fourier transform of the fundamental
solution that will lead to an estimate from below (see Proposition 4.5).

Another difficulty that characterizes the parabolic case consists in employ-
ing a precise evaluation of the smallness propagation based on the two-sphere
and one-cylinder inequality for solution of parabolic equation [19], [27] (see
Theorem 4.7 below).

Let us first premise a definition.

Definition 4.1. Let Q be a domain in Rn+1
. We shall say that Q (or equiv-

alently ∂Q) is of class K with constants r0, M0 if for all X0 ∈ ∂Q there exists

a rigid transformation of space coordinates under which we have X0 = (0, 0)
such that

Q ∩
�
Br0(0)× (−r20, r

2
0)
�
= {X ∈ Br0(0) × (−r20, r

2
0) : xn > ϕ(x�, t)},

where ϕ is endowed with second derivatives with respect to xi, i = 1, · · · , n,
with the t-derivative and with second derivatives with respect to xi and t and it

satisfies the following conditions ϕ(0, 0) = |∇x�ϕ(0, 0)| = 0 and

r20�D2
x�ϕ�L∞(B�

r0
×(−r

2
0 ,r

2
0))

+ r20�∂tϕ�L∞(B�
r0

×(−r
2
0 ,r

2
0))

+ r30�∇x�∂tϕ�L∞(B�
r0

×(−r
2
0 ,r

2
0))

≤ M0r0.

Assumptions on the domain
Let r0,M0,M1 be given positive numbers. We assume that Ω is a bounded
domain in Rn satisfying

|Ω| ≤ M1r
n

0 , (85a)

where |Ω| denotes the Lebesgue measure of Ω. We also assume that

∂Ω is of class C1,1 with constants r0,M0. (85b)
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Assumptions on the inclusion
Denoting by Q =

�
t∈R D(t)× {t}, we assume the following conditions

∂Q is of class K with constans r0,M0, (86a)

dist(D(t), ∂Ω) ≥ r0 ∀ t ∈ [0, T ], (86b)

Ω \D(t) is connected ∀ t ∈ [0, T ]. (86c)

Before stating the stability result, let us define the Dirichlet–to–Neumann map

in this framework. We denote by H = H3/2,3/4
,0 (∂Ω × (0, T )), its dual H � =

H−3/2,−3/4(∂Ω× (0, T )), and

W (Ω× (0, T )) =
�
v ∈ L2((0, T ), H1(Ω)) : ∂tv ∈ L2((0, T ), H−1(Ω))

�
.

For any g ∈ H, let u ∈ W (Ω × (0, T )) be the weak solution of the initial–
boundary value problem






∂tu− div((1 + (k − 1)χQ)∇u) = 0, in Ω× (0, T ),

u(x, 0) = 0, x ∈ Ω,

u(x, t) = g(x, t), on ∂Ω× (0, T ),

(87)

where χQ is the characteristic function of the set Q. Then for any g ∈ H, we
set

ΛQg =
∂u

∂ν
|∂Ω×(0,T ), u solution to (87).

We can also consider ΛQ as a linear and bounded operator between H and H �,
by setting

�ΛQg,φ�H�,H = �∂u
∂ν

|∂Ω×(0,T ),φ�H�,H =

�

∂Ω×(0,T )

∂u

∂ν
φ, for any g,φ ∈ H,

where u solves (87) and �·, ·�H�,H is the duality pairing between H � and H.

Theorem 4.2. Let Ω ⊂ Rn
satisfying (85). Let k > 0, k �= 1 be given. Let

{D1(t)}t∈R, {D2(t)}t∈R be two families of domains satisfying (86). Assume

that D1(0) = D2(0) and, for ε > 0,

�ΛQ1 − ΛQ2�L(H,H�) ≤ ε, (88)

where Qi = Di((−∞,+∞)), i = 1, 2. Then

dH(D1(t), D2(t)) ≤ ωt(ε), t ∈ (0, T ], (89)

where ωt(s) is such that

ωt(s) ≤ C| log s|−η, 0 < s < 1, (90)

with C = C(t) > 0 and 0 < η ≤ 1 depend on the a priori data only.
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Remark 4.3. Let us observe that for the case of more general thermal conduc-
tivities with local Dirichlet–to–Neumann map has been studied in [16].

Step 1: modified distance.
This part can be obtained through minor modifications form the impedance
tomography case (see [15, Proposition 3.2, 3.3] for further details).

Step 2: Alessandrini’s identity.
For the sake of brevity we name aj = 1 + (k − 1)χQj , j = 1, 2. We fix g ∈ H.
We shall denote by uj , j = 1, 2 the solution of (84) when Q = Qj . For
ψ ∈ H1,1(Ω× (0, T )) such that

ψ(·, T ) = 0 in Ω, (91)

using the weak formulation of (84) we have

�

∂Ω×(0,T )
aj

∂uj

∂ν
ψdS +

�

Ω
uj(x, 0)ψ(x, 0)dx

−
�

Ω×(0,T )
(aj∇uj ·∇ψ − uj∂tψ) dxdt = 0 for j = 1, 2.

Subtracting the two equations we obtain

�

Ω×(0,T )
(a1∇(u1 − u2) ·∇ψ − (u1 − u2)∂tψ) dxdt

+

�

Ω×(0,T )
(a1 − a2)∇u2 ·∇ψ =< (ΛQ1 − ΛQ2)g,ψ >H�,H , (92)

(we notice here that in these identities it is possible to have ui(·, 0) �= 0 for
i = 1, 2). Taking ψ such that it satisfies (91) and

∂tψ + div(a1∇ψ) = 0 in Ω× (0, T ), (93)

by (92) we have (recalling that on ∂Ω× (0, T ) u1 = u2 = g)

�

Ω×(0,T )
(a1 − a2)∇u2 ·∇ψ =< (ΛQ1 − ΛQ2)g,ψ >H�,H , ∀ g ∈ H

or, equivalently,

�
T

0

�

Ω
(χQ1 − χQ2)∇u2 ·∇ψdxdt =

1

k − 1
< (ΛQ1 − ΛQ2)u2,ψ >H�,H . (94)
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Let us denote by Γ2(x, t; y, s) and Γ∗
1(x, t; y, s) the fundamental solutions

of the operator ∂t − div((1 + (k − 1)χQ2)∇) and ∂t + div((1 + (k − 1)χQ1)∇)
respectively, that is

∂tΓ2(x, t; y, s)− div((1 + (k − 1)χQ2)∇xΓ2(x, t; y, s)) = −δ(x− y, t− s),

∂tΓ
∗

1(x, t; y, s) + div((1 + (k − 1)χQ1)∇xΓ
∗

1(x, t; y, s)) = −δ(x− y, t− s),

where δ denotes the Dirac distribution. Choosing in (94) u2(x, t) = Γ2(x, t; y, s)
and ψ(x, t) = Γ∗

1(x, t; ξ, τ), with (y, s) and (ξ, τ) /∈ Ω × (0, T ), 0 ≤ s < τ ≤ T ,
we obtain

�
T

0

�

Ω
(χQ1 − χQ2)∇xΓ2(x, t; y, s) ·∇xΓ

∗

1(x, t; ξ, τ)dxdt

=
1

k − 1
< (ΛQ1 − ΛQ2)Γ2(·, ·; y, s),Γ∗

1(·, ·; ξ, τ) >H�,H . (95)

For t ∈ [0, T ] we shall define G(t) as the connected component of Ω \ (D1(t) ∪
D2(t)) that contains ∂Ω, G̃(t) = (Rn\Ω)∪G(t) and G̃((0, T )) :=

�
t∈(0,T ) G̃(t)×

{t}. For (y, s), (ξ, τ) ∈ G̃((0, T )) with 0 ≤ s < τ ≤ T , we set

S1(y, s; ξ, τ) =

�

Q1

∇xΓ2(x, t; y, s) ·∇xΓ
∗

1(x, t; ξ, τ)dxdt,

S2(y, s; ξ, τ) =

�

Q2

∇xΓ2(x, t; y, s) ·∇xΓ
∗

1(x, t; ξ, τ)dxdt

U(y, s; ξ, τ) := S1(y, s; ξ, τ)− S2(y, s; ξ, τ).

By (95) we have

U(y, s; ξ, τ) = 1

k − 1
< (ΛQ1 − ΛQ2)Γ2(·, ·; y, s),Γ∗

1(·, ·; ξ, τ) >H�,H , (96)

for all y, ξ /∈ Ω, 0 ≤ s < τ ≤ T .

Step 3: fundamental solutions.
We denote by Γ0(x − y, t − s) the standard fundamental solution of ∂t − ∆
which is

Γ0(x− y, t− s) =
1

[4π(t− s)]n/2
e−

|x−y|2
4(t−s) , t > s

and by denote by Γ(x, t; y, s) the fundamental solution of the operator ∂t −
div((1 + (k− 1)χQ)∇x) (see [9]). We recall that Γ satisfies the following prop-
erties

Γ(x, t; y, s) = Γ(y, s;x, t) ∀ (x, t), (y, s) ∈ Q, (x, t) �= (y, s) (97)
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and

0 < Γ(x, t; y, s) ≤ C

[4π(t− s)]n/2
e−

|x−y|2
C(t−s)χ[s,+∞)(t), (98)

where C ≥ 1 depends on k andM0 only. Furthermore we have also the following
estimate for the gradient of Γ.

Proposition 4.4. Let Γ(x, t; y, s) be the fundamental solution of the operator

∂t − div ((1 + (k − 1)χQ)∇x). There exists C ≥ 1, depending on k and E only

such that

|∇xΓ(x, t; y, s)| ≤
C

(t− s)
n+1
2

e−
|x−y|2
C(t−s) , (99)

for almost every x, y ∈ Rn
and t, s ∈ R, t > s.

Proof. See [15, Proposition 3.6].

In the sequel we need the fundamental solution of the operator L+ = ∂t −
div((1 + (k − 1)χ+)∇) where χ+ = χ{(x,t)∈Rn+1 : xn>0}. We shall denote by
Γ+ such a fundamental solution and by Γ∗

+ the fundamental solution of the
adjoint operator of L+. Observe that Γ+(x, t; y, s) = Γ+(x, t − s; y, 0) and
Γ∗
+(x, t; y, s) = −Γ+(x, s− t; y, 0). For a given function f(x�, xn), Fζ�(f(·, xn))

will be the Fourier transform of f with respect to the variable x�. Thus

Fζ�(f(·, xn)) =

�

Rn−1

f(x�, xn)e
−ix

�
·ζ

�
dx�,

for every ζ � ∈ Rn−1.
In [22] it has been proved some formulas for Fζ� (Γ+ (., xn, t; y)). The tech-

nique to prove such formulas is rather classical and lengthy. For this reason we
display only the ones that we need corresponding to the case in which xn > 0,
yn < 0.

Case k > 1. Denote by

E(ζ �, xn, t; ρ) = exp

�
−t(k − (k − 1)ρ)|ζ �|2 −

�
k − 1

k
xn|ζ �|

√
ρ

�
, (100)

F (ζ �, yn; ρ) = Im
�
A1(ρ)e

iyn
√
k−1

√
1−ρ|ξ

�
|

�
, (101)

where, for complex number z = a + ib, Im(z) denotes the imaginary part b of
z, and

A1(ρ) =

√
k − 1

π

1

i
√
k − 1

√
1− ρ+

√
k
√
ρ
. (102)

Then

Fζ�(Γ+(·, xn, t; y, 0)) =

� 1

0
|ζ �|e−iy

�
·ζ

�
E(ζ �, xn, t; ρ)F (ζ �, yn; ρ)dρ, (103)
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for every xn > 0, yn < 0.
Case 0 < k < 1. Denote by

G(ζ �, yn, t; ρ) = exp
�
−t(1− (1− k)ρ)|ζ �|2 +

√
1− k yn|ζ �|

√
ρ
�
,

H(ζ �, xn; ρ) = Im
�
A2(ρ)e

−ixn

√
1−k
k

√
1−ρ|ζ

�
|

�
,

where

A2(ρ) =

√
1− k

π

1√
k
√
ρ− i

√
1− k

√
1− ρ

.

Then

Fζ�(Γ+(·, xn, t; y, 0)) =

� 1

0
|ζ �|e−iy

�
·ζ

�
G(ζ �, yn, t; ρ)H(ζ �, xn; ρ)dρ,

for every xn > 0, yn < 0.

Proposition 4.5. For every λ0 ∈ (0, 1] there exist λ1,λ2,λ3 ∈ (0,λ0] such that

for every h > 0 the following inequality holds true

I(h) :=

�����

�
λ2h

2

0
dt

�

Rn
+

∇xΓ
∗

+(x, t;−λ1hen,λ2h
2)

·∇xΓ0(x, t;−λ3hen, 0)dx

����� ≥
1

Chn
, (104)

where C, C ≥ 1, depends on λ1,λ2,λ3 and k only.

Proof. See [15, Proposition 3.7].

Step 4: quantitative estimates.
For t ∈ (0, T ] fixed, we can assume, without loosing generality, that there exists
O ∈ ∂D1(t) ∩ ΩD(t) such that

dµ(t) = dist(O,D2(t)). (105)

Denote by
ρ = min{dµ(t), ρ0}.

Furthermore, denote by ν(O, t) the exterior unit normal to ∂D1(t) in O. Choos-
ing parameters λ1,λ2,λ3 ∈ (0, 1] satisfying inequality (104) and δ ∈ (0, 1], we
set

t1 = t− λ2h
2, y = λ1hν(0, t), y1 = λ3hν(0, t), (106)
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where
0 < h ≤ δmin{ρ,

�
t}. (107)

By using (86a) it is simple to check that there exists C1, C1 ≥ 1, depending on
M0 only such that if

0 < δ ≤ λ3

C1
(108)

then, for every t ∈ [t1, t], we have

dist(y,D1(t)) ≥
1

2
min {λ1,λ2,λ3}h, (109)

dist(y1, D1(t)) ≥
1

2
min {λ1,λ2,λ3}h. (110)

On the other side, using the inequality [27, Proposition 4.1.6]

��dist(O,D2(t))− dist(O,D2(t))
�� ≤ C0

ρ0
|t− t|, (111)

where C0 depends on M0 and M1 only, for t ∈ [t1, t] and by using the triangle
inequality we have that there exists C2, C2 ≥ 1, depending on M0 and M1 only
such that if

0 < δ ≤ 1

C2
(112)

then

dist(z,D2(t)) ≥
1

2
ρ, with z = y, y1. (113)

Proposition 4.6. Let {D1(t)}t∈R, {D2(t)}t∈R be two families of domains sat-

isfying (86) and let λ1,λ2,λ3 ∈ (0, 1) be such that the inequality (104) is satis-
fied. Then there exist C, C ≥ 1, and C̃, C̃ ≥ 1, C depending on k only and C̃
depending on k,M0,M1,λ1,λ2 and λ3 only such that

|U(y1, t1; y, t)| ≥
1

Chn
, (114)

for 0 < h ≤ 1
C̃
min{ρ,

√
t}, where y1, t1, y, t, and ρ are defined in (106).

Proof. See [15].

Theorem 4.7 (Two-spheres and one-cylinder inequality). Let λ, Λ and M
positive numbers with λ ∈ (0, 1]. Let P be the parabolic operator

P = ∂t − ∂i
�
aij∂j

�
, (115)
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where {aij(x, t)}n
i,j=1 is a symmetric n×n matrix. For ξ∈Rn

and (x, t), (y, s)∈
Rn+1

assume that

λ|ξ|2 ≤
n�

i,j=1

aij(x, t)ξiξj ≤ λ−1|ξ|2 (116a)

and




n�

i,j=1

�
aij(x, t)− aij(y, s)

�2



1/2

≤ Λ

R

�
|x− y|2 + |t− s|

�1/2
. (116b)

Let u be a function in H2,1
�
BR × (0, R2)

�
satisfying the inequality

|Pu| ≤ Λ

�
|∇u|
R

+
|u|
R2

�1/2

in BR × [0, R2). (117)

Then there exist constants η1 ∈ (0, 1) and C ∈ [1,+∞), depending on λ, Λ and

n only such that for every r1, r2, 0 < r1 ≤ r2 ≤ η1R we have

�u(·, 0)�L2(Br2 )
≤ CR

r2
�u�1−θ1

L2(BR×(0,R2))�u(·, 0)�
θ1

L2(Br1 )
, (118)

where θ1 = 1
C log R

r1

.

Proof. See [27].

Step 5: proof of Theorem 4.2.
For the proof of the theorem we refer to [15, Theorem 2.7] as it is rather
technical and lengthy.
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bility for the identification of Lamé parameters from boundary measurements,
Inverse Probl. Imaging 8 (2014), no. 3, 611–644.

[11] A.-P. Calderón, On an inverse boundary value problem, Seminar on Numerical
Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc.
Brasil. Mat., Rio de Janeiro, 1980, pp. 65–73.

[12] M. Di Cristo, Stable determination of an inhomogeneous inclusion by local
boundary measurements, J. Comput. Appl. Math. 198 (2007), no. 2, 414–425.

[13] M. Di Cristo, Stability estimates in the inverse transmission scattering problem,
Inverse Probl. Imaging 3 (2009), no. 4, 551–565.

[14] M. Di Cristo and L. Rondi, Examples of exponential instability for inverse
inclusion and scattering problems, Inverse Problems 19 (2003), no. 3, 685–701.

[15] M. Di Cristo and S. Vessella, Stable determination of the discontinuous
conductivity coefficient of a parabolic equation, SIAM J. Math. Anal. 42 (2010),
no. 1, 183–217.

[16] M. Di Cristo and S. Vessella, Stability analysis of an inverse parabolic prob-
lem with discontinuous variable coefficient, Proc. Roy. Soc. Edinburgh Sect. A
141 (2011), no. 5, 975–999.

[17] E. DiBenedetto, C. M. Elliott, and A. Friedman, The free boundary of
a flow in a porous body heated from its boundary, Nonlinear Anal. 10 (1986),
no. 9, 879–900.

[18] A. Elayyan and V. Isakov, On uniqueness of recovery of the discontinuous
conductivity coefficient of a parabolic equation, SIAM J. Math. Anal. 28 (1997),
no. 1, 49–59.

[19] L. Escauriaza, F. J. Fernández, and S. Vessella, Doubling properties of
caloric functions, Appl. Anal. 85 (2006), no. 1-3, 205–223.

[20] S. Hofmann and S. Kim, The Green function estimates for strongly elliptic
systems of second order, Manuscripta Math. 124 (2007), no. 2, 139–172.

[21] V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient,
Comm. Pure Appl. Math. 41 (1988), no. 7, 865–877.

[22] V. Isakov, K. Kim, and G. Nakamura, Reconstruction of an unknown inclu-
sion by thermography, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 4,
725–758.

[23] Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geome-



462 MICHELE DI CRISTO

try, and the singular set of viscosity solutions of some Hamilton-Jacobi equations,
Comm. Pure Appl. Math. 58 (2005), no. 1, 85–146.

[24] Y. Y. Li and M. Vogelius, Gradient estimates for solutions to divergence form
elliptic equations with discontinuous coefficients, Arch. Ration. Mech. Anal. 153
(2000), no. 2, 91–151.

[25] W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for
elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa
(3) 17 (1963), 43–77.

[26] L. Rongved, Force interior to one of two joined semi-infinite solids, Proc. 2nd
Midwestern Conf. Solid Mechanics, Purdue University, Indiana, Res. Ser. 129
(1955), 1–13.

[27] S. Vessella, Quantitative estimates of unique continuation for parabolic equa-
tions, determination of unknown time-varying boundaries and optimal stability
estimates, Inverse Problems 24 (2008), no. 2, 023001, 81.

Author’s address:

Michele Di Cristo

Politecnico di Milano

Dipartimento di Matematica

Piazza Leonardo da Vinci, 32

20133 Milano, Italy

E-mail: michele.dicristo@polimi.it

Received April 13, 2016

Revised June 29, 2016

Accepted July 19, 2016



Rend. Istit. Mat. Univ. Trieste
Volume 48 (2016), 463–483
DOI: 10.13137/2464-8728/13167

On the boundary behaviour
of solutions to parabolic equations

of p−Laplacian type

Ugo Gianazza and Sandro Salsa

Dedicated to Giovanni Alessandrini for his 60th Birthday
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1. Introduction

Carleson and boundary Harnack estimates are among the most important tools
in the study of the boundary behaviour of solutions to elliptic and parabolic
equation. Carleson estimates apply to nonnegative solutions u continuously
vanishing on some distinguished part S of the boundary with the goal of show-
ing that nearby, u is controlled above in a non-tangential fashion. More pre-
cisely, this means that an inequality of the following type

u ≤ γ u(Pρ) (1)

holds in a box ψρ of size ρ, based on S, where Pρ approaches S in a non-

tangential fashion as ρ → 0 and γ depends only on the dimension and the
structure of the equation. The first results of this kind are due to Carleson [13],
for harmonic functions in sawtooth regions and to Kemper [38] for solutions of
the heat equation in parabolic C

1,1/2 domains. Since then, an inequality like
(1) is known as a Carleson estimate.

A Boundary Comparison Principle or Boundary Harnack Inequality is a
relation of the type

u/v ≈ u(Pr)/v(Pr) in ψρ. (2a)
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where both u and v are nonnegative solutions vanishing on S. It implies that
u and v vanish at the same speed approaching S. For linear equations, it also
implies the Hölder continuity up to the boundary of the quotient u/v.

Both (1) and (2a) have been generalized to more general contexts and op-
erators. In the elliptic context we mention [37] for the Laplace operator in
non-tangentially accessible domains, [11], and [3, 7, 26] for elliptic operators
in divergence and non-divergence form, respectively, [44, 46], for the p-Laplace
operator, [16, 15] for the Kolmogorov operator.

Actually, for uniformly elliptic linear equations, the Carleson estimate has
been proved to be equivalent to the boundary Harnack principle as shown in [1].
It would be interesting to explore this connection between the two inequalities
also in the nonlinear setting.

For parabolic operators, we quote [28, 29, 35, 50] for cylindrical domains,
and [27] for parabolic Lipschitz domains.

A classical application of the two inequalities is to Fatou-type theorems,
but even more remarkable is their use in the regularity theory of two-phase
free boundary problems, as shown in the two seminal papers [9, 10], where a
general strategy to attack the regularity of the free boundary governed by the
Laplace operator has been set up.

This technique has been subsequently extended to stationary problems gov-
erned by variable coefficients linear and semilinear operators [14, 32], to fully
nonlinear operators [30, 31], and to the p-Laplace operator [45, 47].

The free boundary regularity theory for two-phase parabolic problems is
less developed. For Stefan type problems we mention [12, 17, 33, 34] and the
references therein.

In this brief review we describe and comment recent results concerning
a class of singular/degenerate equations whose prototype is the parabolic p-
Laplace equation

ut − div(|Du|p−2
Du) = 0, (1)o

where Dw denotes the gradient of w with respect to the space variables. Pre-
cisely, let Ω be an open set in RN and for T > 0 let ΩT denote the cylindrical
domain Ω× (0, T ]. Moreover let

ST = ∂Ω× (0, T ) , ∂PΩT = ST ∪ (Ω× {0})

denote the lateral, and the parabolic boundary respectively.
We shall consider quasi-linear, parabolic partial differential equations of the

form
ut − divA(x, t, u,Du) = 0 weakly in ΩT (3)

where the function A : ΩT ×R× RN → RN is only assumed to be measurable
and subject to the structure conditions

�
A(x, t, u, ξ) · ξ ≥ Co|ξ|p
|A(x, t, u, ξ)| ≤ C1|ξ|p−1 a.e. (x, t) ∈ ΩT , ∀u ∈ R, ∀ξ ∈ RN (4)
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where Co and C1 are given positive constants, and p > 1. We refer to the
parameters N, p, Co, C1 as our structural data. We say that a constant is
universal if it depends only on the structural data and on the Lipschitz (or Ck,
if it is the case) character of the domain Ω.

A function
u ∈ C([0, T ];L2(Ω)) ∩ L

p(0, T ;W 1,p(Ω)) (5)

is a weak sub(super)-solution to (3)–(4) if for every sub-interval [t1, t2] ⊂ (0, T ]
�

Ω
uvdx

����
t2

t1

+

� t2

t1

�

Ω
[−uvt +A(x, t, u,Du) ·Dv]dxdt ≤ (≥) 0 (6)

for all non-negative test functions

v ∈ W
1,2(0, T ;L2(Ω)) ∩ L

p(0, T ;W 1,p
o (Ω)).

Under the conditions (4), equation (3) is degenerate when p > 2 and singular
when 1 < p < 2, since the modulus of ellipticity |Du|p−2 respectively tends to
0 or to +∞ as |Du| → 0. In the latter case, we further distinguish between
singular super-critical range (when 2N

N+1 < p < 2), and singular critical and

sub-critical range (when 1 < p ≤ 2N
N+1 ).

Let us first focus on Carleson’s estimate and, in particular, on the approach
developed for linear elliptic equations in [11] and for linear parabolic equations
in [50]. Two are the main tools: the Harnack inequality and the geometric decay
of the oscillation of u up to the boundary. Let us sketch the main strategy.
Consider a non-negative solution u in a cylinder, and assume further that the
solution vanishes on a part of the lateral boundary, which we assume to be a
part of the hyperplane {xN = 0}, containing the origin. One wants to show
that

u(P ) ≤ γ, (7)

γ universal, for all P ∈ Ψ1, where

Ψr =
�
(x�

, xN ) ∈ RN−1 × R, |x�| ≤ r, 0 < xN < r
�
×
�
−2r2,−r

2
�
.

Observe that, if dist(P, ∂ΩT ) ≈ 2−k, by the Harnack inequality we infer u(P1) ≤
H

k
. Suppose now that (7) is not true. Then, given an integer h, there must

exist P1 ∈ Ψ1, such that u(P1) > H
h, which forces dist(P1, ∂ΩT ) < 2−h. By

the geometric decay of the oscillation of u up to the boundary, one deduces the
existence of P2 such that u(P2) > H

h+1, and dist(P2, ∂ΩT ) < 2−(h+1).
If h is chosen large enough, an iteration of this procedure yields a sequence

of points {Pj}∞j=1 all belonging to Ψ2/3 (say) and approaching the boundary,
whereas the sequence {u(Pj)}∞j=1 blows up. This contradicts the assumption
that u vanishes continuously on the boundary, and we conclude

sup
Ψ1

u ≤ H
h ≡ γ.
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Due to recent development in the field of Harnack inequalities for the above
class of equations [20, 21, 23, 39], it is possible to prove suitable versions of Car-
leson estimate for non-negative solutions to (3)–(4) both in cylindrical Lipschitz
domains and in time-independent NTA-cylinders (non-tangentially accessible
domain). For more particulars on these sets, we refer the reader to [12, § 12.3].

According to the theory developed in the above papers, a Carleson type
estimate makes sense only for p > 2N/(N + 1).

Indeed, in the critical and sub-critical range, explicit counterexamples rule
out the possibility of a Harnack inequality. Only so-called Harnack-type es-
timates are possible, where, however, the ratio of infimum over supremum in
proper space-time cylinders depends on the solution itself (for more details, see
[24, Chapter 6, § 11–15]).

Although the overall strategy in the nonlinear setting follows the same kind
of arguments of the linear case, its implementation presents a difficulty due
to the lack of homogeneity of the equations. Also there is a striking differ-
ence between the singular and the degenerate case; this is already reflected in
the intrinsic character of the interior Harnack inequality, and it is amplified
when approaching the boundary through dyadically shrinking intrinsic cylin-
ders. Concerning the Carleson estimate, its statement in the degenerate case
can be considered as the intrinsic version of the analogous statement in the lin-
ear uniformly parabolic case. Things are different in the singular super-critical
case, where, in general, one can only prove a somewhat weaker estimate, due
to the possibility for a solution to extinguish in finite time. Indeed, we exhibit
some counterexamples which show that one cannot do any better, unless some
control of the interior oscillation of the solution is available.

The difference between the two cases, degenerate and singular super-critical,
becomes more evident when one considers the validity of a boundary Harnack
principle, even in smooth cylinders. In the singular case, for C

2 cylinders,
the existence of suitable barriers provides a linear behavior. Together with
Carleson’s estimate, this fact implies almost immediately a Hopf principle and
the boundary Harnack inequality. The extension of the boundary Harnack
principle to Lipschitz cylinders remains an open question.

On the other hand, solutions to the parabolic p-Laplace equations can van-
ish arbitrarily fast in the degenerate case p > 2, so that no possibility exists to
prove a boundary Harnack principle in its generality. Indeed, when p > 2, two
explicit solutions to the parabolic p-Laplacian in the half space {xN ≥ 0}, that
vanish at xN = 0, are given by

u1(x, t) = xN , u2(x, t) =

�
p− 2

p
p−1
p−2

�
(T − t)−

1
p−2x

p
p−2

N . (8)

The power–like behavior, as exhibited in the second one of (8), is not the
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“worst” possible case. Indeed, let Ω = {−1 ≤ xi ≤ 1, 0 ≤ xN ≤ 1
4}, and

consider the following Cauchy-Dirichlet Problem in Ω× [0, T [:





ut − div(|Du|p−2
Du) = 0

u(x, 0) = C T
− 1

p−2 exp(− 1
xN

)
u(x�

, 0, t) = 0

u(x�
,
1
4 , t) = C(T − t)−

1
p−2 e

−4

u(x, t) = C(T − t)−
1

p−2 exp(− 1
xN

), x ∈ ∂Ω ∩ {0 < xN <
1
4},

(9)

where

C =
1

2(p− 1)(p− 2)

�
Ω(p− 2)

2p

� 2p
p−2

.

It is easy to check that the function

u3 = C(T − t)−
1

p−2 exp(− 1

xN
), xN > 0 (10)

is a super-solution to such a problem. Therefore, the solution to the same
problem (which is obviously positive) lies below u3 and approaches the zero
boundary value at xN = 0 at least with exponential speed.

There is more. Let γ ∈ (0, 1), Ω = {xN > 0}, T = 2
γ − 1: then

u(x, t) =

�
p− 2

p− 1
γ

1
p−1 (t+ 1)

�
γ +

xN − 2

t+ 1

�

+

� p−1
p−2

(11)

is a solution to (1)o in ΩT , and vanishes not only on the boundary {xN = 0},
but also in the set {0 < xN < 2 − γ(t + 1), 0 < t < T}, which has positive
measure.

Therefore, if one wants to prove an estimate like (2a), one needs to be able
to rule out examples like the ones we have just discussed.

2. The Degenerate Case p > 2

2.1. Harnack inequality and Harnack chains

As we mentioned in the Introduction, our results are strongly based on the
interior Harnack inequalities proved in [20, 21, 22, 39], that we recall below.

First we need to introduce further notations. D
�
w stands for the gradient

of w with respect to x
�.

For y ∈ RN and ρ > 0, Kρ(y) denotes the cube of edge 2ρ, centered at y

with faces parallel to the coordinate planes. When y is the origin of RN we
simply write Kρ; K �

ρ(y
�) denotes the (N−1)-dimensional cube {(x� : |xi−yi| <

ρ, i = 1, 2, ..., N − 1}; we write for short {|xi − yi| < ρ}.
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For θ > 0 we also define

Q
−
ρ (θ) = Kρ × (−θρ

p
, 0], Q

+
ρ (θ) = Kρ × (0, θρp]

and for (y, s) ∈ RN × R,

(y, s) +Q
−
ρ (θ) = Kρ(y)× (s− θρ

p
, s], (y, s) +Q

+
ρ (θ) = Kρ(y)× (s, s+ θρ

p].

Now fix (xo, to) ∈ ΩT such that u(xo, to) > 0 and construct the cylinders

(xo, to) +Q
±
ρ (θ) where θ =

�
c

u(xo, to)

�p−2

, (12)

and c is a given positive constant. These cylinders are “intrinsic” to the solu-
tion, since their height is determined by the value of u at (xo, to). Cylindrical
domains of the form Kρ × (0, ρp] reflect the natural, parabolic space-time di-
lations that leave the homogeneous, prototype equation (1)o invariant. The
latter however is not homogeneous with respect to the solution u. The time
dilation by a factor u(xo, to)2−p is intended to restore the homogeneity. Most
of the results we describe in this paper hold in such geometry.

Here is the Harnack inequality.

Theorem 2.1. Let u be a non-negative, weak solution to (3)–(4) in ΩT for

p > 2, (xo, to) ∈ ΩT such that u (xo, to) > 0. There exist positive universal

constants c and γ, such that for all intrinsic cylinders (xo, to) + Q
±
2ρ(θ) as in

(12), contained in ΩT ,

γ
−1 sup

Kρ(xo)
u(·, to − θρ

p) ≤ u (xo, to) ≤ γ inf
Kρ(xo)

u(·, to + θρ
p). (13)

The constants γ and c deteriorate as p → ∞ in the sense that γ(p), c(p) → ∞
as p → ∞; however, they are stable as p → 2.

Some comments are in order. It could be interesting to examine the exis-
tence of a so-called Harnack chain allowing the control of the value of u(x, t)
by the value of u (xo, to) with t < to, thanks to the repeated application of the
Harnack inequality. A Harnack chain argument is indeed one of the usual tools
for proving a Carleson estimate.

In [21], the authors show that such a result actually holds for solutions
defined in RN × (0, T ), and not in a smaller domain ΩT . Although the correct
form of the Harnack chain for solutions defined in ΩT , when Ω ⊂ RN , can
be given, nevertheless, such a result is of no use in the proof of Carleson’s
estimates, as there are two different, but equally important obstructions.

First of all u can vanish and hence prevent any further application of the
Harnack inequality. Indeed, let us consider the following two examples.
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Let γ ∈ (0, 1); the function

u(x, t) =

�
p− 2

p− 1
γ

1
p−1 (t+ 1)

�
γ +

xN − 2

t+ 1

�

+

� p−1
p−2

+

�
p− 2

p− 1
γ

1
p−1 (t+ 1)

�
γ − xN + 2

t+ 1

�

+

� p−1
p−2

is a solution to the parabolic p-Laplacian in the set RN×(0, 2
γ −1) and vanishes

in the cone �
0 < t <

2
γ − 1

− (2− γ (t+ 1)) < xN < 2− (γ (t+ 1)) .

If we take (x, t) and (xo, to) with t < to on opposite sides of the cone, there is
no way to build a Harnack chain that connects the two points.

Let γp =
�
1
λ

� 1
p−1 p−2

p , with λ = N(p− 2) + p, consider the cylinder {xN >

0}× (0, (2γp)λ) and let x1 = (0, 0, . . . , 2), x2 = (0, 0, . . . , 6). The function

u(x, t) = t
−N

λ

�
1− γp

�
|x− x1|

t
1
λ

� p
p−1

� p−1
p−2

+

+ t
−N

λ

�
1− γp

�
|x− x2|

t
1
λ

� p
p−1

� p−1
p−2

+

is a solution to the parabolic p-Laplacian in the indicated cylinder and vanishes
on its parabolic boundary. Notice that such a solution is the sum of two
Barenblatt functions with poles respectively at x1 and x2 and masses M1 =
M2 = 1: in the interval 0 < t < (2γp)λ the support of u is given by two
disjoint regions R1 and R2, and only at time T = (2γp)λ the support of u

finally becomes a simply connected set. Once more, taking (x, t) and (xo, to)
respectively in R1 and R2, there is no way to connect them with a Harnack
chain. As a matter of fact, before the two supports touch, each Barenblatt
function does not feel in any way the presence of the other one. In particular,
we can change the mass of the two Barenblatt functions: this will modify the
time T the two supports touch, but up to T , there is no way one Barenblatt
component can detect the change performed on the other one.

On the other hand, one could think that if we have a solution vanishing on a
flat piece of the boundary and strictly positive everywhere in the interior, then
one could build a Harnack chain extending arbitrarily close to the boundary.
However, this is not the case, as clearly shown by the following example.

Let us consider a domain Ω ⊂ RN , which has a part of its boundary that
coincides with the hyperplane {xN = 0}, and let Γ = ∂Ω ∩ {xN = 0}. Let
T̄ > 0, be given and consider a non-negative solution u to






ut − div(|Du|p−2
Du) = 0, in ΩT̄

u > 0, in ΩT̄

u = 0, on Γ× (0, T̄ ].
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Let u be such that its value is bounded above by the distance to the flat
boundary piece raised to some given power a > 0, i.e.

u(x, t) ≤ γ dist(x,Γ)a, a > 0, (x, t) ∈ ΩT̄ , (14)

where γ > 0 is a proper parameter.
Let (xo, to) = (x�

o, xo,N , to) ∈ ΩT be such that γ(xo,Γ) = 1. The goal is
to form a Harnack chain of dyadic non-tangential cylinders approaching the
boundary, while the chain stays inside ΩT̄ : we want to control the size of the
time interval, which we need to span in order to complete the chain. Let

uo = u (xo, to)

rk = 2−k

xk = (x̂�
o, 2

−k)

tk = to − c
p−2

k−1�

i=0

u
2−p
i r

p
i

uk = u(xk, tk) ≈ (2−k)a

for k = 1, . . . Assuming that at each step one can use Harnack’s inequality, we
get an estimate on the size of tk from above

tk ≤ to − c
p−2

k−1�

i=0

(2−ai)2−p2−ip ≤ to − c
p−2

k−1�

i=0

2ai(p−2)−ip

which diverges to −∞ as k → ∞ and xk → Γ, if a ≥ p/(p − 2). Considering
the solution u2 from (8), we see that the above dyadic Harnack chain would
diverge for such a solution as a = p

p−2 .
The infinite length of the time interval needed to reach the boundary, is

just one face (i. e. consequence) of the finite speed of propagation when
p > 2. Points (x, t) that lie inside a proper p-paraboloid centered at (xo, to)
can be reached, starting from (xo, to): if uo is very small, and therefore the
p-paraboloid is very narrow, with small values of r one ends up with very
large values of t. On the other hand, points (x, t) that lie outside the same
p-paraboloid centered at (xo, to) cannot be reached.

These difficulties have been recently overcome in [6], where a sequence of
Harnack chain estimates has been proved. The authors develop Harnack chains
based on the weak Harnack inequality of [39], valid for supersolutions to the p-
parabolic equation. As truncations of solutions are supersolutions, the authors
achieve a finer control of the waiting times (for further details, see § 3 of [6]).

2.2. The Carleson estimates

We need to introduce some further notation. Let ΩT be a Lipschitz cylinder
and fix (xo, to) ∈ ST ; in a neighbourhood of such a point, the cross section
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is represented by the graph {(x�
, xN ) : xN = Φ(x�)}, where Φ is a Lipschitz

function with Lipschitz constant L. Without loss of generality, from here on
we assume Φ(x�

o) = 0 and L ≥ 1.
For ρ ∈ (0, ro), let xρ = (x�

o, 2Lρ), Pρ = Pρ (xo, to) = (x�
o, 2Lρ, to) ∈ ΩT

such that u (Pρ) > 0. Note that dist(xρ, ∂Ω) is of order ρ. Set

Ψ−
ρ (xo, to) = ΩT ∩

�
|xi − xo,i| < ρ

4 , |xN | < 2Lρ, t ∈ (to − α+β
2 θρ

p
, to − βθρ

p
�

where θ =
�

c
u(Pρ)

�p−2
, with c given in Theorem 2.1, and α > β are two positive

parameters. We are now ready to state our main result in the degenerate case
p > 2 (see [5]).

Theorem 2.2. (Carleson’s Estimate, p > 2) Let u be a non-negative, weak

solution to (3)–(4) in ΩT . Assume that

(to − θ(4ρ)p, to + θ(4ρ)p] ⊂ (0, T ]

and that u vanishes continuously on

∂Ω ∩ {|xi − xo,i| < 2ρ, |xN | < 8Lρ}× (to − θ(4ρ)p, to + θ(4ρ)p).

Then there exist two universal positive parameters α > β, and a constant γ̃ > 0,
such that

u(x, t) ≤ γ̃ u (Pρ) for every (x, t) ∈ Ψ−
ρ (xo, to) . (15)

Without going too much into details here, let us point out that for the
prototype equation (1)o, estimate (15) have been extended in [4] from Lipschitz
cylinders to a wider class of cylinders ΩT , whose cross section Ω is a NTA
domain.

Weak solutions to (3) with zero Dirichlet boundary conditions on a Lips-
chitz domain are Hölder continuous up to the boundary (see, for example, [19,
Chapter III, Theorem 1.2]). Combining this result with the previous Carleson
estimate, yields a quantitative estimate on the decay of u at the boundary,
invariant by the intrinsic rescaling

x = xo + ρy, t = to +
ρ
p

u (Pρ)
p−2 τ.

Corollary 2.3. Under the same assumption of Theorem 2.2, we have

0 ≤ u(x, t) ≤ γ

�
dist(x, ∂Ω)

ρ

�µ

u (Pρ) ,

for every (x, t) ∈ Ψ−
ρ
2
(xo, to), where µ ∈ (0, 1) is universal.
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If we restrict our attention to solutions to the model equation (1)o, the
result of Corollary 2.3 was strengthened for C2 cylinders in [5].

Theorem 2.4. (Lipschitz Decay) Let ΩT be a C
2
cylinder and u a non-negative,

weak solution to (1)o in ΩT . Let the other assumptions of Theorem 2.2 hold.

Then there exist two positive parameters α > β, and a constant γ > 0, depend-
ing only on p, N , and the C

2
–constant M2 of Ω, such that

0 ≤ u(x, t) ≤ γ

�
dist(x, ∂Ω)

ρ

�
u (Pρ) , (16)

for every (x, t) in the set

ΩT ∩
�
|xi − xo,i| <

ρ

4
, 0 < xN < 2M2ρ

�
×
�
to −

α+ 3β

4
θρ

p
, to − βθρ

p

�
.

Following Definition 2.2 of [6], let us recall that for a bounded domain
Ω ⊂ RN , we say that it satisfies the ball condition with radius ro > 0, if for each
point y ∈ ∂Ω there exist points x+ ∈ Ω and x

− ∈ Ωc such that Bro(x
+) ⊂ Ω,

Bro(x
−) ⊂ Ωc, ∂Bro(x

+)∩∂Ω = {y} = ∂Bro(x
−)∩∂Ω, and x

+(y), x−(y), and
y are collinear for each y ∈ ∂Ω; the previous result has been further extended
to C

1,1 domains satisfying the ball condition with radius ro: in such a case it
is shown that u has a linear decay at the boundary (see Theorem 9.3 of [6]),
giving proper decay estimates both from above and from below.

Relying on the recent papers [8, 40, 41, 42], these results can be extended
both to a wider class of degenerate equations with differentiable principal part
which have the same structure of the p-Laplacian.

2.3. The Boundary Harnack Inequality

For xo ∈ ∂Ω, let ar(xo) := xo +
r
2

x+−xo
|x+−xo| . In [6], the following result is proven.

Theorem 2.5. Let u and v be two non-negative, weak solutions to (1)o in ΩT ,

where Ω is a C
1,1

domain satisfying the ball condition with radius ro. Let

xo ∈ ∂Ω, to ∈ (0, T ), and r ∈ (0, ro) be fixed. Let A− = (ar(xo), to), and

assume that u(A−) = v(A−). There exist constants c4, c5, c6, which depend

only on the data, which satisfy the following. Let θ− = u(A−)2−p
, and assume

θ−r
p
< to, and to + 2c4θ−r

p
< T.

Set

A+ = (ar(xo), to + 2c4θ−r
p), θ+,u = c

−1
6 u(A+)

2−p
.
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Assume that v(A+) ≥ u(A+). Then there exists a time t
∗
+, depending on v,

satisfying

t
∗
+ ∈ (to + (2c4θ− − θ+,u)r

p
, to + 2c4θ−r

p)

A
∗
+ = (ar(xo), t

∗
+), θ

∗
+,v = c

−1
6 v(A∗

+)
2−p

,

such that the following holds. If both u and v vanish continuously on

ST ∩ (Br(xo)× (to + [2c4θ− − 5θ+,u]r
p
, to + [2c4θ− − θ+,u]r

p)) ,

then
1

c5

u(A−)

v(A∗
+)

≤ u(x, t)

v(x, t)
≤ c5

u(A+)

v(A−)
,

whenever (x, t) belongs to the set

(Br(xo) ∩ Ω)×
�
to + [2c4θ− − (θ∗+,v + θ+,u)]r

p
, to + [2c4θ− − θ+,u]r

p
�
.

It is important to notice that t∗+ cannot be precisely controlled, and the only
information at disposal is the interval it lies in. Moreover, the previous theo-
rem reduces to the classical Boundary Harnack inequality for linear parabolic
equations, whenever p = 2.

Finally, in [6] a global Harnack inequality is established as well; we refer
the interested reader to § 8 of this work.

3. The Singular Super-critical Case 2N
N+1

< p < 2

3.1. The Harnack inequality

As already mentioned in the introduction, in the singular case, Harnack inequal-
ity exhibits different features with respect the degenerate case. The following
theorem is proved in [23] (see also [24] for a thorough presentation).

For fixed (xo, to) ∈ ΩT and ρ > 0, set M = supKρ(xo) u(x, to), and require
that

K8ρ(xo)× I(to, 8ρ,M2−p) ⊂ ΩT . (17)

Theorem 3.1. (Harnack Inequality) Let u be a non-negative, weak solution to

(3)–(4), in ΩT for p ∈ ( 2N
N+1 , 2). There exist universal constants � ∈ (0, 1) and

γ > 1 such that for all intrinsic cylinders (xo, to)+Q
±
8ρ(θ) for which (17) holds,

γ
−1 sup

Kρ(xo)
u(·,σ) ≤ u(xo, to) ≤ γ inf

Kρ(xo)
u(·, τ) (18)

for any pair of time levels σ, τ in the range

to − �u(xo, to)
2−p

ρ
p ≤ σ, τ ≤ to + �u(xo, to)

2−p
ρ
p
. (19)

The constants � and γ
−1

tend to zero as either p → 2 or as p → 2N
N+1 .
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With respect to the degenerate case, we now have c = 1 for the size of the
intrinsic cylinders. The upper bound M has only the qualitative role to insure
that (xo, to) +Q

±
8ρ(M) are contained within the domain of definition of u.

3.2. A Weak Carleson Estimate

Relying on the above Harnack inequality, one can first prove a weak form of
Carleson estimate. Let ΩT , u, (xo, to), ρ, xρ, Pρ be as in Theorem 2.2 and set

I(to, ρ, h) = (to − hρ
p
, to + hρ

p).

Moreover, let u be a weak solution to (3)–(4) such that

0 < u ≤ M in ΩT , (20)

and assume that
I(to, 9ρ,M

2−p) ⊂ (0, T ]. (21)

Then we define

Ψ̃ρ = ΩT ∩
�
(x, t) : |xi − xo,i| < 2ρ, |xN < 4Lρ| , t ∈ I(to, 9ρ, η

2−p
ρ )

�

Ψ̄ρ = ΩT ∩
�
(x, t) : |xi − xo,i| < ρ

4 , |xN < 2Lρ| , t ∈ I(to, ρ, η
2−p
ρ )

�

where ηρ is the first root of the equation

max
�Ψρ(xo,to)

u = ηρ. (22)

Notice that both the functions y1(ηρ) = max�Ψρ(xo,to)
u, y2(ηρ) = ηρ are mono-

tone increasing. Moreover

�
y1(0) ≥ u(Pρ) > 0,
y2(0) = 0,

and

�
y1(M) ≤ M,

y2(M) = M.

Therefore, it is immediate to conclude that at least one root of (22) actually
exists. Moreover, by (21) �Ψρ(xo, to) ⊂ ΩT .

A weak form of the Carleson estimate, is expressed by the following theorem
(see [5]).

Theorem 3.2. (Carleson-type Estimate, weak form, 2N
N+1 < p < 2). Let u be a

weak solution to (3)–(4), that satisfies (20). Assume that (21) holds true and

u vanishes continuously on

∂Ω ∩ {|xi − xo,i| < 2ρ, |xN | < 8Lρ}× I(to, 9ρ,M
2−p).
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Then there exist universal constants γ > 0 and α ∈ (0, 1), such that

u(x, t) ≤ γ

�
dist(x, ∂Ω)

ρ

�α

× sup
τ∈I(to,ρ,2η

2−p
ρ )

u(xρ, τ),

for every (x, t) ∈ Ψ̄ρ(xo, to).

If we let

Ψρ,M (xo, to) = ΩT ∩
�
(x, t) : |xi−xo,i| <

ρ

4
, |xN | < 2Lρ, t ∈ I(to, ρ,M

2−p)
�
,

we have a second statement.

Corollary 3.3. Under the same assumptions of Theorem 3.2, we have

u(x, t) ≤ γ

�
dist(x, ∂Ω)

ρ

�α

× sup
τ∈I(to,ρ,2M2−p)

u(xρ, τ),

for every (x, t) ∈ Ψρ,M (xo, to).

The quantity ηρ is known only qualitatively through (22), whereas M is a
datum. Therefore, Corollary 3.3 can be viewed as a quantitative version of a
purely qualitative statement. On the other hand, since ηρ could be attained
in Pρ, Theorem 3.2 gives the sharpest possible statement, and is genuinely
intrinsic.

Moreover, with respect to Theorem 2.2 and Corollary 2.3, Theorem 3.2
combines two distinct statements in a single one (mainly for simplicity), and
presents two fundamental differences: when p > 2, the value of u at a point
above controls the values of u below, whereas when 2N

N+1 < p < 2, the max-

imum of u over a proper time interval centered at to controls the values of
u both above and below the time level to. These are consequences of the
different statements of the Harnack inequality in the two cases.

Can we improve the result of Theorem 3.2, namely can we substitute the
supremum of u on I(to, ρ, 2η2−p

ρ ) with the pointwise value u (Pρ)? This would
certainly be possible, if there existed a universal constant γ such that

∀ t ∈ I(to, ρ, 2η
2−p
ρ ) u(xρ, t) ≤ γ u (Pρ) .

Under a geometrical point of view, this amounts to building a Harnack chain
connecting (xρ, t) and Pρ, for all t ∈ I(to, ρ, 2η2−p

ρ ). In general, without further
assumptions on u, this is not possible, as the following counterexample shows.

Let u be the unique non-negative solution to





u ∈ C(R+;L2(Ω)) ∩ L
p(R+;W 1,p

o (Ω))
ut − div(|Du|p−2

Du) = 0 in ΩT

u(·, 0) = uo ∈ C
o(Ω),
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with uo > 0 in Ω, and uo = 0 on ∂Ω.

By Proposition 2.1, Chapter VII of [19], there exists a finite time T∗, de-
pending only on N , p, uo, such that u(·, t) ≡ 0 for all t ≥ T∗. By the results of
[19, Chapter IV], u ∈ C

o(Ω× (0, T∗)). Suppose now that at time t = T∗ + 1,
we modify the boundary value and for any t > T∗ + 1 we let u(·, t) = g(·, t) on
∂Ω, where g is continuous and strictly positive. It is immediate to verify that
u becomes strictly positive for any t > T∗ + 1. Therefore, the positivity set for
u is not a connected set, u(x, t) ≡ 0 for all ∀ (x, t) ∈ Ω× (T∗, T∗ + 1), and if
(xρ, t) and Pρ lie on opposite sides of the vanishing layer for u, by the intrinsic
nature of Theorem 3.1, there is no way to connect them with a Harnack chain.

The previous counterexample allows u to vanish identically for t in a proper
interval, but by suitably modifying the boundary values, it is clear that we
can have u strictly positive, and as close to zero as we want. Therefore, the
impossibility of connecting two arbitrary points by a Harnack chain, does not
depend on the vanishing of u, but it is a general property of solutions to (3)–
(4), whenever Ω �= RN . Moreover, by properly adjusting the boundary value,
one can even create an arbitrary number of oscillations for u between positivity
and null regions.

We considered solutions to the p-Laplacian just for the sake of simplicity, but
everything continues to hold, if we consider the same boundary value problem
for (3)–(4).

Notice that if we deal with weak solutions to (3)–(4) in RN × (0, T ], then
we do not have boundary values any more, the situation previously discussed
cannot occur, and therefore any two points (x, t) and (xo, to) can always be
connected by a Harnack chain, provided both u(x, t) and u(xo, to) are strictly
positive, and 0 < t− to <

�
8p to, as discussed in [24, Chapter 7, Proposition 4.1].

The sub potential lower bound discussed there is then a property of weak
solutions given in the whole RN × (0, T ).

The Harnack inequality given in Theorem 3.1 is time-insensitive, and its
constants are not stable as p → 2. A different statement, analogous to the one
given in Theorem 2.1, could be given, and in such a case the constants would be
stable (see [24, Chapter 6] for a thorough discussion of the two possible forms).
However, the eventual result is the same, and independently of the kind of
Harnack inequality one considers, two points (x, t) and (xo, to) of positivity for
u, cannot be connected by a Harnack chain.

Notice that we have a sort of dual situation: when 1 < p < 2 the support
of u can be disconnected in time, when p > 2, the support can be disconnected
in space.

Strictly speaking, the previous counterexample only shows that we cannot
replace the line with a point, but per se it does not rule out the possibility for
a strong form of Carleson’s estimate to hold true all the same. However, if one
tries to adapt to the singular super-critical context the standard proof based
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on the Harnack inequality and the boundary Hölder continuity (as we did, for
example, in the degenerate context), then one quickly realizes that, one needs
to know in advance the oscillation of u: this suggests that only a control in
terms of the supremum taken in a proper set can be feasible.

3.3. A Strong Carleson Estimate

With respect to the statement of Theorem 3.2, a stronger form is indeed pos-
sible, provided we allow the parameter γ to depend not only on the data, but
also on the oscillation of u. Let ΩT , u, (xo, to), ρ, Pρ be as in Theorem 2.2,
and for k = 0, 1, 2, . . . set

ρk =

�
7

8

�k

ρ, σk =
ρk

γ
k 2−p

p

,

xρk = (x�
o, 2Lρk), Pρk = (x�

o, 2Lρk, to),

Ψρk,M (xo, to)

= ET ∩
�
(x, t) : |xi − xo,i| <

ρk

4
, |xN | < 2Lρk, t ∈ I(to,σk,M

2−p)
�
,

mo = inf
τ∈I(to,ρ,2M2−p)

u(xρ, τ), Mo = sup
τ∈I(to,ρ,2M2−p)

u(xρ, τ).

Corollary 3.4. (Carleson-type Estimate, strong form, 2N
N+1 < p < 2). Let

u be a weak solution to (3)–(4) such that 0 < u ≤ M in ΩT . Assume that

I(to, 9ρ,M2−p) ⊂ (0, T ] and that u vanishes continuously on

∂Ω ∩ {|xi − xo,i| < 2ρ, |xN | < 8Lρ}× I(to, 9ρ,M
2−p).

Then there exists a constant γ, depending only on ρ, N,Co, C1, L, and
M
mo

,

such that

u(x, t) ≤ γ u(Pρk), (23)

for every (x, t) ∈ Ψρk,M (xo, to), for all k = 0, 1, 2, . . . .

The strong form of the Carleson-type estimate is derived from Corollary 3.3.
An analogous statement can be derived from Theorem 3.2.

Estimate (23) has the same structure as the backward Harnack inequality
for caloric functions that vanish just on a disk at the boundary (see [12, Theo-
rem 13.7, page 234]). This is not surprising, because (23) is indeed a backward
Harnack inequality, due to the specific nature of the Harnack inequality for the
singular case. However, it is worth mentioning that things are not completely
equivalent; indeed, the constants we have in the time-insensitive Harnack in-
equality (18)–(19) are not stable (and cannot be stabilized), and therefore,
the result for caloric functions cannot be recovered from the singular case, by
simply letting p → 2 (as it is instead the case for many other results).
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3.3.1. Hopf Principle and Boundary Harnack inequality

Another striking difference with respect to the degenerate case appears when
we consider C1,1 cylinders and (mainly for simplicity) the prototype equation
(1)o. In this case, indeed, weak solutions vanishing on the lateral part enjoy
a linear behavior at the boundary with implications expressed in the following
result. Note that the role of L in the definition of Ψρ,M is now played by C

1,1

constant M1,1 of Ω.

Theorem 3.5. Let 2N
N+1 < p < 2. Assume ΩT is a C

1,1
cylinder, and (xo, to),

ρ, Pρ are as in Theorem 2.2. Let u, v be two weak solutions to (1)o in ΩT ,

satisfying the hypotheses of Theorem 3.2, 0 < u, v ≤ M in ΩT . Then there

exist positive constants s̄, γ, β, 0 < β ≤ 1, depending only on N , p, and M1,1,

and ρo, co > 0, depending also on the oscillation of u, such that the following

properties hold.

(a) Hopf Principle:

|Du| ≥ co in Ψρo,M (xo, to). (24)

(b) Boundary Harnack Inequality:

γ
−1

inf
τ∈I(to,ρ,2M2−p)

u(xρ, τ)

sup
τ∈I(to,ρ,2M2−p)

v(xρ, τ)
≤ u(x, t)

v(x, t)
≤ γ

sup
τ∈I(to,ρ,2M2−p)

u(xρ, τ)

inf
τ∈I(to,ρ,2M2−p)

v(xρ, τ)
, (25)

for all (x, t) ∈ {x ∈ Ks̄ ρ
4
(xo) ∩ Ω : dist(x, ∂Ω) < s̄

ρ
8} × I(to, ρ,

1
2M

2−p),
with ρ < ρo.

(c) The quotient u/v is Hölder continuous with exponent β in Ψ ρo
2 ,M (xo, to)

Since
sup

τ∈I(to,ρ,2M2−p)
u(xρ, τ)

inf
τ∈I(to,ρ,2M2−p)

v(xρ, τ)
≤ Mo,uu(Pρ)

mo,u

Mo,v

mo,vv(Pρ)
,

inf
τ∈I(to,ρ,2M2−p)

u(xρ, τ)

sup
τ∈I(to,ρ,2M2−p)

v(xρ, τ)
≤ mo,uu(Pρ)

Mo,u

mo,v

Mo,vv(Pρ)
,

the Boundary Harnack Inequality (25) can be rewritten as

γ̃
−1u(Pρ)

v(Pρ)
≤ u(x, t)

v(x, t)
≤ γ̃

u(Pρ)

v(Pρ)

where now γ̃ depends not only on N , p, M1,1, but also on Mo,u/mo,u and
Mo,v/mo,v.
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Note that (a) implies that near a part of the lateral boundary, where a
non-negative solution vanishes, the parabolic p-Laplace operator is uniformly
elliptic. Since we do not have an estimate at the boundary of the type

|Du(x, t)| ≥ c
u(x, t)

dist(x, ∂Ω)
,

(a) and (c) hold only in a small neighbourhood of ST , whose size depends on
the solution, as both co and the oscillation of the gradient Du depend on the
oscillation of u: this is precisely the meaning of ρo.

The proof relies on proper estimates from above and below, which were orig-
inally proved in [25, § 4] for solutions to the singular porous medium equations
in C

2 domains by building explicit barriers.
We recast these estimates in the lemma below, in a form tailored to our

purposes. Indeed, the Hopf Principle and a weak version of the Boundary
Harnack Inequality follow easily from these estimates. Our improvement lies
in the use of the Carleson estimates, that allow a more precise bound for u(x,t)

v(x,t)

in terms of u(Pρ)
v(Pρ)

. The restriction to 2N
N+1 < p < 2 comes into play only in this

last step.
Thus, let ∂Ω be of class C

1,1 and u be a non-negative, weak solution to
(1)o in ΩT , for 1 < p < 2. Assume that u ≤ M in ΩT . For x ∈ RN , set
d(x) = dist(x, ∂Ω), and for s > 0, let

Ωs = {x ∈ Ω :
s

2
≤ d(x) ≤ 2s}.

Lemma 3.6. Let τ ∈ (0, T ) and fix xo ∈ ∂Ω. Assume that u vanishes on

∂Ω ∩K2ρ(xo)× (τ, T ).

For every ν > 0, there exist positive constants γ1, γ2, and 0 < s̄ <
1
2 , depending

only on N , p, ν, and M1,1, such that for all τ + νM
2−p

ρ
p
< t < T , and for all

x ∈ Ω ∩K2s̄ρ(xo) with d(x) < s̄ρ,

γ2

�
d(x)

ρ

�
inf

K2ρ(xo)∩Ωs̄ρ×(τ,T )
u ≤ u(x, t) ≤ γ1

�
d(x)

ρ

�
sup

Ω∩K2ρ(xo)×(τ,T )
u.

Relying on the above lemma, the proof of Theorem 3.5 follows rather easily.
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1. Background for the improved Massera’s theorem

In this paper, we consider the well-known Liénard equation

ẍ+ f(x)ẋ+ x = 0.

Throughout, we assume for the above equation that the function f(x) satis-
fies smoothness conditions in order to guarantee the uniqueness of solutions
of initial value problems. This equation has been widely investigated in the
literature (for instance see [9]). We are interested in the unique existence of
the limit cycle of the equation under the following Property (A) (see [8]):

f(x) is continuous and there exist a < 0 < b such that f(x) < 0 for a < x < b,
f(x) > 0 for x ≤ a or x ≥ b; moreover, xF (x) > 0 for |x| large, where F (x)
=

� x
0 f(t)dt.

Note that F (x) has three zeros at α < 0, 0, β > 0 and is monotone increasing
for x < α and for x > β.

It is well-known that the Liénard equation is equivalent to the Liénard
system

ẋ = y − F (x), ẏ = −x. (L)

First, we recall some previous results for system (L). Levinson-Smith [3] in 1942
and Sansone [5] in 1949 (see also the paper of Villari [7] in 1985) have proved
the following
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Proposition 1.1. Under the property (A) a limit cycle intersecting both the
lines x = α and x = β is at most one.

Afterwards Massera [4] in 1954 improved a result of Sansone [6] in 1951 by
using the phase-plane analysis as follows.

Proposition 1.2. (Massera’s Theorem) System (L) has at most one limit cycle
which is stable if f(x) is monotone decreasing for x < 0 and f(x) is monotone
increasing for x > 0.

We remark that the existence of a limit cycle is not guaranteed in the above
theorem.

Recently, Villari [8] in 2012, on these bases, has presented the following

Proposition 1.3. Under the property (A) system (L) has exactly one limit
cycle, which is stable, provided that

• if |α| > β, then f(x) is monotone decreasing for α < x < 0,
f(x) is monotone increasing for 0 < x < δ,

• if |α| < β, then f(x) is monotone decreasing for δ1 < x < 0,
f(x) is monotone increasing for 0 < x < β,

where δ =

��
1 + F (a) +

α2

2

�2
+ β2 and δ1 = −

��
1− F (b) +

β2

2

�2
+ α2.

Our aim is to give a new criterion for the unique existence of the limit cycle
of system (L) by combining Proposition 1.3 with our result [2] in 2000 below.

Proposition 1.4. Assume that f(x) is continuous, f(a) = f(b) = 0 for a <
0 < b, f(0) < 0 and xF (x) > 0 for |x| large. System (L) has exactly one limit
cycle, which is stable, provided that

(i) |α| = β and f(x) > 0 for |x| ≥ β,

(ii) |a| ≤ β < |α| and f(x) > 0 for |x| ≥ β,

(iii) b ≤ |α| < β and f(x) > 0 for |x| ≥ |α|.

We produce the proof of the above proposition in the Appendix.

2. Main results

We show in this section that our method yields an improvement of the result of
Villari [8]. Instead of the Property(A), assume the following Property (B):

f(x) is continuously differentiable and F (0) = F (α) = F (β) = 0,
F (x)

x
< 0

for α < 0 < β, f(x) > 0 for x ≤ p and x ≥ β, or x ≤ α and x ≥ q, where



ON THE MASSERA’S THEOREM FOR A LIÉNARD EQUATION 489

p = min{x ∈ (α, 0)| F
�
(x) = 0, F

��
(x) �= 0}

and
q = max{x ∈ (0,β)| F

�
(x) = 0, F

��
(x) �= 0}.

Remark that Property (B) includes Property (A). We now state our result
concerning the unique existence of limit cycles of system (L).

Theorem 2.1. Under the property (B), if system (L) satisfies one of the con-
ditions :

(1) |α| = β and f(x) > 0 for |x| ≥ β,

(2) |p| ≤ β < |α| and f(x) > 0 for |x| ≥ β,

(3) q ≤ |α| < β and f(x) > 0 for |x| ≥ |α|,

(4) |α| > β and β < |p|, f(x) > 0 for x ≤ p and x ≥ β, f(x) is monotone

decreasing for p ≤ x < 0, f(x) is monotone increasing for 0 < x < δ∗,

where δ∗ =

��
1 + F (a∗) +

p2

2

�2
+ β2 for a∗ = min{x| max

x∈(α,0)
F (x)},

(5) |α| < β and |α| < q, f(x) > 0 for x ≤ α and x ≥ q, f(x) is monotone

decreasing for δ∗1 < x < 0, f(x) is monotone increasing for 0 < x ≤ q,

where δ∗1 = −
��

1− F (b∗) +
q2

2

�2
+ α2 for b∗ = max{x| min

x∈(0,β)
F (x)},

then it has a unique stable limit cycle.

Remark 2.2. In [8] the case of p = a = a∗ or q = b = b∗ is treated.

Remark 2.3. In Theorem 2.1 the unique limit cycle intersects the lines x = ±β
in the case (1) or (2). In the case (3) it intersects the lines x = ±α, in the case
(4) x = p and x = β, in the case (5) x = α and x = q.

We now apply Theorem 2.1 to the Liénard equation with a positive param-
eter λ:

ẍ+ λf(x)ẋ+ x = 0.

It is equivalent to the Liénard system

ẋ = y − λF (x), ẏ = −x. (Lλ)
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Theorem 2.4. Under each condition in Theorem 2.1 system (Lλ) satisfies the
following:

(1)
�

if |α| = β, then it has a unique stable limit cycle intersecting the lines
x = α and x = β, for all λ > 0,

(2)
�

if |p| ≤ β < |α|, then it has a unique stable limit cycle intersecting the
lines x = ±β, for all λ > 0.

(3)
�

if q ≤ |α| < β, then it has a unique stable limit cycle intersecting the
lines x = ±α, for all λ > 0.

(4)
�

if |α| > β and β < |p|, then it has a unique stable limit cycle intersecting

the lines x = p and x = β, for all λ > λ̃1 =

�
p2 − β2

F 2(b∗)
.

(5)
�

if |α| < β and |α| < q, then it has a unique stable limit cycle intersecting

the lines x = α and x = q, for all λ > λ̃2 =

�
q2 − α2

F 2(a∗)
.

3. Proofs of theorems

Proof of Theorem 2.1. First, the cases of (1), (2) and (3) follow from [1] and [2].
So we omit the details. Next, we prove the case (4). By the Property (B), the
existence of the limit cycle for system (L) is guaranteed. From [2] system (L)
has at most one limit cycle intersecting the lines x = p and x = β. Further
it is stable. On the other hand, the limit cycle of system (L) contained in the
region D = {(x, y) | p ≤ x ≤ δ∗, y ∈ R} is at most one, by the monotonicity
condition on the function f(x), and is stable (see [8]). Thus we conclude from
the stability of the limit cycle that system (L) has exactly one limit cycle, either
intersecting the lines x = p and x = β, or in D. Similarly, we can prove the
case (5).

Proof of Theorem 2.2. The case (1)
�
is well-known from [1] or [8]. In the case

(2)
�
or (3)

�
the result in [2] applies. So we consider the case (4)

�
. Any positive

semitrajectory which starts from the point (β,λF (b∗)) must intersect the line
x = p for the positive number λ such that

�
λ2F 2(b∗) + β2 ≥ |p|,

namely, for all λ > λ̃1. Then, as was mentioned in Theorem 2.1, the unique
limit cycle intersecting x = p and x = β exists. Further δ∗ is given by

δ∗ =

��
1 + λF (a∗) +

p2

2

�2
+ β2
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for each λ satisfying λ > λ̃1. Similarly, the case (5)
�
is discussed, where

δ∗1 = −
��

1− λF (b∗) +
q2

2

�2
+ α2

for all λ > λ̃2.

4. An example

We shall apply our results to some polynomial system.

Example 4.1. Consider the function

F (x) =






1

3
x3 +

3

2
x2 − 4x for x ≤ −4, x ≥ 0

−1

2
x2 − 4x for − 4 < x < 0

for system (L). This system has a unique stable limit cycle. Indeed, we have
α = (−9 −

√
273)/4 < p(= a∗) = −4 < b = 1 < β = (−9 +

√
273)/4 and all

conditions of the case (4) in Theorem 2.1 hold. For instance we have that F
�
(x)

is monotone decreasing for −4 < x < 0 and F
�
(x) is monotone increasing for

x > 0.

5. Appendix

We give the outline of the proof of Theorem 2 in our result in [2]. This is a
special case of Theorem 1 in [2]. It is well-known from the Poincaré-Bendixson’s
theorem that if System (L) satisfies the conditions that f(0) < 0 and xF (x) > 0
for |x| large, then it has at least one limit cycles.

We consider the case of |a| ≤ β ≤ |α| and f(x) = F
�
(x) > 0 for |x| ≥ |β|.

The other case can be discussed similarly. Letting G(x) = (1/2)x2, there exists
a negative number −β ∈ [α, 0) such that G(−β) = G(β). Then System (L)
has no limit cycles in the strip domain Ω = {(x, y) | |x| ≤ β, y ∈ R} because
of xF (x) < 0 for |x| < β (for instance see [1]). Thus, we know that there is a
closed orbit which C surrounds the origin and meets Ωc.

We show its uniqueness. Without loss of generality we can assume that C̃
is outside C. We define Lyapunov-type functions by

V (x, y, t) =






V1(x, y) = (1/2)y2 +G(x) if x ≥ β,
V2(x, y, t) = (1/2)y2 +G(x) + γ1t if |x| < β and y < F (x),
V3(x, y) = (1/2)(y − F (a))2 +G(x) if x ≤ −β,
V4(x, y, t) = (1/2)y2 +G(x) + γ2t if |x| < β and y > F (x).
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We use the same notations as in [2]. Let (x(t), y(t)) be a periodic solution
which starts from a point on the positive half of the vertical line x = β, T > 0
be its smallest period and

A = y(T2)− y(T3)− δ1 and Ã = ỹ(T̃2)− ỹ(T̃3)− δ2

for some constants δ1 and δ2.
We assume M = (T − T3)(T̃2 − T̃1) − (T̃ − T̃3)(T2 − T1) > 0. Then the

constants γ1 and γ2 are defined by

γ1 =
F (a){(T̃ − T̃3)A− (T − T3)Ã}

M

and

γ2 =
F (a){(T̃2 − T̃1)A− (T2 − T1)Ã}

M
.

Since ỹ(T̃2)− ỹ(T̃3) < y(T2)−y(T3) < 0 and F (a) > 0, we can take the numbers
δ1 and δ2 such that γ1 > 0, γ2 > 0 and δ1 ≤ δ2.

Then it follows from the same calculations as in [2] that Ii =
�
Ci

dVi > Ĩi =�
C̃i

dVi for i = 1, . . ., 4. Hence we have I =
�4

i=1 Ii > Ĩ =
�4

i=1 Ĩ.
On the other hand, we have from the choice of δ1 and δ2 that

I =

�

C
dV = F (a){y(T2)− y(T3)}+ γ1(T2 − T1)− γ2(T − T3)

= F (a)(A+ δ1) + γ1(T2 − T1)− γ2(T − T3) = F (a)δ1.

Similarly we have

Ĩ = F (a)(Ã+ δ2) + γ1(T̃2 − T̃1)− γ2(T̃ − T̃3) = F (a)δ2.

Thus we have I ≤ Ĩ. This contradicts I > Ĩ.
In the case M < 0, by replacing with V2(x, y, t) = (1/2)y2+G(x)− γ1t and

V4(x, y, t) = (1/2)y2+G(x)−γ2t, we can take the numbers δ1 and δ2 satisfying
γ1 < 0, γ2 < 0 and δ1 ≤ δ2. In the case M = 0, we have by taking δ1 = δ2 that
I = Ĩ for some numbers γ1 > 0 and γ2 > 0. These contradict I > Ĩ too.
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Abstract. For a polarized complex Abelian surface A we study the
function NA(t) counting the number of elliptic curves in A with degree
bounded by t. We describe elliptic curves as solutions of an explicit
Diophantine equation, and we show that computing the number of solu-
tions is reduced to the classical problem in Number Theory of counting
lattice points lying on an explicit bounded subset of Euclidean space. We
obtain in this way some asymptotic estimate for the counting function.
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1. Introduction

Let A be a complex Abelian surface. With the expression ‘elliptic curve in
an Abelian surface’ we mean a one-dimensional subtorus. The collection of
all elliptic curves in A is (at most) countable (and possibly empty). Assume
that A is endowed with a polarization. Every algebraic curve in A has a degree
with respect to the polarization, and the following finiteness theorem holds: for
every integer t ≥ 1 the collection of elliptic curves E ⊂ A such that deg(E) ≤ t
is finite. This was known to Bolza and Poincaré, and a modern account is in
the paper of Kani [4].

Denote by NA(t) the number of elliptic curves in A with degree bounded
by t. The aim in the present paper is to present an approach to the counting
function NA(t). The problem of bounding this function is invariant under
isogenies, and the most relevant case is when A is the product E × E� of two
elliptic curves, with a split polarization (the sum of two pullback polarizations
from the factors). When we consider E ×E� as a polarized Abelian surface we
always assume that it is endowed with such a split polarization.

We show (see §4) that computing elliptic curves in E×E� is reduced to solv-
ing some explicit Diophantine equation, in terms of coordinates in the Néron
Severi group NS(E × E�). It turns out that computing NE×E�(t) is reduced
to counting points of the lattice Zr lying on an explicit bounded subset of Rr,
where r is the rank of the Néron Severi group. This is a classical topic in Num-
ber Theory, originating from Gauss’ circle problem and still a field of active
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research. So we are lead to apply some result from that field, and in this way
we obtain an asymptotic estimate for the counting function.

Clearly when r = 2 then NE×E�(t) = 2. So assume that r ≥ 3. Denote
by m the minimum of deg(E) and deg(E�), the degrees with respect to the
polarization, and assume that m = deg(E�). When r = 3 then E and E� are
isogenous, so let d be the degree of a primitive isogeny E → E�. When r = 4,
E and E� are isogenous elliptic curves with complex multiplication; we denote
by δ the discriminant of the relevant imaginary quadratic field (see §3.2). In
terms of these properties, we prove (in §5.2) the following main result.

Theorem 1.1. Assume that r ≥ 3. There is an asymptotic estimate

NE×E�(t) = C tr−1 +O(te),

the constant C being given by

π

4
√
dm2

for r = 3,
π

3
√
−δm3

for r = 4,

the exponent e being

0 for r = 3, 85
52 = 1.634 . . . for r = 4.

Finally we show that the result for a product Abelian surface implies some
result holding for an arbitrary polarized Abelian surface (Proposition 6.1), and
we observe that the estimates for NA(t) obtained in this way are, at least
asymptotically, sharper than an existing upper bound (Remark 6.2).

2. Some preliminary material

2.1. Elliptic curves as divisor classes

Let A be an Abelian surface. Every curve C ⊂ A determines a divisor class [C]
in the Néron Severi group NS(A). For elliptic curves (subgroups), the induced
correspondence �

elliptic curves in A
�
−→ NS(A)

is injective and the divisor classes in NS(A) corresponding to elliptic curves in
A are characterized by the following properties (cf. [4], Theorem 1.1):

− D is primitive (indivisible),

− D ·D = 0,

− D ·H > 0 for some (every) ample divisor H.
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2.2. Degree with respect to a polarization

Let L in NS(A) be an ample divisor class, representing a polarization of A.
For every curve C ⊂ A the degree with respect to the polarization is

deg(C) := C · L.

Let A be a polarized Abelian surface (we usually omit an explicit reference
to the polarization). The following is a classical result: for every integer t ≥ 1
the collection of elliptic curves E ⊂ A such that deg(E) ≤ t is finite (cf. [4],
Corollary 1.3). We define the function

NA(t)

counting the number of elliptic curves in A with degree bounded by t.
An important special case is when A = J(C) is the Jacobian variety of a

curve of genus 2, with the canonical polarization. Elliptic curves E ⊂ J(C)
correspond bijectively to isomorphism classes of non-constant morphisms f :
C → E to an elliptic curve E, which do not factor as C → E� → E where E� →
E is a non-isomorphic isogeny, and the degree deg(E) in J(C) coincides with the
degree deg(f) of the corresponding morphism. As a corollary of the theorem
above, it follows that: for every integer t ≥ 1 the collection of isomorphism
classes of morphisms f : C → E which do not factor through a non-trivial
isogeny of E and have deg(f) ≤ t is finite.

2.3. Product Abelian surfaces

Consider an Abelian surface of the form E×E� where E,E� are elliptic curves.
There is a natural isomorphism

Z2
⊕Hom(E,E�) ∼

−→ NS(E × E�),

induced by the homomorphism

D : Z2
⊕Hom(E,E�) −→ Div(E × E�)

that is defined by

D(a, b, f) := (b− 1)Eh + (a− deg f)E�
v + Γ−f

where Eh := E× {0} and E�
v := {0}×E� are the ‘horizontal’ and the ‘vertical’

factor, and Γ−f is the graph of the homomorphism −f . The intersection form
on NS(E × E�) is expressed as

D(a, b, f) ·D(a�, b�, f �) = ab� + ba� −
�
deg(f + f �)− deg(f)− deg(f �)

�
.

This is a special case of the description of correspondences between two
curves in terms of homomorphisms between the associated Jacobian varieties
(cf. e.g. [1], Theorem 11.5.1) and also is a special case of a result of Kani ([5],
Proposition 61) for the Néron Severi group of a product Abelian variety.
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2.4. Reducibility

We will make use of the Poincaré reducibility theorem with respect to a polar-
ization, in the following form.

If A is a polarized Abelian variety and B is an Abelian subvariety of A,
there is a unique Abelian subvariety B� of A such that the sum homomorphism
B × B� → A is an isogeny and the pullback polarization on B × B� is the
sum of the pullback polarizations from B and B� (cf. [1], Theorem 5.3.5 and
Corollary 5.3.6).

3. The homomorphism group

Let E and E� be elliptic curves, that we identify with Eτ and Eτ � for suitable
moduli τ and τ �, and denote by Λ := �1, τ� and Λ� := �1, τ �� the corresponding
lattices in C. There is the natural identification

Hom(E,E�) ←→ {α ∈ C s.t. αΛ ⊆ Λ�
} =: H.

3.1. In presence of an isogeny

Assume that there is an isogeny E → E�.

Lemma 3.1. In this case, we can choose τ such that Λ = �1, τ� and such that
for some � ∈ Q>0 the complex number �τ is the modulus of an elliptic curve
E�� isomorphic to E�.

Proof. Assume that α ∈ C represents an isogeny C/Λ → C/Λ�. In the present
setting the lattice Λ is of the form �1, τ�. Hence α ∈ Λ�. Write α = pβ with
β ∈ Λ� primitive and p ∈ Z>0.

In Λ�/�α� the torsion submodule is �β�/�α� ∼= Zp. Since Λ�/�β� is torsion
free of rank 1, one can find ω� ∈ Λ� such that

Λ� = �β,ω�
�.

The module αΛ/�α� is a free module of rank 1 (isomorphic to Λ/Z). There-
fore the induced homomorphism

αΛ/�α� −→ Λ�/�β�

is injective. It follows that there is some multiple qω� with q ∈ Z>0 such that
qω� ∈ αΛ, thus qω� = αω with ω ∈ Λ, and moreover

αΛ = �α, qω�
�,

whence it follows that
Λ = �1,ω�.
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Note that Λ�/αΛ ∼= Zp × Zq, so the degree of the given isogeny is pq.
We can choose ω� with im(ω�) > 0 and, replacing α with −α if necessary,

we obtain that im(ω) > 0. We can replace the initial τ with this ω. Then
define ω�� := ω�/β = (p/q)ω and define Λ�� := �1,ω���. Clearly β represents
an isomorphism C/Λ�� → C/Λ� and the modulus ω�� for C/Λ�� is as in the
statement. (Note, by the way, that p represents an isogeny C/Λ → C/Λ�� that,
followed by the isomorphism β, gives the initial isogeny α.)

Remark 3.2. In the setting of the proof above, we see that α defines a prim-
itive isogeny if and only if it defines a cyclic isogeny, and both conditions are
equivalent to p, q being coprime integers.

It is enough to observe that: if t is an integer, then (1/t)α sends Λ = �1,ω�
into Λ� = �β,ω�� if and only if t is a common divisor of p, q; on the other hand,
the quotient Λ�/αΛ ∼= Zp × Zq is a cyclic group if and only if p, q are coprime.

It is well known that an isogeny of minimum degree between two given
elliptic curves is a cyclic isogeny (cf. [6], Lemma 6.2).

Assume now that E and E� are isogenous elliptic curves, and assume that
they have moduli τ and τ � as in the Lemma, with

τ � = �τ

and � = p/q with p, q coprime positive integers. Then clearly H contains the
integer p (corresponding to some primitive isogeny of degree pq) and also the
subset pZ.

Remark 3.3. If f is the homomorphism corresponding to x ∈ Z, then

deg(f) = x2(pq).

Because f is just multiplication by x in E followed by the given isogeny E → E�,
of degree pq.

3.2. In presence of complex multiplication

Let us continue with the same setting (E and E� isogenous, Λ = �1, τ� and
Λ� = �1, τ ��, with τ � = �τ). We may assume that the given isogeny is primitive.

Assume now that the homomorphism group Hom(E,E�) has rank > 1.
Then E has complex multiplication, and the same is for E�. Therefore the
modulus τ is algebraic of degree 2 over Q (cf. e.g. [9], Chapter VI, Theorem
5.5). So, assume that τ satisfies the equation

τ2 +
u

w
τ +

v

w
= 0
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with u, v, w in Z such that w > 0 and (u, v, w) = (1) and moreover

δ := u2
− 4vw < 0

as τ is an imaginary complex number. Note that δ ≡ 0, 1 (mod 4).

Lemma 3.4. In the equation above we also have that p | w and q | v.

Proof. The quadratic equation for τ is related to the quadratic equation for �τ

over Q, that we write as
�p
q τ

�2
+ u�

w�

�p
q τ

�
+ v�

w� = 0, where u�, v�, w� are coprime

integers with w� positive. Divide both w�, q by their greatest common divisor
and denote by w̃, q̃ the resulting coprime pair, and similarly define a coprime
pair ṽ, p̃ obtained from v�, p. So we have

τ2 +
u�p̃q̃

w̃p̃p
τ +

ṽq̃q

w̃p̃p
= 0,

and it is easily seen that u = u�p̃q̃, v = ṽq̃q, w = w̃p̃p have no common divisor:
because ṽq̃q, p and w̃p̃p, q are coprime pairs, and because u�, v�, w� have no
common divisor.

Thus we define
w̄ := w/p and v̄ := v/q.

Moreover, since p, q are coprime, we can write

u = pp� + qq�

for suitable integers p�, q�.

Proposition 3.5. In the present setting, an explicit isomorphism Z2 → H is
given by

(x, y) �−→ (xp+ yq�) + (yw̄)(�τ).

Proof. Let α ∈ C represent an homomorphism C/Λ → C/Λ�, i.e. both α and
ατ belong to Λ�. Write α = a+ b(�τ) with a, b integers. Then

ατ = −(b�v/w) + ((a/�)− (bu/w))(�τ).

Hence ατ ∈ Λ� if and only if

b�(v/w), a/�− b(u/w) ∈ Z.

So the set H consists of the complex numbers α ∈ Λ� which satisfy the two
conditions above.

The map Z2 → C defined in the statement restricts to Z2 → H, as is easily
checked using the conditions above. It is clearly an injective homomorphism
and we have to show that it is surjective.
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Let α be an element of H. In the representation given above we have that
b(v̄/w̄) ∈ Z and aq − b(u/w̄) ∈ pZ, and in particular b(v̄/w̄) and b(u/w̄) are
integers. Since u, v, w are coprime, it follows that w̄ | b, and the first condition
above is satisfied. So write

b = yw̄

with y ∈ Z. Then the second condition above requires that yu = aq + a�p for
some integer a�. Since p, q are coprime, the solutions are of the form (a�, a) =
y(p�, q�) + x(−q, p) with x ∈ Z. Thus

a = xp+ yq�.

This proves that α belongs to the image of the map in the statement.

Proposition 3.6. The degree of the homomorphism f : E → E� corresponding
to (x, y) ∈ Z2 is given by

deg(f) = x2(pq) + xy(qq� − pp�) + y2(−p�q� + v̄w̄).

The discriminant of the quadratic form f �→ deg(f) on Hom(E,E�) is
equal to δ.

Proof. With the notation of the preceding proof, the degree is given by the
absolute value of the determinant of the submodule αΛ in Λ�, that is

����
a −b�(v/w)
b (a/�)− b(u/w)

���� =

����
xp+ yq� −yv̄

yw̄ xq − yp�

���� ,

where we used the expressions for a, b given in the preceding proof. It is then
easy to calculate that the determinant is equal to the expression given in the
statement. It is also easy to check that the discriminant of this quadratic form
in x, y is given by u2 − 4(pq)(v̄w̄) = u2 − 4vw = δ.

4. Elliptic curves in a product Abelian surface

Consider an Abelian surface of the form E×E� where E,E� are elliptic curves.
Let r be the rank of the Néron Severi group NS(E × E�). We have (see §2.3)
a natural isomorphism

Z2
⊕Hom(E,E�) ∼

−→ NS(E × E�)

and we can describe (see §2.1) the collection of elements (a, b, f) in the group
Z2 ⊕ Hom(E,E�) such that the corresponding divisor class [D(a, b, f)] is the
class of an elliptic curve in E × E�.
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Besides the condition of primitivity of the element (a, b, f), the numerical
condition D ·D = 0 becomes

ab = deg(f)

and the positivity condition D ·H > 0 is equivalent to

a+ b > 0

(using the ample divisor H := Eh + E�
v).

If on E × E� we choose a split polarization L = mEh + nE�
v = D(n,m, 0),

where m,n are positive integers, then the degree deg(D) = D · L with respect
to the polarization is given by the linear function

am+ bn.

Furthermore, we have (see §3) a description of the group of homomorphisms
between two elliptic curves, i.e. an explicit isomorphism

Hom(E,E�) ←→ Zh

where h is the rank of the homomorphism group. So we have an explicit
isomorphism

NS(E × E�) ←→ Zr

where r = h + 2 is the rank of the Néron Severi group, and in terms of co-
ordinates in Zr the description of elliptic curves in E × E� can be written as
a Diophantine equation, with some limitation. We will study the equation
according to the values of the rank r.

The case r = 2, i.e. h = 0, is when E and E� are not isogenous. Clearly Eh

and E�
v are the only elliptic curves in E × E�. When E and E� are isogenous,

i.e. r ≥ 3 and h ≥ 1, there are infinitely many elliptic curves in E × E�, the
graphs of homomorphisms E → E�. Then (see §3) we have r = 4 if and only if
both E and E� have complex multiplication.

For small values of the degree am+ bn, it is sometimes possible to compute
all solutions of the Diophantine equation.

Example 4.1. Elliptic curves of degree at most 2. The maximum number is
attained only if on E × E� is given the principal split polarization (m = n =
1). So assume this is the case. The only elliptic curves of degree 1 are Eh

and E�
v. An elliptic curve of degree 2 must be the graph of an isomorphism

E ∼
−→ E� (follows from ab = deg(f)). Hence, without loss of generality, we

may assume that E = E� (and � = 1). In the self product E2 the diagonal
and the anti-diagonal are elliptic curves of degree 2. If E has no complex
multiplication, these are the only ones. If E has complex multiplication, the
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maximum number of elliptic curves of degree 2 in E2 is equal to 6, and is
attained if and only if δ = −3. The degree form is written as x2 −uxy+ vwy2,
equal to

�
(2x − uy)2 − δt2

�
/4, and we only have to compute the solutions of

(2x − uy)2 − δt2 = 4 (where δ ≡ 0, 1 (mod 4)). Two solutions are (±1, 0) for
every δ, that give the diagonal and the anti-diagonal; for more solutions we
must have −δ = 3, 4; if −δ = 4 two more are ±(u/2, 1), if −δ = 3 four more
are ±((u± 1)/2, 1).

Remark 4.2. The following result is found in a recent paper by Rosen and
Schnidman ([8], Lemma 2.10): in a polarized Abelian surface with polarization
degree ≥ 5 there is at most one elliptic curve of degree 2.

5. On the number of elliptic curves

5.1. A result from Number Theory

The following is a classical problem in Number Theory, originating from Gauss’
circle problem. Given a compact convex subset K in R2, estimate the number
N := card (Z2∩K) of integer vectors (or lattice points) belonging to the convex
set. This number is naturally approximated by the area A of the subset, and
then the question is to estimate the (error or) discrepancy N−A. The following
estimate is due to Nosarzewska [7]. If K is a compact convex region in R2 of
area A whose boundary is a Jordan curve of length L then

N ≤ A+
1

2
L+ 1.

We will apply this result through the following consequence. For every scale
factor t ∈ R≥0 denote by N(t) the number of lattice points in the deformed
region

√
tK. Then

N(t) ≤ A t+
L

2
t1/2 + 1.

The inequality above is valid for arbitrary t. But in an asymptotic estimate

N(t) = A t+O(te)

(an implicit inequality holding for t � 0) the exponent e may be lowered, and
precisely one can take e = 33/104 = 0.317 . . . . This follows from a result of
Huxley [2].

5.2. Estimate for the counting function

Let E × E� be a product Abelian surface, endowed with a split polarization.
Let r be the rank of the Néron Severi group NS(E × E�) and assume that
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r ≥ 3. Here we prove the result in the introduction, asserting that there is an
asymptotic estimate NE×E�(t) = Ctr−1 + O(te), with the constant C and the
exponent e as given in the statement.

Proof of Theorem 1.1. We work in terms of coordinates, as explained in §4.
The degree with respect to the polarization is given by the linear function
am+ bn. We assume that m ≤ n, so that m = deg(E�

v) is the minimum degree
occurring in the statement. Define t� := [t/m], and assume that t� ≥ 1 since
otherwise the inequality am+ bn ≤ t has no nonzero solution.

We have to estimate the collection of primitive vectors (a, b, f) in Z2 ×

Hom(E,E�) such that ab = deg(f) and a+ b > 0 and am+ bn ≤ t. Note that
a + b > 0 may be replaced with a, b ≥ 0. There are at most two such vectors
with ab = 0, since then f = 0. The subcollection with ab �= 0 is mapped,
forgetting b, to the collection

�
(a, f) s.t. f �= 0, 0 < a < t�, deg(f) ≤ a(t� − a)

�

and the map is injective. Therefore we have

NE×E�(t) ≤ 2 +
t��

a=0

R(a, t)

where R(a, t) is the number of nonzero f such that deg(f) ≤ a(t� − a). The
function R(a, t) can be estimated, according to the values of the rank r = h+2,
using the description of the quadratic form deg(f) given in §3.

When r = 3 then R(a, t) is the number of nonzero x ∈ Z such that x2d ≤

a(t� − a), where d is the degree of a primitive isogeny E → E�, by Remark 3.3,

and hence R(a, t) ≤ 2√
d

�
a(t� − a)

�1/2
. We will show in Remark 5.1 below that

t��

a=0

�
a(t� − a)

�1/2
=

π

8
t�
2
+O(1).

Therefore, since t� ≤ t/m, in this case we have the asymptotic estimate

NE×E�(t) =
π

4
√
dm2

t2 +O(1).

When r = 4 then R(a, t) is the number of nonzero vectors (x, y) ∈ Z2 such
that Q(x, y) ≤ a(t� − a), where Q(x, y) is the coordinate expression for the
quadratic form deg(f), given in Proposition 3.6, whose determinant is equal to
−δ. Applying the result in §5.1 we have

R(a, t) = Aa(t� − a) +O((a(t� − a))e)
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with e = 33/104, where A = 2π/
√
−δ is the area of the region Q(x, y) ≤ 1 in

R2. Remark here that for every a the discrepancy above arises from a single
discrepancy function N(t)−At. It follows that

t��

a=0

R(a, t) = A




t��

a=0

a(t� − a)



+O




t��

a=0

�
a(t� − a)

�e


 .

We have to estimate the summations occurring in this formula. For one
summation we have an exact formula

t��

a=0

a(t� − a) =
1

6
t�(t� + 1)(t� − 1).

For the other summation, using a basic approximation method as explained in
Remark 5.1 below, we find the asymptotic estimate

t��

a=0

�
a(t� − a)

�e
= O(t�

2e+1
).

Summing up, we obtain for the function NE×E�(t) an estimate that is a
function of t� and then, using t� ≤ t/m, we obtain one that is a function of t.
Explicitely, we find the asymptotic estimate

NE×E�(t) =
A

6

�
t3

m3
−

t

m

�
+O(t2e+1) =

�
2π

6
√
−δm3

�
t3 +O(t2e+1),

with e = 33/104, as in the statement.

Remark 5.1. In the interval [0, t], with t a positive integer, for the function
f(x) :=

�
x(t−x)

�e
with 0 < e < 1, applying the approximation method known

as the ‘trapezoidal rule’, in the interval [1, t− 1] and for t ≥ 2, we have that

� t−1

1
f(x)dx−

t−1�

n=1

f(n) = −
t− 2

12
f ��(ξ)

for some ξ in [1, t− 1]; since for f �� the maximum value is f ��(t/2) = −c/t2−2e

where c = (e/2)42−e, and since
� t

0
f(x)dx = H t2e+1

where H =

� 1

0
(y(1− y))edy, it follows that

t�

n=0

f(n) ≤ H t2e+1
−

c

12

t− 2

t2−2e
.
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For e = 1/2 the special value H = π/8 is used in the proof above.

6. Arbitrary polarized Abelian surfaces

6.1. Behavior under isogenies

Let A,B be polarized Abelian surfaces and let ϕ : B → A be an isogeny,
preserving the polarizations (the polarization on B is the pullback of the po-
larization on A), whose degree we call d. There is a one to one correspondence

�
elliptic curves in A

� ∼
−→

�
elliptic curves in B

�
.

Given E ⊂ A the corresponding E∗ in B is the connected component of 0 in
the pre-image ϕ−1(E). The restricted isogeny E∗ → E has degree dE ≤ d (in
fact a divisor of d), and the degree of E∗ is given by

deg(E∗) = dE deg(E)

(by the projection formula: E∗ · ϕ∗L = ϕ∗E∗ · L = dE E · L). Therefore:

deg(E) ≤ deg(E∗) ≤ d deg(E).

It follows that the functions counting elliptic curves in A and in B are
related by the following inequalities:

NA(t) ≤ NB(dt) and NB(t) ≤ NA(t).

6.2. On the counting function

Let A be a polarized Abelian surface. Let r be the rank of the Néron Severi
group NS(A). We may assume that A is a non-simple Abelian surface, so it
contains an elliptic curve E. It follows from the reducibility theorem (see §2.4)
that A also contains a complementary elliptic curve E� and there is an isogeny
E ×E� → A, where the pullback polarization on E ×E� is a split polarization.
Let d be the minimum degree of such an isogeny. Choose an isogeny E×E� → A
as above of degree d.

The rank of the Néron Severi group NS(E × E�) is also equal to r, and
there is a bijective correspondence

�
elliptic curves in A

� ∼
−→

�
elliptic curves in E × E��

described in the previous subsection. Clearly, as A is non-simple, then r ≥ 2
and if r = 2 then NA(t) = 2. Note that: when r ≥ 3 there are in A infinitely
many elliptic curves, as is in E × E�.
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Proposition 6.1. Assume that r ≥ 3. The function NA(t) can be given an
asymptotic estimate of the form

NA(t) = C tr−1 +O(te),

for some constant C and exponent e < r − 2.

Proof. If A is non-simple, and E ×E� → A is an isogeny of degree d, as in the
description above, then

NA(t) ≤ NE×E�(d t)

(see §6.1); the estimate for the function NE×E�(t) is given in Theorem 1.1, and
so the statement follows.

Remark 6.2. When A = J(C) is the Jacobian of a curve of genus g > 1, there
is an effective bound for the function NA(t) due to Kani (cf. [3], Theorem 4),

which is of order O(t2g
2−2), in particular for g = 2 of order O(t6). As the order

found in the present paper is smaller, we are encouraged to believe that our
approach may lead to some sharper asymptotic estimate for arbitrary g.
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1. Introduction

There are different ways to extend the usual Weyl correspondence between
functions on R2n and operators on L

2(Rn) to the general setting of a Lie group
acting on a homogeneous space [1, 14, 31, 34]. Here we are concerned with
Stratonovich-Weyl correspondences. The notion of Stratonovich-Weyl corre-
spondence was introduced in [51] and its systematic study began with the work
of J.M. Gracia-Bond̀ıa, J.C. Vàrilly and their co-workers (see [26, 29, 32, 33]
and also [12]). The following definition is taken from [32], see also [33].

Definition 1.1. Let G be a Lie group and π be a unitary representation of

G on a Hilbert space H. Let M be a homogeneous G-space and let µ be a

G-invariant measure on M . Then a Stratonovich-Weyl correspondence for the

triple (G,π,M) is an isomorphism W from a vector space of operators on H
to a vector space of functions on M satisfying the following properties:

1. the function W(A∗) is the complex-conjugate of W(A);

2. Covariance: we have W(π(g)Aπ(g)−1)(x) = W(A)(g−1 · x);

3. Traciality: we have

�

M
W(A)(x)W(B)(x) dµ(x) = Tr(AB).
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Stratonovich-Weyl correspondences were constructed for various Lie group
representations, see [26, 32]. In particular, in [20], Stratonovich-Weyl corre-
spondences for the holomorphic representations of quasi-Hermitian Lie groups
were obtained by taking the isometric part in the polar decomposition of the
Berezin quantization map, see also [3, 4, 16, 17, 24, 29].

The basic example is the case when G is the (2n+1)-dimensional Heisenberg
group acting on R2n ∼= Cn by translations. Each non-degenerate unitary irre-
ducible representation of G has then two classical realizations: the Schrödinger
model on L

2(Rn) and the Bargmann-Fock model on the Fock space [30], an
intertwining operator between these realizations being the Segal-Bargmann
transform [27, 30]. In this context, it is well-known that the usual Weyl cor-
respondence provides a Stratonovich-Weyl correspondence for the Schrödinger
realization [6, 49, 54]. It is also known that this Stratonovich-Weyl correspon-
dence is connected by the Segal-Bargmann transform to the Stratonovich-Weyl
correspondence for the Bargmann-Fock realization which was obtained by po-
larization of the Berezin quantization map [43, 44]. In [22], we obtained similar
results for the (2n+2)-dimensional real diamond group. This group, also called
oscillator group, is a semidirect product of the Heisenberg group by the real
line.

The aim of the present paper is to extend the preceding results to the Heisen-
berg motion groups. An Heisenberg motion group is the semidirect product of
the (2n+1)-dimensional Heisenberg group Hn by a compact subgroup K of the
unitary group U(n). Note that Heisenberg motion groups play an important
role in the theory of Gelfand pairs, since the study of a Gelfand pair of the
form (K0, N) where K0 is a compact Lie group acting by automorphisms on a
nilpotent Lie group N can be reduced to that of the form (K0, Hn), see [8, 9].

More precisely, we introduce a Schrödinger realization for the unitary ir-
reducible representations of a Heisenberg motion group and we prove that we
obtain a Stratonovich-Weyl correspondence by combining the usual Weyl cor-
respondence and the unitary part of the Berezin calculus for K.

Let us briefly describe our construction. First notice that each Heisen-
berg motion group is, in particular, a quasi-Hermitian Lie group and that we
can obtain its unitary irreducible representations as holomorphically induced
representations on some generalized Fock space by the general method of [46],
Chapter XII. Then we can get Schrödinger realizations for these representations
by using, as in the case of the Heisenberg group, a (generalized) Bargmann-
Fock transform. Hence we obtain a Stratonovich-Weyl correspondence for such
a Schrödinger realization by introducing a generalization of the usual Weyl
correspondence.

Note that, in [45], a Schrödinger model and a generalized Segal-Bargmann
transform for the scalar highest weight representations of an Hermitian Lie
group of tube type were introduced and studied. Let us also mentioned that
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B. Hall has obtained some generalized Segal-Bargmann transforms in various
situations by means of the heat kernel, see [36] and references therein. Then
one can hope for futher generalizations of our results to quasi-Hermitian Lie
groups.

This paper is organized as follows. In Section 2, we review some well-
known facts about the Fock model and the Schrödinger model of the unitary
irreducible representations of an Heisenberg group and about the correspond-
ing Berezin calculus and Weyl correspondence. In Section 3, we introduce
the Heisenberg motion groups and, in Section 4 and Section 5, we describe
their unitary irreducible representations in the Fock model and the associated
Berezin calculus. We introduce the (generalized) Segal-Bargmann transform
and the Schrödinger model in Section 6. In Section 7, we show that the usual
Weyl correspondence also gives a Stratonovich-Weyl correspondence for the
Schrödinger model. Moreover, we compare it with the Stratonovich-Weyl cor-
respondence for the Fock model which is directly obtained by polarization of
the Berezin quantization map.

2. Heisenberg groups

In this section, we review some well-known results about the the Schrödinger
model and the Fock model of the unitary irreducible (non-degenerated) rep-
resentations of the Heisenberg group. We follow the presentation of [22] in a
large extend.

Let G0 be the Heisenberg group of dimension 2n + 1 and g0 be the Lie
algebra of G0. Let {X1, . . . , Xn, Y1, . . . , Yn, Z̃} be a basis of g0 in which the
only non trivial brackets are [Xk , Yk] = Z̃, 1 ≤ k ≤ n and let

{X∗
1 , . . . , X

∗
n, Y

∗
1 , . . . , Y

∗
n , Z̃

∗}

be the corresponding dual basis of g∗0.
For a = (a1, a2, . . . , an) ∈ Rn, b = (b1, b2, . . . , bn) ∈ Rn and c ∈ R, we

denote by [a, b, c] the element expG0
(
�n

k=1 akXk +
�n

k=1 bkYk + cZ̃) of G0.
Similarly, for α = (α1,α2, . . . ,αn) ∈ Rn, β = (β1,β2, . . . ,βn) ∈ Rn and γ ∈ R,
we denote by (α,β, γ) the element

�n
k=1 αkX

∗
k +

�n
k=1 βkY

∗
k +γZ̃

∗ of g∗0. The
coadjoint action of G0 is then given by

Ad∗([a, b, c]) (α,β, γ) = (α+ γβ,β − γα, γ).

Now we fix a real number λ > 0 and denote by Oλ the orbit of the element
λZ̃

∗ of g∗0 under the coadjoint action of G0 (the case λ < 0 can be treated
similarly). By the Stone-von Neumann theorem, there exists a unique (up to
unitary equivalence) unitary irreducible representation of G0 whose restriction
to the center of G0 is the character [0, 0, c] → e

iλc [7, 30]. Note that this
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representation is associated with the coadjoint orbit Oλ by the Kirillov-Kostant
method of orbits [41, 42]. More precisely, if we choose the real polarization
at λZ̃∗ to be the space spanned by the elements Yk for 1 ≤ k ≤ n and Z̃ then
we obtain the Schrödinger representation σ0 realized on L

2(Rn) as

σ0([a, b, c])(f)(x) = e
iλ(c−bx+ 1

2ab)f(x− a),

see [30] for instance. Here we denote xy :=
�n

k=1 xkyk for x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) in Rn.

The differential of σ0 is then given by

dσ0(Xk)f(x) = −∂kf(x), dσ0(Yk)f(x) = −iλxkf(x), dσ0(Z̃)f(x) = iλf(x)

where k = 1, 2, . . . , n.
On the other hand, if we consider the complex polarization at λZ̃∗ to be the

space spanned by the elements Xk + iYk for 1 ≤ k ≤ n and Z̃ then the method
of orbits leads to the Bargmann-Fock representation π0 defined as follows [13].

Let F0 be the Hilbert space of holomorphic functions F on Cn such that

�F�2F0
:=

�

Cn

|F (z)|2 e−|z|2/2λ
dµλ(z) < +∞

where dµλ(z) := (2πλ)−n
dx dy. Here z = x+ iy with x and y in Rn.

Let us consider the action of G0 on Cn defined by g · z := z + λ(b − ia)
for g = [a, b, c] ∈ G0 and z ∈ Cn. Then π0 is the representation of G0 on F0

given by
π0(g)F (z) = α(g−1

, z)F (g−1 · z)
where the map α is defined by

α(g, z) := exp
�
−icλ+ (1/4)(b+ ai)(−2z + λ(−b+ ai))

�

for g = [a, b, c] ∈ G0 and z ∈ Cn.
The differential of π0 is then given by






dπ0(Xk)F (z) =
1

2
izkF (z) + λi

∂F

∂zk

dπ0(Yk)F (z) =
1

2
zkF (z)− λ

∂F

∂zk

dπ0(Z̃)F (z) =iλF (z).

As in [35, Section 6] or [27, Section 1.3] we can verify by using the previous
formulas for dπ0 and dσ0 that the Segal-Bargmann transform B0 : L2(Rn) →
F0 defined by

B0(f)(z) = (λ/π)n/4
�

Rn

e
(1/4λ)z2+ixz−(λ/2)x2

f(x) dx
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is a (unitary) intertwining operator between σ0 and π0. The inverse Segal-
Bargmann transform B

−1
0 = B

∗
0 is then given by

B
−1
0 (F )(x) = (λ/π)n/4

�

Cn

e
(1/4λ)z̄2−ixz̄−(λ/2)x2

F (z) e−|z|2/2λ
dµλ(z).

For z ∈ Cn, consider the coherent state ez(w) = exp(z̄w/2λ). Then we
have the reproducing property F (z) = �F, ez�F0 for each F ∈ F0 where �·, ·�F0

denotes the scalar product on F0.
Now, we introduce the Berezin quantization map and we review some of its

properties. Let C0 be the space of all operators (not necessarily bounded) A

on F0 whose domain contains ez for each z ∈ Cn. Then the Berezin symbol of
A ∈ C0 is the function S

0(A) defined on Cn by

S
0(A)(z) :=

�Aez , ez�F0

�ez , ez�F0

.

We have the following result, see for instance [22].

Proposition 2.1. 1. Each A ∈ C0 is determined by S
0(A);

2. For each A ∈ C0 and each z ∈ Cn
, we have S

0(A∗)(z) = S0(A)(z);

3. For each z ∈ Cn
, we have S

0(IF0)(z) = 1. Here IF0 denotes the identity

operator of F0;

4. For each A ∈ C0, g ∈ G0 and z ∈ Cn
, we have π0(g)−1

Aπ0(g) ∈ C0 and

S
0(A)(g · z) = S

0(π0(g)
−1

Aπ0(g))(z);

5. The map S
0
is a bounded operator from L2(F0) (endowed with the Hilbert-

Schmidt norm) to L
2(Cn

, µλ) which is one-to-one and has dense range.

Proof. For 1 and 2, see [10] and [25]. Note that 4 follows from the following
property: For each g ∈ G0 and each z ∈ Cn, we have π0(g)ez = α(g, z)eg·z,
see [20]. Finally, 5 is a particular case of [52, Proposition 1.19].

Recall that the Berezin transform is then the operator B0 on L
2(Cn

, µλ)
defined by B0 = S

0(S0)∗. Thus we have the integral formula

B0(F )(z) =

�

Cn

F (w) e|z−w|2/2λ
dµλ(w),

see [10, 11, 48, 52] for instance. Recall also that we have B0 = exp(λ∆/2)
where ∆ = 4

�n
k=1 ∂

2
/∂zk∂z̄k, see [44, 52].

Note that Berezin transforms have been studied, in the general setting, by
many authors, see in particular [28, 47, 48, 52, 56].

Note also that S0 allows us to connect π0 to Oλ as shown by the following
proposition. Here we denote by gc0 the complexification of g0.
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Proposition 2.2 ([22]). Let Φλ be the map defined by

Φλ(z) :=
n�

k=1

(Re zkX
∗
k + Im zkY

∗
k ) + λZ̃

∗
.

Then

1. For each X ∈ gc0 and each z ∈ Cn
, we have

S
0(dπ0(X))(z) = i�Φλ(z), X�.

2. For each g ∈ G0 and each z ∈ Cn
, we have Φλ(g · z) = Ad∗(g)Φλ(z).

3. The map Φλ is a diffeomorphism from Cn
onto Oλ.

Now we aim to transfer S0 to operators on L
2(Rn). To this goal, we define

S
1(A) := S

0(B0AB
−1
0 ) for A operator on L

2(Rn). Of course, the properties of
S
0 give rise to similar properties of S1. In particular, S1 is a bounded operator

from L2(L2(Rn)) to L
2(Cn

, µλ) and S
1 is G0-covariant with respect to σ0.

Moreover, denoting by IB0 the (unitary) map from L2(L2(Rn)) onto L2(F0)
defined by IB0(A) = B0AB

−1
0 , we have S

1 = S
0
IB0 then

S
1(S1)∗ = (S0

IB0)(S
0
IB0)

∗ = S
0
IB0I

∗
B0

(S0)∗ = S
0(S0)∗ = B0

.

This shows that the Berezin transform corresponding to S
1 is the same as the

Berezin transform corresponding to S
0. Then we can write the polar decom-

positions of S0 and S
1 as S0 = (B0)1/2U0 and S

1 = (B0)1/2U1 where the maps
U

0 : L2(F0) → L
2(Cn

, µλ) and U
1 : L2(L2(Rn)) → L

2(Cn
, µλ) are unitary.

Moreover, as in the proof of [17], Proposition 3.1, we can verify that U0 is
a Stratonovich-Weyl correspondence for (G0,π0,Cn) and that U

1 is a Strato-
novich-Weyl correspondence for (G0,σ0,Cn). Note that G0-covariance of U0

and U
1 immediately follows from G0-covariance of S0 and S

1. Note also that
we have U

1 = U
0
IB0 .

Now, we show how to use the usual Weyl correspondence in order to get
another Stratonovich-Weyl correspondence for σ0. The Weyl correspondence
on R2n is defined as follows. For each f in the Schwartz space S(R2n), let
W0(f) be the operator on L

2(Rn) defined by

W0(f)φ(p) = (2π)−n
�

R2n

e
isq

f(p+ (1/2)s, q)φ(p+ s) ds dq.

The Weyl calculus can be extended to much larger classes of symbols (see
for instance [38]). In particular, if f(p, q) = u(p)qα where u ∈ C

∞(Rn) then
we have, see [53],

W0(f)ϕ(p) =

�
i
∂

∂s

�α

(u(p+ (1/2)s)φ(p+ s))
���
s=0

.
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From this, we can deduce the following proposition. Consider the action
of G0 on R2n given by g · (p, q) := (p+ a, q + λb) where g = [a, b, c].

Proposition 2.3 ([22]). Let Ψλ be the map defined by

Ψλ(p, q) :=
n�

k=1

(qkX
∗
k − λpkY

∗
k ) + λZ̃

∗
.

Then

1. For each X ∈ gc0 and each (p, q) ∈ R2n
, we have

W
−1
0 (dσ0(X))(p, q) = i�Ψλ(p, q), X�.

2. For each g ∈ G0 and (p, q) ∈ R2n
, we have Ψλ(g ·(p, q))=Ad∗(g)Ψλ(p, q).

3. The map Ψλ is a diffeomorphism from R2n
onto Oλ.

4. For each (p, q) ∈ R2n
, we have Φλ(q − λpi) = Ψλ(p, q).

Now, we assume that R2n is equipped with the G0-invariant measure µ̃ :=
(2π)−n

dpdq. Then one has the following result.

Proposition 2.4 ([22, 30]). The map W
−1
0 is a Stratonovich-Weyl correspon-

dence for (G0,σ0,R2n).

The following proposition asserts that if we identify R2n with Cn by the
map j : (p, q) → q−λpi then the unitary part in the polar decomposition of S1

coincides with the inverse of the Weyl transform, see [44] and [48].

Proposition 2.5. Let J be the map from L
2(Cn

, µλ) onto L
2(R2n) defined by

J(F ) = F ◦ j. Then we have U
1 = (W0J)−1

.

Finally, note that we can obtain Stratonovich-Weyl correspondences for
(G0,σ0,Oλ) and (G0,π0,Oλ) by transferring W

−1
0 and U

0 by using Φλ and
Ψλ. More precisely, let νλ be the G0-invariant measure on Oλ defined by
νλ := (Φ−1

λ )∗(µλ) = (Ψ−1
λ )∗(µ̃). Then the maps τΦλ : F → F ◦ Φ−1

λ from
L
2(Cn

, µλ) onto L
2(Oλ, νλ) and τΨλ : F → F ◦ Ψ−1

λ from L
2(R2n) onto

L
2(Oλ, νλ) are unitary and we have τΦλ = τΨλJ . Hence we can assert the

following proposition.

Proposition 2.6. The map W1 := τΨλW
−1
0 is a Stratonovich-Weyl corre-

spondence for (G0,σ0,Oλ), the map W2 := τΦλU
0
is a Stratonovich-Weyl cor-

respondence for (G0,π0,Oλ) and we have W1 = W2IB0 .
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3. Generalities on Heisenberg motion groups

In order to introduce the Heisenberg motion groups, it is convenient to write
the elements of the Heisenberg group G0 and its multiplication law as follows.
For each z ∈ Cn, c ∈ R, we denote here by (z, z̄, c) the element G0 which is
denoted by [Re z, Im z, c] in Section 2. Moreover, for each z, w ∈ Cn, we denote
zw :=

�n
k=1 zkwk and we consider the symplectic form ω on C2n defined by

ω((z, w), (z�, w�)) =
i

2
(zw� − z

�
w).

for z, w, z�, w� ∈ Cn. Then the multiplication of G0 is given by

((z, z̄), c) · ((z�, z̄�), c�) = ((z + z
�
, z̄ + z̄

�), c+ c
� + 1

2ω((z, z̄), (z
�
, z̄

�))), (1)

the complexification G
c
0 of G0 is G

c
0 = {((z, w), c) : z, w ∈ Cn

, c ∈ C} and
the multiplication of Gc

0 is obtained by replacing (z, z̄) by (z, w) and (z�, z̄�) by
(z�, w�) in Eq. 1.

Now, let K be a closed subgroup of U(n). Then K acts on G0 by k ·
((z, z̄), c) = ((kz, k̄z), c) and we can form the semidirect product G := G0 �K

which is called a Heisenberg motion group. The elements of G can be written
as ((z, z̄), c, k) where z ∈ Cn, c ∈ R and k ∈ K. The multiplication of G is then
given by

((z, z̄), c, k) · ((z�, z̄�), c�, k�) =
((z, z̄) + (kz�, k̄z�), c+ c

� + 1
2ω((z, z̄), (kz

�
, k̄z�)), kk�).

We denote by K
c the complexification of K and we consider the action of

K
c on Cn×Cn given by k ·(z, w) = (kz, (kt)−1

w) (here, the subscript t denotes
transposition). The group G

c is then the semidirect product G
c = G

c
0 � K

c.
The elements of Gc can be written as ((z, w), c, k) where z, w ∈ Cn, c ∈ C and
k ∈ K

c and the multiplication law of Gc is given by

((z, w), c, k) · ((z�, w�), c�, k�) =

((z, w) + k · (z�, w�), c+ c
� + 1

2ω((z, w), k · (z�, w�)), kk�).

We denote by k, kc, g and gc the Lie algebras of K, Kc, G and G
c. The

derived action of kc on Cn × Cn is then A · (z, w) := (Az,−A
t
w) and the Lie

brackets of gc are given by

[((z, w), c, A), ((z�, w�), c�, A�)] =

(A · (z�, w�)−A
� · (z, w),ω((z, w), (z�, w�)), [A,A

�]).
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Let K̃ be the subgroup of G defined by K̃ := {((0, 0), c, k) : c ∈ R, k ∈ K}.
Also, let h0 be a Cartan subalgebra of k. Then the Lie algebra k̃ of K̃ is
a maximal compactly embedded subalgebra of g and the subalgebra h of g
consisting of all elements of the form ((0, 0), c, A) where c ∈ R and A ∈ h0 is a
compactly embedded Cartan subalgebra of g [46], p. 250.

Following [46, Chapter XII.1], we set p+ = {((z, 0), 0, 0) : z ∈ Cn} and
p− = {((0, w), 0, 0) : w ∈ Cn} and we denote by P

+ and P
− the corresponding

analytic subgroups of Gc, that is, P+ = {((z, 0), 0, In) : z ∈ Cn} and P
− =

{((0, w), 0, In) : w ∈ Cn}.
Note that G is a group of the Harish-Chandra type [46, p. 507] (see also [50]

and [37, Chapter VIII]), that is, the following properties are satisfied:

1. gc = p+ ⊕ k̃c ⊕ p− is a direct sum of vector spaces, (p+)∗ = p− and
[̃kc, p±] ⊂ p±;

2. The multiplication map P
+
K̃

c
P

− → G
c, (z, k, y) → zky is a biholomor-

phic diffeomorphism onto its open image;

3. G ⊂ P
+
K̃

c
P

− and G ∩ K̃
c
P

− = K̃.

We denote by pp+ , pk̃c and pp− the projections of gc onto p+, k̃c and p−

associated with the above direct decomposition.
We can easily verify that each g = ((z0, w0), c0, k) ∈ G

c has a P
+
K̃

c
P

−-
decomposition given by

g = ((z0, 0), 0, In) · ((0, 0), c, k) · ((0, w0), 0, In)

where c = c0− i
4z0w0. We denote by ζ : P+

K̃
c
P

− → P
+, κ : P+

K̃
c
P

− → K
c

and η : P+
K̃

c
P

− → P
− the projections onto P

+-, K̃c- and P
−-components.

We can introduce an action (defined almost everywhere) of G on p+ as
follows. For Z ∈ p+ and g ∈ G

c, we define g ·Z ∈ p+ by g ·Z := log ζ(g expZ).
From the above formula for the P

+
K̃

c
P

−-decomposition, we deduce that if
g = ((z0, w0), c0, k) ∈ G and Z = ((z, 0), 0, 0) ∈ p+ then we have g · Z =
log ζ(g expZ) = ((z0 + kz, 0), 0, 0). Note that D := G · 0 = p+ � Cn here.

A useful section Z → gZ for the action of G on D can be obtained by using
[21, Proposition 4.5]. Here we get gZ = ((z, z̄), 0, In) for each Z = ((z, 0), 0, 0),
z ∈ Cn.

Now we compute the adjoint and coadjoint actions of Gc. Consider g =
(v0, c0, k0) ∈ G

c where v0 ∈ C2n, c0 ∈ C, k0 ∈ K
c and X = (w, c,A) ∈ gc

where w ∈ C2n, c ∈ C and A ∈ kc. We can easily verify that

Ad(g)X =
d

dt
(g exp(tX)g−1)|t=0 =

�
k0w − (Ad(k0)A) · v0, c

+ ω(v0, k0w)− 1
2ω(v0, (Ad(k0)A) · v0),Ad(k0)A

�
.
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Now, let us denote by ξ = (u, d,φ), where u ∈ C2n, d ∈ C and φ ∈ (kc)∗,
the element of (gc)∗ defined by

�ξ, (w, c,A)� = ω(u,w) + dc+ �φ, A�.

Also, for u, v ∈ C2n, we denote by v × u the element of (kc)∗ defined by �v ×
u,A� := ω(u,A · v) for A ∈ kc. Then, from the above formula for the adjoint
action, we deduce that for each ξ = (u, d,φ) ∈ (gc)∗ and g = (v0, c0, k0) ∈ G

c

we have

Ad∗(g)ξ =
�
k0u− dv0, d,Ad∗(k0)φ+ v0 × (k0u− d

2v0)
�

By restriction, we also get the analogous formula for the coadjoint action of G.
From this, we see that if a coadjoint orbit of G contains a point (u, d,φ) with
d �= 0 then it also contains a point of the form (0, d,φ0). Such an orbit is called
generic.

4. Fock model for Heisenberg motion groups

In this section, we introduce the Fock model of the unitary irreducible rep-
resentations of G by using the general method of [46, Chapter XII] that we
describe here briefly.

Let ρ be a unitary irreducible representation of K on a (finite-dimensional)
Hilbert space V and λ ∈ R. Let ρ̃ be the representation of K̃ on V defined by
ρ̃((0, 0), c, k) = e

iλc
ρ(k) for each c ∈ R and k ∈ K.

For each Z,W ∈ D, let K(Z,W ) := ρ̃(κ(expW ∗ expZ))−1 and for each
g ∈ G, Z ∈ D, let J(g, Z) := ρ̃(κ(g expZ)), [46, Chapter XII.1]. Consider the
Hilbert space F̃ of all holomorphic functions on D with values in V such that

�f�2F̃ :=

�

D
�K(Z,Z)−1

f(Z), f(Z)�V dµ(Z) < +∞

where µ denotes an invariant G-measure on D. Then the equation

π̃(g)f(Z) = J(g−1
, Z)−1

f(g−1 · Z)

defines a unitary representation of G on F̃ . This representation can be also
obtained by holomorphic induction from ρ̃, that is, it corresponds to the natural
action of G on the square-integrable holomorphic sections of the Hilbert G-
bundle G ×ρ̃ V over G/K ∼= D [22]. Note also that π̃ is irreducible since ρ̃ is
irreducible, [46, p. 515].

Here we can easily compute K and J . For each Z = ((z, 0), 0, 0), W =
((w, 0), 0, 0) ∈ D, we have K(Z,W ) = e

λzw̄/2
IV . Moreover, for each g =

((z0, z̄0), c0, k) ∈ G and Z = ((z, 0), 0, 0) ∈ D, we have

J(g, Z) = exp
�
iλc0 +

λ
2 z̄0(kz) +

λ
4 |z0|

2
�
ρ(k).
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Note that µ can be taken to be the G-invariant measure on D � Cn defined
by dµ(Z) := λ

n(2π)−n
dx dy. Here Z = ((z, 0), 0, 0) and z = x+ iy with x and

y in Rn. From now on, we identify Z = ((z, 0), 0, 0) ∈ D with z ∈ Cn and each
function on D with the corresponding function on Cn.

Consequently, the Hilbert product on F̃ is given by

�f, g�F̃ =

�

Cn

�f(z), g(z)�V e
−λ|z|2/2

�
λ

2π

�n

dx dy

and we get the following formula for π̃:

(π̃(g)f)(z) = exp
�
iλc0 +

λ
2 z̄0z −

λ
4 |z0|

2
�
ρ(k) f(k−1(z − z0))

where g = ((z0, z̄0), c0, k) ∈ G and z ∈ Cn.
In fact, in order to use the results of Section 2, it is convenient to replace

π̃ by an equivalent representation π whose restriction to G0 is precisely π0. To
this aim, we consider the Fock space F of all holomorphic functions f : Cn → V

such that

�f�2F :=

�

Cn

�f(z)�2V e
−|z|2/2λ

dµλ(z) < +∞.

Let J : F̃ → F be the unitary operator defined by J (f)(z) = f(iλ−1
z)

and set π(g) := J π̃(g)J−1 for each g ∈ G. Then we have

(π(g)f)(z) = exp
�
iλc0 +

1
2 iz̄0z −

λ
4 |z0|

2
�
ρ(k) f(k−1(z + iλz0))

where g = ((z0, z̄0), c0, k) ∈ G and z ∈ Cn.
We can easily compute the differential of π:

Proposition 4.1. Let X = ((a, ā), c, A) ∈ g. Then, for each f ∈ F and each

z ∈ Cn
, we have

(dπ(X)f)(z) = dρ(A)f(z) + i(λc+ 1
2 āz)f(z) + dfz(−Az + iλa).

Clearly, one has F = F0 ⊗ V . For f0 ∈ F0 and v ∈ V , we denote by
f0 ⊗ v the function z → f0(z)v. Moreover, if A0 is an operator of F0 and A1

is an operator of V then we denote by A0 ⊗ A1 the operator of F defined by
(A0 ⊗A1)(f0 ⊗ v) = A0f0 ⊗A1v.

Let τ be the left-regular representation of K on F0, that is, (τ(k)f0)(z) =
f0(k−1

z). Then we have

π((z0, z̄0), c0, k) = π0((z0, z̄0), c0)τ(k)⊗ ρ(k) (2)

for each z0 ∈ Cn, c0 ∈ R and k ∈ K. Note that this is precisely Formula (3.18)
in [8].
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5. Stratonovich-Weyl correspondence via Berezin

quantization

In this section, we introduce the Berezin quantization map associated with π

and the corresponding Stratonovich-Weyl correspondence. We consider first
the Berezin quantization map associated with ρ [5, 15, 55].

Let us fix a positive root system of k relative to h0 and denote by Λ ∈ (hc0)
∗

the highest weight of ρ and by kc = n+ ⊕ hc0 ⊕ n− the corresponding triangular
decomposition of kc. Let ϕ̃0 be the element of (kc)∗ defined by ϕ̃0 = −iΛ on
h0 and by ϕ̃0 = 0 on n±. We denote by ϕ0 the restriction of ϕ̃0 to k. Then
the orbit o(ϕ0) of ϕ0 under the coadjoint action of K is said to be associated
with ρ [14, 55].

Here we assume that ϕ0 is regular in the sense that the stabilizer of ϕ0 for
the coadjoint action of K is precisely the connected subgroup H0 of K with
Lie algebra h0 [15].

Note that a complex structure on o(ϕ0) is then defined by the diffeomor-
phism o(ϕ0) � K/H0 � K

c
/H

c
0N

− where H0 is the connected subgroup of K
with Lie algebra h0 and N

− is the analytic subgroup of Kc with Lie algebra n−.
Without loss of generality, we can assume that V is a space of holomorphic

sections of a complex line bundle over o(ϕ0) as in [15]. For each ϕ ∈ o(ϕ0) there
exists a unique function eϕ ∈ V (a coherent state) such that a(ϕ) = �a, eϕ�V
for each a ∈ V . The Berezin calculus on o(ϕ0) associates with each operator B
on V the complex-valued function s(B) on o(ϕ0) defined by

s(B)(ϕ) =
�Beϕ, eϕ�V
�eϕ, eϕ�V

which is called the symbol of B. We denote by Sy(o(ϕ0)) the space of all such
symbols. Then we have the following proposition, see [5, 15, 25].

Proposition 5.1. 1. The map B → s(B) is injective.

2. For each operator B on V , we have s(B∗) = s(B).

3. For each ϕ ∈ o(ϕ0), k ∈ K and B ∈ End(V ), we have

s(B)(Ad∗(k)ϕ) = s(ρ(k)−1
Bρ(k))(ϕ).

4. For each A ∈ k and ϕ ∈ o(ϕ0), we have s(dρ(A))(ϕ) = i�ϕ, A�.

In our papers [18, 19, 23], we developped a general method for construct-
ing a Berezin quantization map associated with a unitary representation of a
quasi-Hermitian Lie group which is holomorphically induced from a unitary
irreducible representation of a maximal compactly embedded subgroup. This
construction goes as follows.
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The evaluation maps Kz : H → V, f → f(z) are continuous [46], p. 539.
The vector coherent states of F are the maps Ez = K

∗
z : V → F defined by

�f(z), v�V = �f,Ezv�F for f ∈ F and v ∈ V . Here we have that Ezv = ez ⊗ v,
that is, we have (Ezv)(w) = e

λz̄w/2
v.

Let Fs be the subspace of F generated by the functions ez ⊗ v for z ∈ Cn

and v ∈ V . Then Fs is a dense subspace of F . Let C be the space consisting of
all operators A on F such that the domain of A contains Fs and the domain
of A∗ also contains Fs. Then, following an idea of [40] and [2], we first introduce
the pre-symbol S0(A) of A ∈ C by

S0(A)(z) = (E∗
zEz)

−1/2
E

∗
zAEz(E

∗
zEz)

−1/2 = e
−λzz̄/2

E
∗
zAEz.

The Berezin symbol S(A) of A is thus defined as the complex-valued func-
tion on Cn × o(ϕ0) given by

S(A)(z,ϕ) = s(S0(A)(z))(ϕ).

By applying [23, Proposition 4.4] we can see that S has the following prop-
erties.

Proposition 5.2. 1. Each A ∈ C is determined by S(A).

2. For each A ∈ C, we have S(A∗) = S(A).

3. We have S(IF ) = 1.

4. For each A ∈ C, g = ((z0, z̄0), c, k) ∈ G, z ∈ Cn
and ϕ ∈ o(ϕ0), we have

S(A)(g · z,ϕ) = S(π(g)−1
Aπ(g))(z,Ad∗(k−1)ϕ).

Moreover, we can decompose S according to the decomposition F = F0⊗V .
Let f0 be a complex-valued function on Cn and f1 be a complex-valued function
on o(ϕ0). Then we denote by f0 ⊗ f1 the function on Cn × o(ϕ0) defined by
(f0 ⊗ f1)(z,ϕ) = f0(z)f1(ϕ).

Proposition 5.3. Let A0 ∈ C0 and let A1 be an operator on V . Then A0⊗A1 ∈
C and we have S(A0 ⊗A1) = S

0(A0)⊗ s(A1).

From this, we deduce the following result. We denote by ϕ
0 the restriction

to g of the extension of ϕ̃0 ∈ (kc)∗ to gc which vanishes on p±. We also denote
by O(ϕ0) the orbit of ϕ0 for the coadjoint action of G.

Proposition 5.4 ([23]). 1. Let g = ((z0, z̄0), c0, k) ∈ G. For each z ∈ Cn

and ϕ ∈ o(ϕ0), we have

S(π(g))(z,ϕ) = exp
�
iλc0 +

1
2 iz̄0z −

λ
4 |z0|

2 − λ
2 |z|

2 + λ
2 z̄k

−1(z + iλz0)
�

× s(ρ(k))(ϕ).
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2. For each X = ((a, ā), c, A) ∈ g, z ∈ Cn
and ϕ ∈ o(ϕ0), we have

S(dπ(X))(z,ϕ) = iλc+
i

2

�
āz + λ

2
az̄

�
− λ

2
z̄(Az) + s(dρ(A))(ϕ).

3. For each X = ((a, ā), c, A) ∈ g, z ∈ Cn
and ϕ ∈ o(ϕ0), we have

S(dπ(X))(z,ϕ) = i�Φ(z,ϕ), X�
where the map Φ : Cn × o(ϕ0) → g∗ is defined by

Φ(z,ϕ) =
�
i(−z,λ

2
z̄),λ,ϕ− λ

2 (z, z̄) × (z, z̄)
�
.

Moreover Φ is a diffeomorphism from Cn × o(ϕ0) onto O(ϕ0).

Consider now the Berezin transforms B := SS
∗, B0 := S

0(S0)∗, b := ss
∗

and the corresponding maps U := B−1/2
S, U0 := (B0)−1/2

S
0 and w := b

−1/2
s.

We fix a K-invariant measure ν on o(ϕ0) and we endow Cn × o(ϕ0) with the
measure µλ ⊗ ν. Also, we consider the action of G on Cn × o(ϕ0) given by

g · (z,ϕ) := (g · z,Ad∗(k)ϕ)

for g = ((z0, z̄0), c0, k) ∈ G. Then we have the following results.

Proposition 5.5 ([23]). The map U is a Stratonovich-Weyl correspondence

for (G,π,Cn × o(ϕ0)).

Proposition 5.6 ([23]). For each f ∈ L
2(Cn × o(ϕ0), µλ ⊗ ν), we have

B(f)(z,ψ) =
�

Cn×o(ϕ0)
kB(z, w,ψ,ϕ) f(w,ϕ) dµλ(w)dν(ϕ)

where

kB(z, w,ψ,ϕ) := e
−λ|z−w|2/2 |�eψ, eϕ�V |2

�eϕ, eϕ�V �eψ, eψ�V
.

In particular, for each f0 ∈ L
2(Cn) and f1 ∈ Sy(o(ϕ0)), we have B(f0 ⊗

f1) = B0(f0) ⊗ b(f1). Moreover for each A0 operator on F0 and A1 operator

on V , we have U(A0 ⊗A1) = U
0(A0)⊗ w(A1).

Note that it is well-known that if ∆0 := 4
�n

k=1(∂zk∂z̄k) is the Laplace
operator then we have B0 = exp(∆0/2γ), see [44]. Thus we get

U
0 = exp(−∆0/4γ)S

0
.

Hence, by applying Proposition 5.4 and Proposition 5.6, we obtain the following
result.

Proposition 5.7 ([23]). For each X = ((a, ā), c, A) ∈ g, z ∈ Cn
and ϕ ∈ o(ϕ0),

we have

U(dπ(X))(z,ϕ) = icλ+ w(dρ(A))(ϕ) +
1

2
Tr(A) +

i

2

�
āz + λ

2
az̄

�
− λ

2
z̄(Az).
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6. Schrödinger model for Heisenberg motion groups

Here we introduce the Schrödinger representations of G by using a Segal-
Bargmann transform which is obtained by a slight modification of B0. More
precisely, let us define the map B from L

2(Rn
, V ) ∼= L

2(Rn)⊗V to F ∼= F0⊗V

by B := B0 ⊗ IV or, equivalently, by the integral formula

B(f)(z) = (λ/π)n/4
�

Rn

e
(1/4λ)z2+ixz−(λ/2)x2

f(x) dx

for each f ∈ L
2(Rn

, V ).
Now, by analogy with the case of the Heisenberg group, we define the

Schrödinger representation σ of G on L
2(Rn

, V ) by σ(g) := B
−1

π(g)B. Simi-
larly, recalling that τ is the representation of K on F0 given by (τ(k)F )(z) =
F (k−1

z), we define the representation τ̃ ofK on L
2(Rn) by τ̃(k) := B

−1
0 τ(k)B0.

Then we have the following proposition.

Proposition 6.1. Let g0 ∈ G0, k ∈ K and g = (g0, k) ∈ G. Then we have

σ(g) = σ0(g0)τ̃(k)⊗ ρ(k).

Proof. Let f0 ∈ L
2(Rn) and v ∈ V . Then by Eq. 2 we have

σ(g)(f0 ⊗ v) = (B−1
0 ⊗ IV )(π0(g0)τ(k)⊗ ρ(k))(B0 ⊗ IV )(f0 ⊗ v)

= (B−1
0 π0(g0)τ(k)B0)f0 ⊗ ρ(k)v

= σ0(g0)(B
−1
0 τ(k)B0)f0 ⊗ ρ(k)v,

hence the result.

The following proposition gives an explicit expression for dσ(X) when X is
of the form ((0, 0), 0, A) where A ∈ k.

Proposition 6.2. 1. For each A = (akl) ∈ k, we have

dτ̃(A) =
1

2λ

�

k,l

akl
∂
2

∂xk∂xl
+

1

2

�

k,l

akl

�
xk

∂

∂xl
− xl

∂

∂xk

�

− λ

2
x(Ax) +

1

2
Tr(A).

2. For each X = ((0, 0), 0, A) with A ∈ k, we have

dσ(X) = dτ̃(A)⊗ IV + IF0 ⊗ dρ(A)

where dτ̃(A) is as in 1.
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Proof. In order to prove the first statement, first note that for each A ∈ k and
F

0 ∈ F0 we have

(dτ(A)F 0)(z) = −(dF 0)z(Az) = −
�

k

∂F
0

∂zk
(z)(ek(Az)).

To simplify the notation we denote by kB0(z, x) the kernel of B0, that is,

kB0(z, x) :=

�
λ

π

�n/4

e
(1/4λ)z2+ixz−(λ/2)x2

.

Then, for each f0 ∈ S(Rn) we have

(dτ(A)B0f0)(z) = −
�

Rn

�
1

2λ
z(Az) + ix(Az)

�
kB0(z, x)f0(x)dx.

Thus writing z(Az) =
�

k,l aklzkzl and integrating by parts, we get

�

Rn

z(Az)kB0(z, x)f0(x)dx

= −
�
λ

π

�n/4 �

k,l

akl

�

Rn

e
(1/4λ)z2+ixz ∂

2

∂xk∂xl
(e−(λ/2)x2

f0(x))dx

and, similarly,

�

Rn

ix(Az)kB0(z, x)f0(x)dx

= −
�
λ

π

�n/4 �

k,l

akl

�

Rn

e
(1/4λ)z2+ixz ∂

∂xl
(e−(λ/2)x2

xkf0(x))dx.

The first statement hence follows. The second statement is an immediate con-
sequence of Proposition 6.1 .

Note that σ is completely determined by the fact that σ(g0, In) = σ0(g0)⊗IV

and by Proposition 6.2.

7. Stratonovich-Weyl correspondence via Weyl calculus

In this section we first introduce a slight modification of the usual Weyl corre-
spondence in the spirit of our previous works, see for instance [14].

Recall that the Berezin calculus s associates with each operator B on V a
complex-valued function s(B) on o(ϕ0) which is called the symbol of B and
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that the space of all such symbols is denoted by Sy(o(ϕ0)), see Section 5. Then
the unitary part w of s is an isomorphism from End(V ) onto Sy(o(ϕ0)).

Now we say that a complex-valued smooth function f : (p, q,ϕ) → f(p, q,ϕ)
is a symbol on R2n × o(ϕ0) if for each (p, q) ∈ R2n the function f(p, q, ·) :
ϕ → f(p, q,ϕ) is an element of Sy(o(ϕ0)). In that case, we denote f̂(p, q) :=
w

−1(f(p, q, ·)). A symbol f on R2n×o(ϕ0) is called an S-symbol if the function
f̂ belongs to the Schwartz space S(R2n

,End(V )) of rapidly decreasing smooth
functions on R2n with values in End(V ). For each S-symbol on R2n × o(ϕ0),
we define the operator W (f) on the Hilbert space L

2(Rn
, V ) by

W (f)φ(p) = (2π)−n
�

R2n

e
isq

f̂(p+ (1/2)s, q)φ(p+ s) ds dq.

Of course, W can be extended to much larger classes of symbols as the usual
Weyl calculus, see Section 2. As an immediate consequence of the definition of
W , we have the following proposition.

Proposition 7.1. 1. The map W is a unitary operator from L
2(R2n

, V )
onto L2(L2(Rn

, V ));

2. For each f0 ∈ S(Rn) and f1 ∈ Sy(o(ϕ0)), we have

W (f0 ⊗ f1) = W0(f0)⊗ w
−1(f1).

In order to compare W and U , it is convenient to transfer U to operators
on L

2(Rn
, V ) in the spirit of Proposition 2.5. First, for any operator A on

L
2(Rn

, V ), we define S1(A) := S(BAB
−1). Clearly, one has S1S

∗
1 = SS

∗ = B.
Then the unitary part U1 of S1 is given by U1(A) := U(BAB

−1) for any
operator A on L

2(Rn
, V ). Moreover, we have

U1 = B−1/2
S1 =

�
(B0)−1/2 ⊗ b

−1/2
� �

S
1 ⊗ s

�

= (B0)−1/2
S
1 ⊗ b

−1/2
s = U

1 ⊗ w

with obvious notation. Hence we are in position to extend Proposition 2.5 to
Heisenberg motion groups.

Proposition 7.2. We have U1 = (J−1 ⊗ ISy(o(ϕ0)))W
−1

.

Proof. By using Proposition 7.1 and Proposition 2.5, we get

(J−1 ⊗ ISy(o(ϕ0)))W
−1 = (J−1 ⊗ ISy(o(ϕ0)))(W

−1
0 ⊗ w)

= (J−1
W

−1
0 )⊗ w = U

1 ⊗ w = U1.

This is the desired result.
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Now consider the action of G on R2n × o(ϕ0) given by

g · (p, q,ϕ) := (j−1(g · j(p, q)),Ad∗(k)ϕ)

for g = ((z0, z̄0), c0, k) ∈ G. Then we have the following result.

Proposition 7.3. 1. The map W
−1

is a Stratonovich-Weyl correspondence

for (G,σ,R2n × o(ϕ0)).

2. For each X = ((a, ā), c, A) ∈ g, p, q ∈ Rn
and ϕ ∈ o(ϕ0), we have

W
−1(dσ(X))(p, q,ϕ) = iλc+

1

2
Tr(A) +

i

2

�
āj(p, q) + λ

2
aj(p, q)

�

− λ

2
j(p, q)(Aj(p, q)) + w(dρ(A))(ϕ).

Proof. 1. For each g = ((z0, z̄0), c0, k) ∈ G let us denote by Lg the operator of
L
2(Cn × o(ϕ0), µλ ⊗ ν) defined by

(LgF )(z,ϕ) = F (g · z,Ad∗(k)ϕ).

Then the covariance property for U can be rewritten as

LgU(A) = U(π(g)−1
Aπ(g))

for each g ∈ G and A ∈ L2(F). This gives the following covariance property
for U1:

LgU1(A) = U1(σ(g)
−1

Aσ(g))

for each g ∈ G and A ∈ L2(L2(Rn
, V )). But by Proposition 7.2 we have

U1 = (J−1 ⊗ ISy(o(ϕ0)))W
−1. Thus we get

(J ⊗ ISy(o(ϕ0)))Lg(J
−1 ⊗ ISy(o(ϕ0)))W

−1(A) = W
−1(σ(g)−1

Aσ(g))

for each g ∈ G and A ∈ L2(L2(Rn
, V )).

Now let
(L̃gf)(p, q,ϕ) := f(j−1(g · j(p, q)),Ad∗(k)ϕ)

for each g = ((z0, z̄0), c0, k) ∈ G and (p, q,ϕ) ∈ R2n × o(ϕ0). Since it is clear
that for each g ∈ G we have

L̃g = (J ⊗ ISy(o(ϕ0)))Lg(J
−1 ⊗ ISy(o(ϕ0))),

we see that
L̃gW

−1(A) = W
−1(σ(g)−1

Aσ(g))

for each g ∈ G and A ∈ L2(L2(Rn
, V )). Hence W

−1 is G-covariant. The other
properties of a Stratonovich-Weyl correspondence can be easily verified.
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2. For each X ∈ gc, we have

U(dπ(X)) = U1(dσ(X)) = ((J−1 ⊗ ISy(o(ϕ0)))W
−1(dσ(X))

hence the result follows from Proposition 5.7.

Finally, we can obtain Stratonovich-Weyl correspondences for (G,π,O(ϕ0))
and for (G,σ,O(ϕ0)) by transferring U and W

−1 by means of Φ. Let

Ψ := Φ ◦ (j ⊗ 1) : R2n × o(ϕ0) → O(ϕ0)

and let ν̃ be the G-invariant measure on O(ϕ0) defined by

ν̃ := (Φ−1)∗(µλ ⊗ ν) = (Ψ−1)∗(µ̃⊗ ν).

Consider also the unitary maps τΦ : F → F ◦Φ−1 from L
2(Cn × o(ϕ0), µλ ⊗ ν)

onto L
2(O(ϕ0), ν̃) and τΨ : F → F ◦ Ψ−1 from L

2(R2n × o(ϕ0), µ̃ ⊗ ν) onto
L
2(O(ϕ0), ν̃). Then we have the following proposition.

Proposition 7.4. The map W �
1 := τΨW

−1
is a Stratonovich-Weyl correspon-

dence for (G,σ,O(ϕ0)), the map W �
2 := τΦU is a Stratonovich-Weyl correspon-

dence for (G,π,O(ϕ0)) and we have W �
1 = W �

2IB.

Proof. The first and the second assertions immediately follow from Proposi-
tion 5.5 and Proposition 7.3. To prove the third assertion, note that we have
τΨ(J ⊗ ISy(o(ϕ0))) = τΦ. Then, by Proposition 7.2, we can write

W �
2IB = τΦUIB = τΦU1 = τΦ(J

−1 ⊗ ISy(o(ϕ0)))W
−1 = τΨW

−1 = W �
1,

hence the result.
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Notes on a combinatorial identity

Horst Alzer and Helmut Prodinger

Abstract. We present a short and simple proof by induction for

n�
k=0

(−1)kq(
k
2)
�n
k

�
q

1
(1−qk+m)2 = qm

1−qm

n�
j=1

1−qj

1−qj+m

�
2 +

n�
j=0

qj+m

1−qj+m

�
,

where n ≥ 1 is an integer and m �= 0,−1, . . . ,−n is a complex number.
This is a q-analogue of a combinatorial identity obtained by Kirschen-
hofer (1996) and Larcombe, Fennessey, and Koepf (2004). Moreover,
we show that the alternating q-binomial sum is completely monotonic
with respect to m, if m > 0 and q ∈ (0, 1). The general case where
the exponent 2 is replaced by a positive integer d is dealt with using the
elementary technique of partial fraction decomposition.

Keywords: Combinatorial identity, q-binomial coefficient, completely monotonic, partial
fraction decomposition.
MS Classification 2010: 05A19, 11B65.

1. Introduction

The work on this note has been inspired by an interesting research paper pub-
lished in 1996 by Kirschenhofer [11], who performed manipulations of generat-
ing functions to find identities for the alternating binomial sum

n�

k=0

(−1)k
�
n

k

�
f(k). (1)

A well-known approach to study sums of the type (1) is attributed to Rice,
who made use of Complex Analysis. The Rice method is based upon the
formula

n�

k=0

(−1)k
�
n

k

�
f(k) = − 1

2πi

�

C
B(n+ 1,−z)dz,

where B(x, y) is Euler’s beta function, C is a positively oriented closed curve
surrounding 0, 1, 2, . . . , n and f is an analytic function with no poles inside the
region surrounded by C .
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The main reason for the interest in alternating binomial sums is that they
have remarkable applications in Computer Science and the Theory of Algo-
rithms. For more information on this subject we refer to [7, 8, 16].

Kirschenhofer proved that the sum

n�

k=0

(−1)k
�
n

k

�
1

(k +m)d
(d ∈ N) (2)

can be expressed in terms of Bell polynomials and harmonic numbers, whereas
Coffey [5] showed that this sum can be written as an infinite series involving
Stirling numbers. As a special case Kirschenhofer found the elegant identity

n�

k=0

(−1)k
�
n

k

�
1

(k +m)2
=

h
(1)
m,n

m
�m+n

m

� , (3)

where

h
(j)
m,n =

m+n�

k=m

1

kj
= H

(j)
m+n −H

(j)
m−1.

Here, H(j)
n denotes the n-th harmonic number of order j.

In 2004, Larcombe et al. [13] presented a new method to find identities
for (2). They used an integration technique to offer proofs for (3) and

n�

k=0

(−1)k
�
n

k

�
1

(k +m)3
=

(h(1)
m,n)2 + h

(2)
m,n

2m
�m+n

m

� . (4)

Moreover, they demonstrated that (3) and (4) as well as corresponding
identities for the sum in (2) with d ≥ 4 can be obtained by differentiation with
respect to m, starting with

n�

k=0

(−1)k
�
n

k

�
1

k +m
=

1

m
�m+n

n

� .

Larcombe et al. [14] provided a recursive equation for a sum closely related
to (2) and used their result to find new proofs for (3), (4) and similar identities.
Other methods to deal with the sums in question are described in [10, 12, 15].

In this paper we demonstrate that the identity (3) can be proved easily by
using induction. More precisely, in the next section we present a short and
elementary proof for a q-analogue of (3). Furthermore, as an application we
prove a monotonicity property of the alternating q-binomial sum. In a final
section, we show how to deal with the general case in a completely elementary
fashion, using not more than partial fraction decomposition from elementary
calculus.
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2. The identity

The q-binomial coefficients (also known as Gaussian binomial coefficients) are
defined by

�
n

k

�

q

=
k�

j=1

1− q
n+1−j

1− qj
if 0 ≤ k ≤ n and

�
n

k

�

q

= 0 otherwise.

If q → 1, then
�n
k

�
q
tends to

�n
k

�
. A collection of the most important properties

of q-binomial coefficients can be found, for instance, in [4].
The following q-version of (3) holds.

Theorem 2.1. Let n ≥ 1 be an integer and let m be a complex number with
m �= 0,−1, . . . ,−n. Then,

n�

k=0

(−1)kq(
k
2)
�
n

k

�

q

1

(1−qk+m)2
=

q
m

1−qm

n�

j=1

1−q
j

1−qj+m

�
2 +

n�

j=0

q
j+m

1−qj+m

�
. (5)

Throughout, we denote the sum on the left-hand side of (5) by S(m,n, q).

Proof. We use induction on n to prove (5). If n = 1, then both sides of (5) are
equal to

(1− q)qm(2− q
m − q

m+1)

(1− qm)2(1− qm+1)2
.

We set

T (m,n, q) = 2 +
n�

j=0

q
j+m

1− qj+m
.

Applying the recurrence formula
�
n+ 1

k

�

q

=

�
n

k

�

q

+ q
n+1−k

�
n

k − 1

�

q

and the induction hypothesis yields

S(m,n+ 1, q) = S(m,n, q)− q
n
S(m+ 1, n, q)

=
q
m

1− qm

n+1�

j=1

1− q
j

1− qj+m

×
�
1− q

m+n+1

1− qn+1
T (m,n, q)− q

n+1(1− q
m)

1− qn+1
T (m+ 1, n, q)

�

=
q
m

1− qm

n+1�

j=1

1− q
j

1− qj+m
T (m,n+ 1, q).

This gives (2.1) with n+ 1 instead of n.
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Remark 2.2. (i) If we multiply both sides of (5) by (1 − q)2 and let q → 1,
then we obtain

n�

k=0

(−1)k
�
n

k

�
1

(k +m)2
=

n!Γ(m)

Γ(m+ n+ 1)

�
ψ(m+ n+ 1)− ψ(m)

�
,

where ψ = Γ�
/Γ denotes the digamma function. This identity is given in [13].

The special case that m is a natural number yields (3).
(ii) If we differentiate both sides of (5) with respect to m, then we obtain

the following q-analogue of (4):

n�

k=0

(−1)kq(
k+1
2 )

�
n

k

�

q

1

(1− qk+m)3

=
1

1− qm

n�

j=1

1− q
j

1− qj+m

�
(1 + σ1)

�
1 +

1

2
σ1

�
+ σ2

�
, (6)

where

σk = σk(m,n, q) =
1

k

n�

j=0

q
j+m

(1− qj+m)k
.

Identity (4) follows easily from (6). Indeed, if we multiply both sides of (6) by
(1− q)3 and let q → 1, then we arrive at (4).

We recall that a function f : (0,∞) → R is said to be completely monotonic,
if

(−1)Nf
(N)(x) ≥ 0 (N = 0, 1, 2, . . . ; x > 0).

These functions have interesting applications, for instance, in probability the-
ory, numerical and asymptotic analysis. In numerous papers it was proved
that various functions which are defined in terms of gamma, polygamma and
other special functions are completely monotonic. We refer to [2, 3] and the
references therein. See also [17] for background information.

An application of Theorem 2.1 reveals that the alternating q-binomial sum
S(m,n, q) satisfies the following monotonicity property.

Corollary 2.3. Let n ≥ 1 be an integer and q ∈ (0, 1) be a real number. The
function m �→ S(m,n, q) is completely monotonic on (0,∞).

Proof. Since a nonnegative constant function is completely monotonic and the
sum and the product of completely monotonic functions are also completely
monotonic, we conclude from (5) that in order to show that S(m,n, q) is com-
pletely monotonic with respect to m it suffices to show that the functions

f1(m) = q
m and f2(m) =

1

1− qj+m
(j ≥ 0)
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are completely monotonic. This follows from

(−1)Nf
(N)
1 (m) = (− log q)Nq

m
> 0

and

(−1)Nf
(N)
2 (m) = (− log q)N

∞�

k=0

q
k(j+m)

k
N

> 0

which hold for all integers N ≥ 0.

Remark 2.4. (i) Fink [6] proved that a completely monotonic function is not
only convex but even log-convex. This means that Corollary 2.3 leads to the
inequality

S

�
a+ b

2
, n, q

�
≤

�
S(a, n, q)S(b, n, q). (7)

(ii) A theorem of Hardy et al. [9, p. 97] states that if a function φ is twice
differentiable and convex on (0,∞), then so is x �→ xφ(1/x). Using this result
with φ = logS we obtain

S

� 2

1/a+ 1/b
, n, q

�a+b
≤ S(a, n, q)b S(b, n, q)a. (8)

The inequalities (7) and (8) are valid for all a, b > 0, n ≥ 1 and q ∈ (0, 1).
(iii) We have shown that identity (5) can be applied to prove a monotonicity

property of S(m,n, p). It might be of interest to present series, product or
integral representations for other binomial sums in order to find similar results.
An example is given in [1].

3. The general case

Let, as usual, (z; q)n = (1− z)(1− zq) . . . (1− zq
n−1) and set

F (z) =
(q; q)n

(z; q)n+1

z
d

(z − qm)d
.

This rational function has poles at q
0
, q

−1
, . . . , q

−n, and at q
m. We con-

struct the partial fraction decomposition:

F (z) =
n�

k=0

(−1)k−1
q
(k2)

�
n

k

�

q

1

(1− qk+m)d
1

z − q−k

+
Ad

(z − qm)d
+

Ad−1

(z − qm)d−1
+ · · ·+ A1

(z − qm)1
.
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Multiplying this relation by z, and then letting z → ∞, we get for n ≥ 1:

0 =
n�

k=0

(−1)k−1
q
(k2)

�
n

k

�

q

1

(1− qk+m)d
+A1.

So
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n�

k=0

(−1)kq(
k
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�
n

k

�

q

1

(1− qk+m)d

= [(z − q
m)−1]F (z) = [(z − q

m)d−1]
(q; q)nzd
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(q; q)n(w + q
m)d

(w + qm; q)n+1
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m)d
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(q; q)n(w + q

m)d

(1− qm) . . . (1− qm+n)(1− w
1−qm ) . . . (1− wqn

1−qn+m )
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(q; q)n(q; q)m−1

(q; q)m+n(1− w
1−qm ) . . . (1− wqn
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d�

j=0
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j

�
w

d−j
q
mj
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�
d
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�
q
m(j+1)[wj ]
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.

We continue with the computation of

[wj ]
1
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�
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1
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��

k≥1

1

k

w
k

(1− qm)k
+ · · ·+

�

k≥1

1

k

w
k
q
nk

(1− qm+n)k

�

= [wj ] exp

��

k≥1

τkw
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with

τk = τk(m,n, q) =
1

k

n�

j=0

�
q
j

1− qj+m

�k
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Furthermore,

[wj ] exp

��

k≥1

τkw
k

�
= [wj ]eτ1weτ2w

2

e
τ3w

3

. . .

=
�

k1+2k2+3k3+···=j

τ
k1
1 τ

k2
2 τ

k3
3 . . .

k1!k2!k3! . . .

which leads to the final formula:

n�
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1 τ
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The special case d = 2 gives (5) and for d = 3 we obtain the following counter-
part of (6):

n�

k=0

(−1)kq(
k
2)
�
n

k

�

q

1

(1− qk+m)3

=
q
m

1− qm

n�

j=1

1− q
j

1− qj+m

�
3 + 3qmτ1 + q

2m
�1
2
τ
2
1 + τ2

��
.

Remark 3.1. If m is a positive integer, then

τk =
q
−mk

k

m+n�

j=m

�
q
j

1− qj

�k
=

q
−mk

k

�
H

(k)
m+n − H

(k)
m−1

�
,

where H
(k)
n denotes the q-analogue of the n-th harmonic number of order k.
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Global bifurcation for Fredholm

operators

Julián López-Gómez

Abstract. This paper reviews the global bifurcation theorem of J.
López-Gómez and C. Mora-Corral [18] and derives from it a global
version of the local theorem of M. G. Crandall and P. H. Rabinowitz [5]
on bifurcation from simple eigenvalues, as well as a refinement of the
unilateral bifurcation theorem of [14, Chapter 6].

Keywords: Bifurcation theory, Fredholm operators, topological degree, algebraic mul-
tiplicities, compact components.
MS Classification 2010: 47J15, 58C40.

1. Introduction

The local bifurcation theorem of M. G. Crandall and P. H. Rabinowitz [5] (1971)
and the global alternative of P. H. Rabinowitz [23] (1971) are two pioneering
results that have been extensively used by applied analysts over the last forty-
five years. Undoubtedly, they have shown to be a milestone for the generation of
new results in nonlinear analysis. Although the functional setting of the former
is user-friendly by practitioners, as it merely involves a simple transversality
condition easy to check in applications, the latter often requires to express a
nonlinear equation as a fixed point equation for a nonlinear compact operator
and then checking that the classical concept of algebraic multiplicity is odd,
which is not always an easy task, even if possible. Among other technical
troubles, the geometric multiplicity of the eigenvalue might be one while the
algebraic one is even. Thus, a global bifurcation result in the functional setting
of Crandall–Rabinowitz local bifurcation theorem was desirable since the early
seventies, so that the local theorem could be applied directly to get global
results.

Actually, the (extremely hidden) links between the several concepts of al-
gebraic multiplicities available in the context of local and global bifurcation
theory remained a mystery, almost un-explored except for some few attempts
involving the cross numbers, until the papers of R. J. Magnus [20] (1976) and J.
Esquinas and J. López-Gómez [8], [7] (1988) were published. Indeed, the cross
number was designed to detect any change of the topological degree as the
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underlying parameter, λ, crossed a singular value, λ0, through the Schauder
formula, i.e., by means of the total number of negative eigenvalues, counting
classical algebraic multiplicities, of the linearized equation. From a practical
point of view the cross number was far from useful; as merely reformulated an
open problem in nonlinear analysis through another one in operator theory –of
dynamical nature, but equally open–, though it certainly illuminated the un-
derlying mathematical analysis by incorporating a (new) dynamical perspective
into it.

Theorem 2.1 of J. Esquinas and J. López-Gómez [8] (1988) provided with
a substantial –rather direct, but far from obvious– extension of the local bifur-
cation theorem of M. G. Crandall and P. H. Rabinowitz [5] (1971) by charac-
terizing the nonlinear eigenvalues, λ0, of a Fredholm family of operators, L(λ),
λ ∼ λ0, through a new generalized concept of algebraic multiplicity, χ[L;λ0],
which is a substantial extension of the previous one of Crandall–Rabinowitz.

Roughly, a nonlinear eigenvalue, λ0, is a critical value of the parameter
where a local bifurcation occurs independently of the structure of the nonlinear
perturbation. According to Theorem 4.3.4 of [14] (2001), an isolated eigenvalue
λ0 of L(λ) is a nonlinear eigenvalue of L(λ) if and only if χ[L;λ0] is odd. That
χ[L;λ0] extends the concept of multiplicity of a simple eigenvalue as discussed
by M. G. Crandall and P. H. Rabinowitz [5] (1971) is evident from its own
definition. This becomes apparent by simply having a glance at Remark 4.2.5
of [14] (2001), or going back to the comment on the first paragraph on page 77
of [8] (1988), where it was explicitly asserted that

“In fact, k-genericity implies k + 1-genericity and the genericity of Crandall and

Rabinowitz is our 1-genericity.”

Furthermore, by Lemma 3.2 of J. Esquinas and J. López-Gómez [8] (1988),
χ[L;λ0] equals the generalized algebraic multiplicity of R. J. Magnus [20]
(1976). Thus, thanks to the global bifurcation theorem of R. J. Magnus [20]
(1976), it became also apparent that, at least for compact perturbations of
the identity map, the local bifurcation theorem of M. G. Crandall and P. H.
Rabinowitz [5] (1971) is indeed global.

Later, the author considerably polished and tidied up most of the previous
materials, collecting them together in the book [14] (2001). In that monograph,
besides characterizing the set of singular values where the algebraic multiplicity
χ[L;λ0] is well defined, through the (new) concept of algebraic eigenvalue, the
author remarked on the bottom of Page 180 that

“Rabinowitz’s reflection argument in the proof of Theorem 1.27, [23], was actually

performed with respect to the supplement Y of N [L0] in U , rather than with respect

to u = 0 within the cone Qξ,η. Therefore, the last alternative of Theorem 1.27 of [23]

seems to be far from natural, though the theorem might be true.”

and immediately gave a (new) unilateral bifurcation result –Theorem 6.4.3 in
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[14] (2001)– widely used in the specialized literature since then. Prompted by
the new findings of [14, Ch. 6] (2001), E. N. Dancer [6] (2002), using some
classical devices in (topological) obstruction theory, was able to construct a
counterexample to the unilateral theorems of P. H. Rabinowitz [23] (1971).
According to Dancer’s counterexample, the unilateral Theorems 1.27 and 1.40
of P. H. Rabinowitz [23] were wrong as stated. As a byproduct of Dancer’s
counterexample, Theorem 6.3.4 of [14] (2001) became the first (correct) avail-
able unilateral theorem in the literature. Many nonlinear analysts had been
systematically applying –almost mutatis mutandis– the (wrong) unilateral the-
orems of Rabinowitz for almost four decades and most experts and reviewers
were not aware of it. They are doing it just now!

Three years later, in 2004, the theory of generalized algebraic multiplicities
was axiomatized and considerably sharpened by C. Mora-Corral in his PhD the-
sis under the supervision of the author. This thesis was judged by I. Gohberg,
R. J. Magnus and J. L. Mawhin at Complutense University of Madrid on June
2004. Shortly later, C. Mora-Corral and the author completed the monograph
[19] (2007) edited by I. Gohberg as the volume 177 of his prestigious series ‘Op-
erator Theory: Advances and Applications’. Reading [19] (2007) is imperative
to realize the (tremendous) development of the theory of algebraic multiplici-
ties from the seminal work of M. G. Crandall and P. H. Rabinowitz [5] up to
the characterization of any local change of the topological degree through the
algebraic multiplicity χ[L;λ0]. Actually, according to the uniqueness results
collected in Chapter 6 of [19] (2007), it turns out that χ[L;λ0] is the unique
normalized algebraic multiplicity satisfying the product formula; a fundamen-
tal result in Operator Theory, attributable to C. Mora-Corral, which has not
received the deserved attention yet.

As far as concerns global bifurcation theory, the more general abstract bi-
furcation result available in the literature is Corollary 5.5 of J. López-Gómez
and C. Mora-Corral [18] (2005), where the notion of orientability introduced
by P. Benevieri and M. Furi [2] (2000) for Fredholm maps of index zero was
combined with the algebraic multiplicity χ[L;λ0] to establish that any com-
pact component, C, of the solution set must bifurcate from the given state at
exactly an even number of singular values having an odd algebraic multiplicity.
So, extending the pioneering global bifurcation theorems of L. Nirenberg [21]
(1974), attributed to P. H. Rabinowitz by L. Nirenberg himself in his celebrated
Lecture Notes at the Courant Institute, and R. J. Magnus [20] (1976) to work,
almost mutatis mutandis, in the more general setting of Fredholm maps of in-
dex zero. However, the classical multiplicities must be inter-exchanged by the
concept of multiplicity χ[L;λ0].

Actually, since [18] (2005) did not required the linearized operators at the
given state to have a discrete spectrum, but an arbitrary structure, the ab-
stract theory of [18] (2005) can be applied not only to quasilinear problems
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in bounded domains, but, more generally, to arbitrary quasilinear systems in
bounded or unbounded domains. Naturally, by [18, Cor. 5.5], when the compo-
nent C bifurcates from a given state and cannot meet the given state at another
point –or spectral interval–, C must be non-compact, which in particular yields
the global alternative of P. H. Rabinowitz [23] (1971). Being this alternative
so user-friendly by practitioners, there is still the serious danger that many
users of global bifurcation theory might be reluctant to face the few topolog-
ical technicalities inherent to Corollary 5.5 of [18] (2005). This is one of the
reasons why we are going to tidy up considerably some of the materials of [18]
here. As a matter of fact, from the pioneering results of P. H. Rabinowitz
[23] (1971) and R. J. Magnus [20] (1976) and the vibrant Lecture Notes of L.
Nirenberg [21] (1974) it became apparent that Rabinowitz’s global alternative
was nothing more than a friendly byproduct of the global result already stated
by L. Nirenberg [21] valid for nonlinear compact perturbations of the identity
map in the very special case when

L(λ) = I − λK.

The additional information provided by Corollary 5.5 in [18] (2005) is relevant
as well because a variety of nonlinear elliptic systems and semilinear weighted
boundary value problems of elliptic type can possess solution components with
multiple bifurcation points from a given state. It suffices to have a glance at
the cover of the monograph [14] (2001), or at the numerics of Chapter 2 of
[14] (2001), or at the paper of M. Molina-Meyer with the author [15] (2005),
where a series of compact components possessing several bifurcation points were
constructed in a systematic way in the context of semilinear elliptic equations.

The key idea behind Corollary 5.5 of [18] (2005) was exploiting a definition
of orientation/parity for Fredholm maps and associated degree as developed
by P. Benevieri and M. Furi [1] (1998), [2] (2000), [3] (2001). Although this
idea is closely related in a number of ways to some previous notions of parity
pioneered by P. M. Fitzpatrick and J. Pejsachowicz [9] (1991), [10] (1993), it
certainly requires less smoothness and hence, it is more general.

By Theorem 3.3 of [18] (2005), for any isolated eigenvalue, λ0, of an oriented
family, L(λ), the sign jump of L(λ) changes as λ crosses λ0 if, and only if,
χ[L;λ0] is odd. Moreover, in the context of Crandall–Rabinowitz theorem, as
already commented above,

χ[L;λ0] = 1.

Therefore, by Corollary 5.5 of [18] (2005), it is obvious that the local theorem of
M. G. Crandall and P. H. Rabinowitz [5] (1971) must be global. Since χ[L;λ0] is
substantially more general than the pioneering concept of algebraic multiplicity
for simple eigenvalues of M. G. Crandall and P. H. Rawinowitz [5] (1971), there
was no any need for the authors of [18] (2005) to make any explicit reference to
[5] (1971) therein. By the same reason, it was absolutely unnecessary invoking
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to any other algebraic multiplicity sharper than the pioneering one of M. G.
Crandall and P. H. Rabinowitz [5] (1971), because χ[L;λ0] had shown to be the
optimal one in the context of bifurcation theory. It turns out that χ[L;λ0] is
an optimal algebraic/analytic invariant to compute any change of the degree,
or parity, for Fredholm maps.

In spite of these circumstances, being already published in top mathemat-
ical journals a series of closely related papers by the author in collaboration
with C. Mora-Corral, as [16] (2004) and [17] (2004), where some precursors of
Corollary 5.5 of [18] (2005) had been already developed for compact perturba-
tions of the identity map, J. Shi and X. Wang submitted [24] (2009) on May
2008, where they established, at least four years later than C. Mora-Corral and
the author, that the local bifurcation theorem of M. G. Crandall and P. H.
Rabinowitz [5] (1971) is global (see Theorem 4.3 of [24] (2009)). Incidentally,
J. Shi and X. Wang [24] (2009) left outside their their list of references all the
previous works by the author and coworkers, except [14] (2001), which was
required for paraphrasing the proof of the unilateral Theorem 6.4.3 of Chap-
ter 6 of [14] (2001) in order to give a version of [14, Th. 6.4.3] (2001) in the
context of Fredholm operators of index zero, Theorem 4.4 of [24] (2009), by
imposing the additional restriction that the underlying norm in the Banach
space is differentiable.

Being Chapters 3, 4 and 5 of [14] (2001) devoted to the analysis of the
main properties of the algebraic multiplicity χ[L;λ0], J. Shi and X. Wang [24]
(2009) did not say a word about χ[L;λ0] in their discussion on page 2803 of
[24] (2009). In terms of the algebraic multiplicity χ[L;λ0], Theorem 4.3 of
J. Shi and X. Wang [24] (2009) is a very special case of Theorem 6.3.1 of J.
López-Gómez [14] (2001) for compact perturbations of the identity. Moreover,
Corollary 5.5 of J. López-Gómez and C. Mora-Corral [18] (2005) had already
generalized Theorem 6.3.1 of [14] (2001) to cover the general setting of Fredholm
operators with index zero four years before. Should J. Shi and X. Wang have
invoked all existing results in the literature, very specially Corollary 5.5 of [18]
(2005), their Section 4 in [24] (2009) might have shortened up to remarking
that the author unilateral theorem [14, Th. 6.4.3] (2001) admitted an obvious
extension to cover the case of Fredholm operators of index zero by imposing
the differentiability of the underlying norm.

The first goal of this paper is updating the main global bifurcation theorem
of J. López-Gómez and C. Mora-Corral [18] in order to derive from it, as a direct
straightforward consequence, some global versions of the local theorem of M.
G. Crandall and P. H. Rabinowitz [5] on bifurcation from simple eigenvalues.
These versions are substantially sharper than the one given by J. Shi and S.
Wang in Section 4 of [24] through the generalized parity of P. M. Fitzpatrick
and J. Pejsachowicz [9].

Throughout this paper, given two real Banach spaces, U and V , we de-
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note by L(U, V ) the space of bounded linear operators from U to V , and by
Fred0(U, V ) the subset of L(U, V ) consisting of all Fredholm operators of index
zero. Also, for any L ∈ L(U, V ), we denote by N [L] and R[L] the null space, or
kernel, and the range, or image, of L, respectively. We recall that L ∈ L(U, V )
is said to be a Fredholm operator if

dimN [L] < ∞ and codimR[L] < ∞.

In such case, R[L] is closed, and the index of L is defined by

ind [L] := dimN [L]− codimR[L].

Thus, L ∈ Fred0(U, V ) if

dimN [L] = codimR[L] < ∞.

Naturally, if Fred0(U, V ) �= ∅, then U and V are isomorphic. So, it would not
be a serious restriction assuming U = V . In that case, we denote

Fred0(U) := Fred0(U,U).

The most paradigmatic class of functions in Fred0(U) are the compact pertur-
bations of the identity IU . An operator T ∈ L(U, V ) is said to be compact if the
closure T (B) is a compact subset of V for all bounded subset B ⊂ U . In this
paper, we denote by K(U, V ) the subset of L(U, V ) of all compact operators.
Another significant subset of L(U, V ) is the set of all isomorphism from U to
V , Iso (U, V ). Naturally, we will denote

L(U) := L(U,U), K(U) := K(U,U), Iso (U) := Iso (U,U).

The main goal of this paper is analyzing the structure of the components
of the set of non-trivial solutions of

F(λ, u) = 0, (λ, u) ∈ R× U, (1)

bifurcating from (λ, 0), where

F : R× U → V (2)

is a continuous map satisfying the following requirements:

(F1) For each λ ∈ R, the map F(λ, ·) is of class C1(U, V ) and

DuF(λ, u) ∈ Fred0(U, V ) for all u ∈ U. (3)

(F2) DuF : R× U → L(U, V ) is continuous.
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(A3) There exists θ ∈ C(R, U) such that F(λ, θ(λ)) = 0 for all λ ∈ R.

By performing the change of variable

G(λ, u) := F(λ, u+ θ(λ)), (λ, u) ∈ R× U,

and inter-exchanging F by G, one can assume, instead of (A3), that

(F3) F(λ, 0) = 0 for all λ ∈ R.

By a component it is meant a closed and connected subset which is maximal
for the inclusion. So, by a component it is meant a connected component. As
(λ, 0) is a given (known) zero, it is referred to as the trivial state. Given λ0 ∈ R,
it is said that (λ0, 0) is a bifurcation point of F = 0 from (λ, 0) if there exists a
sequence (λn, un) ∈ F−1(0), with un �= 0 for all n ≥ 1, such that

lim
n→∞

(λn, un) = (λ0, 0).

In order to state our first result we need to introduce some notations. For every
map F satisfying (F1), (F2) and (F3), we denote

L(λ) := DuF(λ, 0), λ ∈ R, (4)

the linearization of F at (λ, 0). By (F2), L ∈ C(R,L(U, V )). Moreover, since
L(λ) ∈ Fred0(U, V ),

L(λ) ∈ Iso (U, V ) if, and only if, dimN [L(λ)] = 0.

Consequently, the spectrum of L can be defined as

Σ := Σ(L) ≡ {λ ∈ R : dimN [L(λ)] ≥ 1}. (5)

Our global version of the main theorem of [5] reads as follows.

Theorem 1.1. Suppose L ∈ C1(R,Fred0(U, V )) and λ0 ∈ R is a simple eigen-
value of L, as discussed by M. G. Crandall and P. H. Rabinowitz [5], i.e.,

L�(λ0)ϕ0 /∈ R[L(λ0)], where N [L(λ0)] = span [ϕ0]. (6)

Then, for every continuous function F : R×U → V satisfying (F1), (F2), (F3)
and DuF(·, 0) = L, (λ0, 0) is a bifurcation point from (λ, 0) to a continuum of
non-trivial solutions of F = 0.

For any of these F’s, let {Kj}sj=r be an admissible family of disjoint closed
subsets of Σ with K0 = {λ0}, as discussed in Definition 5.1, and let C be the
component of the set of nontrivial solutions with (λ0, 0) ∈ C. Then, either

(a) C is not compact; or
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(b) there is another Σ � λ1 �= λ0 with (λ1, 0) ∈ C.

Actually, if C is compact, there is N ≥ 1 such that

(Kj × {0}) ∩ C �= ∅ if, and only if, j ∈ {ji1 , ..., jiN } ⊂ Z ∩ [r, s]

with jik = 0 for some k ∈ {1, ..., N}. Moreover,

N�

k=1

P(jik) = 0,

where P stands for the parity map introduced in Section 5. Therefore, C links
(λ0, 0) to an odd number of Kj × {0}’s with parity ±1.

The second goal of this paper is generalizing the unilateral bifurcation theo-
rem of the author [14, Th. 6.4.3] to the general context of Fredholm equations,
in the same vain as the version of [14, Th. 6.4.3] given by J. Shi and S. Wang
in [24, Th. 4.4]. Our updated version of [14, Th. 6.4.3] has the advantage that
it does not require the differentiability of the norm, as it is required in [24,
Th. 4.4], but only the compact inclusion of U in V , which is a rather natural
assumption from the point of view of the applications. Precisely, the following
result holds.

Theorem 1.2. Suppose the injection U �→ V is compact, F satisfies (F1)-(F3),
the map

N(λ, u) := F(λ, u)−DuF(λ, 0)u, (λ, u) ∈ R× U,

admits a continuous extension to R×V , the transversality condition (6) holds,
and consider a closed subspace Y ⊂ U such that

U = N [L0]⊕ Y.

Let C be the component given by Theorem 1.1 and let denote by C+ and C− the
subcomponents of C in the directions of ϕ0 and −ϕ0, respectively. Then, for
each ν ∈ {−,+}, Cν satisfies some of the following alternatives:

(a) Cν is not compact in R× U .

(b) There exists λ1 �= λ0 such that (λ1, 0) ∈ Cν .

(c) There exists (λ, y) ∈ Cν with y ∈ Y \ {0}.

All the assumptions of Theorem 1.2 are fulfilled as soon as U is a space of
smooth functions and V is some subspace of the space of continuous functions,
or a subspace of L∞(Ω), as it occurs in most of applications. Concrete applica-
tions of these results will be given elsewhere. Naturally, as we are not imposing
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the differentiability of the norm of U , this is a fully complementary result of
[24, Th. 4.4], though the proof is also based on the proof of [14, Th. 6.4.3], the
first (correct) unilateral bifurcation theorem available in the literature.

The distribution of this paper is the following. Section 2 contains some
basic preliminaries. Section 3 gives the concept of orientation and degree in-
troduced by P. Benevieri and M. Furi [1]. Section 4 collects the most relevant
concepts and results of the theory of algebraic multiplicities, as they detect any
change of orientation and hence, any global bifurcation phenomenon. Section
5 discusses the main global bifurcation theorem of this paper, Section 6 derives
Theorem 1.1 from our main global result and, finally, in Section 7 we tidy up
the unilateral bifurcation theory of [14, Ch. 6] in order to derive Theorem 1.2.

2. A preliminary result

Naturally, the resolvent set of L is defined by �(L) := R \ Σ. Since L ∈
C(R,L(U, V )) and Iso (U, V ) is an open subset of L(U, V ), �(L) is open, possibly
empty. Hence, Σ(L) is closed. Moreover, the next result holds. Although
should be an old result in bifurcation theory, we could not find it stated in this
way in the existing literature. So, we will prove it here by completeness.

Lemma 2.1. Suppose (λ0, 0) is a bifurcation point of F = 0 from (λ, 0). Then,
λ0 ∈ Σ(L).

Proof. Let (λn, un) ∈ F−1(0) with un �= 0 for all n ≥ 1 such that

lim
n→∞

(λn, un) = (λ0, 0). (7)

Then, setting

N(λ, u) := F(λ, u)− L(λ)u, (λ, u) ∈ R× U, (8)

we have that

0 = F(λn, un) = L(λn)un +N(λn, un), n ≥ 1. (9)

Note that, thanks to (F3) and (4), we also have that

N(λ, 0) = 0, DuN(λ, 0) = 0, λ ∈ R. (10)

Suppose λ0 ∈ �(L). Then, since (9) can be re-written as

L(λ0)un = [L(λ0)− L(λn)]un −N(λn, un) = 0, n ≥ 1,

and L(λ0) ∈ Iso (U, V ), we find that

un = L−1(λ0)[L(λ0)− L(λn)]un − L−1(λ0)N(λn, un), n ≥ 1.
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Hence, dividing by �un� and taking norms yields

1 ≤ �L−1(λ0)��L(λ0)− L(λn)�+ �L−1(λ0)�
�N(λn, un)�

�un�
, n ≥ 1. (11)

By the continuity of L(λ), (7) implies that

lim
n→∞

�L(λ0)− L(λn)� = 0.

Moreover, according to (10),

N(λn, un) = N(λn, un)−N(λn, 0) =

� 1

0
DuN(λn, tun)un dt

and hence,

�N(λn, un)� ≤
� 1

0
�DuN(λn, tun)� dt �un�, n ≥ 1.

Thus, owing to (7) and (10), we find from (F2) that

lim sup
n→∞

�N(λn, un)�
�un�

≤ lim sup
n→∞

� 1

0
�DuN(λn, tun)� dt = 0.

Therefore, letting n → ∞ in (11) yields 1 ≤ 0, which is impossible. This
contradiction yields λ0 ∈ Σ and ends the proof.

3. Orientation and degree for Fredholm maps

This section collects the concepts of orientation and topological degree for
Fredholm maps of class C1 introduced by P. Benevieri and M. Furi [1]-[3], and
a related result of J. López-Gómez and C. Mora-Corral [18]. These concepts
sharpen those derived from the parity of P. M. Fitzpatrick and J. Pejsachowicz
[10]. Naturally, they are far from being user-friendly by practitioners.

Given three real Banach spaces, U , V and W , and L ∈ Fred0(U, V ), we will
denote by F(L) the (non-empty) set of finite-rank operators F ∈ L(U, V ) such
that L + F ∈ Iso (U, V ). An equivalence relation can be defined in F(L) by
declaring that F1, F2 ∈ F(L) are equivalent, F1 ∼L F2, if

det [(L+ F1)
−1(L+ F2)] > 0.

Since
(L+ F1)

−1(L+ F2) = IU + (L+ F1)
−1(F2 − F1)

is a finite rank perturbation of the identity, its determinant can be defined as,
e.g., in Section III.4.3 of T. Kato [12]. This relation has two equivalence classes.
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Each of them is called an orientation of L; L is said to be oriented when an
orientation has been chosen. In such case, this orientation is denoted by F+(L)
and we set

F−(L) := F(L) \ F+(L).

Given two oriented operators, L1 ∈ Fred0(U, V ) and L2 ∈ Fred0(V,W ), their
oriented composition is the operator L2L1 equipped with the orientation
F+(L2L1) generated by L2F1 + F2F1 + F2L1, where F1 ∈ F+(L1) and F2 ∈
F+(L2). It is well defined in the sense that it does not depend on the choice
of F1 and F2.

Let L ∈ Iso (U, V ) be oriented. Its sign, sgnL, is then defined by

sgnL :=

�
+1, if 0 ∈ F+(L),
−1, if 0 ∈ F−(L).

Te next result is Lemma 2.1 of J. López-Gómez and C. Mora-Corral [18].

Lemma 3.1. Let L1 ∈ Iso (U, V ) and L2 ∈ Iso (V,W ) be two oriented isomor-
phisms, and consider the oriented composition L2L1. Then,

sgn (L2L1) = sgnL2 · sgnL1.

Next, we suppose that X is a topological space and L ∈ C(X,L(U, V ))
satisfies L(x) ∈ Fred0(U, V ) for all x ∈ X. An orientation of L is a map
X � x �→ α(x) such that α(x) is an orientation of L(x) for all x ∈ X, and the
map α satisfies the continuity condition that for each x0 ∈ X and F ∈ α(x0),
there is a neighborhood, U , of x0 in X such that F ∈ α(x) for all x ∈ U .
Although not every L admits an orientation, the next result holds (see [1]-[3]).

Proposition 3.2. Suppose X is a simply connected topological space. Then,
every map L ∈ C(X,L(U, V )), with L(x) ∈ Fred0(U, V ) for all x ∈ X, admits
two orientations, F+(L) and F−(L), and each of them is uniquely determined
by the orientation of L(x), where x ∈ X is arbitrary.

In this paper X is simply connected because X = R. As soon as X is simply
connected and L ∈ C(X,L(U, V )) satisfies L(x) ∈ Fred0(U, V ) for all x ∈ X,
we will think of L as oriented by F+(L). Moreover, if g ∈ C1(U, V ) satisfies
Dg(x) ∈ Fred0(U, V ) for all x ∈ U , then we will suppose that g is oriented,
which means that an orientation, F+(Dg), has been chosen for Dg. Similarly,
any operator F ∈ C(R×U, V ) satisfying (F1) and (F2) is assumed to be oriented
by choosing an orientation, F+(DuF), for DuF. Finally, we denote by A the
set of (admissible) pairs, (g,U), formed by an oriented function g ∈ C1(U, V )
with Dg(x) ∈ Fred0(U, V ) for all x ∈ U , and an open subset U ⊂ U such that
g−1(0) ∩ U is compact. According to P. Benevieri and M. Furi [1], a Z-valued
degree is defined in A, and it satisfies the same fundamental properties as the
Leray-Schauder degree. Among them, the normalization, the additivity and
the generalized homotopy-invariance.
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4. The generalized algebraic multiplicity for Fredholm

maps

Subsequently, given an open subinterval J ⊂ R and r ∈ N ∪ {∞,ω}, we will
denote by Cr(J,Fred0(U, V )) the set of maps of class Cr from J to L(U, V ) with
values in Fred0(U, V ); Cω stands for the set of real analytic maps. The next
concept plays a pivotal role in the theory of algebraic multiplicities (it goes
back to [14, Def. 4.3.1]).

Definition 4.1. Suppose L ∈ Cr(J,Fred0(U, V )) for some integer r ≥ 1, and
λ0 ∈ J . Then, λ0 is said to be an algebraic eigenvalue of L if

dimN [L(λ0)] ≥ 1

and there are C, δ > 0, and an integer 1 ≤ k ≤ r such that L(λ) ∈ Iso (U, V )
and

�L−1(λ)�L(V,U) ≤
C

|λ− λ0|k
for all λ ∈ (λ0 − δ,λ0 + δ) \ {λ0}. (12)

λ0 is said to be of order k if, in addition, k is minimal.

The next result is a direct consequence from Theorems 4.4.1 and 4.4.4
of [14]. Note that, in most of the applications, the dependence of L(λ) in
λ is real analytic.

Theorem 4.2. Suppose L ∈ Cω(J,Fred0(U, V )) and

Σ := {λ ∈ J : dimN [L(λ)] ≥ 1}.

Then, either Σ = J , or Σ is a discrete subset of J . Moreover, if Σ is discrete,
any λ0 ∈ Σ must be an algebraic eigenvalue of L(λ), as discussed by Definition
4.1.

Actually, a complex counterpart of Theorem 4.2 holds (see Chapter 8 of J.
López-Gómez and C. Mora-Corral [19]). In the context of the Riesz-Schauder
theory, U = V and L is given by

L(ζ) = IU − ζT, ζ ∈ C,

for some T ∈ K(U). As L(0) = IU is an isomorphism, Theorem 4.2 guarantees
that Σ is a discrete subset of C. Moreover, any characteristic value of T must
be a pole of the resolvent operator (IU − ζT )−1.

The next concept was coined by J. Esquinas and J. López-Gómez [8] to
generalize the (local) theorem of M. G. Crandall and P. H. Rabinowitz [5] on



GLOBAL BIFURCATION FOR FREDHOLM OPERATORS 551

bifurcation from simple eigenvalues. Subsequently, given L ∈ Cr(J,L(U, V ))
and λ0 ∈ J , we will denote

Lj =
1

j!

djL

dλj
(λ0), 0 ≤ j ≤ r.

Definition 4.3. Suppose L ∈ Cr(J,Fred0(U, V )) for some r ≥ 1, and λ0 ∈
J ∩ Σ. Then, given an integer 1 ≤ k ≤ r, λ0 is said to be a k-transversal
eigenvalue of L(λ) if

k�

j=1

Lj(N [L0] ∩ · · · ∩N [Lj−1])⊕R[L0] = V (13)

with
dimLk(N [L0] ∩ · · · ∩N [Lk−1]) ≥ 1.

In such case, the algebraic multiplicity of L(λ) at λ0, χ[L;λ0], is defined by

χ[L;λ0] :=
k�

j=1

j · dimLj(N [L0] ∩ · · · ∩N [Lj−1]). (14)

Naturally, in case r = 1, the transversality condition of M. G. Crandall
and P. H. Rabinowitz [5] holds if, and only if, dimN [L(λ0)] = 1 and λ0 is a
1-transversal eigenvalue of L, i.e., if

L1ϕ0 /∈ R[L0], where N [L0] = span [ϕ0].

Consequently, in this particular case, χ[L;λ0] = 1.
The next fundamental result goes back to Chapters 4 and 5 of [14], where

the findings of J. Esquinas and J. López-Gómez [8] and J. Esquinas [7] were
substantially sharpened. It was collected as part of Theorem 5.3.1 of J. López-
Gómez and C. Mora-Corral [19].

Theorem 4.4. Suppose L ∈ Cr(J,Fred0(U, V )) for some integer r ≥ 1, and
λ0 ∈ J . Then, the following conditions are equivalent:

(a) λ0 is an algebraic eigenvalue of order 1 ≤ k ≤ r.

(b) There exists Φ ∈ Cω(J ; Fred0(U)) with Φ(λ0) = IU such that λ0 is a
k-transversal eigenvalue of

LΦ(λ) := L(λ)Φ(λ), λ ∈ J.

Moreover, χ[LΦ;λ0] is independent of the transversalizing family of iso-
morphisms, Φ(λ). Therefore, the concept of multiplicity

χ[L;λ0] := χ[LΦ;λ0]

is consistent.
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(c) There exist k finite rank projections Pj ∈ L(U) \ {0}, 1 ≤ j ≤ k, and a
map M ∈ Cr−k(J,Fred0(U, V )), with M(λ0) ∈ Iso (U, V ), such that

L(λ) = M(λ)[(λ− λ0)P1 + IU − P1] · · · [(λ− λ0)Pk + IU − Pk] (15)

for all λ ∈ J . Moreover, for any choice of these projections,

χ[L;λ0] =
k�

j=1

rankPj . (16)

Based on Theorem 4.4, the next result establishes that χ[L;λ0] detects any
sign jump of L(λ) at any algebraic eigenvalue λ0, as discussed by P. Benevieri
and M. Furi [3]. Although it goes back to Theorem 3.3 of J. López-Gómez and
C. Mora-Corral [18], the original proof will be shortened here.

Theorem 4.5. Suppose L ∈ Cr(J,Fred0(U, V )) for some integer r ≥ 1, and
λ0 ∈ J is an algebraic eigenvalue of L or order 1 ≤ k ≤ r. Once oriented L,
sgnL(λ) changes as λ crosses λ0 if, and only if, χ[L;λ0] is odd.

Proof. By Theorem 4.4(c), (15) holds. The statement of the theorem is in-
dependent of the chosen orientations. For each 1 ≤ i ≤ k, the orientation
of

Ei(λ) := (λ− λ0)Pi + IU − Pi

is defined as Pi ∈ C+(IU −Pi), and the orientation of M(λ) by 0 ∈ C+(M(λ0)).
Naturally, the orientation of L(λ) is defined as the product orientation from
(15). Fix 1 ≤ i ≤ k and λ ∼ λ0, λ �= λ0. Then, Pi ∈ C+((λ− λ0)Pi + IU − Pi)
and

det [E−1
i (λ)(Ei(λ) + Pi)] = det [IU + (λ− λ0)

−1Pi] = [1 + (λ− λ0)
−1]rankPi .

Thus,

sgn Ei(λ) = sign (λ− λ0)
rankPi for all λ ∼ λ0, λ �= λ0.

Therefore, by (15) and (16), it follows from Lemma 3.1 that

sgnL(λ) = sign (λ− λ0)
�k

i=1 rankPi = sign (λ− λ0)
χ[L(λ);λ0].

This ends the proof.

Consequently, according to Theorem 3.1, or Theorem 4.2, of P. Benevieri
and M. Furi [3], the next result holds.
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Theorem 4.6. Suppose L ∈ Cr(J,Fred0(U, V )) for some integer r ≥ 1, and
λ0 ∈ J is an algebraic eigenvalue of L of order 1 ≤ k ≤ r with χ[L;λ0] odd.
Then, for every continuous function F : R × U → V satisfying (F1), (F2),
(F3) and DuF(λ, 0) = L, (λ0, 0) is a bifurcation point of F = 0 from (λ, 0) to
a continuum of non-trivial solutions.

The characterization theorem of J. Esquinas and J. López-Gómez [8] estab-
lishes that Theorem 4.6 is optimal, in the sense that whenever χ[L;λ0] is even
there is a smooth F satisfying (F1), (F2), (F3) and DuF(λ, 0) = L, for which
(λ0, 0) is not a bifurcation point of F = 0 from (λ, 0) (see Chapter 4 of [14]).
Consequently, under the general assumptions of Theorem 4.6, the following
conditions are equivalent:

• χ[L;λ0] is an odd integer.

• sgnL(λ) changes as λ crosses λ0.

• λ0 is a nonlinear eigenvalue of L(λ), as discussed by Definition 1.1.2
of [14].

As a direct consequence from Theorem 4.6, the next generalized version
of the local bifurcation theorem of M. G. Crandall and P. H. Rabinowitz [5]
holds. As F is not required to be of class C2, the bifurcating continuum is not
necessarily a C1 curve.

Corollary 4.7. Suppose L ∈ C1(J,Fred0(U, V )) and λ0 ∈ J is a simple eigen-
value L in the sense that

L1ϕ0 /∈ R[L0], where N [L0] = span [ϕ0].

Then, χ[L;λ0] = 1 and hence, for every continuous function F : R × U → V
satisfying (F1), (F2), (F3) and DuF(λ, 0) = L, (λ0, 0) is a bifurcation point of
F = 0 from (λ, 0) to a continuum of non-trivial solutions.

When, in addition, F is of class C2, then the bifurcating continuum consists
of a C1 curve, as established by the theorem of M. G. Crandall and P. H.
Rabinowitz [5].

5. A sharp global bifurcation theorem for Fredholm

operators

This section polishes the main global bifurcation theorem of J. López-Gómez
and C. Mora-Corral [18] and extracts some important consequences from it. It
should be noted that it is a substantial extension of all available results in the
literature and, in particular, of Theorem 4.2 of P. Benevieri and M. Furi [3].
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Given two non-empty subsets of R, A and B, it is said that A < B if a < b
for all (a, b) ∈ A×B. A family, A, whose elements are subsets of a topological
space, X, is said to be locally finite if for every x ∈ X there is a neighborhood,
Ω, of x such that {A ∈ A : A ∩ Ω �= ∅} is finite.

Subsequently, we consider

L(λ) = DuF(λ, 0), λ ∈ R,

and its spectrum, Σ = Σ(L). The following concept is very useful.

Definition 5.1. Given r, s ∈ Z∪ {−∞,∞}, with r ≤ s, a family, {Kj}sj=r, of
disjoint closed subsets of R is said to be admissible with respect to Σ if

Σ =
s�

j=r

Kj , Kj < Kj+1, j ∈ Z ∩ [r, s− 1], (17)

and each of the next conditions is satisfied:

(a) If r ∈ Z, then either Kr is compact, or Kr = (−∞, a] for some a ∈ R.

(b) If s ∈ Z, then either Ks is compact, or Ks = [b,+∞) for some b ∈ R.

(c) Kj is compact for all j ∈ Z ∩ (r, s).

Naturally, such a family {Kj}sj=r is locally finite, and Σ admits many ad-
missible families, because Σ is a closed subset of R and any bounded closed
subset of R is compact. In most of applications, L(λ) is real analytic in λ and
hence, thanks to Theorem 4.2, either Σ = R, or Σ is discrete. Therefore, Σ is
discrete if L(a) ∈ Iso (U, V ) for some a ∈ R. In such cases, each of the Kj ’s
can be taken as a single point of the spectrum Σ, which is the most common
situation covered in the specialized literature.

Associated to any admissible family of disjoint closed subsets with respect to
Σ, {Kj}sj=r, there is a locally finite family of open subintervals of R, {Ji}si=r−1,
defined by

Ji := (maxKi,minKi+1), i ∈ Z ∩ [r, s− 1], (18)

if r = −∞ and s = +∞. When r ∈ Z and Kr is compact, we should add the
interval Jr−1 := (−∞,minKr) to the previous family. Similarly, when s ∈ Z
and Ks is compact, Js := (maxKs,+∞) should be also added to the previous
ones. By construction,

Ji ∩ Σ = ∅ for all i ∈ Z ∩ [r − 1, s]

and
Ji−1 < Ji for all i ∈ Z ∩ [r, s].
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Moreover, the map

s�

i=r−1

Ji � λ �→ sgnL(λ) ∈ {−1, 1}

is continuous. Hence, for every i ∈ Z∩ [r− 1, s], there exists ai ∈ {−1, 1} such
that

sgnL(λ) = ai for all λ ∈ Ji.

Consequently, a parity map, P, associated to the family {Ji}si=r−1, or, equiva-
lently, {Kj}sj=r, can defined through

P : Z ∩ [r − 1, s] → {−1, 0, 1}, P(i) :=
ai − ai−1

2
. (19)

It should be noted that, setting

Γ0 := {i ∈ Z ∩ [r, s] : ai−1 = ai}, Γ1 := {i ∈ Z ∩ [r, s] : ai−1 �= ai},

the parity P satisfies the following properties:

• P(i) = 0 if i ∈ Γ0.

• P(i) = ±1 if i ∈ Γ1.

• P(i)P(j) = −1 if i, j ∈ Γ1 with i < j and (i, j) ∩ Γ1 = ∅.

Moreover, any map defined in Z ∩ [r, s] satisfying these properties must be
either P or −P. Thus, either Γ0, or Γ1, determines P up to a change of sign.

Subsequently, we consider a continuous map F : R×U → V satisfying (F1),
(F2) and (F3), with L = DuF(·, 0), and an admissible family with respect to
Σ, {Kj}sj=r, with associated family of open intervals {Ji}si=r−1, and we set

S := closure
�
F−1(0) ∩ [R× (U \ {0})]

�
∪

s�

j=r

[Kj × {0}]

= closure
�
F−1(0) ∩ [R× (U \ {0})]

�
∪ [Σ× {0}] ;

(20)

S is usually refereed to as the set of non-trivial solutions of F = 0. By
Lemma 2.1, it consists of the pairs (λ, u) ∈ F−1(0) with u �= 0 plus all possible
bifurcation points from (λ, 0), Σ× {0}. Since Σ is closed, S is closed.

The next result is an easy consequence of Theorem 5.4 of J. López-Gómez
and C. Mora-Corral [18], whose proof is based on the degree of P. Benevieri
and M. Furi [1]-[3] sketched in Section 3. It extends some previous findings
of [16] and [17].
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Theorem 5.2. Suppose C is a compact component of S. Then,

B := {j ∈ Z ∩ [r, s] : C ∩ (Kj × {0}) �= ∅}

is finite, possibly empty. Moreover,

�

i∈B
P(i) = 0 if B �= ∅. (21)

When B = ∅, C is an isola with respect to the trivial solution (λ, 0). The
existence of isolas is well documented in the context of nonlinear differential
equations (see, e.g., J. López-Gómez [14, Section 2.5.2], S. Cano-Casanova et
al. [4] and J. López-Gómez and M. Molina-Meyer [15]).

When B �= ∅, C bifurcates from the trivial solution (λ, 0). In such case, B
provides us with the set of compact subsets, Kj ’s, of Σ where C bifurcates from
(λ, 0). Note that if r ∈ Z and Kr = (−∞, a] for some a ∈ R, then r /∈ B.
Indeed, if

C ∩ ((−∞, a]× {0}) �= ∅,

then (−∞, a] × {0} ⊂ C, because C is a closed and connected subset of S
maximal for the inclusion. But this is impossible if C is bounded. Therefore,
Kj is compact for all j ∈ B if C is compact. In particular, B must be finite. J.
López-Gómez [14, Section 2.5.2] and J. López-Gómez and M. Molina-Meyer [15]
gave a number of examples of compact components, C, with B �= ∅.

Remark 5.3. As an immediate consequence from (21), when P(i) = ±1 for
some i ∈ B, there exists another j ∈ B \ {i} with P(j) = ∓1. Therefore, in
such case, the component C links Ki × {0} to Kj × {0}. Actually, there is an
even number of i ∈ B’s for which P(i) = ±1.

Theorem 5.2 is a substantial generalization of Theorem 6.3.1 of J. López-
Gómez [14]. Consequently, it extends to the general framework of Fredholm
operators covered in this paper the most pioneering global results of P. H.
Rabinowitz [23], L. Nirenberg [21], J. Ize [11] and R. J. Magnus [20]; most of
them stated for the special case when U = V and

L(λ) = IU − λT, T ∈ K(U), (22)

in the context of the local theorem of M. A. Krasnoselskij [13]. Indeed, in
Theorem 3.4.1 of of L. Nirenberg [21], attributed to P. H. Rabinowitz there in,
L. Nirenberg proved that if the component C is compact, then

“C contains a finite number of points (λj , 0) with 1/λj eigenvalues of T . Further-

more the number of such points having odd multiplicity is even.”

When (22) holds, since L(0) = IU ∈ Iso (U), thanks to Theorem 4.2, Σ(L)
is discrete and every λ0 ∈ Σ must be an algebraic eigenvalue of L. Moreover,
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according to Theorem 5.4.1 of J. López-Gómez [14],

χ[L;λ0] = dim
∞�

k=1

N [(λ−1
0 − T )k],

i.e., χ[L;λ0] equals the classical concept of algebraic multiplicity.
More generally, by Theorems 4.2 and 4.5, when L(λ) is a real analytic family

of Fredholm operators of index zero such that L(a) is an isomorphism for some
a ∈ R, Σ(L) is discrete and if

Σ = {λj : j ∈ I}

for some I ⊂ Z and we take Kj = {λj} for all j ∈ I, then P(j) = ±1 if, and
only if, χ[L;λj ] is odd. Therefore, due to Theorem 5.2, if

C ∩ (R× {0}) = {(λi1 , 0), ...., (λiN , 0)},

then
N�

j=1

P(λij ) = 0.

Consequently, the number of eigenvalues, λij , with an odd multiplicity must
be even, likewise in the classical context of P. H. Rabinowitz [23] and L. Niren-
berg [21], though in the general setting of this paper, Σ might not be a discrete
set and F(λ, ·) is not assumed to be a compact perturbation of the identity
map, but a general Fredholm operator of index zero.

6. Two obvious-for-experts consequences of Theorem 5.2

As an immediate consequence of Theorem 5.2, the next generalized version of
the global alternative of P. H. Rabinowitz [23] holds. Note that it is a substantial
extension of Theorem 4.2 of P. Benevieri and M. Furi [3].

Theorem 6.1. Suppose C is a component of S such that

S ∩ (Kj0 × {0}) �= ∅

for some j0 ∈ B with P(j0) = ±1. Then, either

(A1) C is not compact; or

(A2) there exists another B � j1 �= j0 with P(j1) = ∓1 such that

S ∩ (Kj1 × {0}) �= ∅.

Consequently, S links Kj0 × {0} to Kj1 × {0}.
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As the degree of P. Benevieri and M. Furi extends the concept of parity
introduced by P. M. Fitzpatrick and J. Pejsachowicz, also Theorem 6.1 of J.
Pejsachowicz and P. J. Rabier [22] holds from the previous result.

As another corollary of Theorem 5.2, the following global version of the
local theorem of M. G. Crandall and P H. Rabinowitz [5] holds. It should be
noted that it is a substantial generalization of Theorem 4.3 of J. Shi and X.
Wang [24].

Theorem 6.2. Suppose L ∈ C1(R,Fred0(U, V )) and λ0 ∈ R is a simple eigen-
value L, as discussed by M. G. Crandall and P. H. Rabinowitz [5], i.e.,

L�(λ0)ϕ0 /∈ R[L(λ0)], where N [L(λ0)] = span [ϕ0]. (23)

Then, for every continuous function F : R×U → V satisfying (F1), (F2), (F3)
and DuF(·, 0) = L, (λ0, 0) is a bifurcation point from (λ, 0) to a continuum of
non-trivial solutions of F = 0.

For any of these F’s, let {Kj}sj=r be an admissible family of disjoint closed
subsets of Σ with K0 = {λ0}, and let C be the component of S such that
(λ0, 0) ∈ C. Then, either

(a) C is not compact; or

(b) there is another Σ � λ1 �= λ0 with (λ1, 0) ∈ C.

Actually, if C is compact, then there exists N ≥ 1 such that

(Kj × {0}) ∩ C �= ∅ if, and only if, j ∈ {ji1 , ..., jiN } ⊂ Z ∩ [r, s]

with jik = 0 for some k ∈ {1, ..., N}. Moreover,

N�

k=1

P(jik) = 0.

Therefore, C links (λ0, 0) to an odd number of Kj × {0}’s with parity ±1.

Proof. By Definition 4.3, λ0 is a 1-transversal eigenvalue of L(λ) with

χ[L;λ0] = 1.

Thus, by Theorem 4.4, λ0 is an algebraic eigenvalue of L(λ) of order one, as
discussed by Definition 4.1. In particular, L(λ) ∈ Iso (U, V ) for λ ∼ λ0, λ �= λ0.
Thus, by Theorem 4.5, sgnL(λ) changes of sign as λ crosses λ0. Therefore,
P(0) = ±1. The remaining assertions of the theorem are obvious consequences
of Theorem 5.2.
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7. Unilateral bifurcation from geometrically simple

eigenvalues

Throughout this section, besides (F1), (F2) and (F3), we asume that

(C) U is a subspace of V with compact inclusion U �→ V .

(F4) The map

N(λ, u) := F(λ, u)−DuF(λ, 0)u, (λ, u) ∈ R× U, (24)

admits a continuous extension, also denoted by N, to R× V .

As usual, we denote L := DuF(λ, 0), and {Kj}sj=r, with r ≤ 0 ≤ s, stands for
an admissible family of closed subintervals of R with respect to Σ = Σ(L) such
that

K0 = {λ0}, dimN [L0] = 1. (25)

In other words, λ0 is assumed to be an isolated eigenvalue of L with one-
dimensional kernel. Let ϕ0 ∈ U be such that

N [L0] = span [ϕ0], �ϕ0� = 1, (26)

and consider a closed subspace Y ⊂ U such that

U = N [L0]⊕ Y.

According to the Hahn-Banach theorem, there exists ϕ∗
0 ∈ U � such that

Y = {u ∈ U : �ϕ∗
0, u� = 0} = N [ϕ∗

0], �ϕ∗
0,ϕ0� = 1,

where �·, ·� stands for the �U �, U�-duality. In particular, each u ∈ U can be
uniquely decomposed as

u = sϕ0 + y

for some (s, y) ∈ R× Y . Necessarily, s := �ϕ∗
0, u�.

As in P. H. Rabinowitz [23] and J. López-Gómez [14, Section 6.4], for each
ε > 0 and η ∈ (0, 1), we consider

Qε,η := {(λ, u) ∈ R× U : |λ− λ0| < ε, |�ϕ∗
0, u�| > η�u�}.

Since u �→ |�ϕ∗
0, u�|− η�u� is continuous, Qε,η is open. Moreover, it consists of

Q+
ε,η := {(λ, u) ∈ R× U : |λ− λ0| < ε, �ϕ∗

0, u� > η�u�},
Q−

ε,η := {(λ, u) ∈ R× U : |λ− λ0| < ε, �ϕ∗
0, u� < −η�u�}.

The next counterpart of [14, Le. 6.4.1] holds. Note that (λ0, 0) might not be a
bifurcation point of F = 0 from (λ, 0) because we are not imposing sgnL(λ) to
change sign as λ crosses λ0.
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Proposition 7.1. Suppose F satisfies (F1)-(F4), (C) and (25). Then, for
sufficiently small ε > 0, there exists δ0 = δ0(η) > 0 such that for every δ ∈
(0, δ0),

S0,δ := [S \ {(λ0, 0)}] ∩Bδ(λ0, 0) ⊂ Qε,η. (27)

Moreover, for each (λ, u) ∈ S0,δ, there are s ∈ R and y ∈ Y (unique) such that

u = sϕ0 + y with |s| > η�u� (28)

and
λ = λ0 + o(1) and y = o(s) as s → 0. (29)

Proof. The proof of the first claim is based on the next two lemmas of technical
nature.

Lemma 7.2. Suppose F satisfies (F1)-(F4) and (C). Then, N : R × U → V is
a compact operator, in the sense that T (B) is compact for all bounded subset
B ⊂ R× U .

Lemma 7.3. Suppose a < b satisfy a, b ∈ �(L). Then, there exists a continuous
map, Φ : [a, b] → L(V, U), such that

Φ(λ) ∈ Iso (V, U) and K(λ) ≡ IU − Φ(λ)L(λ) ∈ K(U) for all λ ∈ [a, b].

Lemma 7.3 goes back to P. M. Fitzpatrick and J. Pejsachowicz [9], [10].
Next, we will give the proof of Lemma 7.2. Let (λn, un) ∈ R× U , n ≥ 1, be a
bounded sequence. As {λn}n≥1 is bounded in R we can extract a subsequence,
relabeled by n, such that limn→∞ λn = λω for some λω ∈ R. According to
(C), we can extract a subsequence of {un}n≥1, labeled again by n, such that
limn→∞ un = vω for some vω ∈ V . Thus, owing to (F4), we find that

lim
n→∞

N(λn, un) = N(λω, vω),

which ends the proof of Lemma 7.2.
As λ0 is an isolated point of Σ, there is ε0 > 0 such that

Σ ∩ [λ0 − ε0,λ0 + ε0] = {λ0}.

Thus, by Lemma 7.3, there exists a continuous map

Φ : [λ0 − ε0,λ0 + ε0] → L(V, U)

such that

Φ(λ) ∈ Iso (V, U) and K(λ) ≡ IU − Φ(λ)L(λ) ∈ K(U) if |λ− λ0| ≤ ε0.
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As for |λ− λ0| ≤ ε0 the equation F(λ, u) = 0 can be equivalently written as

Φ(λ)F(λ, u) = 0,

it becomes apparent that F(λ, u) = 0 can be expressed as

u−K(λ)u+ Φ(λ)N(λ, u) = 0, |λ− λ0| ≤ ε0, u ∈ U. (30)

Since K(λ) ∈ K(U) and, due to Lemma 7.2, Φ(λ)N(λ, u) : R × U → U is
compact, the proof of Lemma 6.4.1 of J. López-Gómez [14] can be adapted
mutatis mutandis to complete the proof.

By Proposition 7.1, the following counterpart of Proposition 6.4.2 of [14]
holds.

Proposition 7.4. Suppose F satisfies (F1)-(F4), (C), (25), and, once oriented
L(λ), sgnL(λ) changes sign as λ crosses λ0. According to Theorem 3.1 of P.
Benevieri and M. Furi [3], S has a (non-trivial) component C with (λ0, 0) ∈ C.
Then, for every ε ∈ (0, ε0), C possesses a subcontinuum in each of the cones
Q+

ε,η ∪ {(λ0, 0)} and Q−
ε,η ∪ {(λ0, 0)} each of which links (λ0, 0) with ∂Bδ(λ0, 0)

for sufficiently small δ > 0.

Proof. Pick ε ∈ (0, ε0). By Theorem 3.1 of P. Benevieri and M. Furi [3] and
Proposition 7.1, the result is true for at least one of the cones. Suppose it fails,
for example, for Q−

ε,η. Then, no continuum C̃ ⊂ Q−
ε,η ∪ {(λ0, 0)} exists with

(λ0, 0) ∈ C̃ and C̃∩∂Bδ(λ0, 0) �= ∅ for sufficiently small δ > 0. Moreover, owing
to Lemma 7.3, there is a continuous map Φ : [λ0 − ε,λ0 + ε] → L(V, U), such
that

Φ(λ) ∈ Iso (V, U) and K(λ) ≡ IU − Φ(λ)L(λ) ∈ K(U) if |λ− λ0| ≤ ε.

Thus, by Lemmas 7.2 and 7.3, F = 0 can be equivalently written in the form

G(λ, u) := u−K(λ)u+M(λ, u) = 0, |λ− λ0| ≤ ε, u ∈ U, (31)

where K(λ) and

M(λ, u) := Φ(λ)N(λ, u), |λ− λ0| ≤ ε, u ∈ U,

are compact operators. Now, as in the proof of [14, Pr. 6.4.2], we define

Ĝ(λ, u) := u−K(λ)u+ M̂(λ, u)

as follows

M̂(λ, u) :=






M(λ, u) if (λ, u) ∈ Q−
ε,η,

− �ϕ∗
0 ,u�

η�u� M(λ,−η�u�ϕ0 + y) if − η�u� ≤ �ϕ∗
0, u� ≤ 0,

−M̂(λ,−u) if �ϕ∗
0, u� ≥ 0.
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The map M̂ satisfies the same continuity and compactness properties as M
and, in addition, it is odd in u. Thus, Ĝ also is odd in u.

On the other hand, as sgnL(λ) changes as λ crosses λ0, according to P.
Benevieri and M. Furi [2, Sect. 5], the parity of P. M. Fitzpatrick and J.
Pejsachowicz [9] of L(λ) over [λ0−ε,λ0+ε] equals −1. i.e., the Leray-Schauder
degree Deg (IU − K(λ), BR(0)) changes as λ crosses λ0. Consequently, thanks
to Theorem 6.2.1 of J. López-Gómez [14], there is a component, Ĉ of nontrivial
solutions of Ĝ = 0 with (λ0, 0) ∈ Ĉ. According to Lemma 6.4.1 of [14], there
exists δ0 > 0 such that

Ĉ ∩Bδ(λ0, 0) ⊂ Qε,η ∪ {(λ0, 0)} for all δ ∈ (0, δ0].

Moreover, by the homotopy invariance of the degree, from Theorem 5.2 it
becomes apparent that there exists δ1 ∈ (0, δ0) such that

Ĉ ∩ ∂Bδ(λ0, 0) ∩Qε,η �= ∅ for all δ ∈ (0, δ1). (32)

On the other hand,

Ĉ ∩Q+
ε,η = {(λ,−u) : (λ, u) ∈ Ĉ ∩Q−

ε,η}

because Ĝ(λ, u) is odd in u. Therefore,

Ĉ ∩ ∂Bδ(λ0, 0) ∩Q−
ε,η �= ∅ for all δ ∈ (0, δ1),

which contradicts our first assumption and ends the proof.

Subsequently, likewise in [14, p. 187], we denote by C+ (resp. C−), the
component of S such that (λ0, 0) ∈ C+ (resp. (λ0, 0) ∈ C−) and in a neighbor-
hood of (λ0, 0) lies in S \Q−

ε,η (resp. S \Q+
ε,η). The next generalized version

of Theorem 1.27 of P. H. Rabinowitz [23] holds.

Theorem 7.5. Suppose F satisfies (F1)-(F4), (C), (25), and, once oriented
L(λ), sgnL(λ) changes sign as λ crosses λ0. Let Y ⊂ U a closed subspace such
that

U = N [L0]⊕ Y.

Then, for each ν ∈ {−,+}, Cν satisfies some of the following alternatives:

(a) Cν is not compact in R× U .

(b) There exists λ1 �= λ0 such that (λ1, 0) ∈ Cν .

(c) There exists (λ, y) ∈ Cν with y ∈ Y \ {0}.
The proof of this theorem follows mutatis mutandis the proof of Theo-

rem 6.4.3 of [14]. So, the technical details are omitted here. Under the
transversality condition of M. G. Crandall and P. H. Rabinowitz (see (23)),
χ[L;λ0] = 1. Hence, by Theorem 4.5, sgnL(λ) changes as λ crosses λ0. There-
fore, Theorem 1.2 holds from Theorem 7.5.
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On the singular 1-dimensional planar

sheaves supported on quartics
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Abstract. In the case of the fine Simpson moduli spaces of 1-
dimensional planar sheaves supported on quartics, the subvariety of
sheaves that are not locally free on their support is connected, singular,
and has codimension 2.
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1. Introduction

Let k be an algebraically closed field of characteristic zero, let V be a vector
space over k of dimension 3, and let P2 = PV be the corresponding projective
plane. Fix a linear polynomial P (m) = dm+c with integer coprime coefficients
and consider the Simpson [13] moduli space M := MP (X) of stable sheaves on
X with Hilbert polynomial P . As shown in [9], M is a fine moduli space, it is
a smooth irreducible projective variety of dimension d

2
+1. A generic sheaf in

M is a line bundle on its Fitting support, which is a planar projective curve of
degree d.

Singular sheaves

In general M contains a closed subvariety M
� of sheaves that are not locally

free on their support. Since M is irreducible, the complement MB of M
� is

an open dense subset whose points are sheaves that are locally free on their
support. So, one could consider M as a compactification of MB . We call the
sheaves from the boundary M

�
= M � MB singular. As one can see on the

following examples for d � 3, the boundary M
� does not have the minimal

codimension in general.

First examples

Notice that twisting with OP2(1) gives the isomorphism of the moduli spaces
Mdm+c(P2)

∼= Mdm+c+d(P2). Moreover, by the duality result from [12], there
is the isomorphism Mdm+c(P2)

∼= Mdm−c(P2) given by F �→ Ext1(F ,ωP2). As
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shown in [14], two moduli spaces Mdm+c(P2) and Md�m+c�(P2) are isomorphic
if and only if f d = d

� and c = ±c
�
mod d. Therefore, for fixed d, it is enough

to understand d/2 + 1 different moduli spaces.
For d = 1, Mm+c is a fine moduli space that consists of twisted structure

sheaves OL(c − 1) of lines L in P2. Therefore, each Mm+c is just the dual
projective plane P∗

2 = PV ∗. In this case there are no singular sheaves.
For d = 2 and c = 2β + 1, M2m+c is a fine moduli space whose points are

the isomorphism classes of twisted structure sheaves OC(β) of planar conics
C ⊆ P2. In this case M2m+c is isomorphic to the space of conics PS2

V
∗. As in

the previous case the subvariety M
�
2m+c of singular sheaves is empty.

The situation changes for d = 3. For c ∈ Z with gcd(3, c) = 1 all moduli
spaces M3m+c are isomorphic to the universal plane cubic curve and M

�
3m+c

is a smooth subvariety of codimension 2 isomorphic to the universal singular
locus of a cubic curve. A construction that interprets in this case the blow-up
of M along M

� as a compactification of MB by an irreducible divisor consisting
of vector bundles of curves in certain reducible surfaces was given in [8]. Since
it explicitly uses the properties of M �, it seems important to understand the
geometry of M

� in order to perform a similar modification for other moduli
spaces of planar 1-dimensional sheaves.

The main result of the paper

The cases with d � 3 were the only cases where the boundary M
� has been

completely understood. In this note we study the subvariety of singular sheaves
in the case of M = M4m+c(P2), gcd(4, c) = 1, i. e., for the fine Simpson
moduli spaces, which consist entirely of stable points and parameterize the
isomorphism classes of sheaves. As already mentioned above, it is enough to
consider the case c = −1.

We describe all possible singular sheaves in M , the main result of the paper
is summarized in the following:

Proposition 1.1. Let M be the Simpson moduli space of stable sheaves with
Hilbert polynomial P (m) = 4m+ c, gcd(4, c) = 1. Let M � ⊆ M be the subvari-
ety of singular sheaves. Then M

� is a singular (path-)connected subvariety of
codimension 2.

We use the merits of computer algebra computations: the most important
computations in the paper are performed using Singular [1]. At the same
time we comment on the restrictedness of computer algebra methods due to
the complexity of the involved algorithms.
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Structure of the paper

In Section 2 we give a detailed description of the stratification from [4] of the
moduli space M into an open stratum M0 and its closed complement M1.
In Section 3 we describe the open stratum of M as an open subvariety of a
projective bundle over the space of Kronecker modules N = N(3; 2, 3). In
Section 4 we give a characterization of singular sheaves in M0 and study the
fibres of M0 over N , which allows us to demonstrate in Section 5 the assertions
of Proposition 1.1. In Section 6 we study, for an isomorphism class [E ] in M0,
how being singular is related with the singularities of the support of E . The
computations with Singular [1] used in the paper (the code and its output)
are presented in Appendix A.

2. Description of M4m−1(P2)

Let M be the Simpson moduli space of stable sheaves on P2 with Hilbert
polynomial 4m − 1. In [4] it has been shown that M can be decomposed into
two strata M1 and M0 such that M1 is a closed subvariety of M of codimension 2

and M0 is its open complement.

2.1. Closed stratum.

The closed stratum M1 is a closed subvariety of M of codimension 2 given
by the condition h

0
(E) �= 0 (more precisely h

0
(E) = 1). It consists of the

isomorphism classes of sheaves with locally free resolutions

0 → 2OP2(−3)
(
z1 q1
z2 q2 )

−−−−−→ OP2(−2)⊕OP2 → E → 0, (1)

where z1 and z2 are linear independent linear forms on P2. M1 is a geo-
metric quotient of the variety of injective matrices (

z1 q1
z2 q2 ) as above by the

non-reductive group

(Aut(2OP2(−3))×Aut(OP2(−2)⊕OP2))/k∗

(cf. [5]). M1 is isomorphic to the universal quartic plane curve

{(p, C) | C ⊆ P2 is a quartic plane curve, p ∈ C}.

The latter can be explained as follows. The sheaves with resolution (1) are
exactly the non-trivial extensions

0 → OC → E → kp → 0, (2)

where C = CA = Z(detA) is the quartic curve defined by the determinant of A
and p = pA = Z(z1, z2) is the point on C defined by two linear independent
linear forms z1 and z2.
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2.2. Open stratum.

The open stratum M0 is the complement of M1 given by the condition h
0
(E) =

0, it consists of the cokernels EA of the injective morphisms

OP2(−3)⊕ 2OP2(−2)
A
−→ 3OP2(−1) (3)

with

A =




q0 q1 q2

z0 z1 z2

w0 w1 w2





such that the (2 × 2)-minors of the linear part of A are linear independent.
Equivalently, the Kronecker module

α =

�
z0 z1 z2

w0 w1 w2

�
(4)

is stable (cf. [6, Lemma 1], [2, Proposition 15]).

2.2.1. Twisted ideals of 3 non-collinear points of C

If the maximal minors of α are coprime, then EA
∼= IZ(1), where IZ is the

ideal sheaf of the zero dimensional subscheme Z ⊆ C of length 3 defined by the
maximal minors of α. In this case the isomorphism class of E = EA is a part of
the exact sequence

0 → E → OC(1) → OZ → 0 (5)

and is uniquely defined by Z and C.
Let M00 denote the open subscheme of all such sheaves in M0.

2.2.2. Extensions

If the maximal minors of α have a linear common factor, say l, then f =

det(A) = l · h and EA is in this case a non-split extension

0 → OL(−2) → EA → OC� → 0, (6)

where L = Z(l), C �
= Z(h).

For fixed L and C
� the subscheme of the isomorphism classes of non-trivial

extensions (6) can be identified with k2.
Let M01 denote the closed subscheme of M0 of all such sheaves. Notice that

M01 is locally closed in M .
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2.2.3. M0 as a geometric quotient.

M0 is the geometric quotient of the variety of injective matrices as in (3) by
the group

G
�
= Aut(OP2(−3)⊕ 2OP2(−2))×Aut(3OP2(−1)).

As shown in [11] M0 can be seen as an open subvariety in the projective quotient
B of the variety of all semistable matrices (3) by the same group.

3. Description of M0 as an open subvariety in B

3.1. Kronecker modules

Let V be the affine variety of Kronecker modules

2OP2(−1)
Φ
−→ 3OP2 . (7)

There is a natural group action of G = (GL2(k) × GL3(k))/k∗ on V. Since
gcd(2, 3) = 1, all semistable points of this action are stable and G acts freely
on the open subset Vs of stable points. A Kronecker module (7) is stable if its
maximal minors are linear independent quadratic forms. There exists a geo-
metric quotient N = N(3; 2, 3) = Vs

/G, which is a smooth projective variety
of dimension 6. For more details consult [7, Section 6] and [2, Section III].

The cokernel of a stable Kronecker module Φ ∈ Vs is an ideal of a zero-
dimensional scheme Z of length 3 if the maximal minors of Φ are coprime. In
this case there is a locally free resolution

0 → 2OP2(−3)
Φ
−→ 3OP2(−2)





d0

d1

d2





−−−−→ OP2 → OZ → 0 (8)

and, moreover, Z does not lie on a line. Let V0 denote the open subvariety of
Φ ∈ Vs of Kronecker modules with coprime maximal minors. Let N0 ⊆ N be
the corresponding open subvariety in the quotient space.

This way one obtains a morphism from N0 ⊆ N to the Hilbert scheme H of
zero-dimensional subschemes of P2 of length 3, which sends a class of Φ ∈ Vs

to the zero scheme of its maximal minors. Since, by Hilbert-Burch theorem,
every zero dimensional scheme of length 3 that does not lie on a line has a
minimal resolution of type (8), this gives an isomorphism between N0 and the
open subvariety H0 ⊆ H consisting of Z that do not lie on a line.

Let N
�
= N \ N0, then N

� is the quotient of the variety of Kronecker
modules (7) whose maximal minors have a common linear factor.
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Since every matrix representing a point in N
� is equivalent to a matrix�

z0 0 z1
0 z0 z2

�
with linear independent linear forms z0, z1, z2, one can see that N � is

isomorphic to P∗
2 = PV ∗, the space of lines in P2, such that a line corresponds to

the common linear factor of the minors of the corresponding Kronecker module.
The complement H � of H0 is an irreducible hypersurface (cf. [3, p. 46], [7]).

The isomorphism H0 → N0 can be extended to the morphism H
π
−→ N that

describes H as the blowing up of N along N
�. The fibre over L ∈ P∗

2 consists of
those Z ∈ H lying on L, i. e., the fibre over L is L

[3] ∼= P3, the Hilbert scheme
of 3 points on L.

3.2. B as a projective bundle over N

Let us provide here the argument from the proof of [11, Proposition 7.7].
Consider two vector spaces U1 = 2Γ(P2,OP2(1)) and U2 = 3Γ(P2,OP2(2)).

One identifies elements of V× U2 with morphisms (3) by

(Φ, Q) �→

�
Q

Φ

�
.

Both V × U1 and V × U2 are trivial vector bundles over V. Consider the
morphism

V× U1
F
−→ V× U2, (Φ, L) �→

�
L · Φ

Φ

�
.

Since the matrices from Vs have linear independent maximal minors, F is
injective over Vs. Therefore, Vs × U1

F
−→ Vs × U2 is a vector subbundle and

hence the cokernel E of F is a vector bundle of rank 12 on Vs.
The group action of GL2(k) × GL3(k) on Vs × U1 and Vs × U2 induces a

group action of GL2(k)×GL3(k) on E and hence an action of G = (GL2(k)×
GL3(k))/k∗ on the projective bundle PE. Finally, since the stabilizer of Φ ∈ Vs

under the action of G is trivial, G acts trivially on the fibres of PE and thus
PE descends to a projective P11-bundle

B ν
−→ N = N(3;n− 1, n) = Vs

/G,

which is exactly the geometric quotient of Vs × U2 \ ImF with respect to G
�

mentioned above.

3.2.1. The fibres of B ν
−→ N over N0

A fibre over a point from N0 can be seen as the space of plane quartics through
the corresponding subscheme of 3 non-collinear points. Indeed, consider a
point from N0 given by a Kronecker module (

z0 z1 z2
w0 w1 w2 ) with coprime minors
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d0, d1, d2. The fibre over such a point consists of the orbits of injective matrices



q0 q1 q2

z0 z1 z2

w0 w1 w2



 , q0, q1, q2 ∈ S
2
V

∗
,

under the group action of G�. In particular such a fibre is contained in M00. If
two matrices � q0 q1 q2

z0 z1 z2
w0 w1 w2

�
,

�
Q0 Q1 Q2
z0 z1 z2
w0 w1 w2

�

lie in the same orbit of the group action, then their determinants are equal
up to a multiplication by a non-zero constant. Vice versa, if the determinants
of two such matrices are equal, q − Q = (q0 − Q0, q1 − Q1, q2 − Q2) lies in

the syzygy module of
�

d0
d1
d2

�
, which is generated by the rows of ( z0 z1 z2

w0 w1 w2 ) by

Hilbert-Burch theorem. This implies that q − Q is a combination of the rows
and thus the matrices lie on the same orbit.

3.2.2. M0 and flags of subschemes on P2.

Let B0 denote the restriction of B to N0. Then B0 coincides with M00 as the
fibres over N0 are contained in M0.

Let PS4
V

∗
= P14 be the space of plane quartics. Let

M
µ
−→ PS4

V
∗
= P14, [E ] �→ Supp(E),

be the morphism sending an isomorphism class of sheaf E to its support. Then
its restriction to M0 is induced by the equivariant morphism that sends a
matrix (3) defining a point in M0 to the quartic determined by its determinant.

B0 is isomorphic to the image of the injective morphism

B0
µ×ν
−−−→ P(S4

V
∗
)×N0

∼= P(S4
V

∗
)×H0, (9)

which coincides with the subvariety of pairs (C,Z) with Z ⊆ C. It is isomorphic
to the open subscheme H0(3, 4) ⊆ H(3, 4) of the Hilbert flag-scheme of flags
Z ⊆ C ⊆ P2 (zero-dimensional subscheme Z of length 3 on a curve C ⊆ P2 of
degree 4) such that Z does not lie on a line.

3.2.3. The fibres of B ν
−→ N over N

�

A fibre over L ∈ N
� can be seen as the join J(L

∗
,PS3

V
∗
) ∼= P11 of L∗ ∼= P1 and

the space of plane cubic curves P(S3
V

∗
) ∼= P9. To see this assume L = Z(x0),

i. e., L is given by
�
x0 0 x1
0 x0 x2

�
. Then the fibre over L is given by the orbits of

matrices 


q0(x1, x2) q1(x1, x2) q2(x0, x1, x2)

x0 0 x1

0 x0 x2



 (10)
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and can be identified with the projective space P(2H0
(L,OL(2)) ⊕ S

2
V

∗
).

Rewrite the matrix (10) as
�

l·x2−b(x1,x2) −l·x1−cx2
2 a(x0,x1,x2)

x0 0 x1
0 x0 x2

�
, l(x1, x2) = ξ1x1 + ξ2x2, ξ1, ξ2 ∈ k.

Its determinant equals x0(a(x0, x1, x2) · x0 + b(x0, x1) · x1 + c · x3
2). This allows

to reinterpret the fibre as the projective space

P(H0
(L,OL(1))⊕ S

3
V

∗
) ∼= J(L

∗
,PS3

V
∗
).

The intersection of the fibre with M0 is J(L
∗
,P(S3

V
∗
)) \ L

∗. It is a rank 2

vector bundle over P(S3
V

∗
) whose fibre over a cubic curve C

� ∈ PS3
V

∗ is
identified with the set of the isomorphism classes of sheaves from M01 defined
by (6) with fixed L and C

�. This fibre corresponds to the projective plane
joining C

� with L
∗ inside the join J(L

∗
,P(S3

V
∗
)). In the notations of the

example above ξ1 and ξ2 are the coordinates of this affine plane.

L
∗ J(L

∗
,P(S3

V
∗
))

•
C

�

P(S3
V

∗
)

The points of J(L∗
,P(S3

V
∗
)) \ L

∗ parameterize the extensions (6) from M01

with fixed L.

3.2.4. Description of the complement of M0 in B.

Let B�
= B \ M0. Then B� is a union of lines L

∗ from each fibre over N
� (as

explained above), it is isomorphic to the tautological P1-bundle over N
�
= P∗

2

{(L, x) ∈ P∗
2 × P2 | L ∈ P∗

2, x ∈ L}. (11)

The fibre P1 of B� over, say, line L = Z(x0) ⊆ P2 can be identified with the
space of classes of matrices (3) with zero determinant

�
ξ·x2 −ξ·x1 0
x0 0 x1
0 x0 x2

�
, ξ = αx1 + βx2, �α,β� ∈ P1.
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Let Nc be the open subset of N0 that corresponds to 3 different (and hence
non-collinear) points. Under the isomorphism N0

∼= H0 it corresponds to the
open subvariety Hc ⊆ H0 of the non-collinear configurations of 3 points on P2.

Let Mc = Bc be the restriction of B to Nc. Then Mc ⊆ M00 ⊆ M0 ⊆ M

are inclusions of open subvarieties of M .

4. The subvariety of singular sheaves

Let M
�
1 and M

�
0 denote the intersections of the subvariety M

�
= M

�
4m−1 of

singular sheaves with M1 and M0 respectively.

4.1. Characterization of singular sheaves

4.1.1. Singular sheaves in M1

As shown in [8], the subvariety M
�
1 coincides with the universal singular locus

{(p, C) | C ⊆ P2 is a quartic plane curve, p ∈ Sing(C)},

which is a smooth subvariety of M1 of codimension 2.

4.1.2. Singular sheaves in M0.

Lemma 4.1. The sheaf EA from M0 is singular if and only if the ideal Imin =

Imin(A) generated by all (2× 2)-minors of A defines a non-empty scheme.

Proof. If there are no zeros of Imin, then at every point of P2 at least one of the
(2× 2)-minors is invertible, hence using invertible elementary transformations
one can bring A to the form




1 0 0

0 1 0

0 0 detA





and therefore E is locally isomorphic to OC , C = Z(detA) = Supp E .
If p is a zero point of Imin, then the rank of A is at most 1 at p. Therefore,

the dimension of E(p) = Ep/mpEp is at least 2. Since the rank of E (on support)
is 1, we conclude that E is a singular sheaf.

4.2. M �
0 and computer algebra

Lemma 4.1 suggests the following approach to study M
�
0 using computer alge-

bra.
Put A := Hom(OP2(−3) ⊕ 2OP2(−2), 3OP2(−1)) ∼= k36 and let W0 ⊆ A

be the quasi-affine variety of injective matrices (3) such that M0
∼= W0/G

�
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as mentioned in 2.2.3. Consider the ideal I ⊆ k(A)[x0, x1, x3] of (2 × 2)-
minors of the universal matrix on A. Then eliminating the variables x0, x1, x2

from the saturation ideal I : (x0, x1, x2)
∞, we will obtain the ideal J = (I :

(x0, x1, x2)
∞
)∩k[A] defining the subvariety in A of the matrices whose cokernels

are singular sheaves. Having this, one computes the dimension of the zero
scheme of J , its singularities, etc.

Though all actions with the ideals mentioned above are implemented in
different systems of computer algebra, the complexity of the involved algorithms
have not even made it possible for us to compute J . Therefore, we are going
to study first the fibres of M �

0 over N .

4.3. Fibres of M �
0 over N

Let us consider the restriction of ν to M
�
0 and describe its fibres. There are the

following possible cases:

1. fibres over Nc
∼= Hc, i. e., over 3 different non-collinear points;

2. fibres over Z ∈ N0 consisting of a simple point and a double point;

3. fibres over curvilinear triple points Z ∈ N0;

4. fibres over non-curvilinear triple points Z ∈ N0;

5. fibres over N
�.

The corresponding fibres will be referred to as fibres of type (1), (2), (3), (4),
and (5) respectively.

4.3.1. Fibres of type (1)

Let Z ∈ Hc
∼= Nc be a non-collinear configuration of 3 points in P2. Then,

after applying an appropriate coordinate change, we can assume without loss
of generality that Z is the union of three points pt0 = �1, 0, 0�, pt1 = �0, 1, 0�,
pt2 = �0, 0, 1�, the corresponding Kronecker module is

Φ =

�
x0 x1 0

x0 0 x2

�
,

whose minors d0 = x1x2, d1 = −x0x2, d2 = −x0x1 generate the ideal IZ of Z.

•
x0 = 0

x1 = 0x2 = 0

•

•
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The fibre of ν over the class of Φ in N0 consists of the orbits of the matrices

A =




q0(x0, x1, x2) q1(x0, x2) q2(x0, x1)

x0 x1 0

x0 0 x2



 .

The coefficients of

q0 = a0x
2
0 + a1x0x1 + a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2,

q1 = b0x
2
0 + b2x0x2 + b5x

2
2,

q2 = c0x
2
0 + c1x0x1 + c3x

2
1

(12)

can be seen as the projective coordinates of the fibre ν
−1

([Φ]) ∼= P11.
The ideal that defines the subvariety corresponding to the singular sheaves

is computed by eliminating the variables x0, x1, x2 from the saturation of Imin

with respect to the non-essential maximal ideal (x0, x1, x2). We perform the
computations using the computer algebra system Singular (cf. [1]).

We get the ideal (see A.1 for computations)

(b0, c0) ∩ (a3, c3) ∩ (a5, b5),

i. e., the fibre of M �
0 over [Φ] is a union of 3 components, each being a projective

subspace in P11 of codimension 2. The components lie in a general position:
each two components intersect along a projective subspace of codimension 4 and
the intersection of all three of them is a projective subspace of codimension 6.

4.3.2. Fibres of type (2)

Let Z ∈ H0 \Hc be a non-collinear configuration of a simple point pt1 and a
double non-collinear point at pt2. The double point is defined by the underlying
simple point pt2 and a tangent vector at pt2. Since Z does not lie on a line,
the tangent vector should be normal to the line joining pt1 and pt2. Therefore,
after applying an appropriate coordinate change, we can assume without loss
of generality that pt1 = �0, 0, 1�, pt2 = �0, 1, 0�, and the tangent vector at pt2

is parallel to the line given by x2.

•
• •

x0 = 0

x2 = 0

x1 = 0

The ideal of Z equals (x0, x1) ∩ (x
2
0, x2), the corresponding Kronecker module

can be taken to be
Φ =

�
x0 x1 0

0 x0 x2

�
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The fibre of ν over the class of Φ in N0 consists of the orbits of the matrices

A =




q0(x0, x1, x2) q1(x0, x2) q2(x0, x1)

x0 x1 0

0 x0 x2



 .

The coefficients of q0, q1, q2 as in (12) can be seen as the projective coordinates
of the fibre ν

−1
([Φ]) ∼= P11.

The fibre of M �
0 over [Φ] ∈ N is given by the ideal

(a
2
3, c

2
3, a3c3, a1c3 − a3c1) ∩ (a5, b5)

whose radical is (a3, c3) ∩ (a5, b5), which means that the fibre consists of two
components each of which is a projective subspace of ν−1

([Φ]) ∼= P11 of codi-
mension 2. For computations see A.2.

4.3.3. Fibres of type (3)

Let Z be a triple curvilinear point. Without loss of generality, applying an
appropriate coordinate change if necessary, we can assume that Z is supported
at pt = �1, 0, 0� and the ideal of Z in the affine coordinates x = x1/x0, y =

x2/x0 is in this case

(y
3
, x− sy − t

−1
y
2
), s ∈ k, t ∈ k∗.

•••

The corresponding Kronecker module can be taken to be

Φ =

�
x2 + 2stx0 x1 − sx2 tx0

x1 + sx2 0 x2

�
.

The fibre of ν over the class of Φ in N0 consists of the orbits of the matrices

A =




q0(x0, x1, x2) q1(x0, x2) q2(x0, x1)

x2 + 2stx0 x1 − sx2 tx0

x1 + sx2 0 x2



 . (13)

The coefficients of q0, q1, q2 as in (12) can be seen as the projective coordinates
of the fibre ν

−1
([Φ]) ∼= P11.

The fibre of M �
0 over [Φ] ∈ N is given by the ideal whose radical is

(b0, a0 − 2sc0),

which means that the fibre consists of one component which is a projective
subspace of codimension 2 in ν

−1
([Φ]) ∼= P11. For computations see A.3.
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4.3.4. Fibres of type (4)

Let Z be a non-curvilinear triple point. After a change of coordinates we may
assume that Z is supported at pt = �1, 0, 0�. Since there is only one non-
curvilinear triple point at a given point of a smooth surface, the ideal of Z

equals (x
2
1, x1x2, x

2
2), the corresponding Kronecker module can be taken to be

Φ =

�
x2 x1 0

x1 0 x2

�
.

•••
x1 = 0

x2 = 0

The fibre of ν over the class of Φ in N0 consists of the orbits of the matrices

A =




q0(x0, x1, x2) q1(x0, x2) q2(x0, x1)

x2 x1 0

x1 0 x2



 .

By Lemma 4.1 all such matrices define singular sheaves since all (2×2)-minors
vanish at pt. Therefore, M �

0 is a P11-bundle over the locus of non-curvilinear
triple points.

4.3.5. Fibres of type (5)

Let [Φ] ∈ N
�, then without loss of generality

Φ =

�
x0 0 x1

0 x0 x2

�

and the fibre of ν over [Φ] consists of the orbits of the matrices (10). By
Lemma 4.1 the sheaf defined by




q0(x1, x2) q1(x1, x2) q2(x0, x1, x2)

x0 0 x1

0 x0 x2





is singular if and only if the quadratic forms

q0(x1, x2) = a3x
2
1 + a4x1x2 + a5x

2
2 and q1(x1, x2) = b3x

2
1 + b4x1x2 + b5x

2
2

have a common zero. The latter holds if and only if the resultant of q0 and q1

R = R(q0, q1)(a3, a4, a5, b3, b4, b5)
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vanishes. Since R is an irreducible homogeneous polynomial of degree 4 in
variables a3, a4, a5, b3, b4, b5, the fibres over N � are open subsets of irreducible
hyper-surfaces of degree 4 in P11. These subsets are obtained by throwing away
the points corresponding to matrices with zero determinant, i. e., the line L

∗

(cf. 3.2.3), which is contained in the hypersurface.

5. Main result

The information about the fibres of M �
0 over N obtained in the previous section

allows to prove Proposition 1.1.

5.1. Dimension

We showed that the fibres of M �
0 over N are generically 9-dimensional, the fibres

are more than 9-dimensional only over a subvariety of N of dimension 2. There-
fore, the dimension of M �

0 (and thus of M �) is 15, i. e., M � has codimension 2

in M .

5.2. Singularities

Notice that the computation from 4.3.1 works also locally over the base. Let
us make this clear in the case of k = C, i. e., in the analytic category with
analytic topology.

Let us vary the points

p0 = �1, p
(0)
1 , p

(0)
2 �, p1 = �p

(1)
0 , 1, p

(1)
2 �, p2 = �p

(2)
0 , p

(2)
1 , 1�

in disjoint neighborhoods in P2 of points �1, 0, 0�, �0, 1, 0�, �0, 0, 1� respectively.
Assume moreover that p0, p1, p2 are always non-collinear. Then p

(0)
1 , p(0)2 , p(1)0 ,

p
(1)
2 , p

(2)
0 , p

(2)
1 are local coordinates of N around the class of the Kronecker

module
Φ =

�
x0 x1 0

x0 0 x2

�
.

Denote by Up0,p1,p2 the corresponding neighborhood of [Φ].
Let x̄i, i = 0, 1, 2, be a linear form that defines the line not passing through

pi and passing through the other two points.
The fibre of ν over the class of

Φ̄ =

�
x̄0 x̄1 0

x̄0 0 x̄2

�

consists of the orbits of the matrices

A =




q̄0(x̄0, x̄1, x̄2) q̄1(x̄0, x̄2) q̄2(x̄0, x̄1)

x̄0 x̄1 0

x̄0 0 x̄2



 .
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The coefficients of

q̄0 = a0x̄
2
0 + a1x̄0x̄1 + a2x̄0x̄2 + a3x̄

2
1 + a4x̄1x̄2 + a5x̄

2
2,

q̄1 = b0x̄
2
0 + b2x̄0x̄2 + b5x̄

2
2,

q̄2 = c0x̄
2
0 + c1x̄0x̄1 + c3x̄

2
1

can be seen as the projective coordinates of the fibre ν
−1

([Φ̄]) ∼= P11, this gives
a trivialization of B around [Φ]. As in 4.3.1 we conclude that M � over Up0,p2,p3

is a trivial bundle with the fibre computed in 4.3.1. Therefore, M �
c = M

� ∩Mc

is a bundle over Nc with this singular fibre, which shows that M
� is singular.

Remark 5.1. Our argument shows that the singularities of M �
0 over Nc lie in

codimension 2.

Remark 5.2. Notice that in the algebraic category a modification of the argu-
ment above would lead to a local triviality of M � over Nc only in étale topology.
This would not affect however our conclusions.

5.3. Connectedness

As shown in 4.3, every fibre of M �
0 over N is (path-)connected. Therefore, since

N is (path-)connected, M �
0 is (path-)connected. Since M

�
1, which is isomorphic

to the universal singular locus of plane quartic curves, is (path-)connected, it
remains to connect M

�
1 with M

�
0.

The latter can be done, for example, as follows. Let C be a quartic curve
with a simple double point singularity p0 ∈ C. Fix a line through p0 that is
not a component of C and intersects C at 3 different points p0, p1, p2.

Consider a degeneration Zt = {p0, p1, p(t)} of a configuration of 3 non-
collinear points on C to the configuration Z0 = {p0, p1, p2}, i. e., p(t) → p2,
t → 0.

•
p2

•
p1

•
p0

•
p(t)

This gives a degeneration of the twisted ideal sheaf Et = IZt(1) of Zt in C to
the twisted ideal sheaf IZ0(1) of Z0.

Notice that E0 = IZ0(1) is a non-trivial extension (2) with p = p0. There-
fore, E0 defines a point in M1. Since p0 is a singular point of C, as mentioned
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in 4.1.1, E must be a singular sheaf. On the other hand, as we shall show in
Proposition 6.1, Et is a singular sheaf for t �= 0 as p0 is a singular point of C.
This gives a path connecting M

�
0 with M

�
1.

6. Singular sheaves and singularities of their support

Let [E ] ∈ M00 = B0. Let C = Supp E be its support, which is a quartic curve in
P2. As E is a part of an exact sequence (5), it is a subsheaf of OC(1), hence a
torsion free sheaf on C. Since torsion free sheaves on smooth curves are locally
free (see e.g. [10, Lemma 5.2.1]), we conclude that E is non-singular if C is
smooth at all points of Z. So E can only be singular if C is singular at some
points of Z. This demonstrates that the image of M �

00 = M
�∩M00 under (9) is

included in the subvariety of pairs (C,Z) such that Z contains a singular point
of C. We shall demonstrate that M

�
00 generically coincides with this variety.

More precisely, the image of M �
c = M

� ∩Mc under the morphism

Mc
µ×ν
−−−→ PS4

V
∗
×H0

consists of the pairs (C,Z), Z ⊆ C, such that C is a singular plane curve of
degree 4 whose singular locus contains at least one of the points of Z.

Proposition 6.1. Let [E ] as above belong to Mc, then
1) E is singular if and only if SingC ∩ Z �= ∅;
2) the fibre of M �

0 over Z ∈ Hc, Z = {pt0, pt1, pt2}, under the morphism
M

�
0

ν
−→ Nc

∼= Hc corresponds to the variety of plane quartic curves through Z

such that one of the points of Z is a singular point of C;
3) for each i = 0, 1, 2, the variety of quartics through Z such that pti is a

singular point of C coincides with one of three different irreducible components
of the fibre.

Proof. Follows from the computations given in A.1.

Remark 6.2. Since E is a twisted ideal sheaf of 3 different points on a quartic
curve (cf. (5)), the statement 1) of Proposition 6.1 immediately follows from
Lemma 6.3 below.

6.1. An observation from commutative algebra

Let R = OC,p be a local k-algebra of a curve C at point p ∈ C. Let m = mC,p

be its maximal ideal and let kp = R/m be the local ring of the structure sheaf
of the one point subscheme {p} ⊆ C. An R-module homomorphism R

ϕ
−→ kp

is uniquely defined by ϕ(1) = λ ∈ kp. Then ϕ(s) = s̄ · λ. If ϕ is different from
zero, then the kernel of ϕ coincides with m.
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Lemma 6.3. Consider an exact sequence of R-modules.

0 → M → R → kp → 0

with a non-zero R-module M . Then M is free if and only if R is regular.

Proof. If M is free, then M ∼= R (otherwise M → R would not be injective)
and we obtain an exact sequence of R-modules

0 → R → R → kp → 0,

which means that the maximal ideal m of p is generated by one element. There-
fore, R is regular in this case.

Vice versa, assume R is regular. Notice that M is always a torsion free R-
module as a submodule of R. Therefore, if R is regular, M is free as a torsion
free module over a regular one-dimensional local ring.

Remark 6.4. Notice that Proposition 6.1 does not hold over N0 \Nc. Indeed,
take [EA] ∈ M00 \Mc with

A =




x
2
2 0 x

2
1

x0 x1 0

0 x0 x2



 .

Then the support C of EA is given by x1(x
3
2 + x

2
0x1) = 0, one obtains an exact

sequence
0 → EA → OC(1) → OZ → 0

such that Z consists of the simple point �0, 0, 1� and the double point �0, 1, 0�.
In this case EA is a non-singular sheaf but �0, 1, 0� ∈ Z ∩ SingC.

In A.2 we compute that every matrix A as in 4.3.2 with a3 = 0, a5 �= 0

defines a non-singular sheaf, however the intersection of Z with the singular
locus of the supporting curve C is non-empty.

A. Computations of the fibres of M �
0 over N with

Singular

A.1. Fibres of type (1)
t1.sng 1> LIB "elim.lib";
t1.sng 2> ring r=0, (x(0..2), a(0..5), b(0..5), c(0..5)), dp;
t1.sng 3> ideal maxm=x(0..2);
t1.sng 4> poly X=x(0)*x(1)*x(2);
t1.sng 5> poly q(0..2);
t1.sng 6> q(0) = a(0)*x(0)^2 + a(1)*x(0)*x(1) + a(2)*x(0)*x(2) + a(3)*x(1)^2 + a(4)*x(1)*x(2) + a(5)*x(2)^2;
t1.sng 7> q(1) = b(0)*x(0)^2 + b(1)*x(0)*x(1) + b(2)*x(0)*x(2) + b(3)*x(1)^2 + b(4)*x(1)*x(2) + b(5)*x(2)^2;
t1.sng 8> q(2) = c(0)*x(0)^2 + c(1)*x(0)*x(1) + c(2)*x(0)*x(2) + c(3)*x(1)^2 + c(4)*x(1)*x(2) + c(5)*x(2)^2;
t1.sng 9> q(1)=subst(q(1), x(1), 0);
t1.sng 10> q(2)=subst(q(2), x(2), 0);
t1.sng 11> // general form of matrices representing the points in the fibre
t1.sng 12. matrix A[3][3] = q(0), q(1), q(2), x(0), x(1), 0, x(0), 0, x(2);
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t1.sng 13> print(A);
A[1,1],A[1,2],A[1,3],
x(0), x(1), 0,
x(0), 0, x(2)
t1.sng 14> // the Kronecker module corresponding to 3 non-collinear points
t1.sng 15. matrix Phi=submat(A, 2..3, 1..3);
t1.sng 16> print(Phi);
x(0),x(1),0,
x(0),0, x(2)
t1.sng 17> // the ideal of 2x2 minors of A
t1.sng 18. ideal minm = minor(A, 2);
t1.sng 19> minm = sat(minm, maxm)[1]; // compute its saturation
t1.sng 20> minm = elim(minm, X); // eliminate the variables x(0), x(1), x(2)
t1.sng 21> print(minm);
b(5)*c(0)*c(3),
a(5)*c(0)*c(3),
b(0)*b(5)*c(3),
a(5)*b(0)*c(3),
a(3)*b(5)*c(0),
a(3)*a(5)*c(0),
a(3)*b(0)*b(5),
a(3)*a(5)*b(0)
t1.sng 22> // look at the primary decomposition of the result
t1.sng 23. primdecGTZ(minm);
[1]:

[1]:
_[1]=c(3)
_[2]=a(3)

[2]:
_[1]=c(3)
_[2]=a(3)

[2]:
[1]:

_[1]=c(0)
_[2]=b(0)

[2]:
_[1]=c(0)
_[2]=b(0)

[3]:
[1]:

_[1]=b(5)
_[2]=a(5)

[2]:
_[1]=b(5)
_[2]=a(5)

t1.sng 24> // let us establish a link between the singular sheaves
t1.sng 25. // and the singularities of their support
t1.sng 26. poly f = det(A); // determinant of A
t1.sng 27> // ideal of partial derivatives of f
t1.sng 28. // with respect to x(0), x(1), x(2)
t1.sng 29. // together with the 2x2-minors of Phi,
t1.sng 30. // its zeroes are exactly the singular points of C contained in Z
t1.sng 31. ideal D = diff(f, x(0)), diff(f, x(1)), diff(f, x(2)), minor(Phi, 2);
t1.sng 32> // look at the equations of the subvariety of the fibre defining such sheaves
t1.sng 33. D = sat(D, maxm)[1];
t1.sng 34> D = elim(D, X);
t1.sng 35> // the result coincides with the ideal for singular sheaves
t1.sng 36. primdecGTZ(D);
[1]:

[1]:
_[1]=c(3)
_[2]=a(3)

[2]:
_[1]=c(3)
_[2]=a(3)

[2]:
[1]:

_[1]=c(0)
_[2]=b(0)

[2]:
_[1]=c(0)
_[2]=b(0)

[3]:
[1]:

_[1]=b(5)
_[2]=a(5)

[2]:
_[1]=b(5)
_[2]=a(5)

t1.sng 37> // the ideal of the intersection of pt0 with the singular locus of C
t1.sng 38. D = diff(f, x(0)), diff(f, x(1)), diff(f, x(2)), x(1), x(2);
t1.sng 39> D = sat(D, maxm)[1];
t1.sng 40> D = elim(D, X);
t1.sng 41> // the result coincides with one of the components
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t1.sng 42. // of the fibre of singular sheaves computed above
t1.sng 43. primdecGTZ(D);
[1]:

[1]:
_[1]=c(0)
_[2]=b(0)

[2]:
_[1]=c(0)
_[2]=b(0)

t1.sng 44> // the ideal of the intersection of pt0 with the singular locus of C
t1.sng 45. D = diff(f, x(0)), diff(f, x(1)), diff(f, x(2)), x(0), x(2);
t1.sng 46> D = sat(D, maxm)[1];
t1.sng 47> D = elim(D, X);
t1.sng 48> // the result coincides with one of the components
t1.sng 49. // of the fibre of singular sheaves computed above
t1.sng 50. primdecGTZ(D);
[1]:

[1]:
_[1]=c(3)
_[2]=a(3)

[2]:
_[1]=c(3)
_[2]=a(3)

t1.sng 51> // the ideal of the intersection of pt0 with the singular locus of C
t1.sng 52. D = diff(f, x(0)), diff(f, x(1)), diff(f, x(2)), x(0), x(1);
t1.sng 53> D = sat(D, maxm)[1];
t1.sng 54> D = elim(D, X);
t1.sng 55> // the result coincides with one of the components
t1.sng 56. // of the fibre of singular sheaves computed above
t1.sng 57. primdecGTZ(D);
[1]:

[1]:
_[1]=b(5)
_[2]=a(5)

[2]:
_[1]=b(5)
_[2]=a(5)

t1.sng 58> $

A.2. Fibres of type (2)
t2.sng 1> LIB "elim.lib";
t2.sng 2> ring r = 0, (x(0..2), a(0..5), b(0..5), c(0..5)), dp;
t2.sng 3> ideal maxm = x(0..2);
t2.sng 4> poly X = x(0)*x(1)*x(2);
t2.sng 5> poly q(0..2);
t2.sng 6> q(0) = a(0)*x(0)^2 + a(1)*x(0)*x(1) + a(2)*x(0)*x(2) + a(3)*x(1)^2 + a(4)*x(1)*x(2) + a(5)*x(2)^2;
t2.sng 7> q(1) = b(0)*x(0)^2 + b(1)*x(0)*x(1) + b(2)*x(0)*x(2) + b(3)*x(1)^2 + b(4)*x(1)*x(2) + b(5)*x(2)^2;
t2.sng 8> q(2) = c(0)*x(0)^2 + c(1)*x(0)*x(1) + c(2)*x(0)*x(2) + c(3)*x(1)^2 + c(4)*x(1)*x(2) + c(5)*x(2)^2;
t2.sng 9> q(1) = subst(q(1), x(1), 0);
t2.sng 10> q(2) = subst(q(2), x(2), 0);
t2.sng 11> // general form of matrices representing the points in the fibre
t2.sng 12. matrix A[3][3] = q(0), q(1), q(2), x(0), x(1), 0, 0, x(0), x(2);
t2.sng 13> print(A);
A[1,1],A[1,2],A[1,3],
x(0), x(1), 0,
0, x(0), x(2)
t2.sng 14> // the Kronecker module corresponding to 3 non-collinear points
t2.sng 15. matrix Phi = submat(A, 2..3,1..3);
t2.sng 16> print(Phi);
x(0),x(1),0,
0, x(0),x(2)
t2.sng 17> // the ideal of 2x2 minors
t2.sng 18. ideal minm = minor(A, 2);
t2.sng 19> minm = sat(minm, maxm)[1]; // compute its saturation
t2.sng 20> minm = elim(minm, X); // eliminate the variables x(0), x(1), x(2)
t2.sng 21> minm;
minm[1]=b(5)*c(3)^2
minm[2]=a(5)*c(3)^2
minm[3]=a(3)*b(5)*c(3)
minm[4]=a(3)*a(5)*c(3)
minm[5]=a(3)*b(5)*c(1)-a(1)*b(5)*c(3)
minm[6]=a(3)*a(5)*c(1)-a(1)*a(5)*c(3)
minm[7]=a(3)^2*b(5)
minm[8]=a(3)^2*a(5)
t2.sng 22> // look at the primary decomposition of the result
t2.sng 23. primdecGTZ(minm);
[1]:

[1]:
_[1]=c(3)^2
_[2]=a(3)*c(3)
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_[3]=a(3)^2
_[4]=-a(3)*c(1)+a(1)*c(3)

[2]:
_[1]=c(3)
_[2]=a(3)

[2]:
[1]:

_[1]=b(5)
_[2]=a(5)

[2]:
_[1]=b(5)
_[2]=a(5)

t2.sng 24> // polynomial defining the quartic curve C
t2.sng 25. poly f=det(A);
t2.sng 26> // ideal of singularities of the curve C lying on Z
t2.sng 27. ideal D = diff(f, x(0)), diff(f, x(1)), diff(f, x(2)), minor(Phi, 2);
t2.sng 28> // compute the equations of the subvariety of the corresponding sheaves
t2.sng 29. D = sat(D, maxm)[1];
t2.sng 30> D = elim(D, X);
t2.sng 31> D;
D[1]=a(3)*b(5)*c(3)
D[2]=a(3)*a(5)*c(3)
D[3]=a(3)^2*b(5)
D[4]=a(3)^2*a(5)
t2.sng 32> // look at its primary decomposition
t2.sng 33. // the corresponding variety has an extra component
t2.sng 34. // whose points do not define singular sheaves
t2.sng 35. primdecGTZ(D);
[1]:

[1]:
_[1]=a(3)

[2]:
_[1]=a(3)

[2]:
[1]:

_[1]=b(5)
_[2]=a(5)

[2]:
_[1]=b(5)
_[2]=a(5)

[3]:
[1]:

_[1]=c(3)
_[2]=a(3)^2

[2]:
_[1]=c(3)
_[2]=a(3)

t2.sng 36> $

A.3. Fibres of type (3)
t3.sng 1> LIB "elim.lib";
t3.sng 2> ring r = (0,s, t), (x(0..2), a(0..5), b(0..5), c(0..5)), dp;
t3.sng 3> ideal I = x(2)^3, x(1)*x(0)-s*x(2)*x(0)-(1/t)*x(2)^2;
t3.sng 4> I=sat(I, x(0))[1];
t3.sng 5> I;
I[1]=x(1)*x(2)+(-s)*x(2)^2
I[2]=x(1)^2+(-2*s)*x(1)*x(2)+(s^2)*x(2)^2
I[3]=(t)*x(0)*x(1)+(-s*t)*x(0)*x(2)-x(2)^2
I[4]=x(2)^3
t3.sng 6> ideal J = I[1..3];
t3.sng 7> std(J);
_[1]=x(1)*x(2)+(-s)*x(2)^2
_[2]=x(1)^2+(-2*s)*x(1)*x(2)+(s^2)*x(2)^2
_[3]=(t)*x(0)*x(1)+(-s*t)*x(0)*x(2)-x(2)^2
_[4]=x(2)^3
t3.sng 8> // thus I = J
t3.sng 9. I = J;
t3.sng 10> matrix S[2][3] = (2*s*t)*x(0)+x(2), x(1)-(s)*x(2), (t)*x(0), x(1)+(s)*x(2), 0 ,x(2);
t3.sng 11> print(S);
(2*s*t)*x(0)+x(2),x(1)+(-s)*x(2),(t)*x(0),
x(1)+(s)*x(2), 0, x(2)
t3.sng 12> // the ideal of maximal minors coincides with I
t3.sng 13. minor(S,2);
_[1]=x(1)*x(2)+(-s)*x(2)^2
_[2]=(-t)*x(0)*x(1)+(s*t)*x(0)*x(2)+x(2)^2
_[3]=-x(1)^2+(s^2)*x(2)^2
t3.sng 14> ideal maxm=x(0..2);
t3.sng 15> poly X=x(0)*x(1)*x(2);
t3.sng 16> poly q(0..2);
t3.sng 17> q(0) = a(0)*x(0)^2 + a(1)*x(0)*x(1) + a(2)*x(0)*x(2) + a(3)*x(1)^2 + a(4)*x(1)*x(2) + a(5)*x(2)^2;
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t3.sng 18> q(1) = b(0)*x(0)^2 + b(1)*x(0)*x(1) + b(2)*x(0)*x(2) + b(3)*x(1)^2 + b(4)*x(1)*x(2) + b(5)*x(2)^2;
t3.sng 19> q(2) = c(0)*x(0)^2 + c(1)*x(0)*x(1) + c(2)*x(0)*x(2) + c(3)*x(1)^2 + c(4)*x(1)*x(2) + c(5)*x(2)^2;
t3.sng 20> q(1) = subst(q(1), x(1), 0);
t3.sng 21> q(2) = subst(q(2), x(2), 0);
t3.sng 22> // the linear part is S
t3.sng 23. matrix A[3][3];
t3.sng 24> A = q(0), q(1), q(2), (2*s*t)*x(0)+x(2), x(1)-(s)*x(2), (t)*x(0), x(1)+(s)*x(2), 0, x(2);
t3.sng 25> print(A);
A[1,1], A[1,2], A[1,3],
(2*s*t)*x(0)+x(2),x(1)+(-s)*x(2),(t)*x(0),
x(1)+(s)*x(2), 0, x(2)
t3.sng 26> // the linear part Phi
t3.sng 27. matrix Phi = submat(A, 2..3, 1..3);
t3.sng 28> //ideal of 2x2 minor sof A
t3.sng 29. ideal minm = minor(A, 2);
t3.sng 30> // compute the ideal of the subvariety of singular sheaves in the fibre
t3.sng 31. minm = sat(minm, maxm)[1];
t3.sng 32> minm = elim(minm, X);
t3.sng 33> // look at its primary decomposition
t3.sng 34. list PD = primdecGTZ(minm);
t3.sng 35> // it has only one component
t3.sng 36. size(primdecGTZ(minm));
1
t3.sng 37> // the corresponding prime ideal is
t3.sng 38. PD[1][2];
_[1]=b(0)
_[2]=a(0)+(-2*s)*c(0)
t3.sng 39> $
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1. Introduction

A Riemannian manifold (Mn
, g), n ≥ 2, is said to be an Einstein manifold if

its Ricci tensor S satisfies the condition S = r

n
g, where r denotes the scalar

curvature of M. M. C. Chaki and R. K. Maity introduced the notion of quasi-
Einstein manifold in [2]. A non-flat Riemannian manifold (M , g), n ≥ 2, is
said to be a quasi-Einstein manifold if the condition

S(X,Y ) = αg(X,Y ) + βη(X)η(Y ),

is fulfilled on M , where α and β are scalars of which β �= 0 and η is a non-zero
1-form such that g(X,U) = η(X), for all vector field X and U , a unit vector
field.

Let (B, gB) and (F, gF ) be two Riemannian manifolds and f > 0 be a
differential function on B. Consider the product manifold B × F with its
projections π : B × F → B and σ : B × F → F . The warped prod-
uct B ×f F is the manifold B × F with the Riemannian structure such that
||X||2 = ||π∗(X)||2+f

2(π(p))||σ∗(X)||2, for any vector field X on M . Thus we
have that gM = gB + f

2
gF holds on M . Here B is called the base of M and F

is called the fiber. The function f is called the warping function of the warped
product [7]. The concept of warped product was first introduced by Bishop
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and O’Neill [1] to construct examples of Riemannian manifolds with negative
curvature.

Now, we can generalize warped products to multiply warped products. A
multiply warped product is the product manifoldM = B×b1F1×b2F2...×bmFm

with the metric g = gB ⊕ b
2
1gF1 ⊕ b

2
2gF2 ⊕ b

2
3gF3 .... ⊕ b

2
m
gFm , where for each

i ∈ {1, 2, ...m}, bi : B → (0,∞) is smooth and (Fi, gFi) is a pseudo-Riemannian
manifold. In particular, when B = (c, d), the metric gB = −dt

2 is negative
and (Fi, gFi) is a Riemannian manifold. We call M the multiply generalized
Robertson-Walker spacetime.

A multiply twisted product (M, g) is a product manifold of the form M =
B ×b1 F1 ×b2 F2...×bm Fm with the metric g = gB ⊕ b

2
1gF1 ⊕ b

2
2gF2 ⊕ b

2
3gF3 ....⊕

b
2
m
gFm , where for each i ∈ {1, 2, ...m}, bi : B × Fi → (0,∞) is smooth.

In 1924, Friedmann and Schouten introduced the notion of a semi-sym-
metric linear connection on a differentiable manifold [3]. The definition of
metric connection with torsion on a Riemannian manifold, was given by Hay-
den (1932) in [5]. In 1970, K. Yano [10] considered a semi-symmetric metric
connection and studied some of its properties. Then in 1975, Golab [4] intro-
duced the definition of a quarter-symmetric linear connection on a differentiable
manifold, which is a generalization of semi-symmetric connection. Later in [8],
Q. Qu and Y. Wang generalized the results to warped product and multiply
warped product with a quarter-symmetric connection.

In this paper we consider multiply warped products as quasi-Einstein man-
ifolds endowed with a quarter-symmetric connection. In section 2 and 3, we
discuss some preliminary concepts and results which are useful for proving
our main results in the next sections 4 and 5. In Theorem 4.1, we obtain a
necessary and sufficient condition for the warped product manifold to be a
quasi-Einstein manifold with respect to a quarter-symmetric connection. Then
in Theorem 4.2, under some assumptions on base and fiber we study quasi-
Einstein manifold with respect to a quarter-symmetric connection. Next in
Theorem 4.3, we establish that if (M, g) admits a metric for Robertson-Walker
spacetime then it is a quasi-Einstein manifold with respect to the above men-
tioned connection under certain conditions. Then in Theorem 4.5, we charac-
terize the warping function for a warped product space (M, g) with a quarter-
symmetric connection. Later in Theorem 4.5, we show that for quasi-Einstein
warped product with respect to a quarter-symmetric connection the complete
connected (n̄−1)-dimensional base is isometric to a (n̄−1)-dimensional sphere.
In the last section, we study special multiply warped product manifold with
respect to a quarter-symmetric connection.
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2. Preliminaries

Let (Mn
, g) be a Riemannian manifold with the Levi-Civita connection ∇. A

linear connection ∇̆ on (Mn
, g) is said to be a quarter-symmetric connection if

its torsion tensor T with respect to the connection ∇̆ defined by

T (X,Y ) = ∇̆XY − ∇̆Y X − [X,Y ],

satisfies
T (X,Y ) = ω(Y )φX − ω(X)φY,

where ω is a 1-form on M
n with the associated vector field P defined by

ω(X) = g(X,P ), for all vector field X, and φ is a (1, 1) tensor field.
A quarter-symmetric connection ∇̆ is called a quarter-symmetric metric

connection if ∇̆g = 0. ∇̆ is called a quarter-symmetric non-metric connection
if ∇̆g �= 0.

The relation between a quarter-symmetric connection ∇̆ and the Levi-Civita
connection ∇ of Mn is given by [9]

∇̆XY = ∇XY + λ1ω(Y )X − λ2g(X,Y )P, (1)

where g(X,P ) = ω(X) and λ1 �= 0,λ2 �= 0 are scalar functions.
We can easily see that:

when λ1 = λ2 = 1, ∇̆ is a semi-symmetric metric connection,
when λ1 = λ2 �= 1, ∇̆ is a quarter-symmetric metric connection,
when λ1 �= λ2, ∇̆ is a quarter-symmetric non-metric connection.

Further, a relation between the curvature tensors R and R̆ of type (1,3) of the
connections ∇ and ∇̆ respectively is given by [9],

R̆(X,Y )Z = R(X,Y )Z + λ1g(Z,∇XP )Y − λ2g(Z,∇Y P )X,

+ λ2

�
g(X,Z)∇Y P − g(Y, Z)∇XP

�
+ λ1λ2ω(P )

�
g(X,Z)Y − g(Y, Z)X

�

+ λ
2
2

�
g(Y, Z)ω(X)− g(X,Z)ω(Y )

�
P + λ

2
1ω(Z)

�
ω(Y )X − ω(X)Y

�
, (2)

for vector fields X,Y, Z on M.

3. Warped Product Manifolds with Quarter-Symmetric
Connection

In this section we consider the following propositions from Propositions 3.5,
3.6, 3.7 and 3.8 of [8], which will be helpful to prove our main results of next
section.
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Proposition 3.1. Let M = B ×f F be a warped product. Let S and S̆ denote

the Ricci tensors of M with respect to the Levi-Civita connection and a quarter-

symmetric connection respectively. Let dimB = n1, dimF = n2, dimM = n̄ =
n1 + n2. If X,Y ∈ χ(B), V,W ∈ χ(F ) and P ∈ χ(B), then

(i) S̆(X,Y ) = S̆
B(X,Y )+n2

�
H

f
B(X,Y )

f
+λ2

Pf

f
g(X,Y )+λ1λ2ω(P )g(X,Y )+

λ1g(Y,∇XP )− λ
2
1ω(X)ω(Y )

�
,

(ii) S̆(X,V ) = S̆(V,X) = 0,

(iii) S̆(V,W ) = S
F (V,W ) +

�
λ2divBP + (n2 − 1) |gradBf |2B

f2 +
�
(n̄− 1)λ1λ2 −

λ
2
2

�
ω(P ) +

�
(n̄− 1)λ1 + (n2 − 1)λ2

�
Pf

f
+ ∆Bf

f

�
g(V,W ), where divBP =

n1�

k=1

εk�∇EkP,Ek� and Ek, 1 ≤ k ≤ n1, is an orthonormal basis of B with

εk = g(Ek, Ek).

Proposition 3.2. Let M = B×f F be a warped product, dimB = n1, dimF =
n2, dimM = n̄ = n1 + n2. If X,Y ∈ χ(B), V,W ∈ χ(F ) and P ∈ χ(F ), then

(i) S̆(X,Y ) = S
B(X,Y ) +

�
(n̄ − 1)λ1λ2 − λ

2
2

�
ω(P )g(X,Y ) + n2

H
f
B(X,Y )

f
+

λ2g(X,Y )divFP,

(ii) S̆(X,V ) =
�
(n̄− 1)λ1 − λ2

�
ω(V )Xf

f
,

(iii) S̆(V,X) =
�
λ2 − (n̄− 1)λ1

�
ω(V )Xf

f
,

(iv) S̆(V,W ) = S
F (V,W )+g(V,W )

�
(n2−1) |gradBf |2B

f2 + ∆Bf

f
+
�
(n̄−1)λ1λ2−

λ
2
2

�
ω(P ) + λ2divFP

�
+

�
(n̄ − 1)λ1 − λ2

�
g(W,∇V P ) +

�
λ
2
2 + (1 −

n̄)λ2
1

�
ω(V )ω(W ).

By Proposition 3.1 and Proposition 3.2 and by the definition of the scalar
curvature, we have the following propositions.

Proposition 3.3. Let M = B×f F be a warped product, dimB = n1, dimF =
n2, dimM = n̄ = n1 + n2. If P ∈ χ(B), then

r̆
M = r̆

B +
r
F

f2
+ n2(n2 − 1)

|gradBf |2B
f2

+ n2(n̄− 1)(λ1 + λ2)
Pf

f
+ 2n2

∆Bf

f

+
�
n2(n̄+ n1 − 1)λ1λ2 − n2(λ

2
1 + λ

2
2)
�
ω(P ) + n2(λ1 + λ2)divBP.
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Proposition 3.4. Let M = B×f F be a warped product, dimB = n1, dimF =
n2, dimM = n̄ = n1 + n2. If P ∈ χ(F ), then

r̆
M = r

B+
r
F

f2
+(n̄−1)(λ1+λ2)divFP+[n̄(n̄−1)λ1λ2+(1−n̄)(λ2

1+λ
2
2)]ω(P )

+ n2(n2 − 1)
|gradBf |2B

f2
+ 2n2

∆Bf

f
.

4. Generalized Robertson-Walker Spacetime with a
Quarter-Symmetric Connection

In this section we consider a quasi-Einstein warped product manifold with
respect to a quarter-symmetric connection. We prove the following theorem.

Theorem 4.1. Let (M, g) be a warped product I×fF where I is an open interval

in R, dimI = 1 and dimF = n̄ − 1, n̄ ≥ 3. Then (M, g) is a quasi-Einstein

manifold with respect to a quarter-symmetric connection if and only if F is a

quasi-Einstein manifold for P = ∂

∂t
with respect to the Levi-Civita connection

or the warping function f is a constant on I for P ∈ χ(F ), λ2 �= (n̄− 1)λ1.

Proof. Assume that P ∈ χ(B) and let gI be the metric on I. Taking f = e
q
2

and using the Proposition 3.1, we get

S̆

�
∂

∂t
,
∂

∂t
) = (1− n̄

��
1

2
q
�� +

1

4
q
�2 − 1

2
λ2q

� + λ1λ2 − λ
2
1

�
gI

�
∂

∂t
,
∂

∂t

�
, (3)

S̆

�
∂

∂t
, V

�
= 0, (4)

S̆(V,W ) = S
F (V,W ) + e

q

�
n̄− 1

4
(q�)2 +

1

2
[(n̄− 1)λ1 + (n̄− 2)λ2]q

�

+λ
2
2 +

1

2
q
�� + (1− n̄)λ1λ2

�
gF (V,W ), (5)

for vector fields V,W on F.

Since M is a quasi-Einstein manifold with respect to a quarter-symmetric
connection, we have

S̆

�
∂

∂t
,
∂

∂t

�
= αg

�
∂

∂t
,
∂

∂t

�
+ βη

�
∂

∂t

�
η

�
∂

∂t

�
,

and
S̆(V,W ) = αg(V,W ) + βη(V )η(W ).
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Then the last two equations reduce to

S̆

�
∂

∂t
,
∂

∂t

�
= αgI

�
∂

∂t
,
∂

∂t

�
+ βη

�
∂

∂t

�
η

�
∂

∂t

�
, (6)

and
S̆(V,W ) = αe

q
gF (V,W ) + βη(V )η(W ). (7)

Decomposing the vector field U uniquely into its components UI and UF on
I and F , respectively, we have U = UI + UF . Since dimI = 1, we can take
UI = υ

∂

∂t
which gives U = υ

∂

∂t
+ UF , where υ is a function on M. Thus, we

can write

η

�
∂

∂t

�
= g

�
U,

∂

∂t

�
= υ. (8)

Using equations (3) and (5), equations (6), (7) reduce to

S̆

�
∂

∂t
,
∂

∂t

�
= α+ βυ

2
, (9)

and
S̆(V,W ) = αe

q
gF (V,W ) + βη(V )η(W ). (10)

Comparing the right hand sides of (3) and (9), we get

α+ βυ
2 = (1− n̄)

�
1

2
q
�� +

1

4
q
�2 − λ2q

�

2
+ λ1λ2 − λ

2
1

�
. (11)

Similarly, comparing the right hand sides of (5) and (10), we obtain

S
F (V,W ) = e

q

�
α+

1− n̄

4
(q�)2 − 1

2
[(n̄− 1)λ1 + (n̄− 2)λ2]q

�

−λ
2
2 −

1

2
q
�� + (n̄− 1)λ1λ2

�
gF (V,W ) + βη(V )η(W ), (12)

which gives that F is a quasi-Einstein manifold with respect to the Levi-Civita
connection for P ∈ χ(B).

Taking P ∈ χ(F ) and by the use of Proposition 3.2, we get

S̆

�
∂

∂t
, V

�
=

q
�

2

�
(n̄− 1)λ1 − λ2

�
ω(V ) (13)

and

S̆

�
V,

∂

∂t

�
=

q
�

2

�
λ2 − (n̄− 1)λ1

�
ω(V ), (14)

for any vector field V ∈ χ(F ).
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Since M is a quasi-Einstein manifold, we have

S̆

�
∂

∂t
, V

�
= S̃

�
V,

∂

∂t

�
= αg

�
V,

∂

∂t

�
+ βη(V )η

�
∂

∂t

�
. (15)

Now g(V, ∂

∂t
) = 0 as ∂

∂t
∈ χ(B) and V ∈ χ(F ).

Hence, from the last equation, we get

S̆

�
∂

∂t
, V

�
= S̆

�
V,

∂

∂t

�
= βη(V )η

�
∂

∂t

�
. (16)

Therefore, we have

βη(V )η

�
∂

∂t

�
=

q
�

2

�
(n̄− 1)λ1 − λ2

�
ω(V ), (17)

βη(V )η

�
∂

∂t

�
=

q
�

2

�
λ2 − (n̄− 1)λ1

�
ω(V ). (18)

From equations (17) and (18), we get

q
� = 0,

when λ2−(n̄−1)λ1 �= 0. It follows that q is a constant on I. Then f is constant
on I. This completes the proof.

Now, we consider the warped product M = B ×f I with dimB = n̄ − 1,
dimI = 1, n̄ ≥ 3. Under this assumption, we obtain the following theorem.

Theorem 4.2. Let (M, g) be a warped product B ×f I, where dimI = 1 and

dimB = n̄− 1, n̄ ≥ 3, then

i) if (M, g) is a quasi-Einstein manifold with respect to a quarter-symmetric

connection, P ∈ χ(B) is parallel on B with respect to the Levi-Civita

connection on B and f is a constant on B, then,

α = [(n̄− 1)λ1λ2 − λ
2
2)]ω(P ).

ii) If (M, g) is a quasi-Einstein manifold with respect to a quarter-symmetric

connection for P ∈ χ(I), and λ2 �= (n̄− 1)λ1 then f is a constant on B.

iii) If f is a constant on B and B is a quasi-Einstein manifold with respect

to the Levi-Civita connection for P ∈ χ(I), then M is a quasi-Einstein

manifold with respect to a quarter-symmetric connection.
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Proof. Assume that (M, g) is a quasi-Einstein manifold with respect to a quar-
ter-symmetric connection. Then we write

S̆(X,Y ) = αg(X,Y ) + βη(X)η(Y ). (19)

Decomposing the vector field U uniquely into its components UB and UI on B

and I, respectively, we have

U = UB + UI . (20)

Since dimI = 1, we can take UI = υ
∂

∂t
which gives U = UB + υ

∂

∂t
, where υ is

a function on M. From (19), (20) and Proposition 3.1, we have

S̆
B(X,Y ) = αgB(X,Y ) + βgB(X,UB)gB(Y, UB)−

�
H

f (X,Y )

f

+λ2
Pf

f
g(X,Y ) + λ1λ2ω(P )g(X,Y ) + λ1g(Y,∇XP )− λ

2
1ω(X)ω(Y )

�
. (21)

By contraction over X and Y, we get

r̆
B = α(n̄− 1) + βgB(UB , UB)−

�
∆Bf

f
+ λ2(n̄− 1)

Pf

f

+
�
(n̄− 1)λ1λ2 − λ

2
1

�
ω(P ) + λ1

n̄−1�

i=1

g(ei,∇eiP )

�
. (22)

Also from (19), we have

r̆
M = αn̄+ βgB(UB , UB). (23)

Now, putting the value of (23) in (22), we get

r̆
B = r̆

M − α− ∆Bf

f
− λ2(n̄− 1)

Pf

f

−
�
(n̄− 1)λ1λ2 − λ

2
1

�
ω(P )− λ1

n̄−1�

i=1

g(ei,∇eiP ). (24)

On the other hand, from Proposition 3.3, we get

r̆
M = r̆

B + (n̄− 1)(λ1 + λ2)
Pf

f
+ 2

∆Bf

f

+
�
2(n̄− 1)λ1λ2 − (λ2

1 + λ
2
2)
�
ω(P ) + (λ1 + λ2)

n̄−1�

i=1

g(∇eiP, ei).
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Then from the above two relations, we get

α+
∆Bf

f
+ λ2(n̄− 1)

Pf

f
+
�
(n̄− 1)λ1λ2 − λ

2
1

�
ω(P ) + λ1

n̄−1�

i=1

g(ei,∇eiP )

= (n̄− 1)(λ1 + λ2)
Pf

f
+ 2

∆f

f
+
�
2(n̄− 1)λ1λ2 − (λ2

1 + λ
2
2)
�
ω(P )

+ (λ1 + λ2)
n̄−1�

i=1

g(∇eiP, ei).

Since P ∈ χ(B) is parallel and f is a constant on B, then we get

α =
�
(n̄− 1)λ1λ2 − λ

2
2

�
ω(P ).

ii) Let P ∈ χ(I). By the use of Proposition 3.2, we get

S̆(X,P ) =
�
(n̄− 1)λ1 − λ2

�
ω(P )

Xf

f
, (25)

and

S̆(P,X) =
�
λ2 − (n̄− 1)λ1

�
ω(P )

Xf

f
. (26)

Since M is a quasi-Einstein manifold, we have

S̆(X,P ) = S̆(P,X) = αg(P,X) + βη(P )η(X).

Again, we have g(P,X) = 0 for X ∈ χ(B) and P ∈ χ(I).
Hence, we have

Xf = 0,

where λ2 �= (n̄− 1)λ1. This implies that f is a constant on B.
iii) Assume that B is a quasi-Einstein manifold with respect to the Levi-

Civita connection. Then we have

S
B(X,Y ) = αg(X,Y ) + βη(X)η(Y ), (27)

for vector fields X,Y tangent to B.

From Proposition 3.2, we get

S̆
M (X,Y ) = S

B(X,Y ) +
�
(n̄− 1)λ1λ2 − λ

2
2

�
ω(P )g(X,Y ) +

H
f (X,Y )

f
,

for any vector field P ∈ χ(I). Since f is a constant, H
f (X,Y ) = 0 for all

X,Y ∈ χ(B).
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The above equation reduces to

S̆
M (X,Y ) = S

B(X,Y ) +
�
(n̄− 1)λ1λ2 − λ

2
2

�
ω(P )g(X,Y ). (28)

Using the value of (27) in (28), we get

S̆
M (X,Y ) =

�
α+

�
(n̄− 1)λ1λ2 − λ

2
2

�
ω(P )

�
g(X,Y ) + βη(X)η(Y ), (29)

which shows that M is a quasi-Einstein manifold with respect to a quarter-
symmetric connection.

Next, we study M = I×f F with metric −dt
2+f(t)2gF , where I is an open

interval in R, and we prove the following theorem.

Theorem 4.3. Let (M, g) be a warped product I ×f F with the metric tensor

−dt
2 + f(t)2gF , P = ∂

∂t
, dimF = l. Then (M, g) is a quasi-Einstein mani-

fold with respect to a quarter-symmetric connection ∇̆ with constant associated

scalars α and β if and only if the following conditions are satisfied:

i) (F, gF ) is a quasi-Einstein manifold with scalar αF ,βF ;

ii) −l

�
λ2

f
�

f
− f

��

f
+ λ

2
1 − λ1λ2

�
= −α+ υ

2
β;

iii) αF − ff
�� − (l − 1)f �2 +

�
λ
2
2 − lλ1λ2 − α

�
f
2 +

�
lλ1 + (l − 1)λ2

�
ff

� = 0
and β = βF .

Proof. By Proposition 3.1, we have

S̆

�
∂

∂t
,
∂

∂t

�
= −l

�
λ2

f
�

f
− f

��

f
+ λ

2
1 − λ1λ2

�
,

S̆

�
∂

∂t
, V

�
= S̆

�
V,

∂

∂t

�
= 0,

S̆(V,W ) = S
F (V,W ) + gF (V,W )

�
− ff

�� − (l − 1)f �2

+ (λ2
2 − lλ1λ2)f

2 +
�
lλ1 + (l − 1)λ2

�
ff

�
�
.

Since M is a quasi-Einstein manifold, we have

S̆(X,Y ) = αg(X,Y ) + βη(X)η(Y ).

Now,

S̆

�
∂

∂t
,
∂

∂t

�
= αg

�
∂

∂t
,
∂

∂t

�
+ βη

�
∂

∂t

�
η

�
∂

∂t

�
.
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We can decompose the vector field U uniquely into its components UI and UF

on I and F , respectively. Then we have U = UI +UF . Since dimI = 1, we can
take UI = υ

∂

∂t
which gives U = υ

∂

∂t
+ UF , where υ is a function on M. Thus,

we can write

η

�
∂

∂t

�
= g

�
U,

∂

∂t

�
= υ. (30)

Therefore, we get

−l

�
λ2

f
�

f
− f

��

f
+ λ

2
1 − λ1λ2

�
= −α+ υ

2
β.

Again, S̆(V,W ) = αg(V,W ) + βη(V )η(W ).
Also, we have

S̆(V,W ) = S
F (V,W ) + gF (V,W )

�
− ff

�� − (l − 1)f �2

+ (λ2
2 − lλ1λ2)f

2 +
�
lλ1 + (l − 1)λ2

�
ff

�
�
.

From the above two equations, we get

S
F (V,W ) =

�
ff

�� + (l − 1)f �2 − (λ2
2 − lλ1λ2 − α)f2

−
�
lλ1 + (l − 1)λ2

�
ff

�
�
gF (V,W ) + βη(V )η(W ).

Hence, (F, gF ) is a quasi-Einstein manifold.
Also, we have

S̆(V,W ) = S
F (V,W ) + gF (V,W )

�
− ff

�� − (l − 1)f �2

+ (λ2
2 − lλ1λ2)f

2 +
�
lλ1 + (l − 1)λ2

�
ff

�
�
.

After some calculations, we show that

αF − ff
�� − (l − 1)f �2 + (λ2

2 − lλ1λ2 − α)f2 +
�
lλ1 + (l − 1)λ2

�
ff

� = 0

and β = βF . Thus, the proof is completed.

Putting dimF = 1 in Theorem 4.3, we get the following corollary.

Corollary 4.4. Let (M, g) be a warped product I×f F with the metric tensor

−dt
2 + f(t)2gF , P = ∂

∂t
, dimF = 1. Then (M, g) is a quasi-Einstein manifold

with respect to a quarter-symmetric connection if and only if

f
�� − λ2f

� +
�
(α− υ

2
β)− (λ2

1 − λ1λ2)
�
f = 0.
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By using Corollary 4.4 and elementary methods for ordinary differential
equations, we obtain the following theorem.

Theorem 4.5. Let (M, g) be a warped product I ×f F with the metric tensor

−dt
2 + f(t)2gF , P = ∂

∂t
, dimF = 1. Then (M, g) is a quasi-Einstein manifold

with respect to a quarter-symmetric connection if and only if

i) α− υ
2
β < (λ1 − λ2

2 )2,

f(t) = c1e

�
λ2+

√
(2λ1−λ2)2−4(α−υ2β)

2

�
t

+ c2e

�
λ2−

√
(2λ1−λ2)2−4(α−υ2β)

2

�
t

,

ii) α− υ
2
β = (λ1 − λ2

2 )2, f(t) = c1e
(λ2

2 )t + c2te
(λ2

2 )t
,

iii) α−υ
2
β > (λ1− λ2

2 )2, f(t) = c1e
(λ2

2 )t
c1 cos

��√
4(α−υ2β)−(2λ1−λ2)2

2

�
t

�
+

c2e
(λ2

2 )t sin

��√
4(α−υ2β)−(2λ1−λ2)2

2

�
t

�
.

Corollary 4.6. Let (M, g) be a warped product I×f F with the metric tensor

−dt
2 + f(t)2gF , P = ∂

∂t
, dimF = 1, and λ2 = 2λ1. Then (M, g) is a quasi-

Einstein manifold with respect to a quarter-symmetric connection if and only

if

i) α− υ
2
β < 0, f(t) = c1e

�
λ1+

√
−(α−υ2β)

�
t
+ c2e

�
λ1−

√
−(α−υ2β)

�
t
,

ii) α− υ
2
β = 0, f(t) = c1e

λ1t + c2te
λ1t,

iii) α−υ
2
β > 0, f(t) = c1e

λ1t cos
���

α−υ2β
�
t

�
+c2e

λ1t sin
���

α−υ2β
�
t

�
.

Next, the following theorem shows when the base of a quasi-Einstein warped
product manifold is isometric to a sphere of a particular radius.

Theorem 4.7. Let (M, g) be a warped product B ×f I of a complete connected

(n̄−1)-dimensional Riemannian manifold B where n̄ ≥ 3 and one-dimensional

Riemannian manifold I. If (M, g) is a quasi-Einstein manifold with constant

associated scalars α and β, U ∈ χ(M) with respect to a quarter-symmetric

connection, P ∈ χ(B) and the Hessian of f is proportional to the metric tensor

gB , then (B, gB) is a (n̄− 1)-dimensional sphere of radius ρ = n̄−1√
r̆B+α

.

Proof. Let M be a connected warped product manifold. Then from Proposi-
tion 3.1, we have

S̆
M (X,Y ) = S̆

B(X,Y ) +
H

f

B
(X,Y )

f
+ λ2

Pf

f
g(X,Y )

+ λ1λ2ω(P )g(X,Y ) + λ1g(Y,∇XP )− λ
2
1ω(X)ω(Y ), (31)
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for any vector field X,Y on B. Since M is a quasi-Einstein manifold with
respect to a quarter-symmetric metric connection, we have

S̆
M (X,Y ) = αg(X,Y ) + βη(X)η(Y ). (32)

Decomposing the vector field U uniquely into its components UB and UI

on B and I, respectively, we have

U = UB + UI . (33)

Putting the values of (32), (33) in (31), we get

S̆
B(X,Y ) = αgB(X,Y ) + βgB(X,UB)gB(Y, UB)−

�
H

f

B
(X,Y )

f

+λ2
Pf

f
g(X,Y ) + λ1λ2ω(P )g(X,Y ) + λ1g(Y,∇XP )− λ

2
1ω(X)ω(Y )

�
. (34)

By contraction over X and Y , we get

r̆
B = r̆

M − α− ∆Bf

f
− (n̄− 1)λ2

Pf

f

−
�
(n̄− 1)λ1λ2 − λ

2
1

�
π(P )− λ1

n̄−1�

i=1

g(ei,∇eiP ). (35)

Again from Proposition 3.1, we obtain

r̆
M

n̄
= λ2

n̄−1�

i=1

g(ei,∇eiP )+(n̄−1)λ1
Pf

f
+[(n̄−1)λ1λ2−λ

2
2]ω(P )+

∆Bf

f
. (36)

From the last two equations, it follows that

(r̆B + α)f = (n̄λ2 − λ1)
n̄−1�

i=1

fg(ei,∇eiP ) + (n̄− 1)[n̄λ1 − λ2]Pf

+
�
(n̄− 1)2λ1λ2 + λ

2
1 − n̄λ

2
2

�
fω(P ) + (n̄− 1)∆Bf. (37)

Since the Hessian of f is proportional to the metric tensor gB , then we have

H
f (X,Y ) =

1

(n̄− 1)2

�
(λ1 − n̄λ2)

n̄−1�

i=1

fg(ei,∇eiP ) + (n̄− 1)[λ2 − n̄λ1]Pf

+
�
n̄λ

2
2 − (n̄− 1)2λ1λ2 − λ

2
1

�
fω(P ) + (1− n̄)∆Bf

�
gB(X,Y ).
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Hence, from the above equation, we obtain

H
f (X,Y ) +

r̆
B + α

(n̄− 1)2
fgB(X,Y ) = 0. (38)

So B is isometric to the (n̄−1)-dimensional sphere of radius n̄−1√
r̆B+α

[6]. Thus,

the theorem is proved.

5. Multiply Twisted Product Manifold with
Quarter-Symmetric Connection

Now, we have the following propositions from Propositions 4.5 and 4.7 of [8],
for later use.

Proposition 5.1. Let M = B ×b1 F1 ×b2 F2... ×bm Fm be a multiply twisted

product manifold with dimB = n, dimFi = li, dimM = n̄. If X,Y ∈ χ(B),
V ∈ χ(Fi), W ∈ χ(Fj) and P ∈ χ(B), then

(i) S̆(X,Y ) = S̆
B(X,Y ) +

m�

i=1

li

�
λ1λ2ω(P )g(X,Y ) +

H
bi
B
(X,Y )

bi
+

λ2
Pbi

bi
g(X,Y ) + λ1g(Y,∇XP )− λ

2
1ω(X)ω(Y )

�
,

(ii) S̆(X,V ) = S̆(V,X) = (li − 1)
�
V X(lnbi)

�
,

(iii) S̆(V,W ) = 0 if i �= j,

(iv) S̆(V,W ) = S
Fi(V,W ) + g(V,W )

�
(li − 1)

|gradBbi|2B
b
2
i

+
∆Bbi

bi
+

�
(n̄ − 1)λ1λ2 − λ

2
2

�
ω(P ) + λ2divFP +

�
(n̄ − 1)λ1 + (li − 1)λ2

�Pbi

bi
+

�

s �=i

ls
gB(gradBbi, gradBbs)

bibs
+ λ2

�

s �=i

ls
Pbs

bs

�
if i = j, where divBP =

n�

k=1

εk�∇EkP,Ek� and Ek, 1 ≤ k ≤ n, is an orthonormal basis of B with

εk = g(Ek, Ek).

Proposition 5.2. Let M = B ×b1 F1 ×b2 F2... ×bm Fm be a multiply twisted

product, dimB = n, dimFi = li, dimM = n̄. If X,Y ∈ χ(B), V ∈ χ(Fi),
W ∈ χ(Fj) and P ∈ χ(Fr) for a fixed r, then

(i) S̆(X,Y ) = S
B(X,Y )+

m�

i=1

li
H

bi
B
(X,Y )

bi
+
�
(n̄−1)λ1λ2−λ

2
2

�
ω(P )g(X,Y )+

λ2g(X,Y )divFrP,
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(ii) S̆(X,V ) = (li − 1)
�
V X(lnbi)

�
+

�
(n̄− 1)λ1 − λ2

�
ω(V )Xbr

br
,

(iii) S̆(V,X) = (li − 1)
�
V X(lnbi)

�
+
�
λ2 − (n̄− 1)λ1

�
ω(V )Xbr

br
,

(iv) S̆(V,W ) = 0 if i �= j,

(v) S̆(V,W ) = S
Fi(V,W )+g(V,W )

�
(li−1) |gradBbi|2B

b
2
i

+∆Bbi
bi

+
�
(n̄−1)λ1λ2−

λ
2
2

�
π(P ) +

�

s �=i

ls
gB(gradBbi, gradBbs)

bibs

�
+
�
(n̄− 1)λ1 − λ2

�
g(W,∇V P ) +

�
λ
2
2 + (1− n̄)λ2

1

�
ω(V )ω(W ) + λ2g(V,W )divFrP if i = j.

Let M = B×b1 F1 ×b2 F2...×bm Fm be a multiply warped product with the
metric tensor −dt

2 ⊕ b
2
1gF1 ⊕ .... ⊕ b

2
m
gFm , and let I be an open interval in R

and bi ∈ C
∞(I).

Now, we prove the following theorem for multiply generalized Robertson-
Walker spacetime.

Theorem 5.3. Let M = I×b1 F1×b2 F2...×bm Fm be a multiply warped product

with the metric tensor −dt
2 ⊕ b

2
1gF1 ⊕ .... ⊕ b

2
m
gFm and P = ∂

∂t
.Then (M, g)

is a quasi-Einstein manifold with respect to a quarter-symmetric connection ∇̆
with constant associated scalars α and β, if and only if the following conditions

are satisfied:

i) (Fi, gFi) are quasi-Einstein manifolds with scalars αFi ,βFi , i∈{1, 2, ...m};

ii)

m�

i=1

li

�
λ2

b
�
i

bi
− b

��
i

bi
+ λ

2
1 − λ1λ2

�
= α− υ

2
β;

iii) αFi − bib
��
i
− (li − 1)b�

2

i
+
�
λ2b

2
i
− bib

�
i

��

s �=i

ls

�
b
�
s

bs

�
+
�
λ
2
2 + (1− n̄)λ1λ2 −

α
�
b
2
i
+
�
(n̄− 1)λ1 + (li − 1)λ2

�
bib

�
i
= 0 and β = βFi .

Proof. By Proposition 5.1, we have

S̆

�
∂

∂t
,
∂

∂t

�
=

m�

i=1

li

�
−λ2

b
�
i

bi
+

b
��
i

bi
− λ

2
1 + λ1λ2

�
, (39)

S̆

�
∂

∂t
, V

�
= S̆

�
V,

∂

∂t

�
= (li − 1)V

�
b
�
i

bi

�
, (40)

S̆(V,W ) = 0, if i �= j, (41)
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S̆(V,W ) = S
Fi(V,W ) + gFi(V,W )

�
− (li − 1)b�

2

i
− b

��
i
bi +

�
(n̄− 1)λ1

+ (li − 1)λ2

�
b
�
i
bi + (λ2b

2
i
− b

�
i
bi)

�

s �=i

ls
b
�
s

bs
+

�
λ
2
2 + (1− n̄)λ1λ2

�
b
2
i

�
. (42)

Since M is a quasi-Einstein manifold, we have

S̆(X,Y ) = αg(X,Y ) + βη(X)η(Y ).

Now,

S̆

�
∂

∂t
,
∂

∂t

�
= αg

�
∂

∂t
,
∂

∂t

�
+ βη

�
∂

∂t

�
η

�
∂

∂t

�
.

Decomposing the vector field U uniquely into its components UI and UF on
I and F , respectively, we have U = UI + UF . Since dimI = 1, we can take
UI = υ

∂

∂t
which gives U = υ

∂

∂t
+UF , where υ is a function on M. Then we can

write

η

�
∂

∂t

�
= g

�
U,

∂

∂t

�
= υ. (43)

Hence, we get

m�

i=1

li

�
λ2

b
�
i

bi
− b

��
i

bi
+ λ

2
1 − λ1λ2

�
= α− υ

2
β.

Again, S̆(V,W ) = αg(V,W ) + βη(V )η(W ).
From Proposition 5.1 and equation (42), we obtain that (Fi, gFi) are quasi-

Einstein manifolds.
After a brief calculation, we can easily prove that

αFi − bib
��
i
− (li − 1)b�

2

i
+ (λ2b

2
i
− bib

�
i
)
�

s �=i

ls

�
b
�
s

bs

�

+
�
λ
2
2 + (1− n̄)λ1λ2 − α

�
b
2
i
+

�
(n̄− 1)λ1 + (li − 1)λ2

�
bib

�
i
= 0

and β = βFi .

Thus, the proof of the theorem is completed.

Next, the following theorem establishes the necessary and sufficient con-
ditions on a multiply warped product to be a quasi-Einstein manifold with a
quarter-symmetric connection whenever P ∈ χ(Fr).

Theorem 5.4. Let M = I ×b1 F1 ×b2 F2...×bm Fm be a multiply warped prod-

uct with the metric tensor −dt
2 ⊕ b

2
1gF1 ⊕ .... ⊕ b

2
m
gFm with P ∈ χ(Fr) and

gFr (P, P ) = 1 and n̄ ≥ 2. Then (M, g) is a quasi-Einstein manifold with re-

spect to a quarter-symmetric connection ∇̆ with constant associated scalars α

and β, if and only if the following conditions are satisfied:
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i) (Fi, gFi) (i �= r) are quasi-Einstein manifolds with scalars αi,βi, i ∈
{1, 2, ...m};

ii) br is constant and

m�

i=1

li
b
��
i

bi
= µ0, divFrP = µ1, µ0 − λ2µ1 + α − υ

2
β =

[(n̄− 1)λ1λ2 − λ
2
2]b

2
r
, where µ0, µ1 are constants;

iii) S
Fr (V,W ) + ᾱgFr (V,W ) + βη(V )η(W ) =

�
(n̄ − 1)λ2

1 − λ
2
2

�
ω(V )ω(W ) −�

(n̄ − 1)λ1 − λ2

�
g(W,∇V P ), for V,W ∈ χ(Fr), where ᾱ = b

2
r

��
(n̄ −

1)λ1λ2 − λ
2
2

�
b
2
r
+ λ2µ1 − α

�
.

iv) αFi − bib
��
i
+
�
(n̄− 1)λ1λ2 − λ

2
2

�
b
2
i
b
2
r
− bib

�
i

�

s �=i

ls
b
�
s

bs
− (li − 1)(b�

i
)2 = (α−

λ2µ1)b
2
i
and β = βFi .

Proof. By Proposition 5.2 (ii) and gFr (P, P ) = 1, it follows that br is a con-
stant. By Proposition 5.2 (i), we obtain

S̆

�
∂

∂t
,
∂

∂t

�
=

m�

i=1

li
b
��
i

bi
+
�
λ
2
2 + (1− n̄)λ1λ2

�
b
2
r
− λ2divFrP = −α+ υ

2
β.

By separation of variables, we have

m�

i=1

li
b
��
i

bi
= µ0, divFrP = µ1, µ0 − λ2µ1 + α− υ

2
β =

�
(n̄− 1)λ1λ2 − λ

2
2

�
b
2
r
.

Then we get ii). By proposition 5.2 (v), we have

S̆(V,W ) = S
Fi(V,W ) + b

2
i
gFi(V,W )

�
(li − 1)

−(b�
i
)2

b
2
i

+
−b

��
i

bi

+
�
(n̄− 1)λ1λ2 − λ

2
2

�
ω(P ) +

�

s �=i

ls
−b

�
i
b
�
s

bibs

�
+
�
(n̄− 1)λ1 − λ2

�
g(W,∇V P )

+
�
λ
2
2 + (1− n̄)λ2

1

�
ω(V )ω(W ) + λ2g(V,W )divFrP, if i = j.

When i �= r, then ∇V P = ω(V ) = 0, so,

S̆(V,W ) = S
Fi(V,W ) + b

2
i
gFi(V,W )

�
(li − 1)

−(b�
i
)2

b
2
i

+
−b

��
i

bi

+
�
(n̄− 1)λ1λ2 − λ

2
2

�
ω(P ) +

�

s �=i

ls
−b

�
i
b
�
s

bibs

�
+ λ2µ1b

2
i
gFi(V,W )

= αb
2
i
gFi(V,W ) + βη(V )η(W ).
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By separation of variables, it follows that (Fi, gFi) (i �= r) are quasi-Einstein
manifolds with scalars αi,βi, i ∈ {1, 2, ...m}, and

αFi − bib
��
i
+
�
(n̄− 1)λ1λ2 − λ

2
2

�
b
2
i
b
2
r
− bib

�
i

�

s �=i

ls
b
�
s

bs
− (li − 1)(b�

i
)2

= (α− λ2µ1)b
2
i

and β = βFi . Then we have i) and iv).
When i = r and br is a constant, then we get

S
Fr (V,W ) + ᾱgFr (V,W ) + βη(V )η(W )

=
�
(n̄− 1)λ2

1 − λ
2
2

�
ω(V )ω(W )−

�
(n̄− 1)λ1 − λ2

�
g(W,∇V P ),

for V,W ∈ χ(Fr),

where ᾱ = b
2
r

��
(n̄− 1)λ1λ2 − λ

2
2

�
b
2
r
+ λ2µ1 − α

�
, and thus we obtain iii).
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