EXPERIMENTAL DETERMINATION OF MATERIAL MODEL OF MACHINE PARTS PRODUCED BY SLS TECHNOLOGY

Peter Ficzere¹, Lajos Borbas², Gyorgy Falk³, Gabor Szebenyi⁴

¹ Budapest University of Technology and Economics, Department of Vehicle Parts and Structures Analysis, H-1111 Budapest, Sztczek u. 2.; ficzere@kge.bme.hu
² Budapest University of Technology and Economics, Department of Vehicle Parts and Structures Analysis; and EDUTUS College, Technical Institution, H-2800 Tatabánya, Stúdium tér. borbas.lajos@editus.hu
³ VARINEX Zrt., President of management, honorary associate professor, falk@varinex.hu
⁴ Budapest University of Technology and Economics, Department of Polymer Engineering, H-1111 Budapest, Bertalan L. str, MT. bldg., szebenyi@pt.bme.hu

1. Introduction

The role and importance of additive production technologies became increasingly important in several fields of our life. Due to the development of materials and technologies the applicability of the procedure is expansive. We can state, that in case of additive production technologies used earlier the material properties of the parts show orientation features [1]. The fact mentioned above in case of the design procedure of different elements, medical implants have great importance. The production technology with its parameters play important role in the material properties on the basis of our earlier experiences [2], [3]. In our paper the SLS technology – as the most reliable one - was investigated in order to compare the results with other parameters of different additive technologies.

2. Methodology

In case of SLS technology the previously developed method has been followed. [4]. Despite some references [5] it has been assumed, similarly to Polyjet [4] and FDM [2] technologies – that the material properties could be described by orthotropic theory. The behavior of the material – in this case – depends on the load direction. The material behavior could be described by the orthotropic Hook’s Law. Concerning the behavior to determine the orthotropic material law nine independent material parameters must be determined. In that case, when the properties are independent of the direction we can speak about isotropic material. This is the case of reduced Hook’s Law for isotropic materials.

3. Experimental Results

The test results of the investigation can be seen in Fig. 2. and Fig. 3. In the linear section of the diagrams the homogeneity of the material can be realized. In this part of the tensile test diagrams the behavior of the specimens from practical point of view is the same.
The test results in y direction correspond with the results measured in x direction in characteristic and in extent values as well. Based on our results and our estimation the material can be considered as an isotropic one in a given plane.

Fig. 2. Tensile test diagram in x-direction.

As in Fig. 4 the test results can be seen in z direction similarly as determined in direction x and y. The difference can be seen in the feature of the ultimate elongation in characteristic and extent values as well.

The evaluated results are summarized in Table. 1.

Table. 1. Tensile test results of SLS material

<table>
<thead>
<tr>
<th></th>
<th>Ultimate strength R_m [MPa]</th>
<th>Young modulus E [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laying (x-y)</td>
<td>49.93615 ± 0.9</td>
<td>1713.48 ± 40</td>
</tr>
<tr>
<td>Standing (z)</td>
<td>47.4045 ± 0.8</td>
<td>1661.039 ± 30</td>
</tr>
</tbody>
</table>

Fig. 3. Tensile test diagram in z-direction.

Based on our investigation of SLS production technology it could be stated that the material properties of the technology are independent of the printing direction. One important final conclusion is that the behavior of the material produced by SLS technology can be described by isotropic material law.

5. Summary

4. Analysis

5. Summary

References

