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Foreword

This issue of Rendiconti dell’Istituto di Matematica dell’Università di Tri-

este is dedicated to our friend and colleague Jean Mawhin, on the occasion of

his 75th birthday.

Jean Mawhin is a world-wide recognized master in the development and the

application of functional analytic methods, mainly topological and variational,

in the study of boundary value problems for various classes of nonlinear differ-

ential equations, while he has also given relevant contributions to the history

of Mathematics. He mentored and inspired many young mathematicians, who

now have well established positions in and outside Europe.

Jean Mawhin was born in Heusy, Belgium, where he still lives with his wife

Margaret, who gave him three children (and he is now the grandfather of six

grandsons). He pursued his studies in Liège, and obtained the title of Docteur
en Sciences Mathématiques, avec la plus grande distinction in 1969. Strangely

enough, his PhD supervisor was a professor in Astrophysics, Paul Ledoux, who

by the way gave important contributions to the theory of stellar oscillations.

Soon after, Jean became a full professor at the Université Catholique de Louvain-

la-Neuve, where he was able to create a strong group of mathematicians working

in nonlinear analysis.

He retired from his University at the age of 65, becoming professeur émérite,
but since then the rhythm of his scientific activity has been maintained, if not

even increased. He is still a member of the Académie Royale des Sciences, des
Lettres et des Beaux-Arts de Belgique, since 1992, having been its President in

2002. The same year he received the Bolzano medal, the highest recognition of

achievements in the mathematical sciences awarded by the Czech Academy of

Sciences. Then, in 2012, he was the first winner of the Schauder medal, which
is now awarded every two years for scientific achievements and contributions

to nonlinear analysis and its applications.

Those who have the chance to know Jean Mawhin all appreciate his warm and

sincere personality, always intruded with some irony and a fine sense of humor.

Now that Jean Mawhin is completing his 75th turn around the Sun, we are
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looking forward to see, after his exploits during these first three, what his

beautiful human and scientific activity will reserve us in the next quarter of a

century.

To conclude, let us also mention that Jean Mawhin has been in the Editorial

Board of our journal since 2005. It has been an honour for us, and we are sure

that his collaboration will continue helping us improving the reputation of the

journal.

Happy Birthday Jean!

Bon Anniversaire!
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On the 22th of July 2017, Professor Russell Johnson suddenly passed away.

We will always remember Russell with friendship and admiration. And we are

greatly honoured for his contribution to this volume.
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1. Introduction

In 1958 the authors of [8] studied the spectrum of the initial value problem
�
−u��(x) = λσ(x)u(x), x ∈ (0,∞),

u(0) = 0, u�(0) = 1.
(1)

Their result can be stressed as follows:
(i) The spectrum of (1) is bounded from below provided there exist a con-

stant c > 0 such that for all x ∈ (0,∞),

x

� ∞

x
σ(τ) dτ ≤ c.

Moreover, the spectrum is bounded from below by 1
4c .

(ii) The spectrum of (1) is discrete if and only if

lim
x→+∞

x

� ∞

x
σ(τ) dτ = 0. (2)

On the other hand, the equation of order 2k, k ∈ N,

(−1)k(ρ(x)u(k)(x))(k) = λu(x), x ∈ (0,+∞), (3)
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was investigated in [7, 9, 11]. More precisely, it was shown that the spectrum
of the minimal selfadjoint extension of the formal differential operator on the
left-hand side in (3) is bounded from below and discrete if and only if

lim
x→+∞

x2k−1

� ∞

x

1

ρ(τ)
dτ = 0 (4)

(see [7] for sufficiency of (4) and [9, 11] for necessity of (4)).
Both expressions in (2) and (4) are closely related to the Muckenhoupt

function which plays a key role in the theory of the Hardy inequality (see
e.g. [13]). In particular, certain properties of the Muckenhoupt function provide
necessary and sufficient conditions for the Hardy inequality as well as for the
compact embedding of certain weighted Sobolev and Lebesgue spaces to hold.
Making use of these properties of the Muckenhoupt function combined with
some results from the oscillation theory of ODEs we formulate necessary and
sufficient conditions for the boundedness from below and the discreteness of
the spectrum of equations which generalize both (1) and (3). We also show
that these conditions are equivalent with the compactness of the embedding of
a weighted Sobolev space into a weighted Lebesgue space with weights which
appear as nonconstant coefficients in the equation.

In Section 2 we consider quasilinear problems on both bounded and/or
unbounded interval. Section 3 deals with the higher order quasilinear equations.
We give some examples in Section 4 with the emphasis on the consequences
of our general estimates to the decay of radial solutions of certain quasilinear
PDEs.

2. Second order equations

Let us consider the Sturm-Liouville boundary value problem





−(ρ(x)u�)� + q(x)u = λσ(x)u, a < x < b,

αu(a) + βu�(a) = 0,

γu(b) + δu�(b) = 0,

(5)

where α2 + β2 > 0, γ2 + δ2 > 0, ρ, ρ�, q and σ are continuous real functions
on [a, b], and ρ(x) > 0, σ(x) > 0 for a ≤ x ≤ b. Any value of the parameter
λ ∈ R for which a nontrivial solution of (5) exists is called an eigenvalue.
The corresponding nontrivial solution is called an eigenfunction related to the
eigenvalue λ.

The following Sturm-Liouville property of (5) (SL-property for short) is well
known:

“The eigenvalues of the problem (5) form an increasing sequence

λ1 < λ2 < λ3 < · · · < λn < · · · → +∞.
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To each eigenvalue λn there corresponds a unique (up to a nonzero multiple)

eigenfunction un(x), which has exactly n−1 zeros in (a, b). Moreover, between

two consecutive zeros of un there is exactly one zero of un+1.”
In particular, the spectrum of (5) is bounded from below and discrete. For

this reason, in the literature, such eigenvalue problems are said to have the
BD-property (see e.g. [7, 9, 11]).

The purpose of this paper is to show that both BD-property and SL-
property hold true also for more general equations

(−ρ(x)|u�|p−2u�)� = λσ(x)|u|q−2u (6)

on (a, b) with −∞ ≤ a < b ≤ +∞ and with ρ and σ positive measurable
functions in (a, b). Here, 1 < p ≤ q, and equation (6) is complemented by the
boundary conditions

lim
x→a+

ρ(x)|u�(x)|p−2u�(x) = lim
x→b−

u(x) = 0. (7)

The boundedness from below of the set of all eigenvalues of (6), (7) follows
from Hardy’s inequality. Indeed, let u be a nonzero solution of (6), (7). Multi-
plying (6) by u, integrating formally by parts and taking into account (7), we
get � b

a
ρ(x)|u�|p dx = λ

� b

a
σ(x)|u|q dx. (8)

Since Hardy’s inequality is of the form

�� b

a
σ(x)|u|q dx

� 1
q

≤ C

�� b

a
ρ(x)|u�|p dx

� 1
p

(9)

with a suitable constant C > 0, after normalization, we obtain from (8) and
(9) that

λ ≥ 1

Cq

holds for any eigenvalue of (6), (7).
To be more specific, let W 1,p

b (ρ) be the weighted Sobolev space of all func-
tions u which are absolutely continuous on every compact subinterval of (a, b),
such that lim

x→b−
u(x) = 0 and

�u�1,p;ρ :=

�� b

a
ρ(x)|u�(x)|p dx

�1/p

< +∞.

Let Lq(σ) be the weighted Lebesgue space of all measurable functions u defined
on (a, b), for which

�u�q;σ :=

�� b

a
σ(x)|u(x)|q dx

�1/q

< +∞.
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Inequality (9) actually means that the embedding of W 1,p
b (ρ) into Lq(σ) is

continuous (W 1,p
b (ρ) �→ Lq(σ) for short).

Next we assume that for any x ∈ (a, b) we have σ ∈ L1(a, x) and ρ1−p� ∈
Lq(x, b), where 1

p + 1
p� = 1.

The expression

AM (x) :=

�� x

a
σ(τ) dτ

�1/q�� b

x
ρ(τ)1−p�

dτ

�1/p�

(10)

defines the so-called Muckenhoupt function. It is proved in [13] that (9) holds
for all u ∈ W 1,p

b (ρ) (i.e. W 1,p
b (ρ) �→ Lq(σ)) if and only if

sup
x∈(a,b)

AM (x) < +∞. (11)

Moreover, it is proved in [13] that the embedding of W 1,p
b (ρ) into Lq(σ) is

compact (W 1,p
b (ρ) �→�→ Lq(σ) for short) if and only if

lim
x→a+

AM (x) = lim
x→b−

AM (x) = 0. (12)

Expressions of type (10) appear in the literature in connection with the BD-
property and oscillation properties of differential operator of the second order
(see e.g. [1, 2, 3, 4, 5]).

With the compactness of the above embedding in hands, we can prove the
following assertion.

Theorem 2.1. Assume that (12) holds true. Then there exists minimal value

of λ := λ1 > 0 such that (6), (7) has a nontrivial solution u1 ∈ W 1,p
b (ρ)

normalized by �u1�q;σ = 1.

The proof of this assertion follows from minimization of the Rayleigh type
quotient

R(u) =

� b
a ρ(x)|u�|p dx
� b
a σ(x)|u|q dx

on W 1,p
b (ρ) subject to the constraint

� b
a σ(x)|u|q dx = 1. The compact em-

bedding W 1,p
b (ρ) �→�→ Lq(σ) implies that λ1 = minR(u) is achieved at u1 ∈

W 1,p
b (ρ) satisfying

� b
a σ(x)|u1|q dx = 1. Application of the Lagrange multiplier

method then yields that
� b

a
ρ(x)|u�

1|p−2u�
1v

� dx = λ1

� b

a
σ(x)|u1|q−2u1v dx

holds for any v ∈ W 1,p
b (ρ). In other words, u1 is a weak solution of (6), (7).

Standard regularity argument for the second order ODEs then implies that
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u1 ∈ C1(a, b) ρ|u�|p−2u� ∈ C1(a, b), the equation (6) holds at every point in
(a, b), boundary conditions (7) hold true and �u1�1,p;ρ < +∞. Hence, u1 is a
classical solution to (6), (7), as well.

Remark 2.2. Note that the weaker condition (11) is sufficient for the bound-
edness from below of any possible eigenvalue of (6), (7). However, without
compactness of the embedding W 1,p

b (ρ) �→�→ Lq(σ) (which is equivalent to
(12)) it is not clear whether (6), (7) has any eigenvalues and eigenfunctions
at all.

Actually, with compactness of W 1,p
b (ρ) �→�→ Lp(σ) in hands we can get

more precise information about the spectrum of (6), (7) in case of homogeneous
equation when p = q. In particular, we can generalize the Sturm-Liouville
theory for the half-linear problem

�
(ρ(x)|u�|p−2u�)� + λσ(x)|u|p−2u = 0 in (a, b),

lim
x→a+

ρ(x)|u�(x)|p−2u�(x) = lim
x→b−

u(x) = 0.
(13)

Theorem 2.3 (see [5] and cf. [2, 3]). The SL-property for (13) is satisfied if

and only if the following two conditions hold:

lim
x→a+

�� x

a
σ(τ) dτ

�1/p�� b

x
ρ1−p�

(τ) dτ

�1/p�

= 0, (14)

lim
x→b−

�� x

a
σ(τ) dτ

�1/ρ�� b

x
ρ1−p�

(τ) dτ

�1/p�

= 0. (15)

Remark 2.4. Note that (14), (15) are equivalent to (12) where q = p. Note
also that (14), (15) are equivalent with the compact embedding

W 1,p
b (ρ) �→�→ Lp(σ). (16)

This fact implies the following “round about” assertion.

Theorem 2.5 (see [3, 5]). The following statements are equivalent:

(i) The SL-property for (13) is satisfied.

(ii) Conditions (14), (15) hold.

(iii) The compact embedding (16) holds.

If we know the asymptotics of the limit in (15), we get an asymptotic
estimate for the behavior of eigenfunctions of (13) as x → b−. Namely, assume
that there exist ε ∈ (0, p− 1) and C > 0 such that for all x ∈ (a, b) we have

�� x

a
σ(τ) dτ

�1/p�� b

x
ρ1−p�

(τ) dτ

�1/p�

≤ C

�� b

x
ρ1−p�

(τ) dτ

�ε/p

. (17)
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Theorem 2.6 (see [4]). Let (14) and (17) hold. Then for any eigenfunction u
of (13) there exist b̄ ∈ (a, b) and 0 < C1 < C2 such that for all x ∈ (b̄, b) we

have

C1

� b

x
ρ1−p�

(τ) dτ ≤ |u(x)| ≤ C2

� b

x
ρ1−p�

(τ) dτ.

Remark 2.7. We would like to mention also the pioneering work [12] where a
different approach than that of ours was used to prove the discreteness of the
spectrum of the second order quasilinear Sturm-Liouville problem. The method
of [12] had been extended to the fourth order problem in [10] and became a
motivation for our research mentioned in the next section.

3. Higher order equations

Let us consider the eigenvalue problem:





(ρ(x)|u��(x)|p−2u��(x))�� − λσ(x)|u(x)|p−2u(x) = 0, x > 0,

u�(0) = lim
x→0+

(ρ(x)|u��(x)|p−2u��(x))� = 0,

lim
x→+∞

u(x) = lim
x→+∞

u�(x) = 0.

(18)

We assume that ρ and σ are continuous and positive in [0,+∞), and the func-
tion xp�

ρ1−p�
(x) belongs to L1(0,+∞). By a solution of (18) we understand

a function u ∈ C2(0,+∞) such that ρ|u��|p−2u�� ∈ C2(0,+∞), the equation in
(18) holds at every point in (0,+∞), the boundary conditions are satisfied and
the Dirichlet integral

�∞
0 ρ(x)|u��(x)|p dx is finite.

We say that the D-property for (18) is satisfied if the set of all eigenvalues

of (18) forms on increasing sequence {λn}∞n=1 such that λ1 > 0 and lim
n→∞

λn =

∞. Moreover, the set of all normalized eigenfunctions associated with a given

eigenvalue is finite and every eigenfunction has a finite number of nodes.

Theorem 3.1 (see [6]). The D-property for (18) is satisfied if and only if the

following two conditions hold






lim
x→+∞

� � x
0 σ(τ) dτ

�1/p� �∞
x (τ − x)p

�
ρ1−p�

(τ) dτ
�1/p�

= 0,

lim
x→+∞

� � x
0 (x− τ)pσ(τ) dτ

�1/p� �∞
x ρ1−p�

(τ) dτ
�1/p�

= 0.
(19)

Remark 3.2. The conditions (19) are equivalent to the compact embedding

W 2,p
∞ (ρ) �→�→ Lp(σ), (20)

where W 2,p
∞ (ρ) is the weighted Sobolev space of all functions u ∈ C1[0,+∞),

u� is absolutely continuous on every compact subinterval of (0,+∞), u�(0) =
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lim
x→+∞

u(x) = lim
x→+∞

u�(x) = 0, and

�u�2,p;ρ :=

�� ∞

0
ρ(x)|u��(x)|p dx

�1/p

< +∞,

see [6] for details.

Hence, the following analogue of Theorem 2.5 holds also for the fourth order
problem.

Theorem 3.3. The following statements are equivalent:

(i) The D-property for (18) is satisfied.

(ii) Conditions (19) hold.

(iii) The compact embedding (20) holds.

Remark 3.4. The reader is invited to compare SL-property for the second
order problem and D-property for the fourth order problem. The former one
is stronger than the latter one. One of the reasons consists in the fact that
in the fourth order case it is substantially more difficult to establish that all
eigenfunctions have finitely many nodes in (0,+∞).

Let k ∈ N. Consider the quasilinear equation of order 2k,

(−1)k(ρ(x)|u(k)(x)|p−2u(k)(x))(k) = λσ(x)|u(x)|q−2u(x), x ∈ (0,∞), (21)

together with boundary conditions

u�(0) = · · · = u(k−1)(0) = lim
x→0+

(ρ(x)u(k)(x))� = 0, (22)

lim
x→+∞

u(x) = lim
x→+∞

u�(x) = · · · = lim
x→+∞

u(k−1)(x) = 0. (23)

This problem was considered in [1].
Let W k,p

∞ (ρ) be the weighted Sobolev space of functions u ∈ Ck−1[0,+∞),
u(k−1) be absolutely continuous on every compact subinterval of (0,+∞), u
satisfy (23) and

�u�k,p;ρ =

�� ∞

0
ρ(x)|u(k)(x)|p dx

�1/p

< +∞.

Let us introduce functions

B1(x) :=

�� x

0
(x− τ)q(k−1)σ(τ) dτ

� 1
q
�� ∞

x
ρ1−p�

(τ) dτ

� 1
p�

,

B2(x) :=

�� x

0
σ(τ) dτ

�1/q�� ∞

x
(τ − x)p

�(k−1)ρ1−p�
(τ) dτ

� 1
p�

.

The following assertions can be found in [13].
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Lemma 3.5. The embedding W k,p
∞ (ρ) �→ Lq(σ) is continuous if and only if

B1(x) and B2(x) are bounded on (0,+∞).

Lemma 3.6. The embedding W k,p
∞ (ρ) �→�→ Lq(σ) is compact if and only if

lim
x→0+

Bi(x) = lim
x→+∞

Bi(x) = 0, i = 1, 2. (24)

Using the compactness argument and Lemma 3.6, as in the proof of Theo-
rem 2.1, we can prove the following assertion.

Theorem 3.7. Assume that (24) holds true. Then there exists the minimal

value λ := λ1 > 0 such that (21)–(23) has a nontrivial solution u1 ∈ W k,p
∞ (ρ)

normalized by �u1�q;σ = 1.

Remark 3.8. The fact that all possible eigenvalues of (21)–(23) are bounded
from below follows just from the boundedness of B1 and B2 combined with
Lemma 3.5. On the other hand, Theorem 3.7 guarantees that there exists the
least eigenvalue and the corresponding eigenfunction of (21)–(23). However,
the discreteness of the entire spectrum remains an open question:

Conjecture 3.9. Assume that (24) holds true. Then (21)–(23) has the BD-

property.

4. Applications

In this section we present applications of our general estimates to some concrete
boundary value problems. In particular, the asymptotic properties of radial
solutions to quasilinear eigenvalue problems for PDEs with degenerated and/or
singular coefficients are new results.

Example 4.1 (cf. [5]). Let us consider the radial eigenvalue problem for the
p-Laplacian ∆p on RN :





−∆pu = λ

1+|x|γ |u|
p−2u in RN ,

lim
|x|→+∞

u(x) = 0.
(25)

This problem reduces to the one-dimensional equation

−(rN−1|u�(r)|p−2u�(r))� = λ
rN−1

1 + rγ
|u(r)|p−2u(r), r ∈ (0,+∞), (26)

where r = |x|. For 1 < p < N and γ > p the weights

ρ(r) = rN−1 and σ(r) =
rN−1

1 + rγ
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satisfy (14) and (15). Moreover, the solution of (26) is also forced to satisfy
the so-called Neumann-Dirichlet boundary conditions

lim
r→0+

rN−1|u�(r)|p−2u�(r) = lim
r→+∞

u(r) = 0. (27)

Hence, Theorem 2.3 applies to (26), (27).

In particular, we have the following assertion for the original problem (25):

Theorem 4.2. Let 1 < p < N and γ > p. Then the eigenvalues of the radial

eigenvalue problem (25) exhaust the sequence {λn}∞n=1, 0 < λ1 < λ2 < · · · →
+∞ with all λn being simple. A normalized eigenfunction uλn associated with

λn, n ≥ 1, has precisely n nodal domains in RN
. The nodal “lines” of uλn are

concentric spheres in RN
centered at the origin. The nodal “lines” of uλn−1

separate those of uλu .

Example 4.3 (cf. [4]). Let us consider the radial eigenvalue problem for the
weighted p-Laplacian






−div
� 1

(1 + |x|)α |∇u(x)|p−2∇u(x)
�

= λ
1

(1 + |x|)β |u(x)|
p−2u(x), x ∈ RN ,

lim
|x|→+∞

u(x) = 0.

(28)

This problem reduces to the equation

−
� rN−1

(1 + r)α
|u�(r)|p−2u�(r)

��
= λ

rN−1

(1 + r)β
|u(r)|p−2u(r), r ∈ (0,∞) (29)

with boundary conditions (27). Let α + p < N , α + p < β and ε =
(p− 1)(α+ p−β)/(α+ p−N). Then (14) and (17) hold. Hence, Theorems 2.3
and 2.6 apply to (29).

In particular, we have the following assertion:

Theorem 4.4. Let α + p < min{N,β}. Then the conclusions of Theorem 4.2

hold also for the boundary value problem (28). Moreover, there exist r0 > 0
and 0 < C1 < C2 such that

C1

|x|
N−(α+p)

p−1

≤ |u(x)| ≤ C2

|x|
N−(α+p)

p−1

for any x ∈ RN
satisfying |x| ≥ r0.
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Example 4.5. Let us consider the radial eigenvalue problem for the
p-Laplacian on the ball:

�
−div

�
(R− |x|)α|∇u|p−2∇u

�
= λ(R− |x|)β |u|p−2u in BR(0),

7u = 0 on ∂BR(0).
(30)

Here 1 < p < N and BR(0) is a ball centered at the origin with radius R > 0.
The weight functions x �→ (R − |x|)α, x �→ (R − |x|)β are just power of the
distance from the boundary. Obviously, this problem reduces to






−(rN−1(R− r)α|u�(r)|p−2u�(r))�

= λrN−1(R− r)β |u(r)|p−2u(r), r ∈ (0, R),

lim
r→0+

rN−1|u�(r)|p−2u�(r) = lim
r→R−

u(r) = 0.
(31)

For
β < −1 and α− β < p or β ≥ −1 and α < p− 1 (32)

the weights

ρ(r) = rN−1(R− r)α and σ(r) = rN−1(R− r)β

satisfy (14) and (17). Hence Theorems 2.3 and 2.6 apply to (31).

In particular, we have the following assertion:

Theorem 4.6. Let us assume (32). Then the eigenvalues of the radial eigen-

value problem (30) exhaust the sequence {λn}∞n=1, 0 < λ1 < λ2 < · · · → ∞
with all λn being simple. A normalized eigenfunction uλn associated with λn,

n ≥ 1, has precisely n nodal domains in BR(0). The nodal “lines” of uλn are

concentric spheres contained in BR(0) centered at the origin. The nodal “lines”

of uλn−1 , separate those of uλn . Moreover, there exist R ∈ (0, R), C1, C2 > 0
such that for all x ∈ BR(0) \BR(0) we have

C1(R− |x|)1−
α

p−1 ≤ |u(x)| ≤ C2(R− |x|)1−
α

p−1 . (33)

Remark 4.7. Let ∂u
∂ν (x) denote the derivative of an eigenfunction u with re-

spect to the external normal at the point x ∈ ∂BR(0). Let an eigenfunction u
be positive in the neighborhood of ∂BR(0). Then

(i) For α = 0 we have ∂u
∂ν (x) < 0, x ∈ ∂BR(0), due to well-known Hopf’s (for

p = 2, see [14]) and Vázquez’s (for p �= 2, see [15]) maximum principle.

(ii) For α > 0 we have ∂u
∂ν (x) = −∞, x ∈ ∂BR(0) by (33).

(iii) For α < 0 we have ∂u
∂ν (x) = 0, x ∈ ∂BR(0) by (33).



HARDY INEQUALITY AND EIGENVALUE PROBLEMS 15

Example 4.8. Let 1 < p < N , q ≥ p. Consider the radial problem
�
−∆pu = λ|u|q−2u in BR(0),

u = 0 on ∂BR(0).
(34)

This problem reduces to




−(rN−1|u�(r)|p−2u�(r))� = λrN−1|u(r)|q−2u(r), r ∈ (0, R),

lim
r→0+

rN−1|u�(r)|p−2u�(r) = lim
r→R−

u(r) = 0. (35)

In particular, this corresponds to (6) with ρ(r) = σ(r) = rN−1 and

AM (x) =

�� x

0
τN−1 dτ

� 1
q
�� R

x
τ

1−N
p−1 dτ

� 1
p�

=
� p− 1

N − p

� 1
p�
�xN

N

� 1
q
(x

p−N
p−1 −R

p−N
p−1

� 1
p�
.

Consequently,
lim

x→0+
AM (x) = lim

x→R−
AM (x) = 0

if and only if 1 < q < p∗ := Np
N−p (critical Sobolev exponent). Applying Theo-

rem 2.1 to (35), we get the existence of a value λ > 0 and of the corresponding
normalized solution u ∈ W 1,p

0 (BR(0)) of (34). It is possible to show that this
solution is C1,α-regular and positive in BR(0), with some α ∈ (0, 1).

On the other hand, using the well-known Pohozaev identity, one can prove
that no such solution exists for q ≥ p∗.

Example 4.9. Let us consider the boundary value problem
�
((x+ 1)2u�(x))� + λu(x) = 0, x ∈ (0,+∞),

u�(0) = u(+∞) = 0.
(36)

Notice that (36) is a special case of (13) with a = 0, b = +∞, p = 2, ρ(x) =
(x+ 1)2, σ(x) ≡ 1, x ∈ (0,+∞). That is

AM (x) =

�� x

0
dτ

�1/2�� +∞

x

1

(τ + 1)2
dτ

�1/2

=
� x

1 + x

�1/2
, x ∈ (0,+∞),

satisfies (11) but violates (12).
Elementary calculation yields that the initial value problem

�
((x+ 1)2u�(x))� + λu(x) = 0, x ∈ (0,+∞),

u(0) = 1, u�(0) = 0

has the following unique solutions:
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(i) for λ = 1
4 , u(x) =

1√
x+1

(1 + ln
√
x+ 1);

(ii) for λ < 1
4 ,

u(x) = 1√
x+1

��
1
2−

1
2
√
1−4λ

�
(x+1)

1
2

√
1−4λ+

�
1
2−

1
2
√
1−4λ

�
(x+1)−

1
2

√
1−4λ

�
;

(iii) for λ > 1
4 ,

u(x) = 1√
x+1

�
cos

�
1
2

√
4λ− 1ln(x+1)

�
− 1√

4λ−1
sin

�
1
2

√
4λ− 1ln(x+1)

��
.

Thus (36) has no solution u ∈ W 1,2
∞ (ρ) for any λ ∈ R.

Acknowledgement
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Abstract. We provide sufficient conditions for the existence of solu-
tion of the radially symmetric prescribed curvature problem with Neu-
mann boundary condition on a general Friedmann-Lemâıtre-Robertson-
Walker (FLRW) spacetime.

Keywords: Neumann boundary condition, radially symmetric solutions, singular φ-
Laplacian, prescribed mean curvature function, Friedmann-Lemâıtre-Robertson-Walker
spacetime.
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1. Introduction

A Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime is a metric space
given by the cartesian product I × Rn of an open interval I =]a, b[ with the
n-dimensional Euclidean space endowed with the Lorentzian metric

ds
2 = −dt

2 + f(t)dx2
,

where f(t) is a positive function of time known as the scale factor or warping
function. In Cosmology, the FLRW space is the accepted model for a spatially
homogeneous and isotropic Universe. In this context, the scaling factor f(t)
represents the size of the Universe at time t and must be determined as an
exact solution of Einstein’s field equations under the assumptions of isotropy
and homogeneity. Observe that for the particular case f(t) ≡ 1 we recover the
Lorentz-Minkowski spacetime. Other relevant examples are

• Einstein-De Sitter spacetime: f(t) = (t+ t0)2/3, I =]− t0,+∞[

• Steady state spacetime: f(t) = e
t
, I = R

• Lambda-CDM model: f(t) = A sinh2/3(t+ t0), I =]− t0,+∞[

• Cycloid model: f(θ) = R
2 (1− cos θ), t(θ) = θ− sin θ, I =]−π/2,π/2[
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We refer to the monograph [8] for more details on the derivation and physical
interpretation of these cosmologies.

We are interested on the problem of the existence of spacelike graphs with a
prescribed the mean curvature function. For a FLRW spacetime, the curvature
operator is given by the expression

Q[u] :=
1

n

�
div

�
∇u

f(u)
�
f(u)2−|∇u|2

�
+

f
�(u)�

f(u)2−|∇u|2

�
n+

|∇u|2

f(u)2

��
. (1)

Then, the general problem of the curvature prescription is, given a function
H : I × Rn → R, to obtain solutions of the quasilinear elliptic problem

Q[u] = H(u, x), |∇u| < f(u).

Here, |∇u| < f(u) means that |∇u(x)| < f(u(x)) for all x. The prescription of
curvature has a physical meaning. Intuitively, a spacelike hypersurface is the
spatial universe at one instant of proper time of a family of normal observers.
Then, the mean curvature function measures how these observers spread away
(H > 0) or come together (H < 0) with respect to the surrounding observers.
In this sense, the problem may be seen as a local prescription of the behaviour
of normal observers.

The consideration of this problem is rather new on the literature. Up to
now, most of the efforts have been directed to the curvature prescription on
the Lorentz-Minkowski spacetime (f(t) ≡ 1), see for instance [1, 3, 6]. For
more general FLRW spacetimes, up to our knowledge the first contributions to
the literature are [2, 4], where it is studied the problem with radial symmetry
and Dirichlet conditions on a ball for a family of expanding FLRW spacetimes,
including the Einstein-de Sitter, steady state and Lambda-CDM models. A
first approach to the problem with Neumann conditions has been done in the
recent paper [7], where a kind of universal result is proved for big bang-big
crunch models that includes the cycloid as a particular case. Our purpose is to
revise the proof employed there and state a result applicable to any example
of FLRW spacetime.

2. Main result

Let us state precisely the mathematical problem under study. Let B(R) be the
Euclidean ball of Rn centered at 0 with radius R. Let I =]a, b[⊆ R,−∞ ≤ a <

0 < b ≤ +∞ be an open interval, and let f ∈ C
1(I) a positive function. For a

given continuous function H : R× [0,+∞) → R, we look for radially symmetric
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solutions of the problem

Q[u] = H(u, |x|)
|∇u| < f(u) in B(R), (2)
∂u
∂ν = 0 in ∂B(R),

where the operator Q is defined by (1) and ∂u
∂ν denotes the outward normal

derivative of u.

Our main result is as follows.

Theorem 2.1. Let us assume that

lim sup
t→a+

�
H(t, r)− f

�(t)

f(t)

�
< 0 < lim inf

t→b−

�
H(t, r)− f

�(t)

f(t)

�
, for all r > 0. (3)

Then, there exists R0 > 0 (depending on f,H) such that if 0 < R < R0,
problem (2) has at least one radially symmetric solution u(|x|).

It is worth to note that for the Lorentz-Minkowski spacetime f(t) ≡ 1,
condition (3) is known in the literature as a Landesman-Lazer condition, in
fact for this case R0 can be taken as +∞ and Theorem 2.1 is just a particular
case of [3, Theorem 3.1]. On the other hand, taking the family of warping
functions considered in [7] we recover the main result therein. Furthermore,
Theorem 2.1 admits any general warping function with the minimal conditions
of being positive and regular. For example, for the Einstein-de Sitter spacetime
f(t) = (t + t0)2/3, this result is applicable to any curvature function H(t, r)
taking positive values for large times. This condition is natural in some way,
because if H(t, r) ≤ 0 for every (t, r), a simple integration (see equation (5)
below) proves that the problem has no solution. This occurs in general for any
expanding cosmology (that is, any strictly increasing scale factor f(t)).

3. Preliminaries

We follow the main ideas of [7]. Let us define the function ϕ : I → R by

ϕ(s) :=

� s

0

dt

f(t)
. (4)

Note that ϕ is an increasing diffeomorphism from I onto J :=ϕ(I) and ϕ(0)=0.
Doing the change v = ϕ(u) and taking radial coordinates, problem (2) is

equivalent to the boundary value problem
�
r
n−1 v�

√
1−v�2

��
= nr

n−1
�
− f �(ϕ−1(v))√

1−v�2 + f(ϕ−1(v))H(ϕ−1(v), r)
�
, (5)

v
�(0) = 0 = v

�(R).
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Let φ(s) = s√
1−s2

. The proof relies on a Leray-Schauder degree argument.

We introduce the homotopy

�
r
n−1

φ(v�)
��

= λnr
n−1

�
−f

�(ϕ−1(v))√
1− v�2

+ f(ϕ−1(v))H(ϕ−1(v), r)

�
, r ∈ (0, R), (6)

v
�(0) = 0 = v

�(R),

where λ ∈ [0, 1].
Let us define the operator

F [v](t)=

� t

0
nr

n−1

�
−f

�(ϕ−1(v(r)))�
1− v�(r)2

+ f(ϕ−1(v(r)))H(ϕ−1(v(r)), r)

�
dr. (7)

Then, taking some Γ < 1, let us consider the family of operators G : {v ∈
C

1([0, R], J) : �v��∞ ≤ Γ}× [0, 1] → C
1([0, R]) defined as

G(v,λ)(r) = v(0) +
1

R
F [v](R) +

� r

0
φ
−1

�
λ

tn−1
F [v](t)

�
dt.

It is not hard to prove that v ∈ C
1([0, R], J) is a fixed point of G(·,λ) if and

only if v is a solution of (6) (see [7, Lemma 1]). Then, by the basic properties
of topological degree, the proof is reduced to the estimation of some a priori
bounds.

4. Proof of the main result

The key point is to obtain a proper bound for the fixed points of operator G(v,λ)
in the uniform norm. To this aim, we are going to use our main hypothesis (3).
Using that ϕ

−1 : J → I is an increasing homeomorphism and (3), there exist
ρ∗, ρ

∗ ∈ J such that

f
�(ϕ−1(v))

f(ϕ−1(v))
−H(ϕ−1(v), r) < 0, v ∈]ρ∗,ϕ−1(b)[, r > 0 (8)

and

f
�(ϕ−1(v))

f(ϕ−1(v))
−H(ϕ−1(v), r) > 0, v ∈]ϕ−1(a), ρ∗[, r > 0 (9)

The first lemma proves the every solution must lie between these two values.

Lemma 4.1. Let v be a fixed point of G(·,λ) for some λ ∈ [0, 1]. Then,

ρ∗ ≤ v(r) ≤ ρ
∗
, for all r ∈ [0, R] (10)



THE PRESCRIBED CURVATURE PROBLEM IN FLRW SPACETIMES 23

Proof. First, we consider the case λ = 0. A fixed point v = G(v, 0) takes the
constant value

v(r) = v(0) +
1

R
F [v](R).

Evaluating at r = 0 one has

v(0) = v(0) + F [v](R),

and therefore
F [v](R) = 0,

and considering that v is constant, then

F (v)(R) =

�
−f

�(ϕ−1(v))

f(ϕ−1(v))
+H(ϕ−1(v(r)), r)

�
f(ϕ−1(v))Rn = 0.

From this last equation and (8)− (9), one deduces that ρ∗ ≤ v(r) ≤ ρ
∗.

From now on, we can assume that λ > 0. Let v a fixed point of G(·,λ). Let
r
∗ ∈ [0, R] such that v(r∗) = max[0,R] v(r). Our aim is to prove that v(r∗) ≤ ρ

∗

by contradiction. Suppose that v(r∗) > ρ
∗. We consider first the case r

∗
> 0.

Observe that developing the derivative of the left-hand side term of (6) and
dividing by r

n−1 we have

v
��

(1− v�2)3/2
+

v
�

r
√
1− v�2

=λn

�
−f

�(ϕ−1(v))√
1− v�2

+ f(ϕ−1(v))H(ϕ−1(v), r)

�
, (11)

then, evaluating at r∗ and using that v�(r∗) = 0, v(r∗) > ρ
∗, one has

v
��(r∗) = λn

�
−f

�(ϕ−1(v(r∗)) + f(ϕ−1(v))H(ϕ−1(v(r∗), r∗)
�
> 0

as a consequence of (8). But then v(r∗) can not be the global maximum, this
is a contradiction. The case r

∗ = 0 is studied analogously, with the difference
that the second term of the left-hand side of (11) presents the indeterminate
limit 0/0 when r → 0+. We can solve it easily by L’Hôpital rule and the limit
is v��(0+), and we conclude as before.

Hence, we have proved that v(r∗) ≤ ρ
∗. A totally analogous argument

shows that v(r) ≥ ρ∗, using now (9).

Finally, we derive a bound for the derivative of the fixed points, by using
the same idea of [7, Lemma 3].

Lemma 4.2. There exists R0 > 0 (depending on f,H) such that if 0 < R < R0,
there exists γ

∗
< 1 such that for each λ ∈ [0, 1] and each possible fixed point v

of G(·,λ), one has
max

r∈[0,R]
|v�(r)| ≤ γ

∗
.
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Proof. Let us define

M = max
�
|f �(ϕ−1(v))| : v ∈ [ρ∗, ρ

∗]
�
,

NR = max
�
f(ϕ−1(v))|H(ϕ−1(v), r)| : v ∈ [ρ∗, ρ

∗], r ∈ [0, R]
�
.

We fix R0 = 1/M .
Now, recall that a fixed point of G(·,λ) verifies (6), then integrating both

members from 0 to r and using the boundary conditions, we get

r
n−1

φ(v�(r)) = λF [v](r).

If |v�(ρ)| = maxr∈[0,R] |v�(r)| = γ < 1, we get,

ρ
n−1 |v�(ρ)|�

1− |v�(ρ)|2
≤

�
M�

1− |v�(ρ)|2
+NR

�
ρ
n
.

As we can assume, without loss of generality, that ρ ∈ (0, R), we obtain

γ < R

�
M +NR

�
1− γ2

�
.

Since R < R0 means RM < 1, solving this inequality we obtain a fixed γ
∗
< 1

such that γ < γ
∗. The result is proved with R0 = 1/M .

Now that some a priori bounds are stated, the proof of Theorem 2.1 follows
from a standard degree computation. The argument is completely analogous
to the one exposed in [7], so we just include here an outline for completeness.
The homotophy G(·,λ) is well-defined on the domain

Ω = {v ∈ C
1([0, R]) : ρ∗ < v < ρ

∗
, �v��∞ < γ

∗},

and by the homotopy invariance of Leray-Schauder degree

dLS [I − G(·, 1),Ω, 0] = dLS [I − G(·, 0),Ω, 0].

Now, the reduction theorem of Leray-Schauder degree (see for instance [5,
Proposition II.12], with L = I) implies that

dLS [I − G(·, 0),Ω, 0] = ±dB [g, (ρ∗, ρ
∗), 0],

where dB is the Bouwer degree and g : J → R is the continuous mapping
defined by

g(c) =

� R

0
nr

n−1
�
−f

�(ϕ−1(c)) + f(ϕ−1(c))H(ϕ−1(c), r)
�
dr.

Noting that g((ρ∗) < 0 < g(ρ∗), then dB [g, (ρ∗, ρ∗), 0] = 1 and the proof is
done.
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On the existence of nontrivial solutions

of differential equations

subject to linear constraints
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This paper is a birthday present for Jean Mawhin, my dear friend and valued

collaborator of many years. Greetings and all the best wishes from afar

Abstract. The purpose of this paper is to consider boundary value

problems for second order ordinary differential equations where the so-

lutions sought are subject to a host of linear constraints (such as multi-

point constraints) and to present a unifying framework for studying

such. We show how Leray-Schauder continuation techniques may be

used to obtain existence results for nontrivial solutions of a variety of

nonlinear second order differential equations. A typical example may be

found in studies of the four-point boundary value problem for the differ-

ential equation y
��(t)+a(t)f(y(t)) = 0 on [0, 1], where the values of y at

0 and 1 are each some multiple of y(t) at two interior points of (0, 1).
The techniques most often used in such studies have their origins in

fixed point theory. By embedding such problems into parameter depen-

dent ones, we show that detailed information may be obtained via global

bifurcation theory. Of course, such techniques, as they are consequences

of properties of the topological degree, are similar in nature.

Keywords: second order ode’s; nonlinear multi-point boundary value problem; linear
constraints; global bifurcation.
MS Classification 2010: 34B10, 34B15, 34B18.

1. Introduction

This paper is motivated by the paper [15] and several related ones (e.g. [7,
8, 16, 21, 42, 43, 45]), where the authors were interested in the existence of
positive solutions of second-order nonlinear differential equations

y
��(t) + a(t)f(y(t)) = 0, 0 < t < 1 (1)

subject to the four-point boundary conditions

y(0) = αy(ξ), y(1) = βy(η) (2)



28 KLAUS SCHMITT

where 0 < ξ ≤ η < 1, a(t) is a nonzero continuous, and nonnegative function
on (0, 1) and

f : R → R, f : [0,∞) → [0,∞)

is continuous, or other similar multi-point boundary value problems. In case
ξ = η and α + β �= 2, boundary conditions (2) were already considered Loud
in [22], where Green’s functions and their properties of such multi-point bound-
ary value problems and their adjoints were discussed in great detail.

Under the assumption that the limits

f0 = lim
u→0

f(u)

u
, f∞ = lim

u→∞

f(u)

u
. (3)

exist and satisfy certain inequalities, it was proved [15] that (1), (2) has a
positive solution. The proof was based on a use of the Krasnosel’skii com-
pression and expansion theorems for positive completely continuous operators
on a Banach space [14]. Results for the existence of solutions of nonlinear
boundary value problems where the nonlinear terms behave as in (3) have a
long history and such results (usually for boundary value problems subject to
homogeneous end point boundary conditions, but also valid for nonlinear el-
liptic partial differential equations) may be found in [1, 2, 6, 9, 26, 27, 28, 44].
While the boundary conditions (2) are very much much different from those
usually employed, such as Dirichlet, Neumann, Robin, or periodic ones, it is
still straight forward to transform the problems into equivalent integral equa-
tions (cf. [7, 8, 13, 15, 16, 21, 23, 24, 39, 40, 45]) and thus employ fixed point
theory for completely continuous operators on a Banach space of continuous
functions. Further studies are also available for problems defined on time scales,
see e.g. [3, 12, 46], among others.

Since the approach used here is variational and uses global bifurcation the-
ory, the results and approach discussed here for the semilinear case should be
extendable to problems of a nonlinear nature for both ordinary and elliptic
partial differential equations, such as problems involving the p-Laplacian, and
obtain results as in [17, 18, 25, 33].

In this paper we shall discuss a class of nonlinear boundary value problems
and show, using global bifurcation techniques ([4, 30, 31, 32]), how solutions
may be obtained as part of a continuum of solutions of a problem which de-
pends upon a parameter into which the given problem has been imbedded. We
shall adhere here to a prototypical example motivated by (1), (2) but want to
point out that similar arguments may be used to obtain results of this type
for semilinear and nonlinear elliptic problems in higher dimensions using, see
e.g. [17]. We shall not attempt to consider these more general situations here,
but remark that some of the work cited here will provide the tools for studying
such problems.
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2. Notation, assumptions, and preliminaries

We let V be a closed subspace of H1(0, 1) which has the property that 0 is the
only constant function that belongs to V and in addition that there exists an
open set

Ω ⊂ (0, 1), such that Ω̄ = [0, 1], m(Ω) = 1, C
∞
0 (Ω) ⊂ V,

(here m(·) denotes Lebesgue measure).
For example, if L : H1(0, 1) → R2 is defined by the boundary conditions (2)

as
Ly := (y(0)− αy(ξ), y(1)− βy(η)), 0 < ξ ≤ η < 1, α �= 1

then
V := {u ∈ H

1(0, 1) : Lu = 0}
is such a subspace with

Ω := (0, ξ) ∪ (ξ, η) ∪ (η, 1).

For other examples of operators L defined by multipoint boundary conditions,
we refer the interested reader to [7, 8, 15, 16], and the references in these papers
and those in the other references given above. Of course, homogeneous Dirichlet
and anti periodic boundary conditions (y(0) = −y(1)) yield such examples, as
do the boundary conditions

u(0) = 0,

or
u(0) = 0, u(η) = αu(1), η ∈ (0, 1),

or
αu(η) + βu(µ) = u(1), 0 < η < µ < 1, α,β ≥ 0, α+ β < 1,

whereas classical Neumann and periodic boundary conditions do not (note that
these boundary conditions are natural ones imposed by minimization problems
in H

1(0, 1), respectively in {u ∈ H
1(0, 1) : u(0) = u(1)}).

The norm of H1(0, 1) is given by

�u�2
H1 =

� 1

0
(u�)2dt+

� 1

0
u
2
dt

and it is the case that

�u�2 :=

� 1

0
(u�)2dt

defines an equivalent norm on such subspaces V , i.e., there exists a positive
constant c such that

�u�L2(0,1) ≤ c�u��L2(0,1), ∀u ∈ V.
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To see this, one may use an often employed argument of Nečas [20], and assume
there exists a sequence {un} ⊂ V such that

�un�L2(0,1) ≥ n�u�
n
�L2(0,1), n = 1, 2, · · · . (4)

Then we may assume that �un�L2(0,1) = 1, n = 1, 2, · · · . So {un} is bounded
in H

1(0, 1), hence may assumed to converge weakly to say u. Hence it will
converge strongly to u in L

2(0, 1). So, by (4) u�
n
→ 0 in L

2(0, 1), which implies
that u

� = 0, i.e. u must be piecewise constant, but since u is continuous, it
must be a constant throughout. On the other hand, V is closed and hence,
since u ∈ V, u must equal 0, a contradiction.

Definition 2.1. For given V, as above, we let V
� denote its topological dual

and for h ∈ V
�
, we call u ∈ V a weak solution of the boundary value problem

−u
�� = h, u ∈ V, (5)

provided that � 1

0
u
�
v
�
dt = (h, v), ∀v ∈ V, (6)

where

(·, ·) : V � × V → R

is the pairing between V
� and V.

The above considerations have the following immediate consequence, whose
proof follows from the Lax-Milgram theorem (see [38]) and the fact that V is
a Hilbert space with respect to the inner product

(u, v)V :=

� 1

0
u
�
v
�
dt.

Lemma 2.2. Let V be as above, and let V
� be its topological dual, then for

every h ∈ V
� there exists a unique u ∈ V which is a unique weak solution

of (5). Further

�u� ≤ �h�V � .

Remark 2.3. If h ∈ L
2(0, 1), we may deduce that the weak solution u, given

above, since C
∞
0 (Ω) ⊂ V, must satisfy

u
�� = h, on Ω

in the sense of distributions and thus u is a solution of the differential equation
on Ω, further, since m(Ω) = 1, it follows that u is a solution on (0, 1), as well.
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Let a : [0, 1] → [0,∞) be a continuous nontrivial function, then, via this
lemma, we may define the mapping

T : L2(0, 1) → V ⊂ H
1(0, 1) �→ L

2(0, 1),

by
Th := u,

where u is the unique weak solution of

−u
�� = ah, u ∈ V, (7)

and hence u solves the differential equation (7) on Ω in a classical sense (viz.
C

∞
0 (Ω) ⊂ V ). We note that the last inclusion is compact. Thus,

T : L2(0, 1) → L
2(0, 1),

is compact linear mapping. Thus, we have that

T : C[0, 1] → H
2(0, 1) �→ C

1[0, 1] �→ C[0, 1],

i.e., we may even view T as a compact linear mapping

T : C[0, 1] → C[0, 1],

and we may apply the Riesz theory for compact linear operators to obtain the
spectral properties of this operator. For general multi-point boundary value
problems, the study of the spectrum of the associated integral operator, has
a long history, with notable contributions in [22], and recently in [5]. In fact,
since the problems, in general are not self-adjoint, complex eigenvalues may
exist. In the case at hand, we shall not be concerned with such complications
but rather concentrate on boundary conditions (subspaces V ) which have one
distinguished positive eigenvalue (see below), namely a smallest positive one,
called λ1.

Remark 2.4. Since there exists u ∈ V \ {0}, such that

Tu =
1

λ1
u,

we have that � 1

0
u
�
v
�
dt = λ1

� 1

0
auv dt, ∀v ∈ V

we obtain that (by normalizing)

0 < λ1 = inf
V

�� 1

0
(v�)2dt :

� 1

0
av

2
dt = 1

�
.

In the given generality not much else may be asserted concerning the spectrum
of T. In fact, the first example below shows that the principal eigenvalue may
be of multiplicity 2.
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Example 2.5. a. Let the space V be defined by

V :=

�
u ∈ H

1(0, 1) : u(0) = u(1),

� 1

0
u dt = 0

�
.

Then V is a closed subspace with 0 the only constant function. In the case
that a ≡ 1, the eigenfunctions of the operator T satisfy

� 1

0
u
�
v
�
dt = λ1

� 1

0
uv dt, ∀v ∈ V,

and, since H
1
0 (0, 1) ⊂ V we have that

−u
�� = λ1u,

in the sense of distributions. Integrating the last equality we obtain that (since
u ∈ H

2(0, 1))
u
�(0) = u

�(1),

and so u is an eigenfunction of

−u
�� = λ1u, u(0) = u(1), u

�(0) = u
�(1),

i.e. λ1 = 4π2
, with an associated 2-dimensional eigenspace.

b. Let the space V be defined by

V :=

�
u ∈ H

1(0, 1) :

� 1

0
u dt = 0

�
.

Then, again, V is a closed subspace with 0 the only constant function. With
a ≡ 1, the eigenfunctions of the operator T satisfy

� 1

0
u
�
v
�
dt = λ1

� 1

0
uv dt, ∀v ∈ V,

and, since H
1
0 (0, 1) ⊂ V we have that

−u
�� = λ1u, (8)

in the sense of distributions. Multiplying the equality (8) by v ∈ V and inte-
grating, we obtain that

−u
�(1)v(1) + u

�(0)v(0) +

� 1

0
u
�
v
�
dt = λ1

� 1

0
uv dt,

and hence, choosing v such that v(0) = v(1) �= 0 we obtain

u
�(0) = u

�(1).
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Further, choosing v(0) = 0, v(1) �= 0, we must have u
�(0) = 0. Hence u is an

eigenfunction of the Neumann problem

−u
�� = λ1u, u

�(0) = u
�(1) = 0

i.e. λ1 = π
2
, the second eigenvalue of the Neumann problem with an associated

1-dimensional eigenspace, spanned by u(t) = cosπt.

Both of the above examples, of course, are examples of classical Sturm-
Liouville boundary value problems, where, because of the constraints built
into the space V, the eigenvalue λ1 is actually the second eigenvalue of the
problem (8) with respect to either periodic or Neumann boundary conditions
in the space H

1(0, 1).
Next let us consider the example, related to (1)

−u
��(t) = λa(t)u, 0 < t < 1 (9)

subject to the four-point boundary conditions

u(0) = αu(ξ), u(1) = βu(η), 0 < ξ < η < 1, (10)

where, as above, a : [0, 1] → [0,∞) is a continuous function assuming positive
values.

Proposition 2.6. Assuming that

0 < α,β < 1,

then the principal (weak) eigenvalue of (9), (10) is positive, simple, and has

an associated eigenfunction which is positive in [0,1]. All other eigenvalues are

simple, as well, and eigenfunctions corresponding to different eigenvalues are

orthogonal with respect to the L
2 inner product with weight function a.

Proof. In this case we define

V = {u ∈ H
1(0, 1) : u(0) = αu(ξ), u(1) = βu(η)}.

Then V is a closed subspace of H1(0, 1) with C
∞
0 ((0, ξ) ∪ (ξ, η) ∪ (η, 1)) dense

in V. The principal (weak) eigenvalue is characterized by

0 < λ1 = inf
v∈V

�� 1

0
(v�)2dt :

� 1

0
av

2
dt = 1

�
,

furthermore this infimum is assumed, by, say u ∈ V, and u satisfies

� 1

0
u
�
v
�
dt = λ1

� 1

0
auv dt, ∀v ∈ V.
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Since, for v ∈ V, we have that |v| ∈ V and since

0 < λ1 = inf
v∈V

�� 1

0
|v|�2dt :

� 1

0
a|v|2dt = 1

�
,

we may assume that the eigenfunction u is one signed, say u ≥ 0, which implies,
because of the boundary conditions that u > 0 in [0, 1]. Hence, again because
of the boundary conditions, and, since

−u
�� = λ1au,

u will assume its maximum in the interval [ξ, η]. If v is any other eigenfunction
corresponding to λ1, we may assume v(0) ≥ 0. If v(0) > 0, we may let w(t) =

µv(t), where µ = u(0)
v(0) . Then w is an eigenfunction with

w(0) = u(0)

and hence
z(t) := u(t)− w(t)

is an eigenfunction having zeros at 0 and ξ, which by the Sturm Separation
Theorem [11] implies that u must vanish in (0, ξ). Thus it must be the case
that w(t) ≡ u(t). If, on the other hand, v(0) = 0, then v(ξ) = 0, then we again
obtain a contradiction by use of the Sturm Separation Theorem.

Next, let ui and uj be eigenfunctions corresponding to the eigenvalues λi

and λj , i �= j. Then

� 1

0
u
�
l
v
�
dt = λl

� 1

0
aul v dt, ∀v ∈ V, l = i, j

and hence � 1

0
u
�
i
u
�
j
dt = λi

� 1

0
auiujdt = λj

� 1

0
auiujdt,

thus

(λj − λi)

� 1

0
auiujdt = 0.

3. Bifurcating continua

We shall assume that

a : [0, 1] → [0,∞), f : R → R, f : (0,∞) → (0,∞)
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are continuous functions such that a is nontrivial. V ⊂ H
1(0, 1) is a subspace

with the property that the only constant function in V is the zero function and
that the smallest positive eigenvalue λ1 of

−u
��(t) = λa(t)u, 0 < t < 1, u ∈ V (11)

is simple and has an associated eigenfunction which is positive in (0, 1). This
assumption holds, for example (among others), in the cases of the boundary
conditions imposed in the various papers cited and related work (cf. for example
Proposition 2.6).

We now consider the nonlinear problem (1). This problem we shall embed
into the problem

−y
��(t) = µa(t)f(y(t)), 0 < t < 1, y ∈ V. (12)

We shall prove that, under assumptions on f, spelled out below, a continuum of
positive solutions (in the space R×C[0, 1]) exists which crosses the hyperplane
{1}× C[0, 1] and thus conclude that the problem

−y
��(t) = a(t)f(y(t)), 0 < t < 1, y ∈ V, (13)

has a nontrivial solution. To this end, let

f0 = lim
u→0

f(u)

u
, f∞ = lim

u→∞

f(u)

u
. (14)

We have the following theorem.

Theorem 3.1. Let V be as above and assume that the limits in (14) exist and

satisfy

0 < f0 < λ1 < f∞ (15)

or

0 < f∞ < λ1 < f0. (16)

Then the boundary value problem (13) has a solution y which is positive in

(0, 1).

Proof. We consider the problem (12) and apply the global bifurcation theorem
of Krasnosels’kii-Rabinowitz, see [30, 32], which guarantees the existence of an
unbounded continuum C := {(µ, y)} ⊂ R × C[0, 1] with the solution compo-
nent y such that y(t) > 0, t ∈ (0, 1), which bifurcates from the trivial solution
at the bifurcation point (µf0, 0) = (λ1, 0) (while the application of the global
bifurcation theorem also allows for the alternative that the continuum might
bifurcate from another eigenvalue, this alternative may be quickly ruled out
by refering to Proposition 2.6). One may further show (using arguments as
in [26, 27]) that the continuum C is bounded in the µ− direction and hence
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must become unbounded in some bounded µ−interval, i.e., it will bifurcate
from infinity in that interval. Using results about bifurcation from infinity as
in [31, 34, 35, 37], we deduce that bifurcation from infinity will take place at
µf∞ = λ1. Therefore the continuum C, projected onto the µ−axis = R will in-
clude the open interval determined by the values λ1

f0
and λ1

f∞
. This open interval

will contain the value µ = 1, if either (15) or (16) hold.

The above result and its proof may be extended to the following:

Theorem 3.2. Under the same assumptions on the subspace V , assume that

0 = f0 < λ1 < f∞ (17)

or

0 = f∞ < λ1 < f0. (18)

Then the boundary value problem (13) has a solution y which is positive in

(0, 1).

Proof. In the case of (17) there will be no bifurcation from the trivial solution,
however, bifurcation from infinity will take place at µ = λ1

f∞
with the corre-

sponding continuum existing for all values of µ >
λ1
f∞

, and hence (13) will have a

positive solution, whereas in the case (18), bifurcation from the trivial solution
occurs at µ = λ1

f0
, with the continuum existing for all values µ >

λ1
f0
.

Global bifurcation theory may also be applied at simple eigenvalues λj > λ1,

and various results may be formulated using the ideas used above; here it
will be important again that bifurcating continua are global, which will follow
from nodal properties of solutions inherited by the nodal properties of the
eigenfunctions of the associated linearized problems.

4. Concluding Remarks

Remark 4.1. The methods developed in [26, 27, 28] may be employed to study
various multi-point and nonlocal boundary value problems involving nonlinear
terms f different from those considered above, as long as solution branches of
positive solutions may be found which exist globally and can be shown to cross
the appropriate parameter hyperplane. To this end we refer to [40, 41], where
fixed point techniques have been used.

Remark 4.2. If we replace, in (2), one of boundary conditions by, say, the
following

y(0) = αy(ξ) + b (19)

one obtains a problem from a class of problems studied in [43]. Here one may
view b as a parameter and then employ homotopy continuation techniques,
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as done in [10], to obtain parameter intervals for the parameter b, for which
solutions may be shown to exist.

Remark 4.3. The interested reader might wish to revisit the example (1), i.e.

y
��(t) + a(t)f(y(t)) = 0, 0 < t < 1

subject to the three-point boundary conditions

y(0) = αy

�
1

2

�
, y(1) = βy

�
1

2

�

in case a ≡ 1 and do the necessary computations to find that if |α+β| < 2, then
positive real eigenvalues exist having the properties required above, whereas if
α+ β = 2, the problem is in fact in resonance (c.f. also [22], where it has been
shown that only if α + β �= 2, a Green’s function may be computed) and if
|α + β| > 2, no real eigenvalues exist. In the case that real eigenvalues exist,
the principal eigenvalue λ1 is given by

λ1 = 4µ2
1,

where µ1 is the smallest positive solution of

cosµ =
α+ β

2
.

Another interesting example is obtained for the same nonlinear differential
equation which is subject to boundary conditions such as

u(0) =

� 1
2

0
u(s)ds

(see also [41], where similar boundary conditions are considered).

Remark 4.4. For problems at resonance, such as the example in the previous
remark, when α+ β = 2, continuation arguments based on Mawhin’s continu-
ation theorem, as was done in [29], may be used to establish existence criteria
for such multi-point boundary value problems.

Remark 4.5. A useful tool to study boundary value problems for nonlinear
elliptic equations has been the method of sub-supersolutions. In this regard we
refer to [19], where such a theory has been developed for general variational
inequalities, and hence may be applied to multi-point and nonlocal boundary
value problems of the types discussed here. These methods not only apply for
semilinear but nonlinear problems, as well. Here also the variational eigenvalue
theory as presented in [17] may be useful.
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Remark 4.6. In the case of multi-point or nonlocal boundary value problems
for elliptic partial differential equations, these problems may be formulated as
variational inequalities (actually equalities, since V is a subspace). Problems
involving nonlinear terms f, as above, may then be analyzed using bifurcation
techniques as presented in [18].

Remark 4.7. If it is the case that either of the the limits (3) does not exist,
but the quotients lie asymptotically in certain non overlapping intervals, ideas,
as developed in [36], may be used to develop analogous existence results for
such nondifferentiable nonlinear problems.
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Abstract. For every f ∈ LN (Ω) defined in an open bounded subset
Ω of RN , we prove that a solution u ∈ W 1,1

0 (Ω) of the 1-Laplacian
equation − div

� ∇u
|∇u|

�
= f in Ω satisfies ∇u = 0 on a set of positive

Lebesgue measure. The same property holds if f �∈ LN (Ω) has small
norm in the Marcinkiewicz space of weak-LN functions or if u is a
BV minimizer of the associated energy functional. The proofs rely on
Stampacchia’s truncation method.

Keywords: 1-Laplacian, degenerate elliptic equations, nonlinear elliptic equation,
nonexistence of solution.
MS Classification 2010: 35J70, 35J25, 35J62, 35J92.

1. Introduction

Let Ω ⊂ RN be a smooth bounded open subset. Given a convex function
Φ : RN → R and f ∈ L1(Ω), consider the energy functional

EΦ(u) =

�

Ω

Φ(∇u)−
�

Ω

fu,

defined on some class of functions u : Ω → R for which the integrands are
summable. Although Φ need not be smooth, one can express the Euler–
Lagrange equation of EΦ using the subdifferential of Φ. Indeed, by convexity
of Φ, at each point x ∈ RN there exists a subgradient ξ ∈ RN such that

Φ(y) ≥ Φ(x) + ξ · (y − x),

for every y ∈ RN ; see [18, Chapter 2]. Denoting the collection of all subgradi-
ents ξ at x by ∂Φ(x), one can then write the Euler–Lagrange equation of EΦ

at some function u as (see [12, Chapter IV] and [22])

− divZ = f in the sense of distributions in Ω, (1)
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where Z is a summable function with values in RN such that

Z ∈ ∂Φ(∇u) almost everywhere in Ω. (2)

For example, if Φp(x) = |x|p/p for some exponent p > 1, then Φp is differ-
entiable pointwise. Thus, ∂Φp(x) = {|x|p−2x}, and one recovers an equation
involving the p-Laplace operator:

−∆pu = − div (|∇u|p−2∇u) = f.

When p = 1, the function Φ1 is not differentiable at 0, and one should be careful
about the meaning of the quotient ∇u/|∇u| that appears in the formal notation
of the 1-Laplacian. The correct interpretation is based on the formalism of
subdifferentials above. Indeed, for Φ1(x) = |x|, one has

∂Φ1(x) =

�
B1(0) if x = 0,

{x/|x|} if x �= 0,
(3)

where B1(0) denotes the unit open ball in RN .
The vector field Z in the Euler–Lagrange equation now satisfies the condi-

tions:
|Z| ≤ 1 and Z|∇u| = ∇u

almost everywhere in Ω. Observe that, in dimension 1, equation (3) provides
one with the maximal monotone graph associated to the sign function.

Assuming that f ∈ LN (Ω), the functional EΦ1 associated to Φ1 is well-
defined in W 1,1

0 (Ω), and the Euler–Lagrange equation (1)–(2) is indeed satisfied
by a minimizer. The goal of this paper is to show that one cannot abandon the
vector field Z and replace it by the quotient ∇u/|∇u| since the gradient ∇u
must vanish on a set of positive Lebesgue measure.

Every function u ∈ W 1,1(Ω) such that ∇u �= 0 a.e. in Ω has a legitimate
1-Laplacian ∆1u defined in the sense of distributions as

�∆1u,ϕ� := −
�

Ω

∇u

|∇u| ·∇ϕ,

for every test function ϕ ∈ C∞
c (Ω) with compact support in Ω, but even

for smooth functions u something strange happens near an interior extremum
point:

Example 1.1. For every N ≥ 1, let u : B1(0) → R be the function defined by
u(x) = 1− |x|2. In the sense of distributions we have, for N = 1,

−∆1u = 2δ0,

while for N ≥ 2,

−∆1u =
N − 1

|x| .
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In the previous example, the topological singularity of the vector field
−x/|x| is detected by its divergence, and the 1-Laplacian does not belong to
LN (Ω). We show that this is a general fact that holds for Sobolev functions,
not necessarily smooth:

Theorem 1.2. There exists no function u ∈ W 1,1
0 (Ω) such that ∇u �= 0

a.e. in Ω and
∆1u ∈ LN (Ω).

In Example 1.1 above for N ≥ 2, one sees that the right-hand side belongs
to the Marcinkiewicz space MN (Ω) of weak-LN functions f in Ω equipped with
the seminorm

�f�MN (Ω) = sup
A⊂Ω

1

|A|
N−1
N

�

A
|f |,

where |A| denotes the Lebesgue measure of A and the supremum is computed
with respect to every Borel subset of Ω. In the case of the example, the function
f = (N − 1)/|x| satisfies

�f�MN (B(0;1)) = Nω1/N
N , (4)

where ωN denotes the volume of the unit ball in RN .
A variant of the proof of Theorem 1.2 based on Peetre–Alvino’s imbedding

of W 1,1(RN ) in the Lorentz space L
N

N−1 ,1(RN ) shows that this quantity (4) is
critical for the existence of flat levels of solutions involving the 1-Laplacian:

Theorem 1.3. Let N ≥ 2. There exists no function u ∈ W 1,1
0 (Ω) such that

∇u �= 0 a.e. in Ω,

∆1u ∈ MN (Ω) and �∆1u�MN (Ω) < Nω1/N
N .

Theorems 1.2 and 1.3 are related to the degenerate limit behavior of solu-
tions of the p-Laplacian equation as p tends to 1 that has been studied by several
authors; see e.g. [9, 20, 21], starting with the pioneering work of Kawohl [15],
and also clarify the need for relying on the vector field Z in replacement of
∇u/|∇u|.

Example 1.4. For any 0 < r < 1, let u : B1(0) → R be the function defined
by

u(x) =

�
1− |x|2 if |x| ≥ r,

1− r2 if |x| < r.

Then, u ∈ W 1,1
0 (B1(0)). If Z : B1(0) → B1(0) is any smooth extension of the

function
x ∈ B1(0) \Br(0) �−→ − x

|x| ∈ RN ,
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then u and Z satisfy the Euler–Lagrange equation (1)–(2) for some function
f ∈ L∞(B1(0)).

Observe that the Sobolev space W 1,1
0 (Ω) is not the natural setting for look-

ing for minimizers of EΦ1 , due to the lack of reflexivity of L1(Ω;RN ). This is
in contrast to minimization problems in W 1,p(Ω) for 1 < p < +∞ which can
be investigated using techniques based on the uniform convexity of the space;
see [11].

Let us assume that EΦ1 is bounded from below for some given f ∈ LN (Ω).
This is the case for example if the norm �f�LN (Ω) is small, depending on
the Sobolev constant; see e.g. [16]. One can now take a minimizing sequence
(un)n∈N in W 1,1

0 (Ω) such that

lim
n→∞

EΦ1(un) = inf
W 1,1

0 (Ω)
EΦ1 .

Each function un, extended by zero to RN , is an element ofW 1,1(RN ). Since the
sequence (∇un)n∈N is bounded in L1(RN ;RN ), we can extract a subsequence
(∇unk)k∈N converging weakly to some finite vector-valued measure in RN sup-
ported in Ω. Applying the Rellich–Kondrashov compactness theorem, we de-
duce that there exists u ∈ BV (RN ) such that u = 0 in RN \ Ω, and

lim
k→∞

EΦ1(unk) ≥
�

RN

|Du|−
�

Ω
fu.

The limit function u is a minimizer of the extended functional

EΦ1(v) :=

�

RN

|Dv|−
�

Ω
fv, (5)

over the class of functions v ∈ BV (RN ) such that v = 0 in RN \ Ω. Such a
functional provides a relaxed formulation of the minimization problem for which
a solution exists; see [14]. In the spirit of Theorems 1.2 and 1.3, minimizers
of (5) must have flat level sets:

Theorem 1.5. Let f ∈ LN (Ω) and let u ∈ BV (RN ) with u = 0 in RN \Ω be a
minimizer of the extended functional EΦ1 . Then, u ∈ L∞(RN ) and the set of
extremal points �

x ∈ RN : |u(x)| = �u�L∞(RN )

�

has positive Lebesgue measure.

We deduce in this case that the absolute continuous partDau of the measure
Du vanishes a.e. on a set of positive measure since Dau = 0 a.e. on level sets
{u = α} for every α ∈ R [4, Proposition 3.73]. The counterpart of Theorem 1.5

involving the condition �f�MN (Ω) < Nω1/N
N is true but uninteresting since EΦ1
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is nonnegative and 0 is the unique minimizer. This follows from a standard
application of Alvino’s version of the Sobolev inequality in Lorentz spaces.

Renormalized solutions to equations involving the 1-Laplacian have been
introduced in the spirit of the relaxed minimization problem above, but in
general such solutions merely have bounded variation or do not satisfy the
homogeneous Dirichlet boundary condition [1, 5, 6, 8, 10, 19].

Example 1.6 (Remark 3.10 in [19]). For every N < r ≤ R, the function
u = (1−N/r)χBr(0) is a renormalized solution of the Dirichlet problem

�
−∆1v = h− v in BR(0),

v = 0 on ∂BR(0),

with bounded datum h = χBr(0). Note that if r < R then ur is a BV function
with compact support in BR(0), while if r = R then ur is a W 1,1 function
which does not vanish on the boundary.

In the next section, we prove Theorems 1.2, 1.3 and 1.5. This paper is a
revised and extended version of a note written by the authors in 2012 that was
only available at the arxiv.org website.

2. Proofs of the main results

Proof of Theorem 1.2. Assume by contradiction that there exists a function
u ∈ W 1,1

0 (Ω) such that ∇u �= 0 almost everywhere in Ω and f := ∆1u ∈ LN (Ω).
Then, �

Ω

∇u

|∇u| ·∇ϕ =

�

Ω

fϕ,

for every ϕ ∈ C∞
c (Ω). Note that ∇u/|∇u| ∈ L∞(Ω) and u ∈ L

N
N−1 (Ω) by the

Gagliardo-Nirenberg-Sobolev imbedding. By density of C∞
c (Ω) in W 1,1

0 (Ω) we
deduce that �

Ω

∇u

|∇u| ·∇v =

�

Ω

fv, (6)

for every v ∈ W 1,1
0 (Ω).

We proceed using Stampacchia’s truncation method. For this purpose, for
every κ > 0 let Gκ : R → R be the function defined by

Gκ(t) =






t+ κ if t < −κ,

0 if −κ ≤ t ≤ κ,

t− κ if t > κ.

(7)
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Since u ∈ W 1,1
0 (Ω), we have Gκ(u) ∈ W 1,1

0 (Ω). Hence,

∇u

|∇u| ·∇Gκ(u) = G�
κ(u)|∇u| = |∇Gκ(u)|.

Applying identity (6) with test function Gκ(u), we get
�

Ω

|∇Gκ(u)| =
�

Ω

fGκ(u).

Since Gκ vanishes on the interval [−κ,κ], by the Hölder inequality we have
�

Ω

fGκ(u) =

�

{|u|>κ}

fGκ(u) ≤ �f�LN ({|u|>κ})�Gκ(u)�
L

N
N−1 (Ω)

.

Thus, �

Ω

|∇Gκ(u)| ≤ �f�LN ({|u|>κ})�Gκ(u)�
L

N
N−1 (Ω)

.

By the Gagliardo-Nirenberg-Sobolev inequality,

�Gκ(u)�
L

N
N−1 (Ω)

≤ C

�

Ω

|∇Gκ(u)|,

for some constant C > 0 depending only on the dimension N . Hence,
�
1− C�f�LN ({|u|>κ})

�
�Gκ(u)�

L
N

N−1 (Ω)
≤ 0. (8)

Let T := �u�L∞(Ω) if u is essentially bounded, or T := +∞ otherwise. We
have

lim
κ�T

�f�LN ({|u|>κ}) = �f�LN ({|u|=T}).

We observe that the set {|u| = T} has zero Lebesgue measure. This is indeed
the case when T = +∞ since u is finite a.e. When T < +∞, we observe that
∇u = 0 a.e. on the level set {|u| = T}; since by assumption ∇u �= 0 a.e. in Ω,
the set {u = T} must have zero Lebesgue measure. This implies that

lim
κ�T

�f�LN ({|u|>κ}) = �f�LN ({|u|=T}) = 0.

In particular, there exists 0 < κ < T such that C�f�LN ({|u|>κ}) < 1. We
deduce from (8) that

�Gκ(u)�
L

N
N−1 (Ω)

≤ 0.

Therefore, |u| ≤ κ a.e. in Ω. Hence, T = �u�L∞(Ω) ≤ κ, and this contradicts
the choice of κ. The proof of the theorem is complete.
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To prove Theorem 1.3, we rely on Peetre’s imbedding of Sobolev functions
in Lorentz spaces, with the best constant computed by Alvino. We recall that
the Lorentz space Lp,1(RN ) for 1 ≤ p < ∞ can be defined as the vector space
of measurable functions g in RN such that

�g�Lp,1(RN ) :=

� ∞

0
|{|g| > t}|1/p dt < +∞.

Using an equivalent definition to this one, Lorentz [17] established the duality

between Lp,1(RN ) and M
p

p−1 (RN ) for p > 1 by proving an estimate which
amounts to �

Rd

|fg| ≤ �f�
M

p
p−1 (RN )

�g�Lp,1(RN ),

for every g ∈ Lp,1(RN ) and f ∈ M
p

p−1 (RN ), where

�f�
M

p
p−1 (RN )

:= sup
A⊂Ω

1

|A|
1
p

�

A
|f | ;

see [17, Theorem 5] and the computation of the Lorentz norm in [7, Section 2].

Here one should not rely on the quasi-norm supt>0

�
t |{|f | > t}|

p−1
p
�
, which

gives a quantity that is only equivalent to �f�
M

p
p−1 (RN )

.

Peetre [23] proved by interpolation that W 1,1(RN ) ⊂ L
N

N−1 ,1(RN ) and
Alvino [2] later showed using rearrangements that the inequality

�v�
L

N
N−1 ,1

(RN )
≤ γ1�∇v�L1(RN )

holds with the best constant given by γ1 := 1/(Nω1/N
N ).

Proof of Theorem 1.3. Proceeding as in the previous proof, by the duality be-

tween L
N

N−1 ,1 and MN one gets
�

RN

|∇Gκ(u)| =
�

Ω
fGκ(u) ≤ �f�MN (RN )�Gκ(u)�

L
N

N−1 ,1
(RN )

,

where the functions f and u have been extended by zero to RN ; this does not
change their seminorms. Using Alvino’s improvement of the Sobolev inequality
with v = Gκ(u), it follows that

�
1− γ1�f�MN (RN )

�
�Gκ(u)�

L
N

N−1 ,1
(RN )

≤ 0.

Under the assumption of the theorem we have �f�MN (RN ) < 1/γ1, hence the
quantity in parenthesis is positive. We deduce that �Gκ(u)�

L
N

N−1 ,1
(RN )

= 0 for

every κ > 0, and then u = 0 a.e. in Ω, but this is not possible.
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The proof of Theorem 1.5 relies on a property of BV function related to the
chain rule. For this purpose, given κ > 0 denote by Tκ : R → R the truncation
function at levels ±κ:

Tκ(t) =






−κ if t < −κ,

t if −κ ≤ t ≤ κ,

κ if t > κ.

Observe that, for every t ∈ R,

t = Tκ(t) +Gκ(t), (9)

where Gκ is the function defined by (7). Since Tκ and Gκ are Lipschitz con-
tinuous, it is straightforward to verify using an approximation argument that
Tκ(u) and Gκ(u) both belong to BV (RN ) for every u ∈ BV (RN ). In addition,
by the identity above we have

Du = D(Tκ(u)) +D(Gκ(u)).

One then verifies that
�

RN

|Du| =
�

RN

|D(Tκ(u))|+
�

RN

|D(Gκ(u))|, (10)

where, for a given vector-valued measure µ,
�

RN

|µ| = sup

��

RN

Φ · µ : Φ ∈ C∞
c (RN ;RN ) and |Φ| ≤ 1 in RN

�
.

Indeed, the inequality ≤ in (10) follows from the triangle inequality in RN .
The reverse inequality ≥ can be deduced from Vol’pert’s chain rule for BV
functions [3]. A more elementary approach is based on an approximation of u
using the sequence of smooth functions (ρn∗u)n∈N, where (ρn)n∈N is a sequence
of mollifiers in C∞

c (RN ). In this case, one observes that
�

RN

|D(ρn ∗ u)| →
�

RN

|Du|

as n → ∞; see [13, Theorem 5.3]. On the other hand, there exist a subsequence
(ρnj ∗ u)j∈N and finite positive measures σ1 and σ2 such that

|D(Tκ(ρnj ∗ u))|
∗
� σ1 in M(RN ;RN ),

|D(Gκ(ρnj ∗ u))|
∗
� σ2 in M(RN ;RN ),

as j → ∞, where σ1 ≥ |D(Tκ(u))| and σ2 ≥ |D(Gκ(u))|. This implies the
reverse inequality in (10).
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Proof of Theorem 1.5. Since u minimizes EΦ1 , and Tκ(u) is also an admissible
function in the minimization class, we have

EΦ1(u) ≤ EΦ1(Tκ(u)).

Thus, �

RN

�
|Du|− |D(Tκ(u))|

�
≤

�

RN

f(u− Tκ(u)).

We deduce from (10) and (9) that
�

RN

|D(Gκ(u))| ≤
�

RN

fGκ(u).

We can now pursue the strategy of the proof of Theorem 1.2 to get the conclu-
sion. Indeed, the Sobolev and Hölder inequalities imply that

�
1− C�f�LN ({|u|>κ})

�
�Gκ(u)�

L
N

N−1 (Ω)
≤ 0.

For every 0 < κ < �u�L∞(RN ), where we do not exclude the possibility that
�u�L∞(RN ) = +∞, we have �Gκ(u)�

L
N

N−1 (Ω)
> 0. Thus,

�f�LN ({|u|>κ}) ≥
1

C
.

Since u is finite a.e., this inequality cannot hold for every κ > 0. Therefore,
we must have �u�L∞(RN ) < ∞ and so u is essentially bounded. Letting κ →
�u�L∞(RN ), we deduce that {|u| > κ} has positive measure.
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Université catholique de Louvain

Institut de Recherche en Mathématique et Physique
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Positive and nodal single-layered
solutions to supercritical elliptic
problems above the higher critical

exponents
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Abstract. We study the problem

−∆v + λv = |v|p−2
v in Ω, v = 0 on ∂Ω,

for λ ∈ R and supercritical exponents p, in domains of the form

Ω := {(y, z) ∈ RN−m−1 × Rm+1 : (y, |z|) ∈ Θ},

where m ≥ 1, N − m ≥ 3, and Θ is a bounded domain in RN−m

whose closure is contained in RN−m−1 × (0,∞). Under some symme-
try assumptions on Θ, we show that this problem has infinitely many
solutions for every λ in an interval which contains [0,∞) and p > 2
up to some number which is larger than the (m+1)st critical exponent

2∗N,m := 2(N−m)
N−m−2 . We also exhibit domains with a shrinking hole, in

which there are a positive and a nodal solution which concentrate on
a sphere, developing a single layer that blows up at an m-dimensional
sphere contained in the boundary of Ω, as the hole shrinks and p → 2∗N,m
from above. The limit profile of the positive solution, in the transversal
direction to the sphere of concentration, is a rescaling of the standard
bubble, whereas that of the nodal solution is a rescaling of a nonradial
sign-changing solution to the problem

−∆u = |u|2
∗
n−2

u, u ∈ D
1,2(Rn),

where 2∗n := 2n
n−2 is the critical exponent in dimension n.

Keywords: Supercritical elliptic problem, positive solutions, nodal solutions, blow up,
higher critical exponents.
MS Classification 2010: 35J61, 35B33, 35B44.
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1. Introduction

We study the existence and concentration behavior of solutions to the problem

�
−∆v + λv = |v|p−2

v in Ω,

v = 0 on ∂Ω,
(℘p)

where Ω is a bounded domain in RN , λ ∈ R, and p is supercritical, i.e., it
is larger than the critical Sobolev exponent 2∗N := 2N

N−2 for N ≥ 3. We shall
consider domains of the form

Ω := {(y, z) ∈ RN−m−1 × Rm+1 : (y, |z|) ∈ Θ}, (1)

where m ≥ 1, N −m ≥ 3, and Θ is a bounded domain in RN−m whose closure
is contained in RN−m−1 × (0,∞).

In domains of this type, the true critical exponent is 2∗N,m := 2(N−m)
N−m−2 , which

is the critical Sobolev exponent in the dimension of Θ and is larger than 2∗N .

Indeed, one can easily verify that the solutions to the problem (℘p) which are
radial in the variable z, correspond to the solutions of the problem

�
− div(f(x)u) + λf(x)u = f(x) |u|p−2

u in Θ,

u = 0 on ∂Θ,
(2)

where f(x1, ..., xN−m) = xm
N−m. Standard variational methods show that this

last problem has infinitely many solutions for p ∈ (2, 2∗N−m), hence, also does
the problem (℘p). On the other hand, Passaseo showed in [18, 19] that, if λ = 0
and Θ is a ball centered on the half-line {0} × (0,∞), then the problem (℘p)
does not have a nontrivial solution for p ≥ 2∗N−m = 2∗N,m. The number 2∗N,m

has been called the (m+ 1)st critical exponent in dimension N.

The concentration behavior of solutions to the problem (℘p) for λ = 0 and
p ∈ (2, 2∗N,m), as p → 2∗N,m from below, has been investigated in several papers.
In [10], del Pino, Musso and Pacard exhibited positive solutions which concen-
trate and blow up at a nondegenerate closed geodesic in ∂Ω, as p approaches
the second critical exponent 2∗N,1 from below. For any m ≥ 1, positive and sign-
changing solutions in domains of the form (1) were constructed in [1, 13]. These
solutions concentrate and blow up at one or several m-dimensional spheres, as
p → 2∗N,m from below. In all of these cases the limit profile of the solutions, in
the transversal direction to each sphere of concentration, is a sum of rescalings
of ±U , where

U(x) := [n(n− 2)](n−2)/4

�
1

1 + |x|2

�(n−2)/2
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is the standard bubble in dimension n := N − m, which is the only positive
solution to the limit problem

−∆u = |u|2
∗
n−2

u, u ∈ D
1,2(Rn), (3)

up to translation and dilation.
It was recently shown in [4] that there exist nonradial sign-changing solu-

tions to the problem (3), that do not resemble a sum of rescaled positive and
negative standard bubbles, which occur as limit profiles for concentration of
sign-changing solutions to the problem (℘p) that blow up at a single point, as
p → 2∗N from below. For the higher critical exponents 2∗N,m with m ≥ 1, it was
shown in [5] that for every λ in some interval which contains [0,∞) there are
sign-changing solutions to the problem (℘p), in domains of the form (1), which
concentrate and blow up at an m-dimensional sphere, as p → 2∗N,m from below,
whose limit profile in the transversal direction to the sphere of concentration
is a nonradial sign-changing solution to (3), like those found in [4].

The study of concentration phenomena for p approaching 2∗N from above, is
a much more delicate issue, beginning with the fact that solutions to (℘p) for
p > 2∗N do not always exist. For λ = 0, standard bubbles were used as basic
cells in [8, 9, 16, 20] to construct positive solutions to the slightly supercritical
problem (℘p) with p = 2∗N + ε, for small enough ε > 0, in domains with a
hole, using the Lyapunov-Schmidt reduction method. These solutions blow
up, as ε → 0, and their limit profile at each blow-up point is a rescaling of
the standard bubble. Solutions in some contractible domains were constructed
in [14, 15].

Quite recently, sign-changing solutions to the slightly supercritical problem
(℘p) with p = 2∗N + ε, ε > 0, were exhibited by Musso and Wei [17] in domains
with a small fixed hole, and by Clapp and Pacella [6] in domains with a shrink-
ing hole. The solutions obtained in [17] concentrate at two different points in
the domain, as ε → 0, and their limit profile at each of them is a rescaling of
one of the sign-changing solutions to the limit problem (3) in RN constructed
by del Pino, Musso, Pacard and Pistoia in [11], which resemble a large number
of negative bubbles, placed evenly along a circle, surrounding a positive bubble,
placed at its center. On the other hand, the sign-changing solutions exhibited
in [6] concentrate at a single point in the interior of the shrinking hole, as the
hole shrinks and ε → 0, and their limit profile is a rescaling of a nonradial
sign-changing solution to (3) like those found in [4].

For m ≥ 1, the existence of solutions for p = 2∗N,m + ε and their concen-
tration behavior seems to be, so far, an open question; see Problem 4 in [7]. In
this paper we will show that, under some symmetry assumptions, the problem
(℘p) has infinitely many solutions in domains of the form (1) for p > 2∗N,m,
up to some value which depends on the symmetries; see Theorem 2.3. We will
also exhibit domains with a shrinking hole, in which there are positive and
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sign-changing solutions which concentrate and blow up at an m-dimensional
sphere contained in the boundary of Ω, as the hole shrinks and p → 2∗N,m from
above. The limit profile of the positive solutions, in the direction transversal to
the sphere of concentration, will be a rescaling of the standard bubble, whereas
that of the sign-changing ones will resemble one of the solutions to (3) that
were found in [4].

We give, next, some examples of our results. For n := N −m, let B be an
n-dimensional ball of radius δ0, centered on the half-line {0} × (0,∞), whose
closure is contained in the half-space Rn−1 × (0,∞). We write the points in
Rn−1 × (0,∞) as (y, t) with y ∈ Rn−1, t ∈ (0,∞) and we set

Bδ := {(y, t) ∈ B : |y| > δ} if δ ∈ (0, δ0), B0 := B,

Ωδ := {(y, z) ∈ Rn−1 × Rm+1 : (y, |z|) ∈ Bδ}, Ω := Ω0.

We denote by O(k) the group of all linear isometries of Rk and, for v ∈
D1,2(RN ), we write

�v� :=

��

RN

|∇v|2
�1/2

.

The following results establish the existence of positive and sign-changing so-
lutions to the problem (℘p) in Ωδ and describe their limit profile as δ → 0 and
p → 2∗N,m from above. They are special cases of Theorems 2.3 and 4.4, which
apply to more general domains, and are stated and proved in Sections 2 and 4,
respectively.

Theorem 1.1. There exists λ∗ ≤ 0 such that, for each λ ∈ (λ∗,∞) ∪ {0},
δ ∈ (0, δ0) and p ∈ (2,∞), the problem (℘p) has a positive solution vδ,p in Ωδ

which satisfies

vδ,p(γy, �z) = vδ,p(y, z) ∀γ ∈ O(n− 1), � ∈ O(m+ 1), (y, z) ∈ Ωδ,

and has minimal energy among all nontrivial solutions to (℘p) in Ωδ with these
symmetries.

Moreover, there exist sequences (δk) in (0, δ0), (pk) in (2∗N,m,∞), (εk) in
(0,∞) and (ζk) in B ∩ [{0}× (0,∞)] such that

(i) δk → 0, pk → 2∗N,m, ε
−1
k dist(ζk, ∂Θ) → ∞, and ζk → ζ with

dist(ζ,Rn−1 × {0}) = dist(B,Rn−1 × {0}),

(ii) limk→∞

���vδk,pk − �Uεk,ζk

��� = 0, where

�Uεk,ζk(y, z) := ε
(2−n)/2
k U

�
(y, |z|)− ζk

εk

�

and U is the standard bubble in dimension n.
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The number λ∗ is negative if m ≥ 2.

The solutions given by the previous theorem concentrate on an m-dimen-
sional sphere, developing a positive layer which blows up at an m-dimensional
sphere contained in the boundary of Ω and located at minimal distance to
the plane of rotation Rn−1 × {0}. The asymptotic profile of each layer in the
transversal direction to its sphere of concentration is a rescaling of the standard
bubble.

The next theorem gives sign-changing solutions to the problem (℘p) with a
different type of asymptotic profile. For n ≥ 5, we write Rn−1 ≡ C2 × Rn−5,
and the points in Rn−1 as y = (η, ξ), with η = (η1, η2) ∈ C2, ξ ∈ Rn−5.

Theorem 1.2. Assume that n = 5 or n ≥ 7. Then, there exists λ∗ ≤ 0 such
that, for each λ ∈ (λ∗,∞) ∪ {0}, δ ∈ (0, δ0) and p ∈ (2, 2∗N,m+1), the problem
(℘p) has a nontrivial sign-changing solution wδ,p in Ωδ which satisfies

wδ,p(η, ξ, z) = wδ,p(e
iϑ
η,αξ, �z), wδ,p(η1, η2, ξ, z) = −wδ,p(−η̄2, η̄1, ξ, z),

for every ϑ ∈ [0,π), α ∈ O(n − 5), � ∈ O(m + 1) and (y, z) ∈ Ωδ, and which
has minimal energy among all nontrivial solutions to (℘p) in Ωδ with these
symmetry properties.

Moreover, there exist sequences (δk) in (0, δ0), (pk) in (2∗N,m, 2∗N,m+1), (εk)
in (0,∞) and (ζk) in B∩[{0}× (0,∞)] , and a nontrivial sign-changing solution
W to the limit problem (3), such that

(i) δk → 0, pk → 2∗N,m, ε
−1
k dist(ζk, ∂Θ) → ∞, and ζk → ζ with

dist(ζ,Rn−1 × {0}) = dist(B,Rn−1 × {0}),

(ii) W (η, ξ, t) = W (eiϑη,αξ, t) and W (η1, η2, ξ, t) = −W (−η̄2, η̄1, ξ, t) for
every ϑ ∈ [0,π), α ∈ O(n − 5) and (y, t) ∈ Rn−1 × R ≡ Rn, and W has
minimal energy among all nontrivial solutions to (3) with these symmetry
properties,

(iii) limk→∞

���wδk,pk − �Wεk,ζk

��� = 0, where

�Wεk,ζk(y, z) := ε
(2−n)/2
k W

�
(y, |z|)− ζk

εk

�
.

The number λ∗ is negative if m ≥ 2.

The solutions given by the previous theorem concentrate on an m-dimen-
sional sphere, developing a sign-changing layer which blows up at an m-dimen-
sional sphere contained in the boundary of Ω and located at minimal distance
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to the plane of rotation Rn−1×{0}. The asymptotic profile of each layer in the
transversal direction to its sphere of concentration is a rescaling of a nonradial
sign-changing solution to the limit problem (3), like those found in [4].

As we mentioned before, the solutions to the anisotropic problem (2) give
rise to solutions of the problem (℘p) in domains of the form (1). In Section 2
we will study a general anisotropic problem in an n-dimensional domain Θ. We
will assume that Θ has some symmetries and we will establish the existence of
infinitely many positive and sign-changing solutions to the anisotropic problem
for supercritical exponents p > 2∗n, up to some value which depends on the
symmetries. These results extend those obtained in [6] for the problem with
constant coefficients. In Section 3 we will describe the behavior of the min-
imizing sequences for the variational functional associated to the anisotropic
problem for p = 2∗n. These sequences, either converge to a solution, or they
blow up. We will provide information on the location of the blow-up points
and on the symmetries of the solutions to the limit problem (3) which occur
as limit profiles. This will be used in Section 4 to obtain information on the
concentration behavior and the limit profile of positive and sign-changing solu-
tions to the problem (℘p) in domains with a shrinking hole, as the hole shrinks
and p → 2∗N,m from above.

2. Symmetries and existence for supercritical problems

Let Γ be a closed subgroup of O(n) and φ : Γ → Z2 be a continuous ho-
momorphism of groups. A function u : Rn → R is said to be φ-equivariant
if

u(γx) = φ(γ)u(x) ∀γ ∈ Γ, x ∈ Rn
. (4)

If φ is the trivial homomorphism, then (4) simply says that u is a Γ-invariant
function, whereas, if φ is surjective and u is not trivial, then (4) implies that u
is sign-changing, nonradial and G-invariant, where G := kerφ.

Let Θ be a bounded Γ-invariant domain in Rn, n ≥ 3, and a ∈ C1(Θ),
b, c ∈ C0(Θ) be Γ-invariant functions satisfying a, c > 0 on Θ. We assume that

there exists x0 ∈ Θ such that {γ ∈ Γ : γx0 = x0} ⊂ ker φ. (5)

This assumption guarantees that the space

D
1,2
0 (Θ)φ := {u ∈ D

1,2
0 (Θ) : u is φ-equivariant}

is infinite dimensional; see [3]. As usual, D1,2
0 (Θ) denotes the closure of C∞

c (Θ)
in the Hilbert space

D
1,2(Rn) := {u ∈ L

2∗n(Rn) : ∇u ∈ L
2(Rn

,Rn)}
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equiped with the norm

�u� :=

��

Θ
|∇u|2

�1/2

.

We shall also assume that the operator − div(a∇) + b is coercive in D
1,2
0 (Θ)φ,

i.e., that

inf
u∈D1,2

0 (Θ)φ

u �=0

�
Θ(a(x) |∇u|2 + b(x)u2)dx

�
Θ |∇u|2

> 0. (6)

We set

�u�2a,b :=
�

Θ
(a(x) |∇u|2 + b(x)u2)dx, |u|pc;p :=

�

Θ
c(x) |u|p dx.

Assumption (6) implies that �·�a,b is a norm in D
1,2
0 (Θ)φ which is equivalent

to �·� . Note that, as c > 0, |·|c;p is equivalent to the standard norm in Lp(Θ),
which we denote by |·|p .

Our aim is to establish the existence of solutions to the problem





− div(a(x)∇u) + b(x)u = c(x)|u|p−2u in Θ,

u = 0 on ∂Θ.

u(γx) = φ(γ)u(x), ∀γ ∈ Γ, x ∈ Θ,

(7)

for every 2 < p < 2∗n−d, where

d := min{dim(Γx) : x ∈ Θ},

Γx := {γx : γ ∈ Γ} is the Γ-orbit of x, 2∗k := 2k
k−2 if k ≥ 3 and 2∗k := ∞ if

k = 1, 2. Note that 2∗n−d > 2∗n if d > 0.

A (weak) solution to the problem (7) is a function u ∈ D
1,2
0 (Θ)φ ∩ Lp(Θ)

such that
�

Θ
(a(x)∇u ·∇ψ+ b(x)uψ)dx−

�

Θ
c(x)|u|p−2

uψ dx = 0 ∀ψ ∈ C∞
c (Θ). (8)

Proposition 2.1 of [6] asserts that D1,2
0 (Θ)φ is continuously embedded in Lp(Θ)

for any real number p ∈ [1, 2∗n−d], and that the embedding is compact for
p ∈ [1, 2∗n−d). The proof relies on a result by Hebey and Vaugon [12] which
establishes these facts for Γ-invariant functions. Therefore, the functional

Jp(u) :=
1

2
�u�2a,b −

1

p
|u|pc;p

is well defined in the space D
1,2
0 (Θ)φ if p ∈ (2, 2∗n−d].
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Lemma 2.1. For any real number p ∈ (2, 2∗n−d] the critical points of the func-

tional Jp in the space D
1,2
0 (Θ)φ are the solutions to the problem (7).

Proof. Let u ∈ D
1,2
0 (Θ)φ be a critical point of Jp in D

1,2
0 (Θ)φ. Then,

J
�
p(u)ϑ =

�

Θ
(a(x)∇u ·∇ϑ+ b(x)uϑ− c(x)|u|p−2

uϑ) dx = 0 ∀ϑ ∈ D
1,2
0 (Θ)φ.

As D1,2
0 (Θ)φ ⊂ Lp(Θ) for 1 ≤ p ≤ 2∗n−d we need only to prove that u satisfies

(8). Let ψ ∈ C∞
c (Θ), and define

�ψ(x) := 1

µ(Γ)

�

Γ
φ(γ)ψ(γx)dµ,

where µ is the Haar measure on Γ. Note that �ψ ∈ D
1,2
0 (Θ)φ. Observe also that,

as u is φ-equivariant, we have that

φ(γ)∇u(x) = ∇ (u ◦ γ) (x) = γ
−1∇u(γx) ∀γ ∈ Γ, x ∈ Θ.

Since J �
p(u) �ψ = 0, and a, b, c are Γ-invariant, using Fubini’s theorem and per-

forming a change of variable, we get

0 =

�

Θ
(a(x)∇u(x) ·∇ �ψ(x) + b(x)u(x) �ψ(x)− c(x)|u(x)|p−2

u(x) �ψ(x))dx

=
1

µ(Γ)

�

Θ

�

Γ

�
a(x)φ(γ)∇u(x) · γ−1∇ψ(γx) + b(x)φ(γ)u(x)ψ(γx)

−c(x)|φ(γ)u(x)|p−2
φ(γ)u(x)ψ(γx)

�
dµ dx

=
1

µ(Γ)

�

Γ

�

Θ

�
a(x)γ−1∇u(γx) · γ−1∇ψ(γx) + b(x)u(γx)ψ(γx)

−c(x)|u(γx)|p−2
u(γx)ψ(γx)

�
dx dµ

=
1

µ(Γ)

�

Γ

�

Θ
[a(γx)∇u(γx) ·∇ψ(γx) + b(γx)u(γx)ψ(γx)

−c(γx)|u(γx)|p−2
u(γx)ψ(γx)

�
dx dµ

=
1

µ(Γ)

�

Γ
dµ

�

Θ
[a(ξ)∇u(ξ) ·∇ψ(ξ) + b(ξ)u(ξ)ψ(ξ)

−c(ξ)|u(x)|p−2
u(ξ)ψ(ξ)

�
dξ

=

�

Θ

�
a(ξ)∇u(ξ) ·∇ψ(ξ) + b(ξ)u(ξ)ψ(ξ)− c(ξ)|u(x)|p−2

u(ξ)ψ(ξ)
�
dξ.

Therefore u is a solution to the problem (7).
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The nontrivial critical points of the functional Jp : D1,2
0 (Θ)φ → R lie on the

Nehari manifold

N φ
p :=

�
u ∈ D

1,2
0 (Θ)φ : �u�2a,b = |u|pc;p , u �= 0

�
,

which is a C2-Hilbert manifold, radially diffeomorphic to the unit sphere in
D

1,2
0 (Θ)φ, and a natural constraint for this functional. Set

�
φ
p := inf{Jp(u) : u ∈ N φ

p }.

Then, �φp > 0. A least energy solution to the problem (7) is a minimizer for Jp
on N φ

p . The following result extends Theorem 2.3 in [6].

Theorem 2.2. If p ∈ (2, 2∗n−d) then the problem (7) has a least energy solution,
and an unbounded sequence of solutions.

Proof. By Lemma 2.1, the critical points of the functional Jp in the space
D

1,2
0 (Θ)φ are the solutions to the problem (7). Proposition 2.1 of [6] asserts

that D
1,2
0 (Θ)φ is compactly embedded in Lp(Θ) for p ∈ (2, 2∗n−d), hence, a

standard argument shows that the functional Jp : D1,2
0 (Θ)φ → R satisfies the

Palais-Smale condition. Therefore, Jp attains its minimum on N φ
p . Moreover,

as the functional is even and has the mountain pass geometry, the symmetric
mountain pass theorem [2] yields the existence of an unbounded sequence of
critical values for Jp in D

1,2
0 (Θ)φ.

We now derive a multiplicity result for the supercritical problem (℘p). As-
sume that the closure of Θ is contained in Rn−1 × (0,∞) and, for m ≥ 1,
let

λ
φ
1 := inf

u∈D1,2
0 (Θ)φ

u �=0

�
Θ xm

n |∇u|2�
Θ xm

n u2
. (9)

As the n-th coordinate xn of x is positive for every x ∈ Θ, from the Poincaré
inequality we obtain that λφ

1 > 0.

Theorem 2.3. If λ ∈ (−λ
φ
1 ,∞) and p ∈ (2, 2∗n−d), then the problem (℘p) has

a least energy solution and an unbounded sequence of solutions in

Ω := {(y, z) ∈ Rn−1 × Rm+1 : (y, |z|) ∈ Θ},

which satisfy

v(γy, �z) = φ(γ)v(y, z) ∀γ ∈ Γ, � ∈ O(m+ 1), (y, z) ∈ Ω. (10)
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Proof. A straightforward computation shows that v is a solution to the problem
(℘p) in Ω which satisfies (10) if and only if the function u given by v(y, z) =
u(y, |z|) is a solution to the problem (7) with a(x) := xm

n =: c(x) and b(x) :=
λxm

n . Moreover, v has minimal energy if and only if u does. Note that (6) is
satisfied if λ ∈ (−λ

φ
1 ,∞). So this result follows from Theorem 2.2.

For p ∈ (2, 2∗n−d) let up be a least energy solution to the problem (7). Fix
q ∈ (2, 2∗n−d) and let tq,p ∈ (0,∞) be such that �up := tq,pup ∈ N φ

q , i.e.,

tq,p =

�
�up�2a,b
|up|qc;q

� 1
q−2

=

�
|up|pc;p
|up|qc;q

� 1
q−2

. (11)

We will show that limp→q Jq (�up) = �φq . The proof is similar to that of Propo-
sition 2.5 in [6]. We give the details for the reader’s convenience, starting with
the following lemma.

Lemma 2.4. If pk, q ∈ (2, 2∗n−d), pk → q, and (uk) is a bounded sequence in

D
1,2
0 (Θ)φ, then

lim
k→∞

�

Θ
(c(x) |uk|pk − c(x) |uk|q) dx = 0.

Proof. By the mean value theorem, for each x ∈ Θ, there exists qk(x) between
pk and q such that

||uk(x)|pk − |uk(x)|q| = |ln |uk(x)|| |uk(x)|qk(x) |pk − q| .

Fix r > 0 such that [q − r, q + r] ⊂ (2, 2∗n−d). Then, for some positive constant
C and k large enough,

|ln |uk|| |uk|qk ≤
�

ln |uk| |uk|q+r ≤ C |uk|2
∗
n−d if |uk| ≥ 1,�

ln 1
|uk|

�
|uk|q−r ≤ C |uk|2 if |uk| ≤ 1.

As D1,2
0 (Θ)φ is continuously embedded in Lp(Θ) for p ∈ [2, 2∗n−d], we obtain

����
�

Θ
c (|uk|pk − |uk|q)

���� ≤ |c|∞

��

|uk|≤1
||uk|pk−|uk|q|+

�

|uk|>1
||uk|pk−|uk|q|

�

≤ |c|∞ C |pk − q|
�

Θ

�
|uk|2 + |uk|2

∗
n−d

�

≤ C̄ |pk − q| �uk�2
∗
n−d

for some positive constant C̄, where |c|∞:= supx∈Θ |c(x)| . Since (uk) is bounded

in D
1,2
0 (Θ), our claim follows.
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Proposition 2.5. For q ∈ (2, 2∗n−d) we have that

lim
p→q

�
φ
p = �

φ
q , lim

p→q
tq,p = 1, lim

p→q
Jq (�up) = �

φ
q .

Proof. Set

S
φ
p := inf

u∈D1,2
0 (Ω)φ\{0}

�u�2a,b
|u|2c;p

.

It is easy to see that �φp = p−2
2p

�
Sφ
p

� p
p−2 . So, to prove the first identity, it

suffices to show that limp→q S
φ
p = Sφ

q . From Hölder’s inequality we get that

|u|c;q ≤ |c|(p−q)/pq
1 |u|c;p if p > q. Hence, Sφ

q ≥ |c|2(q−p)/pq
1 Sφ

p if p > q. So, as p
approaches q from the right, we have that

lim sup
p→q+

S
φ
p ≤ S

φ
q .

Assume that lim infp→q+ Sφ
p < Sφ

q . Then, there exist ε > 0 and sequences (pk)

in (q, 2∗n−d) and (uk) in D
1,2
0 (Ω)φ with |uk|c;pk

= 1 such that �uk�2a,b < Sφ
q − ε.

Lemma 2.4 implies that
�uk�2

a,b

|uk|2c;q
< Sφ

q for k large enough, contradicting the

definition of Sφ
q . This proves that

lim
p→q+

S
φ
p = S

φ
q .

The corresponding statement when p approaches q from the left is proved in a
similar way. Since Jp(up) =

p−2
2p �up�2a,b = �φp we have that (up) is bounded in

D
1,2
0 (Ω)φ for p close to q. Lemma 2.4 applied to (11) yields limp→q tq,p = 1. It

follows that limp→q Jq(�up) = limp→q
q−2
2q �tq,pup�2a,b = �φq , as claimed.

3. Minimizing sequences for the critical problem

In this section we analize the behavior of the minimizing sequences for the
problem (7) when p is the critical exponent 2∗n = 2n

n−2 . The solutions to the
limit problem (3) will play a crucial role in this analysis. We denote the energy
functional associated to (3) by

J∞(u) :=
1

2
�u�2 − 1

2∗
|u|2

∗

2∗

and, for any closed subgroup K of Γ, we set

D
1,2(Rn)φ|K := {u ∈ D

1,2(Rn) : u(γz) = φ(γ)u(z) ∀γ ∈ K, z ∈ Rn},

N φ|K
∞ := {u ∈ D

1,2(Rn)φ|K : u �= 0, �u�2 = |u|2
∗

2∗},
�
φ|K
∞ := inf

u∈Nφ|K
∞

J∞(u).



64 M. CLAPP AND M. RIZZI

If K = Γ we write N φ
∞ and �φ∞ instead of N φ|K

∞ and �
φ|K
∞ .

Recall that the Γ-orbit of a point x ∈ Rn is the set Γx := {γx : γ ∈ Γ}, and
its isotropy group is Γx := {γ ∈ Γ : γx = x}. Then, Γx is Γ-homeomorphic to
the homogeneous space Γ/Γx. In particular, the cardinality of Γx is the index
of Γx in Γ, which is usually denoted by |Γ/Γx| . If Γx = {x} then x is said to
be a fixed point of Γ. We denote

ΘΓ := {x ∈ Θ : x is a fixed point of Γ}.

For simplicity, we will write J∗, N φ
∗ and �

φ
∗ instead of J2∗n , N

φ
2∗n

and �
φ
2∗n
.

Theorem 3.1. Let (uk) be a sequence in N φ
∗ such that J∗(uk) → �

φ
∗ . Then,

after passing to a subsequence, one of the following two possibilities occurs:

1. (uk) converges strongly in D
1,2
0 (Θ) to a minimizer of J∗ on N φ

∗ .

2. There exist a closed subgroup K of finite index in Γ, a sequence (ζk) in Θ,
a sequence (εk) in (0,∞) and a nontrivial solution ω to the problem (3)
with the following properties:

(a) Γζk = K for all k ∈ N, and ζk → ζ,

(b) ε
−1
k dist(ζk, ∂Θ) → ∞ and ε

−1
k |αζk − βζk| → ∞ for all α,β ∈ Γ with

α−1β �∈ K,

(c) ω(γz) = φ(γ)ω(z) for all γ ∈ K, z ∈ Rn, and J∞(ω) = �
φ|K
∞ ,

(d) lim
k→∞

�����uk −
�

[γ]∈Γ/K

φ(γ)
�

a(ζ)
c(ζ)

�n−2
4

ε
2−n
2

k (ω ◦ γ−1)( · −γζk
εk

)

����� = 0,

(e) �
φ
∗ = min

x∈Θ

a(x)n/2

c(x)(n−2)/2 |Γ/Γx| �φ|Γx
∞ = a(ζ)n/2

c(ζ)(n−2)/2 |Γ/K| J∞(ω).

Proof. The proof is exactly the same as that of Theorem 2.5 in [5], omitting
the first two lines.

Let us state an interesting special case of Theorem 3.1.

Corollary 3.2. Assume that every Γ-orbit in Θ is either infinite or a fixed
point. Let (uk) be a sequence in N φ

∗ such that J∗(uk) → �
φ
∗ . Then, after passing

to a subsequence, one of the following statements holds true:

1. (uk) converges strongly in D
1,2
0 (Θ) to a minimizer of J∗ on N φ

∗ .
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2. There exist a sequence (ζk) in ΘΓ, a sequence (εk) in (0,∞) and a nontriv-
ial φ-equivariant solution ω to the limit problem (3) such that ζk → ζ ∈ Θ,

ε
−1
k dist(ζk, ∂Θ) → ∞, J∞(ω) = �φ∞,

lim
k→∞

�����uk −
�
a(ζ)

c(ζ)

�n−2
4

ε
2−n
2

k ω

�
· − ζk

εk

������ = 0,

and
a(ζ)n/2

c(ζ)(n−2)/2
= min

x∈ΘΓ

a(x)n/2

c(x)(n−2)/2
.

In particular, if every Γ-orbit in Θ has positive dimension, then (1) must
hold true.

Proof. Since the group K = Γζk , given by case 2 of Theorem 3.1, has finite
index in Γ and this index is the cardinality of the Γ-orbit of ζk, our assumption
implies that K = Γ and ζk is a fixed point. So case 2 of Theorem 3.1 reduces
to case 2 of this corollary.

Note that the functions a and c determine the location of the concentration
point ζ.

It was shown in [4, Theorem 2.3] that, if a = c = 1, b = 0 and ΘΓ �= ∅,
then �

φ
∗ is not attained by J∗ on N φ

∗ . So, if every Γ-orbit in Θ \ΘΓ has positive
dimension, statement 2 of Corollary 3.2 must hold true.

In the following section we will state a nonexistence result which allows us
to obtain information on the limit profile of solutions to the problem (℘p).

4. Blow-up at the higher critical exponents

Throughout this section we will assume that Θ is a Γ-invariant bounded smooth
domain in Rn whose closure is contained in Rn−1 × (0,∞). Then, the points in
{0}×(0,∞) must be fixed points of Γ, so Rn−1×{0} is Γ-invariant and we may
regard Γ as a subgroup of O(n−1). We will also assume that Θ\ΘΓ and ΘΓ are
nonempty, and that every Γ-orbit in Θ \ΘΓ has positive dimension. As before,
φ : Γ → Z2 will be a continuous homomorphism which satisfies assumption (5).

We set

Θδ := {x ∈ Θ : dist(x,ΘΓ) > δ} if δ > 0, and Θ0 := Θ,

and we fix δ0 > 0 such that Θδ0 �= ∅. For m ≥ 1 and δ ∈ [0, δ0), we consider
the problem

(℘#
δ,p)






− div(xm
n ∇u) + λxm

n u = xm
n |u|p−2u in Θδ,

u = 0 on ∂Θδ.

u(γx) = φ(γ)u(x), ∀γ ∈ Γ, x ∈ Θδ,
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where xm
n denotes the function x = (x1, ..., xn) �→ xm

n , and λ ∈ (−λ
φ
1 ,∞),

with λ
φ
1 as defined in (9). Then, the operator − div(xm

n ∇) + λxm
n is coercive

in D
1,2
0 (Θ)φ. So the data of this problem satisfy all assumptions stated at the

beginning of Section 2.
Theorem 2.2 asserts that the problem (℘#

δ,p) has a least energy solution uδ,p

if δ ∈ (0, δ0) and p ∈ (2, 2∗n−d), where

d := min{dim(Γx) : x ∈ Θ \ΘΓ}.

Note that, by assumption, d > 0. On the other hand, for δ = 0 and p = 2∗n, the
following nonexistence result was proved in [5].

Theorem 4.1. If dist(ΘΓ,Rn−1×{0}) =dist(Θ,Rn−1×{0}), then there exists
λ∗ ∈ (−λ

φ
1 , 0] such that, if λ ∈ (λ∗,∞) ∪ {0}, the critical problem (℘#

0,2∗n
) does

not have a least energy solution.
Moreover, λ∗ < 0 if m ≥ 2.

Proof. See Theorem 3.2 in [5].

For δ ∈ (0, δ0) and p ∈ (2, 2∗n−d), let Jδ,p : D1,2
0 (Θδ)φ → R be the variational

funcional and N φ
δ,p be the Nehari manifold associated to the problem (℘#

δ,p),
and set

�
φ
δ,p := inf{Jδ,p(u) : u ∈ N φ

δ,p}.

We write J∗, N φ
∗ and �

φ
∗ for the variational functional, the Nehari manifold and

the infimum associated to the critical problem (℘#
0,2∗n

) in the whole domain Θ.

Extending each function in N φ
δ,2∗n

by 0 outside of Θδ, we have that N φ
δ,2∗n

⊂ N φ
∗

and Jδ,2∗n(u) = J∗(u) for every u ∈ N φ
δ,2∗n

. Hence, �φ∗ ≤ �
φ
δ,2∗n

.

Lemma 4.2. �φδ,2∗n → �
φ
∗ as δ → 0.

Proof. Let X := (Rn)Γ and Y be its orthogonal complement in Rn. Since
Θ \ ΘΓ �= ∅ and every Γ-orbit in Θ \ ΘΓ has positive dimension, we have that
dim(Y ) ≥ 2.

We claim that there are radial functions χk ∈ C∞
c (Y ) such that χk(y) = 1

if |y| ≤ 1
k ,

lim
k→∞

�

Y
|χk|2 = 0 and lim

k→∞

�

Y
|∇χk|2 = 0. (12)

To show this, we choose a radial function g ∈ C∞
c (Y ) such that g(y) = 1 if

|y| ≤ 1 and g(y) = 0 if |y| ≥ 2, and we set gk(y) := g(ky). Define

χk(y) :=
1

σk

k�

j=1

gj(y)

j
, where σk :=

k�

j=1

1

j
.
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Clearly, χk(y) = 1 if |y| ≤ 1
k and χk(y) = 0 if |y| ≥ 2. As dim(Y ) ≥ 2, we have

that
�
Y |∇gk|2 ≤

�
Y |∇g|2 . Hence, for some positive constant C,

�

Y
|∇χk|2 ≤ C

σ2
k

k�

j=1

1

j2
→ 0 as k → ∞.

Finally, as all functions χk are supported in the closed ball of radius 2 in Y,

the Poincaré inequality yields

�

Y
|χk|2 ≤ C

�

Y
|∇χk|2 → 0,

and our claim is proved.
Given ε > 0 we choose ψ ∈ N φ

∗ such that J∗(ψ) < �
φ
∗+

ε
2 . For (x, y) ∈ X×Y,

we define ψk(x, y) := (1 − χk(y))ψ(x, y). Note that, as χk is radial and ψ is
is φ-equivariant, ψk is also φ-equivariant. Moreover, the identities (12) easily
imply that ψk → ψ in D

1,2
0 (Θ). So, for k large enough, there exists tk ∈ (0,∞)

such that �ψk := tkψk ∈ N φ
∗ and tk → 1. Hence, �ψk → ψ in D

1,2
0 (Θ), and

we may choose k0 ∈ N such that J∗( �ψk0) < �
φ
∗ + ε. Observe that supp( �ψk) =

supp(ψk) ⊂ Θδ if δ <
1
k . So

�ψk ∈ N φ
δ,2∗n

if δ <
1
k . It follows that

�
φ
∗ ≤ �

φ
δ,2∗n

≤ Jδ,2∗n(
�ψk0) = J∗( �ψk0) < �

φ
∗ + ε ∀δ ∈

�
0,

1

k0

�
.

This finishes the proof.

Set N := n+m and

Ωδ := {(y, z) ∈ Rn−1 × Rm+1 : (y, |z|) ∈ Θδ}, δ ∈ [0, δ0).

Note that Ωδ is [Γ×O(m+ 1)]-invariant, i.e., (γy, �z) ∈ Ωδ for every (y, z) ∈
Ωδ, γ ∈ Γ, � ∈ O(m + 1). A straightforward computation shows that uδ,p is a

least energy solution to the problem (℘#
δ,p) if and only if vδ,p(y, z) := uδ,p(y, |z|)

is a least energy solution to the problem

(℘δ,p)






−∆v + λv = |v|p−2v in Ωδ,

v = 0 on ∂Ωδ,

v(γy, �z) = φ(γ)v(y, z), ∀γ ∈ Γ, � ∈ O(m+ 1), (y, z) ∈ Ωδ.

Therefore, for every λ ∈ (−λ
φ
1 ,∞), δ ∈ (0, δ0) and p ∈ (2, 2∗n−d), the problem

(℘δ,p) has a least energy solution. The following results describe its limit profile.
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Theorem 4.3. For δ ∈ (0, δ0) let vδ,∗ be a least energy solution to the problem
(℘δ,2∗N,m

). Assume that

dist(ΘΓ
,Rn−1 × {0}) = dist(Θ,Rn−1 × {0}).

Then, there exists λ∗ ≤ 0 such that, if λ ∈ (λ∗,∞) ∪ {0}, there exist sequences
(δk) in (0, δ0), (εk) in (0,∞), (ζk) in ΘΓ, and a nontrivial solution ω to the
limit problem (3) such that

(i) δk → 0, ε−1
k dist(ζk, ∂Θ) → ∞, and ζk → ζ with

dist(ζ,Rn−1 × {0}) = dist(Θ,Rn−1 × {0}),

(ii) ω is φ-equivariant and has minimal energy among all nontrivial φ-equiv-
ariant solutions to the problem (3),

(iii) vδk,∗ = �ωεk,ζk + o(1) in D1,2(RN ), where

�ωεk,ζk(y, z) := ε
(2−n)/2
k ω

�
(y, |z|)− ζk

εk

�
.

Moreover, λ∗ < 0 if m ≥ 2.

Proof. Let λ∗ be the number given by Theorem 4.1. Fix λ ∈ (λ∗,∞)∪{0}, and
let uδ,∗ be the least energy solution to the problem (℘#

δ,2∗n
) given by vδ,∗(y, z) =

uδ,∗(y, |z|). Choose a sequence δk → 0 and set uk := uδk,∗. Then, uk ∈ N φ
∗

and, by Lemma 4.2, J∗(uk) → �
φ
∗ . It follows from Corollary 3.2 and Theorem

4.1 that, after passing to a subsequence, there exist sequences (εk) in (0,∞)
and (ζk) in ΘΓ, and a nontrivial φ-equivariant solution ω to the limit problem
(3) such that ζk → ζ, ε

−1
k dist(ζk, ∂Θ) → ∞, J∞(ω) = �φ∞,

lim
k→∞

����uk − ε
2−n
2

k ω

�
· − ζk

εk

����� = 0, (13)

and �
dist(ζ,Rn−1 × {0})

�
= min

x∈Θ

�
dist(x,Rn−1 × {0})

�
.

Equation (13) implies that vδk,∗ satisfies (3). This concludes the proof.

Theorem 4.4. For δ ∈ (0, δ0) and p ∈ (2∗N,m, 2∗N,m+d) let vδ,p be a least energy
solution to the problem (℘δ,p). Assume that

dist(ΘΓ
,Rn−1 × {0}) = dist(Θ,Rn−1 × {0}).

Then, there exists λ∗ ≤ 0 such that, if λ ∈ (λ∗,∞) ∪ {0}, there exist sequences
(δk) in (0, δ0), (εk) in (0,∞), (pk) in (2∗N,m, 2∗N,m+d), and (ζk) in ΘΓ, and a
nontrivial solution ω to the limit problem (3) such that
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(i) δk → 0, pk → 2∗N,m, ε
−1
k dist(ζk, ∂Θ) → ∞, and ζk → ζ with

dist(ζ,Rn−1 × {0}) = dist(Θ,Rn−1 × {0}),

(ii) ω is φ-equivariant and has minimal energy among all nontrivial φ-equiv-
ariant solutions to the problem (3),

(iii) vδk,pk = �ωεk,ζk + o(1) in D1,2(RN ), where

�ωεk,ζk(y, z) := ε
(2−n)/2
k ω

�
(y, |z|)− ζk

εk

�
.

Moreover, λ∗ < 0 if m ≥ 2.

Proof. Let λ∗ be the number given by Theorem 4.1. Fix λ ∈ (λ∗,∞) ∪ {0}.
Let uδ,p be the least energy solution to the problem (℘#

δ,p) given by vδ,p(y, z) =

uδ,p(y, |z|) and let tδ,p ∈ (0,∞) be such that �uδ,p := tδ,puδ,p ∈ N φ
δ,2∗n

⊂ N φ
∗ .

Proposition 2.5 and Lemma 4.2 allow us to choose δk ∈ (0, δ0) and pk ∈
(2∗n, 2

∗
n−d) such that δk → 0, pk → 2∗n, and J∗(�uk) → �

φ
∗ , where �uk := �uδk,pk .

The rest of the proof is the same as that of Theorem 4.3

Finally, we derive Theorems 1.1 and 1.2 from Theorems 2.3 and 4.4.

Proof of Theorem 1.1. Let Γ := O(n− 1) and φ be the trivial homomorphism
φ ≡ 1. Then, BΓ = B ∩ [{0}× (0,∞)] . A φ-equivariant function is simply a
Γ-invariant function and, as the standard bubble is radial, it is the least energy
Γ-invariant solution to the problem (3), which is unique up to translations and
dilations. Since dim(Γx) = n− 2 ≥ 1 for every x ∈ B \BΓ, applying Theorems
2.3 and 4.4 to Θ := B with this group action we obtain Theorem 1.1.

Proof of Theorem 1.2. For n ≥ 5, let Γ be the subgroup of O(n− 1) generated
by {eiϑ,α, τ : ϑ ∈ [0, 2π), α ∈ O(n − 5)} acting on a point y = (η, ξ) ∈
C2 × Rn−5 ≡ Rn−1, η = (η1, η2) ∈ C× C, as

eiϑy := (eiϑη, ξ), αy := (η,αξ), τy := (−η2, η1, ξ),

and let φ be the homomorphism given by φ(eiϑ) = 1 = φ(α) and φ(τ) = −1.
Then, BΓ = B ∩ [{0}× (0,∞)] . If n = 5 then dim (Γy) = 1 for every y ∈
Rn−1 \ {0}, whereas for n ≥ 6 we have that

dim (Γy) =






n− 5 if η �= 0 and ξ �= 0,
1 if ξ = 0,
n− 6 if η = 0.

Therefore, if n = 5 or n ≥ 7, we have that dim(Γx) ≥ 1 for every x ∈ B \ BΓ.

Notice that any point x0 = (η, ξ) ∈ B with η �= 0 satisfies condition (5). Hence,
Theorem 1.2 follows from Theorems 2.3 and 4.4.
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Circuito Exterior, C.U., 04510 Mexico City, Mexico

E-mail: mrizzi@im.unam.mx

Received February 13, 2017

Accepted April 8, 2017





Rend. Istit. Mat. Univ. Trieste
Volume 49 (2017), 73–93
DOI: 10.13137/2464-8728/16206

On general properties

of n-th order retarded

functional differential equations

Pierluigi Benevieri, Alessandro Calamai,
Massimo Furi and Maria Patrizia Pera

“Dedicated to the outstanding mathematician Jean Mawhin”

Abstract. Consider the second order RFDE (retarded functional

differential equation) x��(t) = f(t, xt), where f is a continuous real-

valued function defined on the Banach space R × C1([−r, 0],R). The

weak assumption of continuity on f (due to the strong topology of

C1([−r, 0],R)) makes not convenient to transform this equation into

a first order RFDE of the type z�(t) = g(t, zt). In fact, in this case, the

associated R2-valued function g could be discontinuous (with the C0-

topology) and, in addition, not necessarily defined on the whole space

R × C([−r, 0],R2). Consequently, in spite of what happens for ODEs,

the classical results regarding existence, uniqueness, and continuous de-

pendence on data for first order RFDEs could not apply.

Motivated by this obstruction, we provide results regarding general prop-

erties, such as existence, uniqueness, continuous dependence on data

and continuation of solutions of RFDEs of the type x(n)(t) = f(t, xt),
where f is an Rk-valued continuous function on the Banach space

R × C(n−1)([−r, 0],Rk). Actually, for the sake of generality, our in-

vestigation will be carried out in the case of infinite delay.

Keywords: Retarded functional differential equations (RFDEs), RFDEs with infinite
delay, initial value problems, properties of solutions.
MS Classification 2010: 34K05, 34C40.

1. Introduction

Delay differential equations and retarded functional differential equations (for
short RFDEs) represent a well-studied subject in view of many applications (see
e.g. [1, 9, 11]). Recently, we devoted a series of papers to first and second order
RFDEs on possibly noncompact manifolds, allowing also the case of infinite
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delay (see [2, 3, 4, 5, 6, 7, 8]). We mostly focused on the problem of existence
of periodic solutions, as well as on the structure of the set of solutions of
parameterized RFDEs. For such equations, we obtained global continuation
results by means of topological methods. In this framework, we also performed
a preliminary study in the paper [7] in which we investigated general properties
of RFDEs with infinite delay on differentiable manifolds.

Here we settle in the context of Euclidean spaces, and we tackle a different
but related problem regarding higher order RFDEs whose reduction to first
order equations is not convenient, in spite of what happens for ODEs.

Consider, for example, the second order RFDE

x��(t) = −εx�(t) + g(xt), (1)

where ε > 0 and g : C0[−r, 0],Rk) → Rk (r > 0) is a continuous function. Here,
as usual when dealing with RFDEs, if x : J → Rk is a function defined on an
interval, given t ∈ J , xt denotes the map θ ∈ [−r, 0] �→ x(t + θ), whenever it
makes sense, that is, whenever [t− r, t] ⊆ J .

Obviously, an equation (no matter how it is written) is well-defined if it is
clear what is a solution. For the equation (1), as well as for a broader class of
second order RFDEs, two different notions are prominent. The first one is the
following.

Definition 1.1 (C0-solution of (1)). A function x : J → Rk, defined on an

interval J , is a C0-solution of (1) if it is continuous and satisfies eventually

the equality

x��(t) = −εx�(t) + g(xt),

meaning that there exists τ ∈ J (τ < sup J) such that [τ − r, τ ] ⊆ J and the

equality is verified for each t ∈ (τ,+∞) ∩ J .

The second definition of solution is given by modifying the previous one
just by additionally requiring x to be of class C1.

Definition 1.2 (C1-solution of (1)). A function x : J → Rk, defined on an

interval J , is a C1-solution of (1) if it is of class C1 and satisfies eventually

the equality

x��(t) = −εx�(t) + g(xt).

Obviously, with any one of these notions, a solution turns out to be even-
tually of class C2.

In spite of the similarity of the two notions of solution, when dealing with
an initial value problem such as

�
x��(t) = −εx�(t) + g(xt), t > τ
xτ = η,

(2)
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with η ∈ C1([−r, 0],Rk), the above definitions yield very divergent conse-
quences.

If one seeks for a C1-solution, the problem is, in some sense, well-posed,
since any C1-solution must satisfy the additional initial condition x�(τ) = η�(0).
Therefore, under suitable assumptions on g (such as Lipschitz continuity), one
gets the uniqueness in the future (i.e. for t ≥ τ). To see this, it is sufficient to
transform the above problem into the following first order initial value problem
in Rk× Rk: 





x�(t) = y(t), t > τ
y�(t) = −εy(t) + g(xt), t > τ
xτ = η,
y(τ) = η�(0).

(3)

For existence, as well as uniqueness, results regarding initial value problems
such as (3) we suggest [14].

On the other hand, if one seeks for solutions of (2) according to the first
definition, the problem is under-determined: it becomes well-posed for any
additional condition x�(τ+) = c, with c ∈ Rk (where x�(τ+) denotes the right
derivative of x at τ), so that the uniqueness of the solution of problem (2) is
never obtained.

Contrary to the above first notion of solution (the C0 one), the second one
is suitable for the following general second order RFDE in Rk:

x��(t) = h(t, xt, x
�
t), (4)

where h : R × C0[−r, 0],Rk) × C0[−r, 0],Rk) → Rk is a continuous function,
and x�

t is a shortened form of (x�)t. Of course, (4) includes as a particular case
the equation (1). To see this, put h(t,ϕ,ψ) = −εψ(0) + g(ϕ).

Anyhow, if one is interested in the C1-solutions of (4), it is convenient to
consider the graphically simpler and more general equation

x��(t) = f(t, xt), (5)

where f is an Rk-valued continuous function defined on R × C1([−r, 0],Rk).
To see that (5) is, in fact, more general than (4), it is sufficient to define
f(t,ϕ) = h(t,ϕ,ϕ�).

Apart its graphic simplicity, the equation (5) has two advantages. Firstly, f
may be defined on R×C1([−r, 0],Rk) and not necessarily on R×C0[−r, 0],Rk).
Secondly, the assumption of continuity of f on R× C1([−r, 0],Rk) is a milder
condition than the one we would get by requiring f continuous with the topol-
ogy induced by R×C0[−r, 0],Rk), consequence of the fact that the C1 topology
is stronger than the C0 one.

Of course if f is defined and continuous on R × C0[−r, 0],Rk), it is, in
particular, defined and continuous on the Banach space R× C1([−r, 0],Rk).
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However, dealing with the equation (5) has a disadvantage: when (5) is con-
verted into the first order equation z�(t) = g(t, zt) by putting z(t) = (x(t), y(t))
and g(t, zt) = (y(t), f(t, xt)), the associated continuous function

g : R× C1([−r, 0],Rk× Rk) → Rk× Rk, given by (t,ϕ,ψ) �→ (ψ(0), f(t,ϕ)),

could not be compatible with any (Rk× Rk)-valued continuous function defined
on R × C0[−r, 0],Rk × Rk). In other words, g could be discontinuous with
the coarse topology induced on R × C1([−r, 0],Rk × Rk) by the containing
Banach space R × C0[−r, 0],Rk × Rk). Thus, the classical existence, as well
as uniqueness, results regarding initial value problems for first order RFDEs
could not apply.

Our purpose is to alleviate this disadvantage by proving general properties
of the equation (5), as well as higher order equations of the type

x(n)(t) = f(t, xt), (6)

with f : R × C(n−1)([−r, 0],Rk) → Rk continuous. These equations will some-
times be associated with an initial condition of Cauchy type as xτ = η, with
τ ∈ R and η ∈ C(n−1)([−r, 0],Rk), obtaining results regarding existence,
uniqueness and continuous dependence on data.

Actually, for the sake of generality, we will investigate the case of infinite
delay, which includes the equation (6) as a special case.

As already pointed out, delay equations and RFDEs in Euclidean spaces
have been studied by many authors from different points of view. For a gen-
eral reference about RFDEs with finite delay, we suggest the monograph by
Hale and Verduyn Lunel [14]. Among others, we refer also to the works of
Gaines and Mawhin [12], Nussbaum [17, 18] and Mallet-Paret, Nussbaum and
Paraskevopoulos [16]. For RFDEs with infinite delay we recommend the arti-
cles of Hale and Kato [13] and, more recently, of Oliva and Rocha [19], and the
book by Hino, Murakami and Naito [15].

In the above papers and books, the basic properties of RFDEs in Rk have
been investigated, as well as other related issues (e.g. characterizing the space
of initial functions of RFDEs with infinite delays, see [15]). In spite of this, to
the best of our knowledge, our particular point of view on higher order RFDEs
has been never pursued. The main purpose of this paper is to fill this gap.

2. Preliminaries

Given m ∈ {0, 1, 2, . . . } and b ∈ R, we will denote by BUm((−∞, b],Rk) the
space of all functions x : (−∞, b] → Rk which are bounded and uniformly con-
tinuous with their derivatives up to the order m. This is a Banach space, being
a closed subset of the space BCm((−∞, b],Rk) of the Cm-functions which are
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bounded with their derivatives up to the order m. As usual, BU((−∞, b],Rk)
and BC((−∞, b],Rk) stand for BU0((−∞, b],Rk) and BC((−∞, b],Rk), re-
spectively.

Whenm>0, in BCm((−∞, b],Rk), and consequently in BUm((−∞, b],Rk),
among the many equivalent Banach norms we consider the following:

�x� = sup
t∈(−∞,b]

|x(t)|+ sup
t∈(−∞,b]

|x(m)(t)|,

where here, and throughout the paper, | · | is the Euclidean norm of Rk.
For simplicity’s sake, the norm of any infinite-dimensional Banach space

will be denoted uniquely by � · �. No confusion should arise: the space whose
norm is considered will be apparent from the context.

We recall that a subset Q of BC((−∞, b],Rk) is precompact (i.e. totally
bounded) if and only if it is bounded and given any ε > 0 there exists a finite
covering F of arbitrary subsets of (−∞, b] such that the oscillation of any
ϕ ∈ Q in each S ∈ F is less than ε (see e.g. [10, Part 1, IV.6.5]). Of course,
the same holds true for the subspace BU((−∞, b],Rk) of BC((−∞, b],Rk).
Consequently, a subset Q of BUm((−∞, b],Rk) is precompact if and only if
it is bounded and given any ε > 0 there exists a finite covering F of (−∞, b]
such that for any ϕ ∈ Q, the oscillation of ϕ(m) in each S ∈ F is less than ε.
Clearly, the space being complete, any precompact subset of BUm((−∞, b],Rk)
is relatively compact.

Remark 2.1. Due to the fact that in BUm((−∞, b],Rk) the derivative of order
m of any function is uniformly continuous, a subset of this space is totally
bounded only if it is bounded and made up of functions whose m-th derivatives
are equi-uniformly continuous. The converse is not true even when m = 0:
think about a traveling wave with compact support that goes to −∞ and
preserves its shape.

Let x : J → Rk be a continuous function defined on an unbounded below
real interval (that is, J is either a left, open or closed, half-line, or it coincides
with R). As usual, given any t ∈ J , by xt : (−∞, 0] → Rk we mean the function
θ �→ x(t+ θ).

Remark 2.2. One can easily check that the function that associates to any
(t, x) ∈ (−∞, b] × BUm((−∞, b],Rk) the element xt ∈ BUm((−∞, 0],Rk) is
continuous. Thus, in particular, given x ∈ BUm((−∞, b],Rk), the map t ∈
(−∞, b] �→ xt is a continuous curve in BUm((−∞, 0],Rk).

Let n be a positive integer and f : Ω → Rk a continuous function defined on
an open subset Ω of R×BUn−1((−∞, 0],Rk). Let us consider in Rk a retarded
functional differential equation of order n of the type

x(n)(t) = f(t, xt). (7)
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Definition 2.3 (Solution of the equation (7)). A solution of (7) is a function

x : J → Rk, defined on an unbounded below interval, such that

xt ∈ BUn−1((−∞, 0],Rk)

for all t ∈ J , which verifies eventually the equality x(n)(t) = f(t, xt). That is, x
is a solution of (7) if there exists τ < sup J , such that, for each t ∈ (τ,+∞)∩J ,
one has (t, xt) ∈ Ω and x(n)(t) = f(t, xt).

Obviously, according to Remark 2.2, any solution of the equaltion (7) is
eventually of class Cn.

A solution of (7) is said to be maximal if it is not a proper restriction
of another solution. As in the case of ODEs, Zorn’s lemma implies that any
solution is the restriction of a maximal solution.

Given an initial function η ∈ BUn−1((−∞, 0],Rk) and an instant τ such
that (τ, η) ∈ Ω, we will be interested in the following initial value problem:

�
x(n)(t) = f(t, xt), t > τ
xτ = η.

(8)

Definition 2.4 (Solution of the initial value problem (8)). A solution of (8) is
a solution x : J → Rk of the equation (7) such that sup J > τ , x(n)(t) = f(t, xt)
for all t ∈ (τ,+∞) ∩ J , and xτ = η.

Clearly, a function x : J → Rk, defined on an unbounded below interval, is
a solution of (8) if and only if sup J > τ and for all t ∈ J one has

x(t) =

� �n−1
j=0

(t−τ)j

j! η(j)(0) +
� t
τ

(t−s)n−1

(n−1)! f(s, xs) ds, if t ≥ τ

η(t− τ), if t ≤ τ,
(9)

where η(0)(0) := η(0).

Remark 2.5. In spite of the fact that the n-th order derivative of a solution
x : J → Rk of (8) may not exist at t = τ , the right n-th derivative x(n)(τ+) of x
at τ always exists and is equal to f(τ, η). In fact, by definition, x(n)(τ+) is the
n-th derivative at τ of the restriction x+ of x to the interval [τ,+∞) ∩ J , and

this restriction, because of (9), is a Cn function such that x(n)
+ (t) = f(t, xt) for

all t ∈ [τ,+∞) ∩ J .

3. Existence

Here, our attention is devoted to the existence, global or local, of the solutions
of the initial value problem (8).
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A continuous function f : R × BUn−1((−∞, 0],Rk) → Rk will be called
strictly retarded if there exists ε > 0 such that the value f(t,ϕ) depends only
on t and the restriction of ϕ to (−∞,−ε]. That is, ϕ1(θ) = ϕ2(θ) for all
θ ∈ (−∞,−ε] implies f(t,ϕ1) = f(t,ϕ2) for all t ∈ R.

Lemma 3.1. Let f : R×BUn−1((−∞, 0],Rk) → Rk be a strictly retarded func-

tion and choose τ ∈ R. Then,

(1) any ξ ∈ BUn−1((−∞, τ ],Rk) is the restriction of a unique maximal so-

lution of equation (7);

(2) any maximal solution of equation (7) is defined on the whole real line.

Proof. (1) Choose any ξ ∈ BUn−1((−∞, τ ],Rk) and let ξ̂ be the Cn−1 exten-
sion of ξ to the whole real line given by

ξ̂(t) =
n−1�

j=0

(t− τ)j

j!
ξ(j)(τ), for t ≥ τ

and, of course, ξ̂(t) = ξ(t) for t ≤ τ . Clearly ξ̂s ∈ BUn−1((−∞, 0],Rk), for
any s ∈ R, and the map s �→ ξ̂s is continuous (see Remark 2.2). Thus, we may
define the Cn−1 function

x̂(t) =





ξ̂(t) +

� t
τ

(t−s)n−1

(n−1)! f(s, ξ̂s) ds, if t ≥ τ

ξ̂(t), if t ≤ τ .

Since f is strictly retarded, there exists ε > 0 such that f(t,ϕ) depends only
on t and the restriction of ϕ to (−∞,−ε]. Hence, for any t in the interval
(τ, τ + ε], one has f(t, ξ̂t) = f(t, x̂t) and, thus, x̂(n)(t) = f(t, x̂t). This proves
that the restriction x of x̂ to (−∞, τ + ε] is a solution of (7). Therefore, by
Zorn’s lemma, x is the restriction of a maximal solution of (7), still denoted
for simplicity by x, and defined on an interval J containing (−∞, τ + ε]. Now,
taking into account (9), again from the fact that f is strictly retarded it follows
that, for any t ∈ J , the value x(t) depends only on the restriction of x to
(−∞, t− ε]. This implies the uniqueness of the maximal solution of (7).

(2) Let x : J → Rk be a maximal solution of (7) and, by contradiction,
assume that sup J < +∞. Due to the fact that f is strictly retarded, the same
argument used in the proof of (1) shows that x can be extended to a solution
defined on (−∞, sup J + ε), contradicting the maximality of x.

Notice that, as a consequence of both the assertions of Lemma 3.1, if f is
a strictly retarded function, then the initial value problem (8) admits exactly
one global solution (i.e. a solution defined on the whole real line). This fact will
be applied in the proof of the following lemma, which is crucial in our proof of
Theorem 3.3 below.
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Lemma 3.2 (Global existence). Let f : R × BUn−1((−∞, 0],Rk) → Rk be a

continuous function with bounded image. Then, problem (8) has a global solu-

tion.

Proof. Let {εj} be a sequence of positive numbers converging to 0 and consider
the following auxiliary problem depending on j ∈ N:

�
x(n)(t) = f(t, xt−εj ), t > τ
xτ = η.

(10)

Let fj : R × BUn−1((−∞, 0],Rk) → Rk be defined by fj(t,ϕ) = f(t,ϕ−εj );
so that in problem (10) the expression f(t, xt−εj ) can be replaced by fj(t, xt).
Clearly, fj is a strictly retarded function. Hence, because of Lemma 3.1, prob-
lem (10) has a unique solution xj defined on the whole real line. Now, observe
that the restrictions to the half line [τ,+∞) of the functions xj are all of class
Cn (see Remark 2.5) and, f having bounded image, these restrictions have equi-
bounded n-th derivatives. Consequently, in any compact interval [τ, b] these
functions are also equibounded, due to the fact that their values at τ are all
equal to η(0). Thus, taking into account that in the left half line (−∞, τ ] the
functions xj do not depend on j, applying Ascoli’s Theorem to any compact
interval [τ, b], and by using a standard diagonal procedure, we may assume,
without loss of generality, that the sequence {xj} has the following properties:

• there exists a function x : R → Rk such that xj(t) → x(t), for any t ∈ R;

• xs ∈ BUn−1((−∞, 0],Rk), for all s ∈ R;

• xj
s → xs in the space BUn−1((−∞, 0],Rk), for all s ∈ R.

Now observe that, as j → +∞, one actually has xj
s−εj → xs, for any s ∈ R (see

Remark 2.2). Consequently, by applying Lebesgue’s Dominated Convergence
Theorem in equality (9), with fj(t, xt) in place of f(t, xt), we get that x is a
solution of the initial value problem (8), proving the assertion.

Theorem 3.3 (Local existence). Let f : Ω → Rk be a continuous function on

an open subset Ω of R×BUn−1((−∞, 0],Rk) and (τ, η) ∈ Ω. Then, the initial

value problem (8) admits at least one solution. In particular, any maximal

solution is defined on an open interval.

Proof. Let N ⊆ Ω be a closed neighborhood of (τ, η) whose image under f
is bounded. Due to the Tietze extension Theorem, the restriction f |N has a
continuous extension f̂ : R × BUn−1((−∞, 0],Rk) → Rk with bounded image.
By applying Lemma 3.2 to the problem

�
x(n)(t) = f̂(t, xt), t > τ

xτ = η ,
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we get the existence of a solution x̂ defined on the whole real line. Because of
the continuity of the map t �→ (t, x̂t), and taking into account that (τ, x̂τ ) =
(τ, η) ∈ N , one can find δ > 0 such that (t, x̂t) ∈ N for all t ∈ [τ, τ + δ). Since
f = f̂ in N , the restriction of x̂ to the half line (−∞, τ + δ) is a solution of
problem (8).

It remains to show that the domain of a maximal solution, call it x, cannot
be a closed interval of the type (−∞, b]. In fact, if this were the case, by
applying the above argument to problem (8) with initial data (τ, η) = (b, xb)
we would get a contradiction.

4. Uniqueness

In this section we will give conditions ensuring the unique dependence on the
past of the solutions of equation (7). We need the following folk result, whose
proof is given here for the sake of completeness.

Lemma 4.1. Let α : [τ, τ + h) → Rk (0 < h ≤ +∞) be a C1 function such

that α(τ) = 0 and |α�(t)| ≤ c sups∈[τ,t] |α(s)| for some constant c ≥ 0 and all

t ∈ [τ, τ + h). Then, α(t) ≡ 0 in [τ, τ + h).

Proof. Assume the contrary. Then, without loss of generality, we may suppose
that τ is such that α is nontrivial in any interval [τ, τ + δ], with 0 < δ < h.
Take δ such that δc < 1 and let t0 ∈ [τ, τ + δ] satisfy the condition |α(t0)| =
max

s∈[τ,τ+δ]
|α(s)| > 0. We have

|α(t0)| = |α(t0)− α(τ)| ≤ (t0 − τ) sup
s∈[τ,t0]

|α�(s)| ≤ δc|α(t0)|.

Being δc < 1, the above inequality implies α(t0) = 0, and this is a contradiction.

Let f : Ω → Rk be continuous on an open subset of R×BUn−1((−∞, 0],Rk).
Given an open set U ⊆ Ω, we will say that f is compactly Lipschitz in U with

respect to the second variable or, for short, c-Lipschitz in U , if, given any
compact subset Q of U , there exists L ≥ 0 such that

|f(t,ϕ)− f(t,ψ)| ≤ L�ϕ− ψ�

for all (t,ϕ) , (t,ψ) ∈ Q.
Moreover, we will say that f is locally c-Lipschitz in Ω if for any (τ, η) ∈ Ω

there exists an open neighborhood of (τ, η) in Ω in which f is c-Lipschitz. In
spite of the fact that a locally Lipschitz function is not necessarily (globally)
Lipschitz, one could actually show that if f is locally c-Lipschitz in Ω, then it is
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also (globally) c-Lipschitz in Ω. As a consequence, if f is C1 or, more generally,
locally Lipschitz in the second variable, then it is additionally c-Lipschitz.

Roughly speaking, Theorem 4.2 below shows that, if f is c-Lipschitz in Ω,
then the future of the solutions of equation (7) is uniquely determined by the
past. In particular, under this assumption, the initial value problem (8) has a
unique maximal solution, which is necessarily defined on an open (unbounded
below) interval, as stated in Theorem 3.3.

Theorem 4.2 (Uniqueness). Let Ω be an open subset of R×BUn−1((−∞, 0],Rk)
and let f : Ω → Rk be c-Lipschitz. Let x1 : J1 → Rk, x2 : J2 → Rk be two

maximal solutions of equation (7). If there exists τ ∈ J1 ∩J2 such that x1(t) =
x2(t) for t ≤ τ and (xi)(n)(t) = f(t, xi

t) for t ∈ Ji (i=1,2), t > τ , then J1 = J2
and x1 = x2.

Proof. Since, according to Theorem 3.3, J1∩J2 is an open interval, there exists
h > 0 such that [τ, τ + h] ⊆ J1 ∩ J2. Then, each one of the sets

Qi =
�
(t, xi

t) ∈ Ω ⊆ R×BUn−1((−∞, 0],Rk) : t ∈ [τ, τ + h]
�
, i = 1, 2,

is compact, as the image of the continuous curve t �→ (t, xi
t) ∈ Ω defined on

[τ, τ + h]. Since f is c-Lipschitz in Ω, there exists L ≥ 0, corresponding to the
compact set Q = Q1 ∪Q2, such that for any t ∈ [τ, τ + h] we have

|f(t, x2
t )− f(t, x1

t )| ≤ L�x2
t − x1

t�.

Set β(t) = x2(t)− x1(t), for t ∈ J1 ∩ J2. Then, choosing any t ∈ [τ, τ + h], we
get

|β(n)(t)| ≤ L�βt� = L
�
sup
θ≤0

|β(t+ θ)|+ sup
θ≤0

|β(n−1)(t+ θ)|
�
.

Consequently, since β(s) = 0 for s ≤ τ , one has

|β(n)(t)| ≤ L
�

sup
s∈[τ,t]

|β(s)|+ sup
s∈[τ,t]

|β(n−1)(s)|
�
. (11)

Moreover, the fact that β(τ) = β�(τ) = · · · = β(n−1)(τ) = 0 implies

|β(s)| =
���
� s

τ

(s− σ)n−2

(n− 2)!
β(n−1)(σ) dσ

��� ≤ M sup
σ∈[τ,t]

|β(n−1)(σ)|, for s ∈ [τ, t],

(12)
where

M :=

� τ+h

τ

(τ + h− σ)n−2

(n− 2)!
dσ =

hn−1

(n− 1)!
.

Hence, by (11) and (12), we get

|β(n)(t)| ≤ L(M + 1) sup
s∈[τ,t]

|β(n−1)(s)|.
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Now, by applying Lemma 4.1 with α = β(n−1), we obtain β(n−1)(t) = 0 for all
t ∈ [τ, τ + h) and, thus, again by (12), β(t) = 0 for all t ∈ [τ, τ + h).

This shows that x1 and x2 coincide in any right neighborhood of τ con-
tained in the open interval J1 ∩ J2. This implies J1 = J2 and, consequently,
x1 = x2. In fact, if one of the intervals were strictly contained in the other,
the corresponding solution would admit an extension to the bigger interval,
contradicting its maximality.

5. Continuous dependence on data

Below we will be concerned with upper semicontinuous multivalued maps. We
recall that a multivalued map Ψ between two metric spaces X and Y is said to
be upper semicontinuous if it is compact valued and for any open subset U of
Y the upper inverse image of U , i.e. the set Ψ−1(U) = {x ∈ X : Ψ(x) ⊆ U}, is
an open subset of X . Equivalently, Ψ is upper semicontinuous if and only if it
has closed graph and sends compact sets into relatively compact sets.

The next lemma regards the continuous dependence on the initial data of
the set of solutions of problem (8) in the case when f is globally defined with
bounded image.

Lemma 5.1. Let f : R × BUn−1((−∞, 0],Rk) → Rk be a continuous function

with bounded image. Then, for any b ∈ R, the multivalued map

Σf
b : (−∞, b)×BUn−1((−∞, 0],Rk) � BUn−1((−∞, b],Rk)

that associates to any (τ, η) the set

Σf
b (τ, η) =

�
x ∈ BUn−1((−∞, b],Rk) : x is a solution of problem (8)

�

is upper semicontinuous.

Proof. According to the characterization stated above, it is enough to show
that Σf

b has closed graph and sends compact sets into relatively compact sets.

Let us prove first that Σf
b has closed graph. To this end, take (τ, η, x) in

the graph G of Σf
b . This means that x belongs to Σf

b (τ, η) and, by (9), satisfies

x(t) =

� �n−1
j=0

(t−τ)j

j! η(j)(0) +
� t
τ

(t−s)n−1

(n−1)! f(s, xs) ds, if τ ≤ t ≤ b

η(t− τ), if t ≤ τ.
(13)

Define the subset F of the space

(−∞, b]× (−∞, b)×BUn−1((−∞, 0],Rk)×BUn−1((−∞, b],Rk)
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consisting of the quadruples (t, τ, η, x) which satisfy (13). Notice that F is
closed, because of the continuity of the following four Rk-valued functions in-
volved in (13):

(t, τ, η, x) �→ x(t),

(t, τ, η, x) �→ η(t− τ),

(t, τ, η, x) �→
n−1�

j=0

(t− τ)j

j!
η(j)(0),

(t, τ, η, x) �→
� t

τ

(t− s)n−1

(n− 1)!
f(s, xs) ds.

The continuity of the last one, the integral function, can be deduced from the
Dominated Convergence Theorem. Thus, the slices Ft = {(τ, η, x) : (t, τ, η, x) ∈
F} of F are all closed. Consequently, so is the graph G =

�
t≤b Ft of Σ

f
b .

It remains to show that Σf
b sends compact sets into relatively compact

sets. Take a compact set of (−∞, b) × BUn−1((−∞, 0],Rk) and observe that
it is contained in a set of the type [α,β] × A, with β < b and A a compact
subset of BUn−1((−∞, 0],Rk). Thus, it is enough to show that the subset
K = Σf

b ([α,β]×A) of BUn−1((−∞, b],Rk) is relatively compact. To this end,
observe that K is relatively compact if and only if so are both T1(K) and
T2(K), where

T1 : BUn−1((−∞, b],Rk) → BUn−1((−∞,α],Rk),

and
T2 : BUn−1((−∞, b],Rk) → Cn−1([α, b],Rk),

denote the restriction operators to the intervals (−∞,α] and [α, b], respectively.
Let us consider first T1(K). According to Remark 2.2, the map

(τ, η) ∈ [α,+∞)×BUn−1((−∞, 0],Rk) �→ ηα−τ ∈ BUn−1((−∞, 0],Rk)

is continuous. Therefore, A being compact, so is the set
�
ηα−τ : τ ∈ [α,β], η ∈ A

�
,

which, up to the isometry

x ∈ BUn−1((−∞,α],Rk) �→ xα ∈ BUn−1((−∞, 0],Rk),

can be identified with T1(K). Thus, T1(K) is compact.
To complete the proof, let us show that T2(K) is relatively compact. To

this end, consider in Cn−1([α, b],Rk) the Banach norm

�x� = |x(α)|+ max
t∈[α,b]

|x(n−1)(t)|.
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Observe first that, because of the continuity of the evaluation map x �→ x(α),
there exists C > 0 such that |x(α)| ≤ C for all x ∈ K. According to Ascoli’s
theorem, it remains to prove that the functions of T2(K) have equicontinuous
derivatives of order (n− 1) on [α, b].

To this purpose, choose ε > 0 and take any x ∈ K. According to Re-
mark 2.1, the compactness of A implies that A is bounded and its elements
have equi-uniformly continuous derivatives of order n − 1. Hence, there ex-
ists σ > 0 such that, if θ1, θ2 ∈ (−∞, 0] with |θ1 − θ2| < σ and η ∈ A, then
|η(n−1)(θ1)−η(n−1)(θ2)| < ε. Therefore, recalling that x(t) = η(t− τ) for some
η ∈ A and all t ≤ τ , one has

|x(n−1)(t1)− x(n−1)(t2)| < ε,

for any t1, t2 ∈ [α, τ ], with |t1 − t2| < σ.
Now, let us consider the function x in the interval [τ, b]. Since f is bounded,

there exists L > 0 such that |x(n)(t)| ≤ L for all t ∈ [τ, b], and, consequently,
x(n−1) is Lipschitz continuous on [τ, b], with constant L.

Now, by taking δ = min{σ, ε/L}, we obtain

|x(n−1)(t1)− x(n−1)(t2)| < 2ε,

for any t1, t2 ∈ [α, b] with |t1 − t2| < δ. Since x ∈ K is arbitrary, this proves
that T2(K) is relatively compact in Cn−1([α, b],Rk).

Our purpose now is to remove the assumptions, in Lemma 5.1, that the
function f is defined on the whole space R × BUn−1((−∞, 0],Rk) and has
bounded image. More precisely, we will prove a result concerning the contin-
uous dependence of the solutions of problem (8) on the initial data, in the
general case in which the function f is merely continuous on an open subset Ω
of R×BUn−1((−∞, 0],Rk). To this end we will previously extend the validity
of the notation Σf

b introduced in Lemma 5.1.
Take b ∈ R and assume that (τ, η) ∈ Ω, with τ < b, is such that any

maximal solution of (8) is defined up to b. In this case, and only in this case,
we define the set

Σf
b (τ, η) =

�
x ∈ BUn−1((−∞, b],Rk) : x is a solution of problem (8)

�
.

Notice that Σf
b (τ, η) is nonempty, whenever it is defined. In fact, in this

case, the vacuous truth does not apply, due to the existence of at least one
maximal solution of the initial value problem (8) ensured by Theorem 3.3.

As a special example, we observe that, under the assumptions of Lemma 5.1,
the set Σf

b (τ, η) is defined for any (τ, η) in the open subset

Df
b = (−∞, b)×BUn−1((−∞, 0],Rk)

of R×BUn−1((−∞, 0],Rk). Moreover, in this case, Σf
b (τ, η) is always compact.
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Theorem 5.2 (Continuous dependence). Let f : Ω → Rk be a continuous func-

tion on an open subset Ω of R×BUn−1((−∞, 0],Rk). Then, given b ∈ R, the
set

Df
b =

�
(τ, η) ∈ Ω : Σf

b (τ, η) is defined and compact
�

is open and the multivalued map (τ, η) ∈ Df
b � Σf

b (τ, η) is upper semicontin-

uous.

Proof. Let us show first that Df
b is open. To this end, consider the multivalued

map

Γ : (−∞, b)×BUn−1((−∞, b],Rk) � R×BUn−1((−∞, 0],Rk)

defined by (a, x) �
�
(t, xt) : a ≤ t ≤ b

�
. Notice that Γ is compact valued,

since, given (a, x) in its domain, the curve t ∈ [a, b] �→ (t, xt) is continuous,
according to Remark 2.2. We claim that Γ is actually upper semicontinuous.
To this purpose, let us prove that the graph of Γ is a closed subset of

T = (−∞, b)×BUn−1((−∞, b],Rk)× R×BUn−1((−∞, 0],Rk)

and that Γ maps compact sets into relatively compact sets.
Observe that the graph of Γ is equal to

�
(a, x, t,ϕ) ∈ T : a ≤ t ≤ b,ϕ = xt

�
,

which is closed because of the continuity of the maps

(a, x, t,ϕ) �→ ϕ and (a, x, t,ϕ) �→ xt.

Now, any compact set in the domain of Γ is contained in another compact
set of the type [c, b]×K, and Γ([c, b]×K) =

�
(t, xt) : t ∈ [c, b], x ∈ K

�
is as well

compact, being the image of [c, b]×K under the continuous map (t, x) �→ (t, xt).
Thus, Γ is upper semicontinuous, as claimed.

As a consequence of this, we get that the multivalued map

P f
b : Df

b � R×BUn−1((−∞, 0],Rk)

that to any (τ, η) ∈ Df
b associates the brush of f starting at (τ, η),

P f
b (τ, η) := Γ

�
{τ}× Σf

b (τ, η)
�
,

is compact valued (recall that an upper semicontinuous multivalued map trans-
forms compact sets into compact sets).

Observe that the initial point (τ, η) belongs to P f
b (τ, η) whatever is (τ, η) ∈

Df
b . Moreover, one has

P f
b (τ, η) =

�
(t, xt) : τ ≤ t ≤ b, x is a solution in (−∞, b] of problem (8)

�
.
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Thus, recalling that any solution x ∈ Σf
b (τ, η) must satisfy the condition

(t, xt) ∈ Ω for all t ∈ [τ, b], one gets P f
b (τ, η) ⊆ Ω for all (τ, η) ∈ Df

b . No-

tice also that any brush P f
b (τ, η) is a connected set. In fact, it is actually path

connected, since any element in it can be joined with the initial point (τ, η).
This fact will be useful later.

In order to show that Df
b is open, take an arbitrary element (τ̌ , η̌) ∈ Df

b .

We need to find a neighborhood of (τ̌ , η̌) which is contained in Df
b . To this

purpose consider the compact set P f
b (τ̌ , η̌) and let V be an open neighborhood

of P f
b (τ̌ , η̌) whose closure V is contained in Ω and whose image f(V ) is bounded.

Because of the Tietze Extension Theorem, the restriction f |V of f to the closure
of V admits a continuous extension g : R × BUn−1((−∞, 0],Rk) → Rk with
bounded image.

Now, we can apply Lemma 5.1 with the function f replaced by g, getting
the upper semicontinuous multivalued map

Σg
b : D

g
b � BUn−1((−∞, b],Rk),

defined on Dg
b = (−∞, b) × BUn−1((−∞, 0],Rk). Thus, taking into account

that the composition of upper semicontinuous maps is upper semicontinuous,
the multivalued map

P g
b : Df

b � R×BUn−1((−∞, 0],Rk),

given by P g
b (τ, η) := Γ

�
{τ}× Σg

b(τ, η)
�
, is as well upper semicontinuous.

Let (τ, η) ∈ V . We claim that, whenever one of the two brushes, P f
b (τ, η)

and P g
b (τ, η), is contained in V , then so is the other one and P f

b (τ, η) = P g
b (τ, η).

For sure we have P f
b (τ, η) ∩ V = P g

b (τ, η) ∩ V , since the two functions f

and g agree in V . Therefore, assume, for example, that P f
b (τ, η) is contained

in V . Then P g
b (τ, η) ∩ V is a compact set, since so is P f

b (τ, η). Consequently
P g
b (τ, η)∩ V = P g

b (τ, η), since otherwise it would be disconnected. This proves
our claim.

As a first consequence of this we get that the set P g
b (τ̌ , η̌) is equal to P

f
b (τ̌ , η̌)

and is contained in V . Due to the upper semicontinuity of P g
b , there exists a

neighborhood U in Dg
b such that, for any (τ, η) ∈ U , one has P g

b (τ, η) ⊆ V and,

consequently, P f
b (τ, η) = P g

b (τ, η).
This implies that, whenever (τ, η) ∈ U , any solution in (−∞, b] of prob-

lem (8) is as well a solution of the same problem with f replaced by g, and
viceversa. Thus, because of the arbitrariness of (τ̌ , η̌) and taking into account
of Lemma 5.1, one gets both that Df

b is open and the multivalued map Σf
b is

upper semicontinuous.

Remark 5.3. In the case when the uniqueness of the solution of problem (8)
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is assumed (as e.g. in [7]), the map Σf
b turns out to be single valued and, by

the above theorem, it is in fact continuous.

6. Continuation property

Here we are interested in the continuation property of the solutions of equa-
tion (7). That is, the property of the solutions of being continuable (not max-
imal). Our first result states that, given a solution x : J → Rk, if the curve
t �→ (t, xt) lies eventually in a complete subset C of Ω and f(C) is bounded,
then x is not maximal, unless J = R. In this way we include Lemma 3.2 as well
as some special cases, stated for n = 1, that can be found in [14, Chapter 12]
and [15, Chapter 2].

Theorem 6.1 (Continuation of solutions). Let f : Ω → Rk be a continuous

function on an open subset Ω of R × BUn−1((−∞, 0],Rk). Let x : J → Rk

be a solution of equation (7) such that (t, xt) belongs eventually to a complete

subset C of Ω. If f(C) is bounded and sup J < +∞, then x is continuable. In

particular, if f is defined on the whole space R×BUn−1((−∞, 0],Rk) and has

bounded image, then any maximal solution is defined on the whole real line.

Proof. If J = (−∞, b], then x is continuable, since, according to Theorem 3.3,
any maximal solution is defined on an open interval. Therefore, we may assume
J = (−∞, b).

Since (t, xt) belongs eventually to C, f(t, xt) is eventually bounded, and so
is x(n)(t). Thus,

lim
t→b−

x(n−1)(t)

exists and is finite. This implies that all the functions x(j)(t), j = 1, . . . , n− 1,
are eventually bounded as well, so that the limits

lim
t→b−

x(j)(t), j = 0, . . . , n− 2,

exist and are finite. Therefore, x admits a Cn−1 extension, call it x̄, to the
closed interval (−∞, b]. Clearly, x̄b belongs to BUn−1((−∞, 0],Rk) and

lim
t→b−

(t, xt) = (b, x̄b).

Since C is complete, (b, x̄b) belongs to C and, thus, to Ω. Consequently, because
of the continuity of f , we get x̄(n)(b) = f(b, x̄b), so that x̄ is a solution of (7),
which cannot be maximal according to Theorem 3.3.

The last assertion follows from the previous one.
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The following two corollaries are straightforward consequences of Theo-
rem 6.1. Therefore, their proofs will be omitted. We only point out that, in
both the corollaries, the condition sup J < +∞, required in Theorem 6.1, is
trivially satisfied.

Corollary 6.2. Let f : Ω → Rk be a continuous function on an open subset

Ω of R × BUn−1((−∞, 0],Rk). Let x : J → Rk be a solution of equation (7)
and assume that (t, xt) belongs eventually to a compact subset of Ω. Then x is

continuable.

Corollary 6.3. Let f : R×BUn−1((−∞, 0],Rk) → Rk be a continuous func-

tion sending bounded sets into bounded sets. If x : J → Rk is a solution of

equation (7) such that (t, xt) is eventually bounded, then x is continuable.

The continuation property of the solutions may fail if, in Corollary 6.3, the
assumption that f sends bounded sets into bounded sets is removed (see [7] for
an example of a first order RFDE).

The following consequence of Theorem 6.1 is an extension of Corollary 6.3
and can be regarded as a Kamke-type result for RFDEs.

Corollary 6.4. Let W be an open subset of R× Rk × Rk and set

Ω = {(s,ϕ) ∈ R×BUn−1((−∞, 0],Rk) : (s,ϕ(0),ϕ(n−1)(0)) ∈ W}.

Let f : Ω → Rk be a continuous function sending bounded sets into bounded sets.

If x : (−∞, b) → Rk is a solution of equation (7) such that (t, x(t), x(n−1)(t))
belongs eventually to a compact subset of W, then x is continuable.

Proof. Denote by Φ : R×BUn−1((−∞, 0],Rk) → R×Rk ×Rk the continuous
map (s,ϕ) �→ (s,ϕ(0),ϕ(n−1)(0)), and observe that Ω = Φ−1(W ), so that Ω is
an open set. By assumption, there exist τ < b and a compact subset K of W
such that (t, x(t), x(n−1)(t)) ∈ K when τ ≤ t < b.

Let C denote the closure in R×BUn−1((−∞, 0],Rk) of the set

{(t, xt), τ ≤ t < b}.

Notice that C is bounded, because of the assumption (t, x(t), x(n−1)(t)) ∈ K
for t in a left neighborhood of b, and it is complete, being contained in the
closed subset Φ−1(K) of the Banach space R×BUn−1((−∞, 0],Rk). Moreover,
C is contained in Ω, since so is Φ−1(K), and f(C) is bounded, since f maps
bounded sets into bounded sets. Therefore, all the assumptions in Theorem 6.1
are satisfied, and x is continuable.

We point out that, if in Corollary 6.4 we take W = R × Rk × Rk, then Ω
turns out to be the entire space R × BUn−1((−∞, 0],Rk). Consequently, in
this special case, given a solution x : (−∞, b) → Rk of (7), the following two
assumptions are equivalent:
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• (t, xt) is eventually bounded;

• (t, x(t), x(n−1)(t)) belongs eventually to a compact set.

This shows that Corollary 6.3 is a special case of Corollary 6.4, as claimed
above.

7. Examples

Here we give two examples showing how some initial value problems for higher
order ODEs, as well as higher order RFDEs with finite delay, can be interpreted
in the framework of RFDEs with infinite delay.

Example 7.1 (From ODEs to RFDEs). Let g : W → Rk be a continuous func-
tion defined on an open subset W of R×Rk ×Rk and consider the initial value
problem 





x��(t) = g(t, x(t), x�(t)), t ≥ τ
x(τ) = a,
x�(τ) = b,

(14)

where (τ, a, b) is a given element of W .
Let us show how this problem can be interpreted as an initial value problem

of a second order RFDE with infinite delay defined on an open subset of the
space R×BU1((−∞, 0],Rk).

To this end, consider the open set

Ω =
�
(t,ϕ) ∈ R×BU1((−∞, 0],Rk) : (t,ϕ(0),ϕ�(0)) ∈ W

�

and define f : Ω → Rk by f(t,ϕ) = g(t,ϕ(0),ϕ�(0)). Choose any function η
in BU1((−∞, 0],Rk) such that η(0) = a and η�(0) = b. For example, take
η(θ) = (a+ θb) exp(−θ2). Then, any solution x : J → Rk of the system

�
x��(t) = f(t, xt), t > τ
xτ = η,

(15)

if restricted to the interval J ∩ [τ,+∞), is as well a solution of the initial value
problem (14). In fact, for t > τ one has

x��(t) = f(t, xt) = g(t, xt(0), x
�
t(0)) = g(t, x(t), x�(t)),

and for t = τ we get x(τ) = xτ (0) = η(0) = a and x�(τ) = x�
τ (0) = η�(0) = b.

The same argument shows that, in some sense, the converse is also true.
More precisely, if x : I → Rk is a solution of (14), then x can be extended to a
solution of (15) defined on the interval (−∞, τ ] ∪ I. Thus, the two problems,
(14) and (15), may be regarded as equivalent.
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Example 7.2 (From finite to infinite delay). Let g : W → Rk be a continuous
function defined on an open subset W of R × C(n−1)([−r, 0],Rk), r > 0, and
consider, in W, the following initial value problem with finite delay:

�
x(n)(t) = g(t, xt), t > τ
xτ = ψ,

(16)

where τ ∈ R and ψ ∈ C(n−1)([−r, 0],Rk) are given.
The above system can also be viewed as an initial value problem with infinite

delay. To see this, consider the subset of R×BU (n−1)((−∞, 0],Rk) given by

Ω =
�
(t,ϕ) : (t,ϕ|[−r,0]) ∈ W

�
,

where ϕ|[−r,0] denotes the restriction of ϕ to the interval [−r, 0]. The continuity
of the map (t,ϕ) �→ (t,ϕ|[−r,0]) implies that Ω is an open set.

Now, define f : Ω → Rk by f(t,ϕ) = g(t,ϕ|[−r,0]) and choose any function

η ∈ BU (n−1)((−∞, 0],Rk) such that η|[−r,0] = ψ. Then, as one can easily
check, problem (16) and

�
x(n)(t) = f(t, xt), t > τ
xτ = η

may be regarded as equivalent, in the sense that any solution x : J → Rk of
one of them coincides, for t ∈ [τ − r,+∞) ∩ J , with a solution of the other.
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Smoothness issues in differential
equations with state-dependent delay
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Abstract. For differential equations with state-dependent delays a
satisfactory theory is developed by the second author [6] on the solution
manifold to guarantee C1-smoothness for the solution operators. We
present examples showing that better than C1-smoothness cannot be ex-
pected in general for the solution manifold and for local stable manifolds
at stationary points on the solution manifold. Then we propose a new
approach to overcome the difficulties caused by the lack of smoothness.
The mollification technique is used to approximate the nonsmooth eval-
uation map with smooth maps. Several examples show that the mollified
systems can have nicer smoothness properties than the original equa-
tion. Examples are also given where better smoothness than C1 can be
obtained on the solution manifold.

Keywords: Delay differential equation, state-dependent delay, solution manifold, stable
manifold, solution operator, smoothness, mollification, threshold delay.
MS Classification 2010: 34K05, 34K19.

1. Introduction

Let h > 0, a subset U ⊂ (Rn)[−h,0] and a map f : U → Rn be given. Under
additional conditions on U and f , we consider solutions of the initial value
problem (IVP)

x�(t) = f(xt) for t > 0, x0 = φ ∈ U (1)

which are C1-maps x : [−h, te) → Rn, 0 < te ≤ ∞, with all segments xt :
[−h, 0] � s �→ x(t + s) ∈ Rn, 0 ≤ t < te, in U so that x�(t) = f(xt) holds for
all t ∈ (0, te), and x0 = φ.

For k ∈ N0, let Xk = Ck([−h, 0],Rn) denote the Banach spaces of the
k-times continuously differentiable functions φ : [−h, 0] → Rn equipped with

the norm |φ|k =
�k

j=0 |φ(j)|0 where |φ|0 = max−h≤s≤0 |φ(s)| with a fixed norm

| · | in Rn. We use X = X0.
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If U ⊂ X is open and if f : U → Rn is Cp-smooth for some integer p ≥ 1
then each φ ∈ U uniquely determines a maximal solution xφ : [−h, tφ) →
Rn of the IVP (1). Then (t,φ) �→ xφ

t , φ ∈ U and 0 ≤ t < tφ, defines a

continuous semiflow on U . The solution operators φ �→ xφ

t , 0 ≤ t, on non-
empty domains are C1-smooth, see [3, 2]. It is stated without proof on page 51
in [3] that Cp-smoothness holds as well. The construction of the semiflow
and C1-smoothness of solution operators are also given in [2, Chapter VII]. A
proof that the solution operators are in fact Cp-smooth requires appropriate
modifications of the arguments in [2, Chapter VII]. The necessary modifications
are similar to those which are sketched in Section 5 for Cp-smoothness in a
different framework used for equations with state-dependent delays. In the
sequel, we refer to the case where f : U → Rn is Cp-smooth on an open
U ⊂ X as the classical situation where the solution operators are Cp-smooth.
This framework is satisfactory for differential equations with constant delays,
but not for equations with state-dependent delays.

A large class of differential equations with state-dependent delays can ef-
fectively be handled within the following framework developed by the second
author [6]. Let U be an open subset of X1, and consider a C1-smooth map
f : U → Rn with the following extension property:

(e) each Df(φ) : X1 → Rn has a linear extension Def(φ) ∈ Lc(X,Rn) so
that the map

U ×X � (φ,χ) �→ Def(φ)χ ∈ Rn

is continuous.
Suppose φ�(0) = f(φ) for some φ ∈ U . Then the set

X1
f = {φ ∈ U : φ�(0) = f(φ)} �= ∅

is a C1-submanifold of X1 with codimension n, each φ ∈ X1
f
uniquely deter-

mines a maximal solution xφ : [−h, tφ) → Rn of the IVP (1) so that any other
solution of the same initial value problem is a restriction of xφ. The relations

S(t,φ) = xφ

t , 0 ≤ t < tφ, φ ∈ X1
f ,

define a continuous semiflow S on X1
f
such that all solution operators

S(t, ·) : {φ ∈ X1
f : t < tφ} → X1

f , t ≥ 0,

on non-empty domains are C1-smooth.
Let a stationary point φ0 ∈ X1

f
of S be given. The continuous solutions

[−h,∞) → Rn of the IVP

v�(t) = Def(φ0)vt for t > 0, v0 = χ ∈ X (2)
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tell us about the nature of the dynamics near φ0 : If all of these (whose re-
strictions v|[0,∞) are differentiable and satisfy the differential equation in (2))
tend to 0 as t → ∞ then φ0 is a stable and attractive stationary point of S,
and any local stable manifold is a neighbourhood of φ0 in X1

f
. If t �→ 0 is the

only bounded solution R → Rn of the differential equation in (2) then φ0 is
hyperbolic, and we have the decomposition

Tφ0X
1
f = Ls(φ0)⊕ Lu(φ0)

into the closed stable and unstable spaces Ls(φ0) and Lu(φ0), respectively.
Ls(φ0) consists of all segments of all continuously differentiable solutions

[−h,∞) → Rn of the IVP

v�(t) = Df(φ0)vt for t > 0, v0 = χ ∈ Tφ0X
1
f (3)

which tend to 0 as t → ∞. For any local stable manifold W s(φ0) ⊂ X1
f
of S

at φ0,
Tφ0W

s(φ0) = Ls(φ0).

For example, the above framework works for the equation

x�(t) = g(x(t− r(xt))), (4)

with a given map g : Rn → Rn and a given delay functional r : U → [0, h],
U ⊂ (Rn)[−h,0]. Equation (4) has the form (1) with

f = g ◦ ev ◦ (id× (−r))

where the evaluation map ev : (Rn)[−h,0] × [−h, 0] → Rn is given by

ev(φ, s) = φ(s).

Let evk denote the restriction of ev toXk×[−h, 0], k ∈ N0. The smoothness
properties of the evaluation map and its restrictions play a crucial role in the
theory. The map ev0 is continuous (but not locally Lipschitz continuous).
Therefore a map f involving the evaluation map — like in equation (4) above
— in general is not locally Lipschitz continuous on open subsets of X, and
uniqueness of solutions with respect to only continuous initial data may fail,
which is indeed the case for certain examples, see [4].

The restrictions evk, k ∈ N, of ev have nice smoothness properties. In
particular the map ev1 is C1-smooth on X1 × [−h, 0], with

Dev1(φ, t)(χ, s) = χ(t) + sφ�(t).

Lemma 4.2 below states that for each integer k ≥ 2, the map evk is Ck-
smooth. Ck-smoothness of these maps, which are not defined on open subsets
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of Xk ×R, means that they have extensions to open subsets of Xk ×R which
are Ck-smooth in the usual sense.

It is an open problem whether, for equations with state-dependent delays,
better than C1-smoothness (Cp-smoothness with p > 1) can be obtained for
the solution operators, either on the solution manifold X1

f
⊂ X1 or on other

phase spaces. The first step towards an affirmative answer would be to prove
that the solution manifold X1

f
⊂ X1 is Cp-smooth for some p ≥ 2. In Section 2

we give an example showing that in general, for a Cp-map f : U → Rn on an
open subset U of X1 with the extension property (e), the solution manifold
X1

f
⊂ X1 is only C1-smooth, not twice continuously differentiable, no matter

how large p is. The example has the form

x�(t) = −αx(t− d(x(t))), (5)

and it is crucial that ev1 is not C2-smooth.
In spite of the lack of results on better than C1-smoothness for the solution

operators generated by equations with state-dependent delays, the paper [5],
for each k ∈ N, gave conditions for the Ck-smoothness of local unstable mani-
folds Wu(φ0) at stationary points. For example, the required conditions hold
for equations (4) and (5) with at least Ck-smooth g, r, d. Therefore, within
the C1-smooth solution manifold X1

f
it is possible to find certain invariant

manifolds with better smoothness properties. This is known for the local un-
stable manifolds [5], and it is expected for the local center and center-unstable
manifolds at stationary points. Does an analogous result exist for local stable
manifolds W s(φ0)? In the example of Section 2 the stationary point is attract-
ing, and the local stable manifold W s(φ0) is an open neighbourhood in X1

f

of the stationary point which is not a C2-smooth submanifold of X1. Thus,
the answer is in general negative for local stable manifolds at stationary points.
Section 3 contains another example in this direction where the stationary point
is unstable.

In Section 4 we propose a new approach to overcome the difficulties caused
by the lack of smoothness. We use the convolution and mollification to ap-
proximate the non-smooth map ev with smooth maps. Let η : R → R be a
C∞-smooth function so that supp η ⊂ [−1, 1], and

�
R η(s) ds = 1. For � > 0

set η�(t) = (1/�)η(t/�), t ∈ R. The idea is the following for equation (4)
provided that g : Rn → Rn is Ck-smooth, r : X → R is Ck-smooth, and
r(X) ⊂ (δ, h − δ) for some δ > 0. We choose � ∈ (0, δ) and in equation (4)
replace the term x(t− r(xt)) by

� 0

−h

η�(−r(xt)− s)x(t+ s) ds = −
� −r(xt)+�

−r(xt)−�

x(t+ u)η�(u) du.

That is, the map
X � φ �→ g (ev(φ,−r(φ))) ∈ Rn (6)
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on the right hand side of (4) is changed to the map

X � φ �→ g

�� 0

−h

η�(−r(φ)− s)φ(s) ds

�
∈ Rn. (7)

Thus the discrete state-dependent delay is changed to a distributed delay term
expressed by the convolution of the solution and a smooth function with com-
pact support. We show that for the modified equation

x�(t) = g

�� 0

−h

η�(−r(xt)− s)x(t+ s) ds

�
(8)

the solutions of the corresponding IVP define Ck-smooth solution operators
on the phase space X. It turns out that (7) defines a Ck-map on X, and the
classical theory developed for constant delays works.

In several models involving state-dependent delays the delay functional is
not given explicitly, and its smoothness properties are not obvious. We consider
an example of the form (4) in which the delay functional r is given by a threshold
condition.

In Section 5 we explain how to get Ck-smoothness with k > 1 for solution
operators on solution manifolds in X1, in certain particular cases.

2. An example with an attracting stationary point

Take h = 2, n = 1, U = X1, and f(φ) = −αφ(−d(φ(0))) with 0 < α < π

2 and
d : R → (0, 2) at least C2-smooth with

d(ξ) = 1 + ξ for |ξ| < 1

2
.

Then f is C1-smooth with

Df(φ)χ = −α[χ(−d(φ(0)))− φ�(−d(φ(0)))d�(φ(0))χ(0)],

see for example Chapter 3 in [4]. The extension property (e) holds. We have

X1
f = {φ ∈ X1 : φ�(0) = −αφ(−d(φ(0)))},

0 ∈ X1
f
is a stationary point of the semiflow on X1

f
, and

Def(0)χ = −αχ(−1)

so that the linear differential delay equation of the IVP (2) becomes

v�(t) = −α v(t− 1),
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for which all maximal solutions tend to 0 as t → ∞ because of α < π

2 [8, 3, 2].
So any local stable manifold W s of the stationary point 0 ∈ X1

f
is given by

W s = X1
f
∩N with some open neighbourhood N of 0 in X1.

We shall show that X1
f
∩N is not a C2-submanifold of X1. We begin with

a graph representation of X1
f
. Notice that the tangent space Y = T0X1

f
is the

closed hyperplane
{η ∈ X1 : η�(0) = −αη(−1)}.

Choose a C2-function ψ ∈ X1 \ Y with

ψ(0) = 0 = ψ�(0), ψ(−1) = 1, and ψ(t) �= 0 for all t ∈ [−2, 0),

for example, ψ(t) = t2. Then

X1 = Rψ ⊕ Y.

Proposition 2.1.
X1

f = {a(η)ψ + η : η ∈ Y }

with the map a : Y → R given by

a(η) =
1

ψ(−d(η(0)))
[η(−1)− η(−d(η(0)))]

=
1

ψ(−d(η(0)))

�
η(−1) +

1

α
f(η)

�
.

Proof. For A ∈ R and η ∈ Y the relation Aψ + η ∈ X1
f
is equivalent to

(Aψ + η)�(0) = −α[(Aψ + η)(−d((Aψ + η)(0)))],

or

(−αη(−1) =) η�(0) = −α[Aψ(−d(Aψ(0) + η(0))) + η(−d(Aψ(0) + η(0)))]

= −α[Aψ(−d(η(0))) + η(−d(η(0)))],

or

A =
1

ψ(−d(η(0)))
[η(−1)− η(−d(η(0)))].

The map a is C1-smooth. The linear continuous projection P : X1 → X1

along Rψ onto Y maps X1
f
one-to-one onto the hyperplane Y , and the inverse

of P |X1
f
is the map

Y � η �→ a(η)ψ + η ∈ X1
f ⊂ X1.
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Suppose now that X1
f
∩ N is a C2-submanifold of X1. Then P defines a

C2-diffeomorphism from X1
f
∩N onto the open neighbourhood P (X1

f
∩N) of

0 in Y . For some open neighbourhood V of 0 in X1, P (X1
f
∩N) = Y ∩ V . It

follows that the inverse

Y ∩ V � η �→ a(η)ψ + η ∈ X1
f ∩N ⊂ X1

is C2-smooth. Using the projection id − P and the topological isomorphism
Rψ � sψ �→ s ∈ R we obtain that also the restriction of a to Y ∩ V is C2-
smooth.

It follows that the map

Y ∩ V � η �→ ψ(−d(η(0)))a(η)− η(−1) ∈ R

is C2-smooth. It equals 1
α
f , and we obtain that the map

g : Y ∩ V � η �→ η(−d(η(0))) ∈ R

is C2-smooth. A look at the formula for the derivative of f in case α = 1 and
an application of the chain rule to the composition of f with the embedding
Y → X1 shows that for every η ∈ Y ∩ V and for each η̂ ∈ Y we have

Dg(η)η̂ = η̂(−d(η(0)))− d�(η(0))η�(−d(η(0)))η̂(0).

Fix some η̂ ∈ Y with η̂(0) = 1. The evaluation map

Ev : Lc(Y,R) � λ �→ λ(η̂) ∈ R

is linear and continuous. An application of the chain rule yields that

Ev ◦Dg : Y ∩ V � η �→ Dg(η)η̂ ∈ R

is C1-smooth. Notice that for every η ∈ Y ∩ V ,

(Ev ◦Dg)(η) = η̂(−d(η(0)))− d�(η(0))η�(−d(η(0))) · 1.

The maps
Y ∩ V � η �→ η̂(−d(η(0))) ∈ R

and
Y ∩ V � η �→ d�(η(0)) ∈ R

are C1-smooth.

Now choose η0 ∈ Y ∩ V with

0 < η0(0) <
1

2
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which has no second derivative at −1−η0(0). Notice that d�(η0(0)) = 1. There
is an open neighbourhood U of η0 in X1, U ⊂ V , with

d�(η(0)) > 0 for all η ∈ U.

This implies that the map

H : Y ∩ U � η �→ 1

−d�(η(0))
[(Ev ◦Dg)(η)− η̂(−d(η(0)))] ∈ R

is C1-smooth. Notice that

H(η) = η�(−d(η(0))) for all η ∈ Y ∩ U.

Choose η ∈ Y with η(0) = 1. There exists � ∈ (0, 1
2 ) such that for all s ∈ (−�, �)

we have

0 < η0(0) + s <
1

2
and η0 + sη ∈ U.

As the curve R � s �→ η0 + sη ∈ Y is affine linear and continuous the chain
rule applies and yields that the map

j : (−�, �) � s �→ H(η0 + sη) ∈ R

is C1-smooth. For 0 < |s| < � we have

1

s
[j(s)−j(0)] =

1

s
[H(η0 + sη)−H(η0)]

=
1

s
[(η0 + sη)�(−d((η0 + sη)(0)))− η�0(−d(η0(0)))]

=
1

s
[η�0(−d(η0(0) + s)) + sη�(−d(η0(0) + s))− η�0(−d(η0(0)))]

=
1

s
[η�0(−1− η0(0)− s) + sη�(−1− η0(0)− s)− η�0(−1− η0(0))]

=
1

s
[η�0(−1− η0(0)− s)− η�0(−1− η0(0))] + η�(−1− η0(0)− s).

This shows that for 0 �= s → 0 the quotient

1

s
[η�0(−1− η0(0)− s)− η�0(−1− η0(0))]

converges to j�(0)−η�(−1−η0(0)), in contradiction to the choice of η0 without
a second derivative at −1− η0(0).
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3. An example with an unstable stationary point

In this section X1 = C1([−h, 0],Rn) will appear with n = 1 and n = 2.
In order to avoid confusion we introduce X1

1 = C1([−h, 0],R) and X1
2 =

C1([−h, 0],R2).
Take h = 2 and α and d as in Section 2, but now n = 2, and consider

g : X1
2 → R2, g(φ, η) = (f(φ), η(0)),

with f from Section 2. The map g is C1-smooth with

Dg(φ, η)(φ̂, η̂) = (Df(φ)φ̂, η̂(0)).

The extension property (e) holds. The solution manifold

X1
g = {(φ, η) ∈ X1

2 : φ�(0) = −αφ(−(d(φ(0))), η�(0) = η(0)}

has codimension 2. The semiflow Sg on X1
g given by the C1-solutions of the

system

x�(t) = −αx(t− d(x(t))), (9)

y�(t) = y(t), (10)

satisfies Sg(t, (0, 0)) = (0, 0) for all t ≥ 0, and

T(0,0)X
1
g = {(ξ, η) ∈ X1

2 : ξ�(0) = −α ξ(−1), η�(0) = η(0)}

The linear system z�(t) = Deg(0, 0)zt, or

u�(t) = −αu(t− 1), (11)

v�(t) = v(t) (12)

has no nontrivial bounded solutionR → R2, so the stationary point (0, 0) ∈ X1
g

of Sg is hyperbolic. The solution R � t �→ (0, et) ∈ R2 of both systems shows
that (0, 0) is unstable, and we have the decomposition

T(0,0)X
1
g = Ls ⊕ Lu

with the stable and unstable linear spaces Ls = Ls(0, 0) �= T(0,0)X
1
g and Lu =

Lu(0, 0) �= {0}. The facts that all solutions [−2,∞) → R of equation (11) tend
to 0 as t → ∞ and v(t) = 0 on [0,∞) for any solution [−2,∞) → R of equation
(12) with v(0) = 0 combined imply

{(ξ, η) ∈ T(0,0)X
1
g : η(0) = 0} ⊂ Ls. (13)

As R � t �→ (0, et) ∈ R2 is a solution of the system (11)-(12) we also get

(0, ηu) /∈ Ls.
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for ηu = exp |[−2,0]. Notice that we have

T(0,0)X
1
g = {(ξ, η) ∈ T(0,0)X

1
g : η(0) = 0}⊕R(0, ηu). (14)

Corollary 3.1.
Ls = {(ξ, η) ∈ T(0,0)X

1
g : η(0) = 0}

Proof. Due to instability the codimension of Ls in the tangent space is at
least 1. By (14) the codimension of {(ξ, η) ∈ T(0,0)X

1
g : η(0) = 0} in the

tangent space is 1. Use the inclusion (13).

We proceed to a complement of Ls in X1
2 . Choose ψ ∈ C2([−2, 0],R)\T0X1

f

as in Section 2 (for example, ψ(t) = t2). Then ψ�(0) �= −αψ(−1). The constant
function 1 : [−2, 0] � t �→ 1 ∈ R does not satisfy η�(0) = η(0). Both facts
combined imply

X1
2 = T(0,0)X

1
g ⊕R(ψ, 0)⊕R(0,1).

Using (14) and Corollary 3.1 we arrive at X1
2 = Ls ⊕Q with

Q = R(0, ηu)⊕R(ψ, 0)⊕R(0,1).

A local stable manifold W s ⊂ X1
g of the semiflow Sg at the stationary point

(0, 0) is given by a map
ws : Ls ⊃ Os → Q

on an open neighbourhood Os of (0, 0) in Ls, and every solution of the system
(9)-(10) starting from a point (φ, η) ∈ W s ⊂ X1

g tends to (0, 0) as t → ∞.
Notice that for such a solution, necessarily η(0) = 0. We infer

W s ⊂ {(φ, η) ∈ X1
2 : φ�(0) = −αφ(−d(φ(0))), η�(0) = η(0), η(0) = 0}

= {(φ, η) ∈ X1
2 : φ ∈ X1

f ⊂ X1
1 , η ∈ X1

1 , η
�(0) = η(0), η(0) = 0}

= {(a(ξ)ψ + ξ, η + 0) ∈ X1
2 : ξ ∈ T0X

1
f ⊂ X1

1 , η ∈ X1
1 ,

η�(0) = η(0), η(0) = 0} (with Proposition 2.1)

= {(a(ξ)ψ + ξ, η + 0) ∈ X1
2 : ξ ∈ X1

1 , ξ
�(0) = −α ξ(−1), η ∈ X1

1 ,

η�(0) = η(0), η(0) = 0}
= {(ξ + a(ξ)ψ, η + 0) ∈ X1

2 : (ξ, η) ∈ T(0,0)X
1
g , η(0) = 0}

= {(ξ + a(ξ)ψ, η + 0) ∈ X1
2 : (ξ, η) ∈ Ls} (see Corollary 3.1).

The last set is given by a map γ : Ls → Q. It follows that

ws = γ|Os .

Now it becomes easy to show that W s is not a C2-submanifold of X1
2 . Indeed,

if it were a C2 submanifold then the projection along Q onto Ls would define
a C2-diffeomorphism from W s onto Os whose inverse

Os � (ξ, η) �→ (ξ + a(ξ)ψ, η) ∈ X1
2
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would be C2-smooth, too. The restriction of a to the open neighbourhood

OY = {η ∈ Y : (η, 0) ∈ Os}

of 0 in Y can be written as a composition, beginning with the restricted con-
tinuous linear map

OY � ξ �→ (ξ, 0) ∈ Os,

followed by the previous inverse, and upon that followed by further continuous
linear maps. This implies that a is C2-smooth, which leads to a contradiction,
see Section 2.

4. Smooth functionals involving state-dependent delay

Let χ : R → Rn, η : R → R be two continuous functions, η is assumed to have
compact support. The convolution χ ∗ η : R → Rn is defined by

χ ∗ η(t) =
�

R
χ(t− s)η(s) ds =

�

R
χ(s)η(t− s) ds = η ∗ χ(t).

In particular, suppose η is C∞-smooth, supp η ⊂ [−1, 1], and
�
R η(s) ds = 1.

For � > 0 set η�(t) = (1/�)η(t/�), t ∈ R. Then
�
R η�(s) ds = 1. Moreover,

χ ∗ η�(t) → χ(t) uniformly on compact subsets of R as � → 0. For φ ∈ X
let φ̂ : R → Rn be the extension of φ so that φ̂(t) = φ(−h) for t < −h,
and φ̂(t) = φ(0) for t > 0. The restriction of φ̂ ∗ η� to [−h, 0] is called the
mollification m�(φ) of φ. The map m� : X → X is called a mollifier. The
function m�(φ) : [−h, 0] → Rn is C∞-smooth, and, for every k ∈ N, t ∈ [−h, 0],

dk

dtk
m�(φ)(t) =

dk

dtk
(φ̂ ∗ η�)(t) =

�
φ̂ ∗ dk

dtk
η�

�
(t).

It follows that each linear map

m�,j : X � φ �→ m�(φ) ∈ Xj , j ∈ N0,

is continuous.

Proposition 4.1. Let m� : X → X be a mollifier. Assume that f : X → Rn

is a map such that its restriction fk : Xk → Rn is Ck-smooth. Then the map

f� : X � φ �→ f(m�(φ)) ∈ Rn

is Ck-smooth.

Proof. We have
f�(φ) = f(m�(φ)) = fk(m�,k(φ)),

and m�,k : X → Xk, fk : Xk → Rn are Ck-smooth.
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Recall the following result on the restrictions of the evaluation map ev.

Lemma 4.2. For each k ∈ N, the restricted evaluation map

evk : Xk × [−h, 0] � (φ, t) �→ φ(t) ∈ Rn

is Ck-smooth with

Djevk(φ, t)(χ1, s1; . . . ;χj , sj) = φ(j)(t)
j�

l=1

sl +
j�

l=1

χ(j−1)
l

(t)
�

m �=l

sm,

j ∈ {1, . . . , k}, χ1, . . . ,χj ∈ Xk, s1, . . . , sj ∈ R. In addition, evk is not Ck+1-
smooth.

Proof. This follows from results in [5, Section 4]). It can also be shown by
induction following the technique of [2, Appendix IV]. The partial derivative
of Dkevk with respect to its second variable t requires Ck+1-smoothness of φ.
Therefore evk is not k + 1-times differentiable.

The above facts suggest that if the term

x(t− r(xt)) = ev(xt,−r(xt))

in equation (4) is replaced with

ev(m�(xt),−r(xt))

or with
ev(m�(xt),−r(m�(xt))),

then we may get better smoothness properties for the semiflow. However, it is
still a nontrivial problem to find the appropriate phase spaces where smoother
solution operators can be obtained. Below we consider several versions of this
mollification technique for equation (4).

Of course, the mollification m�(xt) of the term xt in equation (4) changes
the original equation. So, the smoothness is obtained for a modified equation,
not for the original one. It is an interesting question — which is not studied here
— how the modified equation can be used to get information on the original
one.

Example 4.3. Let n = 1, k ∈ N, and let g : R → R and r : X → R be Ck-
smooth functions, and assume that there exist δ > 0 so that r(X) ⊂ (δ, h− δ).
An example for r is

r(φ) =
a+ b(φ(0))2

c+ d(φ(0))2
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with positive reals a, b, c, d and δ < a

c
< b

d
< h− δ. It is the composition of the

continuous linear functional φ �→ φ(0) with an analytical real function which
strictly increases on [0,∞).

Consider the equation

x�(t) = g(x(t− r(xt))). (15)

For this equation a C1-smooth solution manifold X1
f
exists with f(φ) = g ◦

ev1(φ,−r(φ)), and the solution operators are C1-smooth. For the mollified
equation we can get better smoothness.

Let � ∈ (0, δ), define

F� : X � φ �→ g ◦ ev(m�(φ),−r(φ)) ∈ Rn,

and consider the equation

x�(t) = F�(xt), (16)

or equivalently

x�(t) = g

�
−
� −r(xt)+�

−r(xt)−�

x(t+ u)η�(−r(xt)− u) du

�
.

The assumptions on g, r, the continuity of m�,k : X → Xk, Lemma 4.2 and

F�(φ) = g ◦ ev(m�(φ),−r(φ)) = g ◦ evk(m�,k(φ),−r(φ))

imply that F� : X → R is Ck-smooth. It follows that equation (16), the molli-
fied version of (15), can be studied in the phase space X, and classical results
show that there is a continuous semiflow with Ck-smooth solution operators.

Example 4.4. Consider equation (15) with the same condition on g as in Exam-
ple 4.3. On the delay functional r we assume that its restriction rk : Xk → R is
Ck-smooth, and rk(Xk) ⊂ (δ, h−δ) for some δ > 0. For example, the threshold
delay in the next example has this property with k = 1.

Let � ∈ (0, δ), define

f� : X � φ �→ g ◦ evk ◦ (id,−rk)(m�,k(φ)) ∈ R,

and consider the equation

x�(t) = f�(xt) (17)

on the phase spaceX. Proposition 4.1 gives that f� : X → R is Ck-smooth, and
again the classical theory implies the Ck-smoothness of the solution operators.
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Example 4.5. Let n = 1, k ∈ N, and suppose that g : R → R and a : R → R
are Ck-smooth. In addition assume that a(R) ⊂ (a0, a1) with constants 0 <
a0 < a1. We consider Equation (15) so that the delay τ(xt) is defined by the
threshold condition � 0

−τ(xt)
a(x(t+ s)) ds = 1. (18)

From a(R) ⊂ (a0, a1) it follows that τ(xt) ∈
�

1
a1
, 1
a0

�
provided it exists.

Choose h > 0 and δ > 0 so that h > 1
a0

and δ < min
�

1
a1
, h− 1

a0

�
.

Let � ∈ (0, δ). We want to define f� or F� analogously to Examples 4.3–4.4.
For the smoothness properties of f� and F� we need more information on the
threshold delay τ .

Define the substitution operator A : X → X by

(Aφ)(s) = a(φ(s)), φ ∈ X, s ∈ [−h, 0].

Let the integral operator I : X → X be given by

(Iφ)(s) =

� 0

s

φ(u) du, φ ∈ X, s ∈ [−h, 0].

Define
G : X × (0, h) � (φ, u) �→ ev(I ◦A(φ),−u)− 1 ∈ R.

Then the threshold condition
� 0

−τ(φ)
a(φ(u)) du = 1, φ ∈ X

is equivalent to the equation

G(φ, τ(φ)) = 0, φ ∈ X.

The following smoothness properties of A and I can be easily shown or
obtained from [2, Appendix IV]. The restrictions of A and I to Xj are denoted
by Aj and Ij , respectively, with A0 = A, I0 = I.

Lemma 4.6. Let j ∈ N0, p ∈ N.

1. If a is Cp+j-smooth then the restriction Aj of A to Xj is Cp-smooth.

2. The restriction Ij of I to Xj is a bounded linear map into Xj+1.

It is obvious that for each φ ∈ X there is a unique u∗ = u∗(φ) ∈ (0, h) such
that G(φ, u∗(φ)) = 0. Define τ : X → (0, h) by τ(φ) = u∗(φ).
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For k ∈ N, let Gk−1 denote the restriction of G to Xk−1 × (0, h). As Ik−1

maps into Xk we have

Gk−1(φ, u) = evk(Ik−1 ◦Ak−1(φ),−u)− 1, φ ∈ Xk−1, u ∈ (0, h).

By Lemma 4.6, Ik−1 ◦ Ak−1 : Xk−1 → Xk is Ck-smooth provided a is C2k−1-
smooth, and by Lemma 4.2 evk : Xk×(0, h) → R is also Ck-smooth. Therefore,
Gk−1 : Xk−1 × (0, h) → R is Ck-smooth. It is easy to see that

DGk−1(φ, u)(χ, t) =

� 0

−u

a�(φ(s))χ(s) ds− a(φ(−u))t, χ ∈ Xk−1, t ∈ R,

and
D2Gk−1(φ, u)1 = −a(φ(−u)) �= 0.

The Implicit Function Theorem yields that the restriction τk−1 : Xk−1 → (0, h)
of the map τ : X → (0, h) is Ck-smooth. For later use in Section 5 we now
show that τ1 has the extension property (e) : Differentiation of the equation
Gk−1(φ, τk−1(φ)) = 0, φ ∈ Xk−1, yields

Dτk−1(φ)χ = (a(φ(−τk−1(φ))))
−1

� 0

−τk−1(φ)
a�(φ(s))χ(s) ds, χ ∈ Xk−1.

It follows that, in case k > 1, Dτk−1(φ) ∈ Lc(Xk−1,R) can be extended to a
bounded linear operator Deτk−1(φ) : X → R such that

Xk−1 ×X � (φ,χ) �→ Deτk−1(φ)χ ∈ R

is continuous. In particular, τ1 has the extension property (e) of Section 1. If
k = 1 and if a is C1-smooth then we are in the situation of Example 4.3 with
k = 1, and for the mollified equation

x�(t) = F�(xt)

in the phase space X, the solution operators are C1-smooth.
We can apply the mollification also in the threshold equation (18). This

means that, for a fixed � ∈ (0, δ), the delay τ�(φ) is defined from the equation

� 0

−τ�(φ)
a(m�(φ)(s)) ds = 1, φ ∈ X.

That is τ�(φ), for a given φ ∈ X, is the zero of the map

G(φ, ·) : (0, h) � u �→ evk(Ik−1 ◦Ak−1 ◦m�,k−1(φ),−u)− 1 ∈ R.

Clearly, the unique zero is τ�(φ) = τk−1(m�,k−1(φ)), and the map X � φ �→
τk−1(m�,k−1(φ)) ∈ (0, h) is Ck-smooth provided a is C2k−1-smooth. Observe
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that τk−1(m�,k−1(φ)) = τk−1 ◦ ik−1,k(m�,k(φ)), φ ∈ X, with the inclusion map
ik−1,k : Xk → Xk−1.

Therefore, the equation
x�(t) = f�(xt) (19)

with the Ck-smooth map

f� : X � φ �→ g ◦ evk(id,−τk−1 ◦ ik−1,k) ◦m�,k(φ) ∈ R

can be handled in the phase space X by the classical theory to get Ck-smooth-
ness of the solution operators. Equation (19) is the mollified version of the
equation (15) with the threshold condition (18).

5. Ck-smoothness of solution manifolds and solution
operators

Suppose U ⊂ X1 is open and f : U → Rn is Ck-smooth, 1 ≤ k < ∞, f has
property (e), and X1

f
�= ∅. Then the solution manifold X1

f
is a Ck-submanifold

of the space X1, and all solution operators S(t, ·), t ≥ 0, on non-empty domains
are Ck-smooth. This follows by means of appropriate modifications in the
proofs from [6]. First, the present hypothesis on f implies that the hypotheses
(P1) and (P2) from [6, Section 1] are satisfied, see for example [7, Corollary 1]
and [4, Section 3.2]. In order to obtain Ck-smoothness of X1

f
proceed exactly

as in the proof of [6, Proposition 1] and use the Implicit Function Theorem for
zerosets of Ck-maps, for example, Theorem 2.3 in [1, Chapter 2, Section 2.2].

Ck-smoothness of solution operators follows as in [6, Section 2] provided the
map RTr in [6, Proposition 5] is Ck-smooth, and in the paragraph following
the proof of [6, Proposition 5] a uniform contraction principle is applied which
yields that fixed points are Ck-smooth with respect to the parameters. Such a
uniform contraction principle is Theorem 2.2 in [1, Chapter 2, Section 2.2], for
example.

In the proof of [6, Proposition 5] it is shown that the map RTr is a compo-
sition of continuous linear maps between Banach spaces and of restrictions of
such maps to open sets with the map

fT × id : C([0, T ], C1([−h, 0]))×Rn → C([0, T ])×Rn

given by (fT × id)(η, ξ) = (f ◦ η, ξ). Here, T > 0 is some constant, the set
C1([−h, 0]) equals X1 in our notation, and C([0, T ], C1([−h, 0])) is the Ba-
nach space of continuous maps [0, T ] → C1([−h, 0]) with the norm given by
|η| = max0≤t≤T |η(t)|1. C([0, T ]) denotes the Banach space of continuous maps
[0, T ] → Rn with the norm given by |ξ| = max0≤t≤T |ξ(t)|.

We infer that RTr is Ck-smooth provided the substitution operator

fT : C([0, T ], C1([−h, 0])) � η �→ f ◦ η ∈ C([0, T ])
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is Ck-smooth, which is true, see [2, Appendix IV,Lemma 1.5], for example.

Example 5.1. For a map f : X → Rn define the restriction f1 = f |X1 = f ◦i01,
with the inclusion map i01 : X1 → X. If f : X → Rn is Ck-smooth then f1 is
also Ck-smooth. For k ∈ N the initial value problem (1) with f = (f�)1 or with
f = (F�)1, where f� is given in Proposition 4.1, F� is given in Example 4.3,
defines a continuous semiflow on the Ck-smooth submanifold X1

f
of the space

X1, with all solution operators on non-empty domains Ck-smooth.

Example 5.2. Let h > 0, δ ∈ (0, h/2), � ∈ (0, δ). Assume that g : R → R
is C2-smooth. Let m� be a mollifier given by the C2-function η : R → R.
Consider the equation

x�(t) = g

�� 0

−h

η�(−r(xt)− s)x(t+ s) ds

�
= g(m�(xt)(−τ(xt))) (20)

where τ(xt) is defined by the threshold condition (18). We suppose that a :
R → R is C3-smooth with a(R) ⊂ (a0, a1) for positive reals a0 < a1 satisfying
1
a0

< h and δ < min
�

1
a1
, h− 1

a0

�
.

Example 4.5 in case k = 1 shows that, for each φ ∈ X1, the threshold
equation

� 0

−τ

a(φ(s)) ds = 1

has a unique solution τ1(φ), and τ1 : X1 → (0, h) is C2-smooth. In addition,
Dτ1 has the extension property (e).

On the space X1, the right hand side of equation (20) is given by the C2-
map

f : X1 � φ �→ g ◦ ev2(m�,2(φ),−τ1(φ)) ∈ R.

From the fact that Dτ1 has the extension property (e) it is easy to check that
Df also has property (e).

Therefore, the initial value problem of (20) together with the threshold
condition (18) defines a continuous semiflow on the C2-submanifold X1

f
of the

space X1, with all solution operators on non-empty domains C2-smooth.
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Abstract. In 1973, E. J. McShane introduced an alternative defi-
nition of the Lebesgue integral based on Riemann sums, where gauges
are used to decide what tagged partitions are allowed. Such an ap-
proach does not require any preliminary knowledge of Measure Theory.
We investigate in this paper a definition of measurable functions also
based on gauges. Its relation to the gauge-integrable functions that sat-
isfy McShane’s definition is obtained using elementary tools from Real
Analysis. We show in particular a dominated integration property of
gauge-measurable functions.

Keywords: gauge integral, Kurzweil-Henstock integral, Lebesgue integral, generalized

Riemann integral, measurable function, gauge.
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1. Introduction

In its classical original setting, the Lebesgue integral of a function f is defined
in terms of the outer Lebesgue measure of the measurable sublevel sets of
f [2,12,16]. Compared to the definition of the integral by Cauchy or Riemann
as a limit of Riemann sums [4,26], the definition of the Lebesgue integral seems
somehow indirect: it is a limit of a sum of measures, where these measures are
themselves computed as the infima or suprema of volumes.

This issue has led to the definition of gauge integrals as a way of recovering
the original approach based on Riemann sums, without the defects associated
to the Riemann integral of Riemann-integrable functions [21]. Around 1960,
Kurzweil and Henstock independently defined a gauge integral which allows
one to integrate more functions than the Lebesgue-integrable ones [11, 15]. A
few years later, in 1973, McShane presented the Lebesgue integral itself as a
gauge integral [23, 24]. We can rephrase McShane’s definition as follows:

Definition 1.1 (Gauge integrability). A function f : Rd → Rp is gauge-
integrable whenever there exists I ∈ Rp verifying the following property: for
every ε > 0, there exists a gauge γ on Rd and a compact set K ⊂ Rd such that,
for every finite set of disjoint rectangles (Ri)i∈{1,...,k} in Rd that covers K and
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every finite set of points (ci)i∈{1,...,k} in Rd satisfying

Ri ⊂ γ(ci) for every i ∈ {1, . . . , k},

one has
���

k�

i=1

f(ci) vol (Ri)− I
��� ≤ ε.

In this definition, a gauge γ on Rd is a function mapping each point of x ∈ Rd

to an open set γ(x) ⊂ Rd such that x ∈ γ(x); for example γ(x) might be taken
to be a non-empty open ball centered at x. A rectangle R ⊂ Rd is a set that
can be written as R = [a1, b1)× · · ·× [ad, bd), where a1 < b1, . . . , ad < bd are all
real numbers; its volume is the positive number vol (R) = (b1−a1) · · · (bd−ad).
Rectangles are disjoint whenever their intersection is empty, and the family
(Ri)i∈{1,...,k} covers K if

k�

i=1

Ri ⊃ K.

The compact set K corresponds in McShane’s original definition to the com-
plement of his gauge at infinity; the equivalent formulation above avoids com-
pactifying the Euclidean space Rd and considering unbounded rectangles.

By Cousin’s lemma, which is a variant of the Heine–Borel theorem, for any
gauge γ on Rd and any compact set K ⊂ Rd, there always exists some finite
set of disjoint rectangles (Ri)i∈{1,...,k} that covers K and points (ci)i∈{1,...,k}
such that Ri ⊂ γ(ci) for every i [24, Theorem IV-3-1]. This fact ensures the
uniqueness of the integral I of f , which entitles one to adopt the usual notation

�

Rd

f := I.

A non-intuitive feature of the definition of the gauge integral above is
that each tag ci need not belong to the rectangle Ri. Adding this restric-
tion gives the broader definition of integral of Kurzweil and Henstock, which
is a gauge definition of the Denjoy–Perron integral for which all derivatives of
one-dimensional functions are integrable on bounded intervals [9, 18, 25]. This
Kurzweil–Henstock integral has been taught by Jean Mawhin at the Université
catholique de Louvain (UCL) for thirty years [19, 20], continuing the Louvain
tradition of cutting-edge lectures on integration theory initiated by Ch.-J. de
la Vallée Poussin with the Lebesgue integral at the beginning of the 20th cen-
tury [5–7,22]. The further restriction that the gauge γ(x) contain some uniform
ball Bδ(x) for some radius δ > 0 independent of x ∈ Rd yields the classical
Riemann integral.

Measurability of functions is not a prerequisite of McShane’s definition of
gauge integrability. This is an important aspect one should not neglect about
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the gauge integral that makes the Lebesgue integral readily available, without
the need of any preliminary development of tools from Measure Theory. This
is an approach we have been pursuing at UCL since 2009.

When measurability is needed to state some integrability condition, measur-
able functions have been defined as pointwise limits of integrable functions [24,
Definition III-10-1] or almost everywhere limits of locally integrable step func-
tions (see [1, §19] and [17, Definition 3.5.3]), or in terms of measurable sets
whose characteristic functions are locally integrable (see [19, §6.B] and [20,
§13.7]). It thus seems that the straightforwardness of McShane’s definition of
the integral is lost in an ad hoc indirect definition of measurability based on
the integral itself.

In order to remedy to this issue, we introduce here a direct definition of
measurability of functions in terms of gauges inspired by Lusin’s property for
Lebesgue-measurable functions.

Definition 1.2 (Gauge measurability). A function f : Rd → Rp is gauge-
measurable whenever, for every ε > 0 and every η > 0, there exists a gauge γ
on Rd such that, for every finite set of disjoint rectangles (Ri)i∈{1,...,k} in Rd

and every finite sets of points (ci)i∈{1,...,k} and (c�i)i∈{1,...,k} in Rd satisfying

|f(ci)− f(c�i)| ≥ η and Ri ⊂ γ(ci) ∩ γ(c�i) for every i ∈ {1, . . . , k},

one has
k�

i=1

vol(Ri) ≤ ε.

The goal of this paper is to provide various properties of gauge-measurable
functions that can be deduced using elementary ideas of Real Analysis. These
are well-known properties of Lebesgue-measurable functions, and both notions
of measurability are equivalent, but the main message we want to emphasize is
that one can obtain these properties in a self-contained approach based on gauge
integrability and gauge measurability. As an example, we show in Section 5
below that these two concepts are related through the following dominated-
integrability characterization of gauge-integrable functions:

Theorem 1.3. A function f : Rd → Rp is gauge-integrable if and only if f is
gauge-measurable and there exists a gauge-integrable function h : Rd → R such
that |f | ≤ h in Rd.

The paper is organized as follows. In Sections 2 and 3, we prove properties
of gauge-measurable functions that can be straightforwardly obtained from the
definition. Some of them will be superseded in later sections using two impor-
tant properties of the gauge integral: the Absolute Cauchy criterion and the
Dominated convergence theorem. In Section 4, we prove Lusin’s theorem for
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gauge-measurable functions using an alternative formulation of the gauge mea-
surability based on the inner measure of open sets in Rd. We then prove Theo-
rem 1.3 in Section 5. In Section 6, we prove the stability of gauge measurability
under pointwise convergence. In Sections 7 and 8, we define gauge-measurable
sets in the same spirit as for functions, and then we prove that every gauge-
measurable function is the pointwise limit of gauge-measurable step functions.
We thus recover the approach which leads to the Lebesgue integral.

2. Elementary properties

The goal of this section is to present some properties of gauge measurability
that readily follow from its definition. We begin by noting that every continuous
function is gauge-measurable.

Proposition 2.1 (Gauge measurability of continuous functions). If the func-
tion f : Rd → Rp is continuous, then f is gauge-measurable.

Proof. Given a pair of points ci, c�i ∈ Rd, by the triangle inequality for every
z ∈ Rd we have

|f(ci)− f(c�i)| ≤ |f(z)− f(ci)|+ |f(z)− f(c�i)|. (1)

Using the continuity of f , we choose a gauge γ in such a way that the right-
hand side is always less than η > 0 provided that γ(ci) ∩ γ(c�i) �= ∅. Indeed,
given η > 0, for every x ∈ Rd we define

γ(x) =
�
z ∈ Rd

�� |f(z)− f(x)| < η

2

�
.

In particular, x ∈ γ(x); since the function f is continuous, the set γ(x) is open.
If there exists z ∈ γ(ci)∩ γ(c�i), then by the choice of γ we have simultaneously

|f(z)− f(ci)| <
η

2
and |f(z)− f(c�i)| <

η

2
.

In view of (1), we then have

|f(ci)− f(c�i)| < η.

Therefore, no matter what ε > 0 we take, there is no finite family of rectan-
gles (Ri)i∈{1,...,k} that needs to be checked in Definition 1.2, so the latter is
automatically satisfied by the continuous function f .

Proposition 2.2 (Composition with uniformly continuous functions). If the
function f : Rd → Rp is gauge-measurable and the function Φ : Rp → R� is uni-
formly continuous, then the composition Φ ◦ f : Rd → R� is gauge-measurable.
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This property is reminiscent of the integrability of compositions with Lips-
chitz functions for the gauge integral [24, Theorem II-3-1]; the class of admis-
sible functions is larger here because gauge measurability is more qualitative
than gauge integrability. As for the gauge integrability, Proposition 2.2 is not
the end of the story: we prove in Section 6 using more elaborate tools that
the proposition remains true when the function Φ is merely continuous; see
Proposition 6.5 below.

Proof of Proposition 2.2. Given η > 0, by definition of uniform continuity there
exists δ > 0 such that, for every y, z ∈ Rd satisfying |y − z| < δ, one has
|Φ(y)− Φ(z)| < η. This is equivalent to saying that if |Φ(y)− Φ(z)| ≥ η, then
|y − z| ≥ δ. Hence, for every pair of points ci, c�i ∈ Rd such that

|(Φ ◦ f)(ci)− (Φ ◦ f)(c�i)| ≥ η, (2)

we have

|f(ci)− f(c�i)| ≥ δ. (3)

Given ε > 0, by Definition 1.2 of gauge measurability of f with parameter
η = δ there exists a gauge γ on Rd such that, for every finite set of disjoint
rectangles (Ri)i∈{1,...,k} and finite sets of points (ci)i∈{1,...,k} and (c�i)i∈{1,...,k}
in Rd satisfying (2) and Ri ⊂ γ(ci) ∩ γ(c�i) for every i, we have that (3) also
holds for every i, and then by the choice of the gauge γ,

k�

i=1

vol (Ri) ≤ ε.

The function Φ ◦ f is thus gauge-measurable.

An interesting consequence of Proposition 2.2 is that the family of gauge-
measurable functions forms a vector space, and the product of two bounded
gauge-measurable functions is also gauge-measurable. We provide an indepen-
dent proof of these facts in the next section for the sake of clarity. The latter
property concerning the product will be superseded later on by using the fact
that measurability is stable under pointwise convergence, which allows one to
remove the boundedness assumption of the functions; see Corollary 6.4. For the
moment, we restrict ourselves to the case of uniform limits of gauge-measurable
functions:

Proposition 2.3 (Uniform limit). Let (fn)n∈N be a sequence of gauge-measur-
able functions from Rd to Rp. If the sequence (fn)n∈N converges uniformly to
the function f : Rd → Rp, then f is gauge-measurable.
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Proof. For every pair of points ci, c�i ∈ Rd and every n ∈ N, by the triangle
inequality we have

|fn(ci)− fn(c
�
i)| ≥ |f(ci)− f(c�i)|− |fn(ci)− f(ci)|− |fn(c�i)− f(c�i)|.

Given η > 0, by the definition of uniform convergence there exists n ∈ N such
that, for every x ∈ Rd, |fn(x)− f(x)| ≤ η/4. Hence, assuming that

|f(ci)− f(c�i)| ≥ η, (4)

we have
|fn(ci)− fn(c

�
i)| ≥

η

2
. (5)

Given ε > 0, let γ be a gauge on Rd given by the definition of gauge mea-
surability of fn with parameter η/2. For every finite set of disjoint rectangles
(Ri)i∈{1,...,k} and every sets of points (ci)i∈{1,...,k} and (c�i)i∈{1,...,k} satisfy-
ing (4) and Ri ⊂ γ(ci) ∩ γ(c�i) for every i, we then have that (5) is satisfied by
fn for every i, and then, by the choice of γ,

k�

i=1

vol (Ri) ≤ ε.

The function f is thus gauge-measurable.

3. Algebraic stability

We show that the class of gauge-measurable functions forms a vector space:

Proposition 3.1 (Linearity). If the functions f : Rd → Rp and g : Rd → Rp

are gauge-measurable and λ ∈ R, then f + g and λf are gauge-measurable.

Proof. We focus on the proof that f + g is gauge measurable; the case of λf is
left as an exercise (see also Proposition 2.2). For every pair of points ci, c�i ∈ Rd,
by the triangle inequality we have

|(f + g)(ci)− (f + g)(c�i)| ≤ |f(ci)− f(c�i)|+ |g(ci)− g(c�i)|.

Given η > 0, and assuming that

|(f + g)(ci)− (f + g)(c�i)| ≥ η, (6)

then we necessarily have

|f(ci)− f(c�i)| ≥
η

2
or |g(ci)− g(c�i)| ≥

η

2
. (7)



GAUGE-MEASURABLE FUNCTIONS 119

Given ε > 0, let γ1 and γ2 be two gauges on Rd arising from the definitions
of gauge measurability of f and g, respectively, with parameters ε/2 and η/2.
Consider the gauge γ defined for x ∈ Rd by γ(x) = γ1(x) ∩ γ2(x). For a
finite collection of disjoint rectangles (Ri)i∈{1,...,k} and finite sets of points
(ci)i∈{1,...,k} and (c�i)i∈{1,...,k} in Rd verifying (6) and Ri ⊂ γ(ci) ∩ γ(c�i) for
every i ∈ {1, . . . , k}, let us denote by I1 the set of indices i for which the first
inequality in (7) holds for f and by I2 the set of indices i for which the second
inequality in (7) holds for g. We can thus assert that

{1, . . . , k} = I1 ∪ I2. (8)

We have in particular Ri ⊂ γ1(ci)∩ γ1(c�i) for every i ∈ I1, and thus by the
choice of γ1, �

i∈I1

vol (Ri) ≤
ε

2
.

We also have Ri ⊂ γ2(ci)∩γ2(c�i) for every i ∈ I2, and thus by the choice of γ2,

�

i∈I2

vol (Ri) ≤
ε

2
.

Since the sets I1 and I2 cover {1, . . . , k}, we deduce that

k�

i=1

vol (Ri) ≤
ε

2
+

ε

2
= ε.

Therefore, the function f + g is gauge-measurable.

Using a similar idea, one shows that the product of bounded gauge-mea-
surable functions is also gauge-measurable. The conclusion is still true without
assuming the functions are bounded, but the proof is more subtle; see Section 6.

Proposition 3.2 (Product of bounded functions). If the functions f : Rd →
Rp and g : Rd → R are gauge-measurable and bounded, then fg is also gauge-
measurable.

Proof. Take M > 0 and N > 0 such that |f | ≤ M and |g| ≤ N in Rd.
Given finite sets of points (ci)i∈{1,...,k} and (c�i)i∈{1,...,k} in Rd, by the triangle
inequality for every x ∈ Rd we have

|(fg)(ci)− (fg)(c�i)| ≤ |f(ci)− f(c�i)| |g(ci)|+ |f(c�i)| |g(ci)− g(c�i)|
≤ N |f(ci)− f(c�i)|+M |g(ci)− g(c�i)|.

Given η > 0, if for every i ∈ {1, . . . , k} we have

|(fg)(ci)− (fg)(c�i)| ≥ η,
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then necessarily

|f(ci)− f(c�i)| ≥
η

2N
or |g(ci)− g(c�i)| ≥

η

2M
.

As in the previous proof, one defines the subsets of indices I1 and I2 accordingly,
so that the counterpart of (8) also holds in this case. One can now proceed
along the lines of the proof of Proposition 3.1 to deduce that fg is gauge-
measurable.

4. Lusin’s theorem

We now relate the notion of gauge measurability with Lusin’s theorem, which
trivially extends Proposition 2.1 that is valid for continuous functions:

Proposition 4.1 (Lusin’s theorem). A function f : Rd → Rp is gauge-mea-
surable if and only if, for every ε > 0, there exists a closed set C ⊂ Rd such
that the restriction f |C is continuous and the inner measure of the open set
Rd \ C satisfies µ(Rd \ C) ≤ ε.

We recall the notion of inner measure of an open set U ⊂ Rd:

µ(U) := sup
� k�

i=1

vol (Ri)
�� (Ri)i∈{1,...,k} is a family of disjoint rectangles

contained in U
�
.

Observe that µ is nondecreasing and countably subadditive. The quantity µ(U)
is unchanged if the supremum is computed over the smaller class of disjoint
rectangles (Si)i∈{1,...,k} such that S̄i ⊂ U for every i ∈ {1, . . . , k}. The reason
is that for any number 0 < θ < 1 one can construct a rectangle Si such that
S̄i ⊂ Ri and vol (Si) ≥ θ vol (Ri), which gives

θ
k�

i=1

vol (Ri) ≤
k�

i=1

vol (Si) ≤
k�

i=1

vol (Ri).

Lusin’s theorem above gives the equivalence between gauge measurability
and the measurability in the sense of Bourbaki, defined in terms of Lusin’s
property [3, Definition IV-§5-1]. To prove Proposition 4.1 above, we rely on the
following lemma which reformulates Definition 1.2 without relying on tagged
partitions:

Lemma 4.2 (Gauge-intersection characterization). The function f : Rd → Rp

is gauge-measurable if and only if, for every ε > 0 and every η > 0, there exists
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a gauge γ on Rd such that the open set

Uγ,η :=
�

x,z∈Rd

|f(x)−f(z)|≥η

�
γ(x) ∩ γ(z)

�

satisfies µ(Uγ,η) ≤ ε.

A byproduct of Lemma 4.2 is the invariance of gauge measurability under
bi-Lipschitz homeomorphisms of Rd, which include isometries.

Proof of Lemma 4.2. “⇐=”. Given η > 0 and a gauge γ on Rd, take a finite
disjoint family of rectangles (Ri)i∈{1,...,k} and finite sets of points (ci)i∈{1,...,k}
and (c�i)i∈{1,...,k} in Rd such that

|f(ci)− f(c�i)| ≥ η and Ri ⊂ γ(ci) ∩ γ(c�i) for every i.

In particular, Ri ⊂ γ(ci)∩γ(c�i) ⊂ Uγ,η, hence by definition of the inner measure
µ(Uγ,η) we have

k�

i=1

vol (Ri) ≤ µ(Uγ,η).

To conclude it suffices to choose the gauge γ so that, for any given ε > 0, we
have µ(Uγ,η) ≤ ε.

“=⇒”. Assume that the function f is gauge-measurable, and let γ be a
gauge on Rd given by Definition 1.2 for some ε > 0 and η > 0. Let (Ri)i∈{1,...,k}
be a finite family of disjoint rectangles contained in Uγ,η. By the remark
following the definition of the inner measure µ, we may restrict our attention
to the case where R̄i ⊂ Uγ,η for every i. Then, by compactness of R̄i, the
rectangle Ri can be covered by a finite collection of sets of the form γ(x)∩γ(z)
such that x, z ∈ Rd and |f(x) − f(z)| ≥ η. By a suitable subdivision of the
rectangles (Ri)i∈{1,...,k} into smaller rectangles, which does not change their
total volume, we can thus assume without loss of generality that, for every
i ∈ {1, . . . , k}, there exist points x, z ∈ Rd such that

Ri ⊂ γ(x) ∩ γ(z) and |f(x)− f(z)| ≥ η.

[Such a subdivision is allowed since the points x and z are not required to
belong to Ri.] We then choose ci = x and c�i = z. The finite sets of points
(ci)i∈{1,...,k} and (c�i)i∈{1,...,k} satisfy the conditions of Definition 1.2, and we
deduce that

k�

i=1

vol (Ri) ≤ ε.

Since the family of rectangles (Ri)i∈{1,...,k} is chosen arbitrarily, we thus have
that µ(Uγ,η) ≤ ε.
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Proof of Proposition 4.1. We first observe that given η > 0, a gauge γ on Rd,
and z ∈ Rd, then for every x ∈ γ(z) \ Uγ,η we have

|f(x)− f(z)| < η. (9)

Indeed, since x ∈ γ(x)∩ γ(z) and x �∈ Uγ,η, the set γ(x)∩ γ(z) is not contained
in Uγ,η, hence x and z are not admissible indices in the union that defines the
set Uγ,η. We deduce that (9) holds.

Proceeding with the proof of the proposition, we now assume that the func-
tion f is gauge-measurable and let ε > 0. For each n ∈ N, by Lemma 4.2 there
exists a gauge γn on Rd such that

µ
�
Uγn,1/2n

�
≤ ε

2n+1
.

We set C = Rd \
�

n∈N
Uγn,1/2n . By countable subadditivity of µ, we have

µ(Rd \ C) ≤
�

n∈N
µ
�
Uγn,1/2n

�
≤

�

n∈N

ε

2n+1
= ε.

It remains to prove that the restricted function f |C is continuous at any point
z ∈ C. For every x ∈ γn(z)∩C ⊂ γn(z)\Uγn,1/2n , we deduce from estimate (9)
above that

|f(x)− f(z)| < 1

2n
.

Since this estimate holds on the relatively open subset γn(z)∩C of C and n ∈ N
is arbitrary, we deduce that the function f |C is continuous at z.

Conversely, we take a closed set C such that the restriction f |C is continu-
ous. For every η > 0, the set

γ(x) = Rd \
�
w ∈ C

�� |f(x)− f(w)| ≥ η

2

�

contains x and is open in Rd, since the function f |C is continuous and the set
C is closed. Hence, γ is a gauge on Rd. We now observe that if x, z ∈ Rd and
|f(x)− f(z)| ≥ η, then

γ(x) ∩ γ(z) ∩ C = ∅.
Indeed, if this were not true, there would exist a point w ∈ γ(x) ∩ γ(z) ∩ C.
Since w ∈ C, we would have, by definition of γ, |f(x) − f(w)| < η/2 and
|f(z) − f(w)| < η/2 and thus by the triangle inequality |f(x) − f(z)| < η,
which would be a contradiction.

We thus have Uγ,η ⊂ Rd \ C, and then by monotonicity of the inner mea-
sure µ,

µ(Uγ,η) ≤ µ(Rd \ C).

Given ε > 0, by the Lusin property satisfied by the function f , we may choose
the closed set C so as to have µ(Rd \ C) ≤ ε. We conclude from Lemma 4.2
that the function f is gauge-measurable.
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5. Gauge measurability and integrability

The goal of this section is to establish Theorem 1.3. The relationship between
gauge measurability and gauge integrability relies on the following Absolute
Cauchy criterion for gauge-integrable functions [24, Theorem II-2-4] (see also
[14, Lemma 5.13]).

Proposition 5.1 (Absolute Cauchy criterion). The function f : Rd → Rp is
gauge-integrable if and only if, for every ε > 0, there exist a gauge γ on Rd and
a compact subset K ⊂ Rd such that the following properties hold:

(i) for every finite set of disjoint rectangles (Ri)i∈{1,...,k} in Rd and every
finite sets of points (ci)i∈{1,...,k} and (c�i)i∈{1,...,k} satisfying Ri ⊂ γ(ci) ∩
γ(c�i) for every i, one has

k�

i=1

|f(ci)− f(c�i)| vol (Ri) ≤ ε.

(ii) for every finite set of disjoint rectangles (Ri)i∈{1,...,k} in Rd\K and every
finite set of points (ci)i∈{1,...,k} such that Ri ⊂ γ(ci) for every i, one has

k�

i=1

|f(ci)| vol (Ri) ≤ ε.

This condition is a Cauchy criterion because it does not require nor gives the
value of the integral of f . It is an absolute Cauchy condition because the norm is
taken inside the Riemann sum. An important consequence of Proposition 5.1
is the fact that if f : Rd → Rp is gauge-integrable and if Φ is a Lipschitz-
continuous function such that Φ(0) = 0, then the composite function Φ ◦ f is
also gauge-integrable [24, Theorem II-3-1]. In particular, |f | is gauge-integrable
whenever f is gauge-integrable.

We first consider the question of gauge measurability of gauge-integrable
functions.

Proposition 5.2 (Gauge measurability). If f : Rd → Rp is gauge-integrable,
then f is gauge-measurable.

Proof. Let η > 0 and take a finite set of disjoint rectangles (Ri)i∈{1,...,k} and
finite sets of points (ci)i∈{1,...,k} and (c�i)i∈{1,...,k} in Rd such that

|f(ci)− f(c�i)| ≥ η for every i.

Then, we have

k�

i=1

vol (Ri) ≤
1

η

k�

i=1

|f(ci)− f(c�i)| vol(Ri). (10)
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Applying Property (i) of the Absolute Cauchy criterion with parameter ηε,
there exists a gauge γ on Rd such that if Ri ⊂ γ(ci) ∩ γ(c�i), then the sum in
the right-hand side of (10) is smaller than ηε, and we get

k�

i=1

vol (Ri) ≤
1

η
· ηε = ε.

We deduce that the function f is gauge-measurable in view of Definition 1.2.

We now handle the reverse implication of Theorem 1.3 under the additional
assumption that f is a bounded function.

Proposition 5.3 (Dominated integrability for bounded functions). If f : Rd →
Rp is gauge-measurable and bounded and if |f | ≤ h in Rd for some gauge-
integrable function h : Rd → R, then f is gauge-integrable.

Proof. Property (ii) of the Absolute Cauchy criterion is satisfied by h, hence
also by f . We now focus on Property (i). For this purpose, let (Ri)i∈{1,...,k} be
a finite collection of disjoint rectangles, and let (ci)i∈{1,...,k} and (c�i)i∈{1,...,k}
be finitely many points in Rd. Given η > 0 and a compact subset K ⊂ Rd, we
can relabel the rectangles and points simultaneously so as to have

(a) for every i ∈ {1, . . . ,m}, |f(ci)− f(c�i)| ≥ η,

(b) for every i ∈ {m+ 1, . . . , l}, |f(ci)− f(c�i)| < η and Ri ∩K �= ∅,

(c) for every i ∈ {l + 1, . . . , k}, |f(ci)− f(c�i)| < η and Ri ∩K = ∅,
for some integers 0 ≤ m ≤ l ≤ k; some of these conditions might be empty,
and in this case one simply ignores them.

By the assumption of boundedness of f , there exists M > 0 such that, for
every x ∈ Rd, |f(x)| ≤ M . By the triangle inequality, we then have

m�

i=1

|f(ci)− f(c�i)| vol (Ri) ≤ 2M
m�

i=1

vol (Ri),

and, by (b),

l�

i=m+1

|f(ci)− f(c�i)| vol (Ri) ≤ η
l�

i=m+1

vol (Ri).

Since |f | ≤ h in Rd, we also have

k�

i=l+1

|f(ci)− f(c�i)| vol (Ri) ≤
k�

i=l+1

�
|f(ci)|+ |f(c�i)|

�
vol (Ri)

≤
k�

i=l+1

�
h(ci) + h(c�i)

�
vol (Ri).
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These are the three main estimates that we need in the sequel. We now proceed
to choose the gauge γ that yields the Absolute Cauchy criterion for f .

Given ε > 0, by Property (ii) of the Absolute Cauchy criterion satisfied by
h with parameter ε/6, we can take the compact set K ⊂ Rd and a gauge γ1 on
Rd such that if Ri ⊂ γ1(ci) ∩ γ1(c�i) for every i ∈ {l + 1, . . . , k}, then we have

k�

i=l+1

|f(ci)− f(c�i)| vol (Ri) ≤
k�

i=l+1

�
h(ci) + h(c�i)

�
vol (Ri) ≤

ε

6
+

ε

6
=

ε

3
.

Fix a bounded open set U ⊂ Rd that contains K, and take the gauge γ2 on
Rd defined by γ2(x) = U if x ∈ U and γ2(x) = Rd \K if x �∈ U . Observe that
if Ri ⊂ γ2(ci) ∩ γ2(c�i) for every i ∈ {m + 1, . . . , l}, then since Ri ∩K �= ∅, we
necessarily have γ2(ci) = γ2(c�i) = U , and thus Ri ⊂ U . By definition of the
inner measure µ, and choosing η > 0 so as to have ηµ(U) ≤ ε/3, we then get

l�

i=m+1

|f(ci)− f(c�i)| vol (Ri) ≤ η
l�

i=m+1

vol (Ri) ≤ η µ(U) ≤ ε

3
.

By definition of gauge measurability of f with ε/6M and η chosen as above,
there exists a gauge γ3 on Rd such that if Ri ⊂ γ3(ci) ∩ γ3(c�i) for every i ∈
{1, . . . ,m}, then we have

m�

i=1

|f(ci)− f(c�i)| vol (Ri) ≤ 2M
m�

i=1

vol (Ri) ≤ 2M · ε

6M
=

ε

3
.

Combining these three estimates, we get

k�

i=1

|f(ci)− f(c�i)| vol (Ri) ≤
ε

3
+

ε

3
+

ε

3
= ε,

and thus f satisfies the Absolute Cauchy criterion with the gauge γ defined
for x ∈ Rd by γ(x) = γ1(x) ∩ γ2(x) ∩ γ3(x). Hence, f is gauge-integrable by
Proposition 5.1.

The boundedness assumption of f can be removed using the Dominated
convergence theorem for gauge-integrable functions [24, Theorem II-10-1]:

Proposition 5.4 (Dominated convergence). Let (fn)n∈N be a sequence of gauge-
integrable functions from Rd to Rp. If (fn)n∈N converges pointwise to the func-
tion f : Rd → Rp, and if there exists a gauge-integrable function h : Rd → R
such that |fn| ≤ h in Rd for every n ∈ N, then f is gauge-integrable and

lim
n→∞

�

Rd

fn =

�

Rd

f.
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Proof of Theorem 1.3. If f is gauge-integrable, then f is gauge-measurable by
Proposition 5.2, and it follows from the Absolute Cauchy criterion above that
the function h := |f | is gauge-integrable.

Conversely, if f is gauge-measurable, then by Proposition 2.2, for every n ∈
N the truncated function Tn ◦ f is also gauge-measurable, where Tn : Rp → Rp

is the truncation function defined for w ∈ Rp by

Tn(w) =

�
w if |w| ≤ n,

nw/|w| if |w| > n,

Since the function Tn ◦ f is bounded and satisfies |Tn ◦ f | ≤ |f | ≤ h in Rd, it
follows from Proposition 5.3 that Tn ◦ f is gauge-integrable, and we conclude
applying the Dominated convergence theorem for gauge integrals as n tends to
infinity.

6. Pointwise limit

A crucial feature of Lebesgue-measurable functions is their stability under
pointwise convergence. Up to now, we only have proved that gauge measura-
bility is stable under uniform convergence, see Proposition 2.3. Thanks to the
relationship that we have established between gauge measurability and gauge
integrability, we now obtain a pointwise-convergence property in full generality.

Proposition 6.1 (Pointwise limit). Let (fn)n∈N be a sequence of gauge-mea-
surable functions from Rd to Rp. If (fn)n∈N converges pointwise to the function
f : Rd → Rp, then f is gauge-measurable.

We first prove two particular cases of this proposition, which as we shall see
yield the general case. We denote the characteristic function of a set A ⊂ Rd

by χA, that is χA : Rd → R is the function defined for each x ∈ Rd by

χA(x) =

�
1 if x ∈ A,

0 if x �∈ A.

Lemma 6.2. Let (Al)l∈N be an increasing sequence of open subsets which cover
Rd with Al−1 ⊂ Al for every l ∈ N∗. If a function f : Rd → Rp is such that
fχAl is gauge-measurable for every l ∈ N, then f is also gauge-measurable.

Proof. Given l,m ∈ N∗ with l ≤ m, we first observe that if

(Al \Al−2) ∩ (Am \Am−2) �= ∅, (11)

then by monotonicity of the sequence (Al)l∈N we have m = l or m = l + 1.
Here, we use the convention that A−1 = ∅. Now let (γl)l∈N\{0,1} be a sequence



GAUGE-MEASURABLE FUNCTIONS 127

of gauges on Rd to be chosen later on. We define a new gauge γ on Rd as
follows: for every x ∈ Rd, denote by l the smallest integer in N∗ such that
x ∈ Al and let

γ(x) = γl(x) ∩ γl+1(x) ∩ (Al \Al−2).

Since Al−2 ⊂ Al−1 by assumption, we have x �∈ Al−2, and then the open set
Al \Al−2 contains x. Thus, γ is a well-defined gauge on Rd.

Given η > 0, we claim that

Uγ,η ⊂
�

l∈N∗

Vl+1, (12)

where
Vl+1 :=

�

x,z∈Rd

|fχAl+1
(x)−fχAl+1

(z)|≥η

�
γl+1(x) ∩ γl+1(z)

�
.

Indeed, assume that x, z ∈ Rd are such that |f(x) − f(z)| ≥ η. Let l and m
be the smallest integers in N∗ such that x ∈ Al and z ∈ Am; we may assume
without loss of generality that l ≤ m. If γ(x) ∩ γ(z) �= ∅, then (11) holds, and
thus m = l or m = l + 1. Hence, we have

|fχAl+1(x)− fχAl+1(z)| = |f(x)− f(z)| ≥ η

and
γ(x) ∩ γ(z) ⊂ γl+1(x) ∩ γl+1(z) ⊂ Vl+1,

which implies (12).
Let ε > 0. Since the function fχAl+1 is gauge-measurable, by Lemma 4.2

we can choose the gauge γl+1 on Rd such that µ(Vl+1) ≤ ε/2l. Thus, by the
inclusion (12) and the countable subadditivity of the inner measure µ we get

µ(Uγ,η) ≤
�

l∈N∗

µ(Vl+1) ≤
�

l∈N∗

ε

2l
= ε.

By Lemma 4.2, we deduce that f is gauge-measurable.

Lemma 6.3. If the function f : Rd → Rp is such that the truncation Tj ◦ f is
gauge-measurable for every j ∈ N, then f is gauge-measurable.

Proof. Given a sequence of gauges (γj)j∈N∗ on Rd, consider the gauge γ defined
for x ∈ Rd by

γ(x) = γ0(x) ∩ · · · ∩ γj+1(x),

where j ∈ N is the smallest integer such that |f(x)| ≤ j. For every 0 < η ≤ 1,
we claim that

Uγ,η ⊂
�

j∈N
Wj+1, (13)
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where
Wj+1 :=

�

x,z∈Rd

|Tj+1◦f(x)−Tj+1◦f(z)|≥η

�
γj+1(x) ∩ γj+1(z)

�
.

For this purpose, for every x, z ∈ Rd such that |f(x) − f(z)| ≥ η, which we
may assume that |f(z)| ≥ |f(x)|, let j ∈ N be the smallest integer such that
|f(x)| ≤ j. Since η ≤ 1, we also have

|Tj+1 ◦ f(x)− Tj+1 ◦ f(z)| ≥ η.

From the choice of the gauge γ, we deduce that

γ(x) ∩ γ(z) ⊂ γj+1(x) ∩ γj+1(z) ⊂ Wj+1,

and the inclusion (13) follows.
Let ε > 0. Since the function Tj+1◦f is gauge-measurable, by Lemma 4.2 we

can choose the gauge γj+1 on Rd such that µ(Wj+1) ≤ ε/2j+1. Proceeding as
in the previous lemma, we have µ(Uγ,η) ≤ ε, hence f is gauge-measurable.

Proof of Proposition 6.1. We first assume that there exists a gauge-integrable
function h : Rd → R such that |fn| ≤ h in Rd for every n ∈ N. By Theorem 1.3,
each function fn is gauge-integrable, and it then follows from the Dominated
convergence theorem that f is gauge-integrable, hence also gauge-measurable.

In the general case where the sequence (fn)n∈N need not be bounded by an
integrable function, for every n, l, j ∈ N we consider the function

gn,l,j = (Tj ◦ fn)χBl+1(0).

These functions are all gauge-measurable. Indeed, Tj ◦ fn is gauge-measurable
by composition with the uniformly continuous function Tj (Proposition 2.2),
and thus gn,l,j is gauge-measurable as the product of bounded gauge-measurable
functions (Proposition 3.2).

Since |gn,l,j | ≤ jχBl+1(0) in Rd and the characteristic function χBl+1(0) is
gauge-integrable, as n tends to infinity it follows from the first case we consid-
ered above that the functions (Tj ◦ f)χBl+1(0) are gauge-measurable for every
l, j ∈ N. By Lemma 6.2, as l tends to infinity we deduce that Tj ◦ f is gauge-
measurable for every j ∈ N. The conclusion then follows from Lemma 6.3 as j
tends to infinity.

A consequence of Propositions 3.2 and 6.1 is that the product of gauge-
measurable functions is also gauge-measurable:

Proposition 6.4 (Product). If the functions f : Rd → Rp and g : Rd → R are
gauge-measurable, then their product fg is also gauge-measurable.
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More generally, we can weaken the assumptions of Proposition 2.2 on the
gauge measurability of composite functions:

Proposition 6.5 (Composition with continuous functions). If the function f :
Rd → Rp is gauge-measurable and the function Φ : Rp → R� is continuous,
then the composition Φ ◦ f : Rd → R� is gauge-measurable.

Proof. We consider a continuous function ϕ : Rp → R with compact sup-
port, and we define Φn : Rp → R� for each n ∈ N∗ and y ∈ Rp by Φn(y) =
ϕ(y/n)Φ(y). Since the function Φn is continuous and has compact support,
Φn is uniformly continuous, and thus, in view of Proposition 2.2, the function
Φn ◦ f is gauge-measurable. We conclude by observing that, for every x ∈ Rn,
the sequence (Φn(f(x)))n∈N∗ converges to Φ(f(x)) provided that ϕ(0) = 1, and
thus by Proposition 6.1 the function Φ ◦ f is gauge-measurable.

The proof of Proposition 6.5 shows that the class of functions Φ : Rp → R�

such that, for every gauge-measurable function f : Rd → Rp, the composition
Φ◦f is measurable is stable under pointwise convergence. This class thus forms
a Baire system and contains in particular all Baire (or analytic representable)
functions, which coincide by the Lebesgue–Hausdorff theorem with all Borel-
measurable functions, see [10, Theorem 43.IV] and [13, §31].

Another consequence of Proposition 6.1 combined with the gauge measura-
bility of gauge-integrable functions (Proposition 5.2) is that the pointwise limit
of a sequence of gauge-integrable functions is always gauge-measurable. This
implies in particular that measurable functions in the sense of McShane [24,
Definition III-10-1] are indeed gauge-measurable. Conversely, every gauge-
measurable function f : Rd → Rp in the sense of Definition 1.2 is the limit
of a sequence of gauge-integrable functions. This assertion follows from a diag-
onalization procedure using the functions gn,l,j which are used in the proof of
Proposition 6.1 above. For example, the sequence of gauge-integrable functions
(gn,n,n)n∈N converges pointwise to the gauge-measurable function f . Another
pointwise approximation of f in terms of gauge-measurable step functions is
pursued in Section 8.

7. Gauge-measurable sets

We define gauge measurability of a set in the spirit of its counterpart for func-
tions:

Definition 7.1. A set A ⊂ Rd is gauge-measurable whenever, for every ε > 0,
there exists a gauge γ on Rd such that, for every finite set of disjoint rectangles
(Ri)i∈{1,...,k}, every finite set of points (ci)i∈{1,...,k} contained in A, and every
finite set of points (c�i)i∈{1,...,k} contained in Rd\A that satisfy Ri ⊂ γ(ci)∩γ(c�i)
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for every i ∈ {1, . . . , k}, one has

k�

i=1

vol (Ri) ≤ ε.

It follows from this definition that A is gauge-measurable if and only if its
complement Rd \ A is gauge-measurable. Also observe that for any 0 < η < 1
we have

|χA(x)− χA(z)| ≥ η

if and only if x ∈ A and z ∈ Rd \ A, or x ∈ Rd \ A and z ∈ A. In view of
Definitions 1.2 and 7.1, it thus follows that the set A ⊂ Rd is gauge-measurable
if and only if the characteristic function χA is gauge-measurable.

As in Lemma 4.2, the definition above can be reformulated by replacing the
tagged partitions with the inner measure of an open set:

Lemma 7.2 (Gauge-intersection characterization). The set A ⊂ Rd is gauge-
measurable if and only if, for every ε > 0, there exists a gauge γ on Rd such
that the open set

UA,γ :=
�

x∈A,
z∈Rd\A

�
γ(x) ∩ γ(z)

�

satisfies µ(UA,γ) ≤ ε.

This characterization can be established along the lines of the proof of
Lemma 4.2 and is left as an exercise. The family of gauge-measurable sets
forms an algebra:

Proposition 7.3. If the sets A1, A2 ⊂ Rd are gauge-measurable, then A1∪A2,
A1 ∩A2, and A1 \A2 are also gauge-measurable.

Proof. We prove that A1 ∪ A2 is gauge-measurable. For this purpose, observe
that every z ∈ Rd \ (A1 ∪A2) satisfies z ∈ Rd \A1 and z ∈ Rd \A2. Thus, for
any gauge γ on Rd we have

UA1∪A2,γ ⊂ UA1,γ ∪ UA2,γ .

Given ε > 0, let γ1 and γ2 be two gauges on Rd satisfying the conclusion of
Lemma 7.2 for A1 and A2, respectively, with parameter ε/2. Take the gauge γ
defined for x ∈ Rd by γ(x) = γ1(x) ∩ γ2(x). Thus,

UA1∪A2,γ ⊂ UA1,γ ∪ UA2,γ ⊂ UA1,γ1 ∪ UA2,γ2 ,

and by the monotonicity and subadditivity of µ we then get

µ(UA1∪A2,γ) ≤ µ(UA1,γ1) + µ(UA2,γ2) ≤
ε

2
+

ε

2
= ε.



GAUGE-MEASURABLE FUNCTIONS 131

Hence, A1 ∪A2 is gauge-measurable by Lemma 7.2.
Since we have

Rd \ (A1 ∩A2) = (Rd \A1) ∪ (Rd \A2)

and both sets Rd \ A1 and Rd \ A2 are gauge-measurable, we deduce that
Rd \ (A1 ∩ A2) is gauge-measurable, and thus the intersection A1 ∩ A2 is also
gauge-measurable. Finally, since

A1 \A2 = A1 ∩ (Rd \A2)

is the intersection of two gauge-measurable sets, A1 \A2 is also gauge-measur-
able.

Using the equivalence between the gauge measurability of the set A and
the gauge-measurability of the characteristic function χA, we deduce that the
family of gauge-measurable sets forms a σ-algebra:

Proposition 7.4 (Countable union). If (An)n∈N is a sequence of gauge-mea-
surable sets in Rd, then the set

�
k∈N

Ak is also gauge-measurable.

Proof. The sequence of characteristic functions (fn)n∈N defined for each n ∈ N
by fn = χ�n

k=0 Ak
converges pointwise to the characteristic function χ�

k∈N Ak
in

Rd. By induction using Proposition 7.3, each set
n�

k=0
Ak is gauge-measurable

and thus each function fn is gauge-measurable. From the stability of gauge
measurability under pointwise convergence (Proposition 6.1), we deduce that
the function χ�

k∈N Ak
is also gauge-measurable, hence the set

�
k∈N

Ak is gauge-

measurable.

Let us now prove Lebesgue’s regularity property, which yields the equiva-
lence between gauge measurability and Lebesgue measurability; see [8, §17], [27,
Lemma 3.22], and also [28].

Proposition 7.5 (Regularity). The set A ⊂ Rd is gauge-measurable if and
only if, for every ε > 0, there exist an open set V ⊂ Rd and a closed set
C ⊂ Rd such that C ⊂ A ⊂ V and µ(V \ C) ≤ ε.

Proof. Given a gauge γ on Rd, set

V =
�

x∈A

γ(x) and C =
�

z∈Rd\A

�
Rd \ γ(z)

�
.

Observe that V is open, C is closed, and V \ C = UA,γ . Thus, given ε > 0, if
the set A is gauge-measurable and one takes a gauge γ such that µ(UA,γ) ≤ ε,
then the sets V and C above satisfy the requirements.
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Conversely, if the set A satisfies the regularity condition, then given ε > 0
we take the sets V and C as in the statement. The gauge γ defined on Rd by
setting γ(x) = V if x ∈ A and γ(x) = Rd\C if x ∈ Rd\A satisfies UA,γ = V \C,
and thus µ(UA,γ) ≤ ε. Hence, the set A is gauge-measurable by Lemma 7.2.

8. Pointwise approximation

We conclude with the pointwise approximation of a gauge-measurable function
by step functions. We recall that g : Rd → Rp is a step function if the image
g(Rd) is a finite set.

Proposition 8.1. If a function f : Rd → Rp is gauge-measurable, then there
exists a sequence of gauge-measurable step functions (fn)n∈N from Rd to Rp

which converges pointwise to f in Rd and satisfies |fn| ≤ |f | in Rd for every
n ∈ N.

This statement allows one to recover a widespread strategy to define the
Lebesgue integral via measurable step functions. In our case, if f is gauge-
integrable, and thus |f | is also gauge-integrable by the Absolute Cauchy cri-
terion, then from the Dominated convergence theorem (Proposition 5.4) we
indeed have that �

Rd

f = lim
n→∞

�

Rd

fn.

The difference here is that this is a property of the gauge integral, rather than
a definition.

Before proving Proposition 8.1, we first study the inverse image of rectangles
by gauge-measurable functions:

Proposition 8.2. If a function f : Rd → Rp is gauge-measurable, then, for
every rectangle R ⊂ Rp, the set f−1(R) is gauge-measurable.

Proof. Observe that χR◦f = χf−1(R). To prove the proposition, it thus suffices
to prove that the function χR ◦ f is gauge-measurable. For this purpose, take
a sequence of uniformly continuous functions (Φn)n∈N from Rp to R which
converges pointwise to χR. Then, by Proposition 2.2 the function Φn ◦ f is
gauge-measurable for every n ∈ N, and the sequence (Φn ◦ f)n∈N converges
pointwise to χR◦f . By the stability property of sequences of gauge-measurable
functions (Proposition 6.1), we deduce that χR ◦ f is gauge-measurable, and
the conclusion follows.

The converse of Proposition 8.2 is also true: if f−1(R) is gauge-measurable
for every rectangle R ⊂ Rp, then f is gauge-measurable. This assertion can be
deduced from the proof of Proposition 8.1 below, since under such an assump-
tion the functions fn which are defined in (14) below are all gauge-measurable
and the function f is the pointwise limit of the sequence (fn)n∈N.
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Proof of Proposition 8.1. Take a sequence of positive numbers (εn)n∈N that
converges to 0. For each n ∈ N, let (Ri,n)i∈{1,...,kn} be a finite family of disjoint
rectangles whose diameters do not exceed εn that covers the ball Bn+1(0) in
Rp. For each i ∈ {1, . . . , kn}, let ai be a point with smallest norm in Ri,n, and
define

fn :=
kn�

i=1

ai χf−1(Ri,n). (14)

For every x ∈ f−1(Bn+1(0)), we then have

|fn(x)− f(x)| ≤ εn,

hence the sequence (fn)n∈N converges pointwise to f in Rd. [The convergence
is uniform when f is a bounded function.] By the choice of the point ai, we
also have

|fn(x)| ≤ |f(x)|

if f(x) ∈
kn�
i=1

Ri,n, while the left-hand side vanishes otherwise. This estimate

thus holds for every x ∈ Rd.
Assuming that the set f−1(R) is gauge-measurable for every rectangle

R ⊂ Rp, which by Proposition 8.2 is the case when the function f is gauge-
measurable, it follows from the linear stability of gauge-measurable functions
(Proposition 3.1) that fn is a gauge-measurable step function, and this gives
the conclusion.
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[9] A. Denjoy, Une extension de l’intégrale de M. Lebesgue, C. R. Acad. Sci. Paris

154 (1912), 859–862.

[10] F. Hausdorff, Set theory, 2nd ed., Chelsea Publishing, New York, 1962.

[11] R. Henstock, Definitions of Riemann type of the variational integrals, Proc.

London Math. Soc. (3) 11 (1961), 402–418.
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[18] N. Lusin, Sur les propriétés de l’intégrale de M. Denjoy, C. R. Acad. Sci., Paris

155 (1912), 1475–1477.
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1. Introduction

It is great pleasure to do mathematics, and I have enjoyed it for more than fifty
years now. Part of that pleasure comes from meeting other mathematicians, and
there are very few, if any, that I have enjoyed more than Jean Mawhin. His sense
of humour of course is part of the enjoyment, but so are his mathematics, always
deeply rooted in classical problems, and bringing to them modern methods and
deceptively simple solutions. He belongs to a long and distinguished Belgian
tradition of the calculus of variations, starting with de la Vallée-Poussin and de
Donder [2], continued by Jean himself and his students, such as Michel Willem.
I wish to point out that their teaching is no less remarkable than their research.
The treatise of de la Vallée-Poussin, in its second edition [6], was the first one to
introduce the Lebesgue integral, and Jean’s treatise [4] , is no less revolutionary
and a pleasure to read. I cannot resist the opportunity of commending Michel’s
expository talent as well, in [7, 8, 9]: short books, which contain an amazing
amount of well-digested material.

All these people have been a great inspiration to me, and I dedicate this
work to them. I will try to fit into the same tradition by describing a re-
search program which starts in the classical calculus of variations and ends in
the symplectic group. I have long asked myself whether the Hamilton-Jacobi
equation, nowadays known as Hamilton-Jacobi-Bellman because of the latter’s
important contribution, and shortened to HJB, can be extended to other set-
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tings, for instance to periodic boundary conditions. It turns out that they can.
I will describe how to proceed, and leave the detailed study of the equation to
further studies, preferably by younger people.

2. The classical situation

Let me first summarize the classical theory (see [1] or [7]). Consider the classical
Bolza problem in the one-dimensional calculus of variations:

inf

� T

0
f

�
q,

dq

dt

�
dt , (1)

q (0) = q0, q (T ) = q1,
dq

dt
∈ L

1
, (2)

where T > 0, q0 and q1 ∈ R
n are prescribed. Suppose f (q,χ) is continuously

differentiable, convex wrt χ and coercive, meaning that we have f (q,χ) ≥
Φ (|χ|) where Φ is bounded from below and Φ (t) t−1 → ∞ when t → ∞. Then

it can be shown that the minimizer q exists, and that
���dqdt

��� ∈ L
∞, so that it

satisfies the Euler-Lagrange equation:

d

dt

∂f

∂χ
=

∂f

∂q
.

Since the function f has been assumed to be convex wrt the second variable,
it has a Legendre transform:

H (p, q) = max {pχ− f (q,χ)} (3)

and it is well-known that the Euler-Lagrange equation (1), which is a second-
order equation in R

n, can be rewritten as a Hamiltonian system, which is a
first-order equation in R

2n:

dp

dt
= −∂H

∂q
, (4)

dq

dt
=

∂H

∂p
. (5)

If now we fix q0 and introduce the so-called value function V (q1, T ) associ-
ated with the optimization problem (1)-(2), namely:

V (q1, T ) := inf

�� T

0
f

�
q,

dq

dt

�
dt | q (0) = q0, q (T ) = q1

�
, (6)
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we find that it satisfies a first-order PDE on R
n × [0, T ]:

∂V

∂T
+H

�
q1,

∂V

∂q1

�
= 0 . (7)

This is the HJB equation. We have approached it through the value function,
but the same equation can also be obtained by trying to find a change of variable
which would simplify the problem (i.e. generating functions), and this is how
it appears in the work of Hamilton and Jacobi.

Note that q0 and q1 play symmetric roles, so that a similar equation exists
for q0.

3. Other boundary conditions

From now on we shall simplify notations by writing x = (p, q) and:

J =

�
0 −In

In 0

�
.

It follows that the system (4)-(5) can be rewritten compactly as dx
dt =

JH
� (x).
Recall that a matrix M is symplectic if M∗

JM = J . The group of symplec-
tic matrices in R

n×R
n will be denoted by Sp (n). It has dimension n (2n+ 1).

It is a compact Lie group, and the tangent space at I2n is given by:

TI2nSp (n) = {m | m∗
J + Jm = 0} . (8)

In other words, Jm is symmetric.
The Bolza problem is a natural one when f is coercive, for instance when

f (q,χ) = 1
2q

2+ 1
2χ

2. Note that in that case, by formula (3), we have H (p, q) =
1
2p

2 − 1
2q

2, which is neither convex nor coercive. For convex and coercive
Hamiltonians, such as H (p, q) = 1

2p
2 + 1

2q
2, the natural one is to look for

periodic solutions, that is, to investigate the problem:

dx

dt
= JH

� (x) ,

x (T ) = x (0) .

This problem can be imbedded in a family of problems indexed by M ∈ Sp (n)

dx

dt
= JH

� (x) , (9)

x (T ) = Mx (0) . (10)
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Here M will play the role devoted to (q0, q1) in the Bolza problem: the value
function will be V (M,T ) instead of V (q0, q1, T ). Note that we cannot define
it by using the least action principle:

V (M,T ) = inf

�� T

0

�
1

2

�
J
dx

dt
, x

�
+H (x)

�
dt | x (T ) = Mx (0)

�
,

because the right-hand side takes the value +∞ (and would take the value
−∞ if we tried to minimize). In fact, a solution to problem (9)-(10) is neither
a minimizer nor a maximizer, but a critical point of the right-hand side. So
we have to define the value in another way, and for this reason we make some
additional assumptions on H

Definition 3.1. Suppose H : R2n → R is convex, with H (0) = 0. It is called

subquadratic near infinity if H (x) |x|−2 → 0 when |x| → ∞, and subquadratic

near 0 if H (x) |x|−2 → ∞ when |x| → 0.

We use the results in [3] (see Chapter II.4, notably Proposition 6, Chapter
III.3, notably Corollary 6; see also [5])

Theorem 3.2. Suppose H is convex and subquadratic near 0, and consider the

problem:

inf

� T

0

��
J
dy

dt
, y

�
+H

∗
�
−J

dy

dt

��
dt , (11)

y (T ) = My (0) . (12)

This problem has a solution y (t) for any M ∈ Sp (n), and there is a constant

y0 ∈ R
2n

such that y (t) + y0 solves problem (9)-(10). If in addition H is

subquadratic near 0, this solution is not constant.

To understand the theorem, note that y (t) = 0 is always a solution. Note
also that, for any y (t), adding a constant y0 changes the value of the integral
by

� T

0

�
J
dy

dt
, y0

�
dt = (J (y (T )− y (0)) , y0) = − (y (0) , (M∗ − I2n) y0) .

If M has 1 as an eigenvalue, and if y0 is an eigenvector, the right-hand side
vanishes. So the solution y (t) of (11)-(12) is defined modulo a 1-eigenvector y0
of M , and the latter can be chosen so that y (t) + y0 solves (9)-(10).

We are now in a position to define the function V (M,T ) in a proper way:

V (M,T ) = inf

�� T

0

�
1

2

�
J
dy

dt
, y

�
+H

∗
�
−J

dy

dt

��
dt | y (T )=My (0)

�
. (13)
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The right-hand side is the dual action functional. Note that setting y = 0
gives the value 0 to the integral, so that V (M,T ) < 0 for T > 0. The function
V : Sp (n)× [0, T ] → R is well-defined and does not vanish. Let us show that
it satisfies a PDE system of the first order.

For the sake of simplicity, assume that M does not have the eigenvalue 1.
Set

u =
dx

dt
,

x (t) = x (0) +

� t

0
u (s) ds .

The boundary condition x (T ) = Mx (0) becomes:

x (0) +

� T

0
udt = Mx (0) , (14)

x (0) = (M − I2n)
−1

� T

0
u dt. (15)

Set Πu (t) :=
� t
0 u (s) ds. We have:

x (t) = x (0) +

� t

0
u (s) ds = (M − I2n)

−1 Πu (T ) +Πu (t) . (16)

Writing this into the right-hand side of (13), we get:

V (M,T ) = inf
u

� T

0

�
1

2

�
Ju, (M−I2n)

−1 Πu (T )+Πu(t)
�
+H

∗(−Ju)

�
dt. (17)

Let us now compute the partial derivatives wrt M and to T .
If m ∈ TI2nSp (n), we have mM ∈ TMSp (n). Hence, for every m satisfy-

ing (8), we have, by the envelope theorem:

∂V

∂M
(M,T )mM = −

� T

0

1

2

�
Ju, (M − I2n)

−1
mM (M − I2n)

−1 Πu (T )
�
dt

= −
� T

0

1

2

�
Ju, (M − I2n)

−1
mMx (0)

�
dt

= −1

2

�� T

0
Judt, (M − I2n)

−1
mx (T )

�

= −1

2

�
J (M − I2n)x (0) , (M − I2n)

−1
mx (T )

�

= −1

2

�
(M∗ − I2n)

−1
J (M − I2n)x (0) ,mx (T )

�
,

where u (t) is a minimizer in (17) and x (t) is given by formula (16).
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Lemma 3.3. If M is symplectic, we have:

(M∗ − I2n)
−1

J (M − I2n) = −JM.

Proof. Multiply both sides by M
∗ − I2n. We get:

JM − J = −M
∗
JM + JM,

which is true since M
∗
JM = J .

Finally, we find:

∂V

∂M
(M,T )mM =

1

2
(JMx (0) ,mx (T )) =

1

2
(Jx (T ) ,mx (T )) . (18)

To find the partial derivative wrt T , we rewrite the right-hand side of (17)
as follows:

� 1

0

�
1

2

1

T

�
J
dx

dt
, x

�
+H

∗
�
−J

1

T

dx

dt

��
Tdt.

The envelope theorem then yields:

∂V

∂T
(M,T ) =

� 1

0

�
H

∗
�
−J

1

T

dx

dt

�
+

�
∇H

∗
�
−J

1

T

dx

dt

�
, J

1

T 2

dx

dt

�
T

�
dt.

By the Fenchel identity, H (x) = (∇H
∗ (y) , y) − H

∗ (y) for x = ∇H
∗ (y),

so the integrand is just:

−H

�
∇H

∗
�
−J

1

T

dx

dt

��
.

Inverting the equation dx
dt = JH

� (x), we have x = ∇H
∗ �−J

dx
dt

�
. Finally,

we get

∂V

∂T
(M,T ) = −

� T

0
H (x)

dt

T
.

Bearing in mind that H (x (t)) is constant along trajectories of the Hamil-
tonian system, we get:

∂V

∂T
(M,T ) = −H (x (0)) = −H (x (T )) . (19)
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4. HJB

We have found the partial derivatives of V (M,T ) at any point (M,T ) ∈
Sp (n)× R+ such that M does not have the eigenvalue 1. If u (t) is the corre-
sponding minimizer in (8), and x (t) is the corresponding solution of (9)-(10)
given by formula (15), so that dx

dt = u, we have:

∂V

∂M
(M,T )mM =

1

2
(Jx (T ) ,mx (T )) , ∀m ∈ TI2nSp (n) , (20)

∂V

∂T
(M,T ) = −H (x (T )) . (21)

This is the HJB equation we are seeking. Indeed, we can invert the first
equation to express x (T ) in terms of ∂V

∂M , say x (T ) = ϕ
�
∂V
∂M

�
and write the

result in the second, getting ∂V
∂T = −H ◦ ϕ

�
∂V
∂M

�
. Note that equation (20) is

in reality a system of 2n2 + n equation (one for each m ∈ TI2nSp (n)) in 2n
variables, so that it is overdetermined. However, by the preceding analysis, we
have shown that formula (17) gives a solution. Let us summarize:

Theorem 4.1. Suppose H : R2n → R is convex, H (0) = 0, and subquadratic

near 0 and infinity. Then the function V : Sp(n) × [0, T ] → R defined by

formula (17) is negative for T > 0. If M does not have 1 as an eigenvalue,

and V is differentiable at (M,T ), the HJB relations (20) and (21) hold.

Note that there are two terms in the HJB system: the first one, (20), does
not depend on H, which appears only in the second, (21).

Let us give an example. Take n = 1, so that M is symplectic if and only if
it preserves volume:

M =

�
a b

c d

�
∈ Sp(2) ⇐⇒ ad− bc = 1 ,

m =

�
α β

γ δ

�
∈ TI2nSp(2) ⇐⇒ α+ δ = 0 .

Then, for ξ = (ξ1, ξ2):

1

2
(Jξ,mξ) = γξ

2
1 − βξ

2
2 ,

Let us now take local coordinates in Sp(2). If c �= 0, for instance, we can
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take a, b, c and set d = (ab− 1) c−1. Then V (M,T ) becomes V (a, b, c, T ) and:

∂V

∂M
mM =

∂V

∂a
(αa+ βc) +

∂V

∂b
(αb+ βd) +

∂V

∂c
(γa+ δc)

= α

�
a
∂V

∂a
+ b

∂V

∂b

�
+ β

�
c
∂V

∂a
+ d

∂V

∂b

�
+ γ

�
a
∂V

∂c

�
+ δ

�
c
∂V

∂c

�

= α

�
a
∂V

∂a
+ b

∂V

∂b
− c

∂V

∂c

�
+ β

�
c
∂V

∂a
+

ab− 1

c

∂V

∂b

�
+ γ

�
a
∂V

∂c

�
.

Equation (20) becomes:

a
∂V

∂a
+ b

∂V

∂b
− c

∂V

∂c
= 0 , (22)

c
∂V

∂a
+

ab− 1

c

∂V

∂b
= −x2 (T )

2
, (23)

a
∂V

∂c
= x1 (T )

2
. (24)

We can derive x1 (T ) and x2 (T ) from the last two equations, and plug into
second HJB relation (21), getting:

∂V

∂T
= −H

�
±
�
a
∂V

∂c
,±

�
1− ab

c

∂V

∂b
− c

∂V

∂a

�
.

We still have to satisfy equation (22). Finally, we get an overdetermined
system for V (a, b, c, T ) :

0 = a
∂V

∂a
+ b

∂V

∂b
− c

∂V

∂c
,

∂V

∂T
= −H

�
±
�
a
∂V

∂c
,±

�
1− ab

c

∂V

∂b
− c

∂V

∂a

�
.

The sign indeterminacy in the second equation arises also in the Bolza
problem. For instance, it is found in the classical eikonal equation.

If one takes H (x) = |x|α with 0 < α < 2, which is convex and subquadratic
near 0 and infinity, the system becomes:

0 = a
∂V

∂a
+ b

∂V

∂b
− c

∂V

∂c
,

0 =
∂V

∂T
+

����a
∂V

∂c
+

1− ab

c

∂V

∂b
− c

∂V

∂a

����

α
2

,

a
∂V

∂c
> 0,

1− ab

c

∂V

∂b
− c

∂V

∂a
> 0
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and the problem (9)-(10) can be solved explicitly, yielding a solution to this
system.

5. Conclusion

This aim of this paper is to open up a problem. There are many questions to
be answered:

1. We have investigated only points where M does not have the eigenvalue
1 and V (M,T ) is differentiable. What happens at other points? Is it
true that the value function V (M,T ) provides a viscosity solution of the
system (20)-(21) over Sp(n)×R+?

2. What is the geometry of the solution? What is the meaning of the in-
determinacy which arises when solving (20), and which appears as ± in
the example? Does it mean that the graph of the value function can be
extended to a sheet which covers Sp(n)×R+ several times, in the manner
of a Riemann surface?

3. What happens when the Hamiltonian H is no longer subquadratic? If
it is superquadratic, for instance, the dual action principle still holds,
and can be used to prove the existence of a solution to the problem (9)-
(10), but the minimum on the right-hand side of (13) is not attained.
The solution is a saddle-point, and defines a critical value rather than
a minimum. However, the system (20)-(21) is still valid. Does it have a
solution, and is it provided by the analogue of formula (17), where one
seeks a critical value of the right-hand side?

4. Finally, what about general Hamiltonians H, assuming simply H(0) = 0
and H (x) → ∞ when |x| → ∞, so that energy surfaces H (x) = h are
bounded, and the boundary-value problem (9)-(10) is reasonable?
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[9] M. Willem, Principes d’analyse fonctionnelle, Cassini, Paris, 1998.

Author’s address:

Ivar Ekeland

CEREMADE et Institut de Finance
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Abstract. A boundary value problem on the whole half-closed inter-

val [1,∞), associated to differential equations with the Euclidean mean

curvature operator or with the Minkowski mean curvature operator is

here considered. By using a new approach, based on a linearization de-
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solutions is examined.
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1. Introduction

In this paper we deal with the following boundary value problems (BVPs) on
the half-line for equations with the Euclidean mean curvature operator






�
a(t)

x�
√
1 + x�2

��
+ b(t)F (x) = 0, t ∈ [1,∞)

x(1) = 1, x(t) > 0, x�(t) ≤ 0 for t ≥ 1, lim
t→∞

x(t) = 0,
(1)

and with the Minkowski mean curvature operator





�
a(t)

x�
√
1− x�2

��
+ b(t)F (x) = 0, t ∈ [1,∞)

x(1) = 1, x(t) > 0, x�(t) ≤ 0 for t ≥ 1, lim
t→∞

x(t) = 0.
(2)

Troughout the paper the following conditions are assumed:

(H1) The function a is continuous on [1,∞), a(t) > 0 in [1,∞), and
� ∞

1

1

a(t)
dt < ∞. (3)
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(H2) The function b is continuous on [1,∞), b(t) ≥ 0 and
� ∞

1
b(t)

� ∞

t

1

a(s)
dsdt < ∞. (4)

(H3) The function F is continuous on R, F (u)u > 0 for u �= 0, and

lim sup
u→0+

F (u)

u
< ∞.

Define
ΦE(v) =

v√
1 + v2

, ΦM (v) =
v√

1− v2
.

The operator ΦE arises in the search for radial solutions to partial differential
equations which model fluid mechanics problems, in particular capillarity-type
phenomena for compressible and incompressible fluids. The operator ΦM

originates from studying certain extrinsic properties of the mean curvature of
hypersurfaces in the relativity theory. Therefore, it is called also the relativity
operator.

For instance, the study of radial solutions for the problem

div

�
∇u�

1± |∇u|2

�
+ f(|x|, u) = 0, x ∈ Ω ⊂ RN

u(x) > 0 in Ω, lim
|x|→∞

u(|x|) = 0,

where Ω is the exterior of a ball of radius R > 0, leads to the boundary value
problem on the half-line

�
rN−1 v�√

1± v�2
��
+ rN−1f(r, v) = 0, r ∈ [R,∞)

v(r) > 0, lim
r→∞

v(r) = 0,

where r = |x| and v(r) = u(|x|). If N > 2, f(r, v) = b̂(r)F (v), with b̂(r) ≥ 0
in [R,∞) and

�∞
R rb̂(r) dr < ∞, then assumptions (H1) and (H2) are satisfied.

In particular, if b̂(r) ≈ rδ, then (H2) reads as δ < −2.
Boundary value problems associated to equations with the curvature op-

erator in compact intervals are widely considered in the literature. We refer,
in particular, to [3, 4, 5, 6, 7, 8, 11, 25, 27], and references therein. In un-
bounded domains, these equations have been considered in [14, 15], in which
some asymptotic BVPs are studied, and in [1, 2, 13, 19], in which the search
of ground state solutions, that is solutions which are globally positive on the
whole half-line and tend to zero as t → ∞, is examined.
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Finally, equations with sign-changing coefficients are recently considered
when the differential operator is the p-Laplacian, see, e.g. [9, 10, 22, 23] and
references therein.

Here, our main aim is to study the solvability of the BVPs (1) and (2). As
claimed, these BVPs originate from the search of ground state solutions for
PDE with Euclidean or Minkowski mean curvature operator. Our approach
is based on a fixed point theorem for operators defined in a Fréchet space by
a Schauder’s linearization device, see [16, Theorem 1.1]. This tool does not
require the explicit form of the fixed point operator T . Moreover, it simplifies
the check of the topological properties of T in the noncompact interval [1,∞),
since these properties become an immediate consequence of a-priori bounds for
an associated linear equation. These bounds are obtained in an implicit form by
means of the concepts of disconjugacy and principal solutions for second order
linear equations. The main properties on this topic, needed in our arguments,
are presented in Section 2. In Section 3 the solvability of (1) and (2) is given,
by assuming some implicit conditions on functions a and b. Explicit conditions
for the solvability of these BVPs, are derived in Section 4. Observe that also
the BVP for equations with the Sturm-Liouville operator

�
(a(t)x�)� + b(t)F (x) = 0, t ∈ [1,∞)

x(1) = 1, x(t) > 0, for t ≥ 1, lim
t→∞

x(t) = 0,
(5)

can been treated by a similar method. Some examples and a discussion on
these topics complete the paper.

2. Auxiliary results

To obtain a-priori bounds for solutions of BVPs (1) and (2), we employ a
linearization method. Therefore, in this section we consider linear equations, we
point out some properties of principal solutions, and we state new comparison
results.

Consider the linear equation

(r(t)y�)� + q(t)y = 0, t ∈ [1,∞), (6)

where r, q are continuous functions, r(t) > 0, q(t) ≥ 0 for t ≥ 1.
The equation (6) is called nonoscillatory if all its solutions are nonoscillatory.

In view of the Sturm theorem, see, e.g., [24, Chap. XI, Section 3], the exis-
tence of a nonoscillatory solution implies the nonoscillation of (6). When (6)
is nonoscillatory, a powerful tool for studying the qualitative behavior of its
solutions is based on the analysis of the corresponding Riccati equation

ξ� + q(t) +
ξ2

r(t)
= 0, (7)
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see, e.g., [18, 24]. More precisely, if y is a non-vanishing solution of (6), then

ξ(t) =
r(t)y�(t)

y(t)

is a solution of (7). Conversely, if ξ is a solution of (7), then any nontrivial
solution y of the first order linear equation

y� =
ξ(t)

r(t)
y

is also a non-vanishing solution of (6). If (6) is nonoscillatory, then the corre-
sponding Riccati equation (7) has a solution ξ0, defined for large t, such that
for any other solution ξ of (7), defined in a neighborhood Iξ of infinity, we have
ξ0(t) < ξ(t) for t ∈ Iξ. The solution ξ0 is called the minimal solution of (7)
and any solution y0 of

y� =
ξ0(t)

r(t)
y (8)

is called principal solution of (6). Clearly, y0 is uniquely determined up to a
constant factor and so by the principal solution of (6) we mean any solution
of (8) which is eventually positive. The principal solution is, roughly speaking,
the smallest solution of (6) near infinity. Indeed it holds

lim
t→∞

y0(t)

y(t)
= 0,

where y denotes any linearly independent solution of (6).
We recall that (6) is said to be disconjugate on an interval I ⊂ [1,∞),

if any nontrivial solution of (6) has at most one zero on I. Equation (6) is
disconjugate on [1,∞), if and only if it is disconjugate on (1,∞), see, e.g.,
[18, Theorem 2, Chap.1]. The relation between the notions of disconjugacy
and principal solution is given by the following, see, e.g., [18, Chap. 1] or [24,
Chap. XI, Section 6].

Lemma 2.1. The following statements are equivalent.

(i1) Equation (6) is disconjugate on [1,∞).
(i2) The principal solution y0 of (6) does not have zeros on (1,∞).
(i3) The Riccati equation (7) has a solution defined throughout (1,∞).

The following characterization of principal solution of (6) holds, see [24,
Chap. XI, Theorem 6.4].

Lemma 2.2. Let (6) be nonoscillatory. Then a nontrivial solution y0 of (6) is

the principal solution if and only if we have for large T
� ∞

T

1

r(s)y20(s)
ds = ∞.
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Some asymptotic properties for solutions of (6) are summarized in the next
lemma.

Lemma 2.3. Assume
� ∞

1

1

r(t)
dt < ∞,

� ∞

1
q(t)R(t)dt < ∞,

where

R(t) =

� ∞

t

1

r(s)
ds.

Then (6) is nonoscillatory, and the set of eventually nonincreasing positive

solutions, with zero limit at infinity, is nonempty. Further, any such solution

y satisfies

lim
t→∞

y(t)

R(t)
= cy, (9)

where 0 < cy < ∞ is a suitable constant.

Proof. From [17, Theorem 1], see also [17, Lemma 2], we have the existence
of eventually nonincreasing positive solutions, with zero limit at infinity. The
asymptotic estimate (9) follows from [17, Theorem 2] and the l’Hopital rule.

Under the assumptions of Lemma 2.3, the principal solution y0 of (6) is
nonincreasing for large t. However, y�0 can change sign on [1,∞), even if (6) is
disconjugate on [1,∞), see, e.g., [20, Example 1]. Now, the question under what
assumptions the principal solution is monotone on the whole interval [1,∞)
arises. In the following we give conditions ensuring that y0(t)y�0(t) ≤ 0 on the
whole interval [1,∞). To this end the following comparison criterion between
two Riccati equations plays a crucial role, see [24, Chap. XI, Corollary 6.5].

Consider the linear equations
�
r2(t)y

��� + q2(t)y = 0, t ≥ 1, (10)

and �
r1(t)w

��� + q1(t)w = 0, t ≥ 1, (11)

where ri, qi are continuous functions on [1,∞), ri(t) > 0, qi(t) ≥ 0 for t ≥ 1, i =
1, 2.

Lemma 2.4. Let (10) be a Sturm majorant of (11), that is, for t ≥ 1

r1(t) ≥ r2(t), q1(t) ≤ q2(t). (12)

Let (10) be disconjugate on [T,∞), T ≥ 1, and assume that a solution y of (10)

exists, without zeros on [T,∞). Then (11) is disconjugate on [T,∞) and its

principal solution w0 satisfies for t ≥ T

r1(t)w�
0(t)

w0(t)
≤ r2(t)y�(t)

y(t)
.



152 Z. DOŠLÁ ET AL.

Using Lemma 2.4, we get the following comparison result, which will play
a crucial role in the sequel.

Lemma 2.5. Let (10) be a majorant of (11), that is (12) holds for t ≥ 1 and

at least one of the inequalities in (12) is strict on a subinterval of [1,∞) of

positive measure. If the principal solution of (10) is positive nonincreasing on

[1,∞), then (11) has the principal solution which is positive nonincreasing on

[1,∞).

Proof. The assertion is an easy consequence of a well-known result on conju-
gate points for linear equations, see, e.g., [21, Theorem 4.2.3]. Since (10) is
disconjugate on [1,∞), by Lemma 2.4 also (11) is disconjugate on the same
interval. By Lemma 2.1 the principal solution w0 of (11) is positive for t > 1.
If w0(1) = 0, using [21, Theorem 4.2.3], every solution of (10) should have
a zero point on (1,∞), which contradicts the fact that the principal solution
of (10) is positive on (1,∞). Thus w0(t) > 0 on [1,∞). Using Lemma 2.4 we
get w�

0(t) ≤ 0 for t ≥ 1, and the assertion follows.

3. The existence results

Define

F̄ = sup
u∈(0,1]

F (u)

u
. (13)

We start by considering the BVP associated to the equation with the Euclidean
mean curvature operator. The following holds.

Theorem 3.1. Let (Hi), i=1,2,3, be verified. Assume

α = inf
t≥1

a(t)A(t) > 1, (14)

where

A(t) =

� ∞

t

1

a(s)
ds. (15)

If the principal solution z0 of the linear equation

(a(t)z�)
�
+

α√
α2 − 1

F̄ b(t)z = 0, t ≥ 1, (16)

is positive and nonincreasing on [1,∞), then the BVP (1) has at least one

solution.

To prove this result, we use a general fixed point theorem for operators
defined in the Fréchet space C([1,∞),R2), based on [16, Theorem 1.1]. We
state the result in the form that will be used.
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Theorem 3.2. Let S be a nonempty subset of the Fréchet space C([1,∞),R2).
Assume that there exists a nonempty, closed, convex and bounded subset Ω ⊂
C([1,∞),R2) such that, for any (u, v) ∈ Ω, the linear equation

��
a2(t)− v2(t) x�

��
+ b(t)

F (u(t))

u(t)
x = 0 (17)

admits a unique solution xuv, such that (xuv, x
[1]
uv) ∈ S, where

x[1]
uv =

�
a2(t)− v2(t)x�

uv

is the quasiderivative of xuv.

Let T be the operator Ω → S, given by

T (u, v) = (xuv, x
[1]
uv).

Assume:

(i1) T (Ω) ⊂ Ω;

(i2) if {(un, vn)} ⊂ Ω is a sequence converging in Ω and T ((un, vn)) →
(x1, x2), then (x1, x2) ∈ S.

Then the operator T has a fixed point (x, y) ∈ Ω ∩ S and x is a solution of

�
a(t)

x�
√
1 + x�2

��
+ b(t)F (x) = 0. (18)

If the equation (17) is replaced by

��
a2(t) + v2(t)x�

��
+ b(t)

F (u(t))

u(t)
x = 0, (19)

and (i1), (i2) are verified, then T has a fixed point (�x, �y) ∈ Ω ∩ S and �x is a

solution of �
a(t)

x�
√
1− x�2

��
+ b(t)F (x) = 0.

Proof. Equation (17) can be written as the linear system

x�
1 =

1�
a2(t)− v2(t)

x2, x�
2 = −b(t)

F (u(t))

u(t)
x1, (20)

where x1 = x and x2 = x[1]. Hence, from [16, Theorem 1.1], the set T (Ω) is
relatively compact and T is continuous on Ω. The Schauder-Tychonoff fixed
point theorem can now be applied to the operator T : Ω → T (Ω), since Ω
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is bounded, closed, convex, T (Ω) is relatively compact and T is continuous
on Ω. Thus, T has a fixed point in Ω, say (x, y), and (x, y) = T (x, y). Since
T (Ω) ⊂ S and T (Ω) ⊂ Ω, we get (x, y) ∈ Ω ∩ S. From (20) we have

x�(t) =
y(t)�

a2(t)− y2(t)
, y�(t) = −b(t)F (x(t)),

Since

x�(t) =
y(t)�

a2(t)− y2(t)
= ΦM

�
y(t)

a(t)

�

or

ΦE (x�(t)) = ΦE

�
ΦM

�
y(t)

a(t)

��
,

using the fact that ΦE(ΦM (d)) = d, we obtain

a(t)
x�(t)�

1 + (x�(t))2
= y(t), y�(t) = −b(t)F (x(t)).

Then x is a solution of (18). A similar argument holds when the operator T is
defined via the linear equation (19).

Proof of Theorem 3.1. In view of assumptions (H1) and (H2), Lemma 2.3 is ap-
plicable and (16) is nonoscillatory. Since the principal solution z0 of (16) is pos-
itive nonincreasing on [1,∞), we can suppose also z0(1) = 1. Using Lemma 2.3
we have limt→∞ z0(t) = 0. From Lemma 2.1, equation (16) is disconjugate on
[1,∞). Moreover, (16) is equivalent to

�√
α2 − 1

α
a(t)z�

��

+ F̄ b(t)z = 0, t ≥ 1, (21)

which is a Sturm majorant of

(a(t)w�)
�
= 0, t ≥ 1, (22)

whose principal solution is

w0(t) =
1

A(1)
A(t), (23)

where A is given in (15). Clearly, w0 satisfies the boundary conditions:

w0(1) = 1, w0(t) > 0, w�
0(t) < 0 on [1,∞), lim

t→∞
w0(t) = 0.

Put
β = αΦM (1/α) =

α√
α2 − 1

. (24)
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By applying Lemma 2.4, we get for t ∈ [1,∞)

w�
0(t)

w0(t)
≤ 1

β

z�0(t)

z0(t)
≤ 0,

or, taking into account that 0 < w0(t) ≤ 1,

w0(t)
β ≤ w0(t) ≤ z0(t)

1/β .

In the Fréchet space C([1,∞),R2), consider the subsets given by

Ω =

�
(u, v) ∈ C([1,∞),R2) : (w0(t))

β ≤ u(t) ≤ (z0(t))
1/β , |v(t)| ≤ 1

α
a(t)

�
,

and

S =

�
(x, y) ∈ C([1,∞),R2) : x(1) = 1, x(t) > 0,

� ∞

1

1

a(t)x2(t)
dt = ∞

�
. (25)

Since w0(1) = z0(1) = 1 and z0(t) ≤ 1, for any (u, v) ∈ Ω we get u(1) =
1, u(t) ≤ 1.

For any (u, v) ∈ Ω, consider the linear equation

��
a2(t)− v2(t) x�

��
+ b(t)

F (u(t))

u(t)
x = 0. (26)

Since

a(t) ≥
�
a2(t)− v2(t) ≥

√
α2 − 1

α
a(t), (27)

equation (21) is a majorant of (26), and, by Lemma 2.4, (26) is disconjugate
on [1,∞). Let xuv be the principal solution of (26), such that xuv(1) = 1. In
virtue of Lemma 2.5, xuv is positive nonincreasing on [1,∞). Put

x[1]
uv =

�
a2(t)− v2(t)x�

uv, (28)

and let T be the operator which associates to any (u, v) ∈ Ω the vector

(xuv, x
[1]
uv), that is

T (u, v)(t) = (xuv(t), x
[1]
uv(t)) .

In view of Lemma 2.2 and (27), we have T (u, v) ∈ S.
Equations (21) and (22) are a majorant and a minorant of (26), respectively.

Applying Lemma 2.4 to (21) and (26), from (27), we obtain

a(t)
x�
uv(t)

xuv(t)
≤

�
a2(t)− v2(t)

x�
uv(t)

xuv(t)
≤

√
α2 − 1

α
a(t)

z�0(t)

z0(t)
≤ 0.
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Thus
xuv(t) ≤ (z0(t))

1/β .

Similarly, applying Lemma 2.4 to equations (22) and (26), we obtain

a(t)
w�

0(t)

w0(t)
≤

�
a2(t)− v2(t)

x�
uv(t)

xuv(t)
≤

√
α2 − 1

α
a(t)

x�
uv(t)

xuv(t)
. (29)

Hence
(w0(t))

β ≤ xuv(t),

where β is given in (24).
To prove that T maps Ω into itself, we have to show that

|x[1]
uv(t)| ≤

1

α
a(t). (30)

From (28) and (29) we obtain

|x[1]
uv(t)|

xuv(t)
=

�
a2(t)− v2(t)

|x�
uv(t)|

xuv(t)
≤ a(t)

|w�
0(t)|

w0(t)
. (31)

In view of (23) we get
|w�

0(t)|
w0(t)

=
1

a(t)A(t)
.

Thus, from (31), since 0 < xuv(t) ≤ 1, we have

|x[1]
uv(t)| ≤

1

A(t)
xuv(t) ≤

1

A(t)
,

and, in virtue of (14), the inequality (30) follows.
In order to apply Theorem 3.2, let us show that, if {(un, vn)} converges in Ω

and {T (un, vn)} converges to (x, y) ∈ Ω, then (x, y) ∈ S. Clearly, x is positive
for t ≥ 1 and x(1) = 1. Thus, it remains to prove that

� ∞

1

1

a(t)x2(t)
dt = ∞. (32)

Since T (Ω) ⊂ Ω = Ω, we have 0 < x(t) ≤ (z0(t))1/β , and limt→∞ x(t) = 0.
Further, since {T (un, vn)} converges to (x, y) uniformly in every compact of
[1,∞), the function x is a solution of (26) for some u = u, v = v such that
(u, v) ∈ Ω. Applying (27) and Lemma 2.3, there exist T ≥ 1 and a constant
k > 0 such that x(t) ≤ kA(t) on [T,∞), where A is given in (15). Thus

� t

T

1

a(s)x2(s)
ds ≥ 1

k2

�
1

A(T )
− 1

A(t)

�

and (32) is satisfied. Applying Theorem 3.2, the operator T has a fixed point
(x̄, ȳ) ∈ Ω ∩ S and x̄ is a solution of (1).
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Now, we consider the case of the Minkowski curvature operator. The fol-
lowing holds.

Theorem 3.3. Assume that (Hi), i=1,2,3, are verified and let (14) be satisfied.

If the linear equation

(a(t)z�)
�
+ F̄ b(t)z = 0, t ≥ 1. (33)

has the principal solution z0 positive nonincreasing on [1,∞), then the BVP (2)

has at least one solution.

Proof. The proof is similar to the one given in Theorem 3.1. Jointly with (33),
consider the equation (22). Reasoning as in the proof of Theorem 3.1, we obtain
w0(t) ≤ z0(t), where w0 and z0 are the principal solutions of (22) and (33),
respectively, such that w0(1) = z0(1) = 1. Since z0 is positive nonincreasing on
[1,∞), we obtain

(w0(t))
β ≤ (z0(t))

1/β ,

where β = α/
√
α2 − 1 > 1. Let Ω1 ⊂ C([1,∞),R2) be the set

Ω1 =

�
(u, v) ∈ C([1,∞),R2) : (w0(t))

β ≤ u(t) ≤ (z0(t))
1/β , |v(t)| ≤ β

α
a(t)

�
,

and for any (u, v) ∈ Ω1, consider the linear equation

��
a2(t) + v2(t) x�

��
+ b(t)

F (u(t))

u(t)
x = 0. (34)

Let xuv be the principal solution of (34) such that xuv(1)=1. Then (xuv, x
[1]
uv) ∈

S, where S is given in (25). Since equation (22) is equivalent to

(βa(t)w�)� = 0,

which is a minorant of (34), the assertion follows by using a similar argument
to the one in the proof of Theorem 3.1, with minor changes. The details are
left to the reader.

4. Applications and examples

Theorem 3.1 requires that the principal solution of (16) is positive nonincreasing
on the whole half-line [1,∞). Lemma 2.5 can be used to assure this property if a
majorant of (16) exists, whose principal solution is known. A similar argument
holds for the conditions which are required in Theorem 3.3 for (33). In the
following, some applications in this direction are presented.
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Prototypes of a Sturmian majorant equation, for which the principal so-
lution is positive nonincreasing on the whole interval [1,∞), can be obtained
from the Riemann-Weber equation

v�� +
1

4(t+ 1)2

�
1 +

1

log2(t+ 1)

�
v = 0, (35)

or from the Euler equation

v�� +
1

4t2
v = 0. (36)

Indeed, equation (35) is disconjugate on (0,∞), see [18, page 20]. Thus, from
Lemma 2.1, the principal solution v0 of (35) is positive on [1,∞). Since v0 is
concave for any t ≥ 1, then v�0(t) > 0 on [1,∞). Set

y0(t) = v�0(t),

a standard calculation shows that y0 is solution of the linear equation

�
4(t+ 1)2 log2(t+ 1)

1 + log2(t+ 1)
y�
��

+ y = 0. (37)

Moreover, in view of [12, Theorem 1], y0 is the principal solution of (37) and
y�0(t) = v

��

0 (t) < 0.
A similar argument holds for (36). Equation (36) is nonoscillatory and the

principal solution is
v0(t) =

√
t,

see, e.g., [26, Chap. 2.1]. Hence, the function

y0(t) =
1

2

1√
t

is the principal solution of the linear equation

(4t2y�)� + y = 0, (38)

and y�0(t) < 0.
Fix λ > 0. Equations (37) and (38) are equivalent to

�
λ
4(t+ 1)2 log2(t+ 1)

1 + log2(t+ 1)
y�
��

+ λy = 0,

and
(4λt2y�)� + λy = 0,

respectively. Now, from Lemma 2.5 and Theorem 3.1, we obtain the following.
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Corollary 4.1. Let (Hi), i=1,2,3, be verified. Assume that there exists λ > 0
such that for t ≥ 1

a(t) ≥ min

�
λ
4(t+ 1)2 log2(t+ 1)

1 + log2(t+ 1)
, 4λt2

�
,

α√
α2 − 1

F̄ b(t) ≤ λ, (39)

where F̄ and α are defined in (13) and (14), respectively. If at least one of

the inequalities in (39) is strict on a subinterval of [1,∞) of positive measure

and (14) is verified, then the BVP (1) has at least one solution.

A similar result can be formulated for the problem (2).

Corollary 4.2. Let (Hi), i=1,2,3, be verified. Assume that there exists λ > 0
such that for t ≥ 1

a(t) ≥ min

�
λ
4(t+ 1)2 log2(t+ 1)

1 + log2(t+ 1)
, 4λt2

�
, F̄ b(t) ≤ λ, (40)

where F̄ is defined in (13). If at least one of the inequalities in (40) is strict

on a subinterval of [1,∞) of positive measure and (14) is verified, then the

BVP (2) has at least one solution.

Corollary 4.1 and Corollary 4.2 require the boundedness of b. Nevertheless,
our results can be applied also when lim sup

t→∞
b(t) = ∞, as the following shows.

Corollary 4.3. Let (Hi), i=1,2,3, be verified.

(i1) Assume that (14) holds, and that there exists λ > 0 such that for every

t ≥ 1 and some n ≥ 1

a(t) ≥ λtn+2,
α√

α2 − 1
F̄ b(t) ≤ nλtn, (41)

where F̄ is defined in (13). If at least one of the inequalities in (41) is strict

on a subinterval of [1,∞) of positive measure, then the BVP (1) has at least

one solution.

(i2) Assume that (14) holds, and that there exists λ > 0 such that for every

t ≥ 1 and some n ≥ 1

a(t) ≥ λtn+2, F̄ b(t) ≤ nλtn, (42)

where F̄ is defined in (13). If at least one of the inequalities in (42) is strict

on a subinterval of [1,∞) of positive measure, then the BVP (2) has at least

one solution.
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Proof. Claim (i1). For any λ > 0 the function v0(t) = t−n is a solution of the
linear equation

(λtn+2v�)� + nλtnv = 0, t ≥ 1. (43)

Moreover, in view of Lemma 2.2, v0 is the principal solution. Since, in view
of (41), equation (43) is a Sturmian majorant of (16), from Lemma 2.5 the
principal solution of (16) is positive nonincreasing on [1,∞).Thus, the assertion
follows by Theorem 3.1. The proof of Claim (i2) follows in the same way from
Theorem 3.3.

The following examples illustrate our results.

Example 4.4. Consider the equation with the Minkowski mean curvature op-
erator

�
2π(t+ 2)2 log2(t+ 4)ΦM (x�)

��
+

| sin t|
t

x3 = 0, t ≥ 1. (44)

It is easy to show that assumptions (3) and (4) are satisfied. Moreover, we
have � ∞

t

1

(s+ 2)2 log2(s+ 4)
ds ≥

� ∞

t

1

(s+ 2)3
ds =

1

2(t+ 2)2
.

Then

a(t)A(t) ≥ 1

2
log2(t+ 4) ≥ log2 5

2
� 1.2951

and (14) holds. Since

2π(t+ 2)2 log2(t+ 4) ≥ 4(t+ 1)2 log2(t+ 1)

1 + log2(t+ 1)
, b(t) ≤ 1

t
≤ 1,

conditions (40) hold with λ = 1. Thus, by Corollary 4.2, equation (44) has at
least one solution x which satisfies the boundary conditions

x(1) = 1, x(t) > 0, x�(t) ≤ 0, lim
t→∞

x(t) = 0. (45)

Example 4.5. Consider the equation with the Euclidean mean curvature op-
erator

�
6(t+ 1)2ΦE(x

�)
��
+

| sin t|
t

x3 = 0, t ≥ 1. (46)

Assumptions (3) and (4) are satisfied. Further, we have F̄ = 1 and

a(t)A(t) = t+ 1 ≥ 2.

Thus, α = 2 and (14) holds. Moreover, since β = α/
√
α2 − 1 = 2/

√
3 , condi-

tions (39) hold with λ = 3/2. Using Corollary 4.1 we get that the equation (46)
has at least one solution x which satisfies the boundary conditions (45).
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Example 4.6. Consider the equation with the Minkowski mean curvature op-
erator �

3(t+ 3)4ΦM (x�)
��
+ 2t| sin t+ cos t| x2n+1 = 0, t ≥ 1. (47)

Similarly to Example 2, also for (47) assumptions (3) and (4) are satisfied.
Further, we have F̄ = 1. Moreover

a(t)A(t) =
t+ 3

3
≥ 4

3

and so (14) holds. Since

3(t+ 3)4 ≥ 3t3, 2t| sin t+ cos t| ≤ 2
√
2t < 3 t

and these inequalities are strict on a subinterval of [1,∞) of positive measure,
then by Corollary 4.3-(i2) with n = 1 and λ = 3, the equation (47) has at least
one solution x which satisfies the boundary conditions (45). Observe that in
equation (47) the function b is unbounded.

We close the section with some remarks concerning our assumptions.

Remark 4.7. If
lim inf
t→∞

a(t) = 0, (48)

then the BVP (1) is not solvable. Indeed, let x be a nonoscillatory solution
of (18), x(t) > 0 for t ≥ t0 ≥ 1. Then the function a(t)ΦE(x�(t)) is nonincreas-
ing on [t0,∞) and the limit

lim
t→∞

a(t)ΦE(x
�(t))

exists. In virtue of (48), since ΦE is bounded, we get

lim
t→∞

a(t)ΦE(x
�(t)) = 0,

which implies x�(t) > 0 in a neighborhood of infinity. Thus, the BVP (1) is not
solvable.

Remark 4.8. The assumption (4) guarantees that the principal solution y0 of
the majorant equation (16) satisfies

lim
t→∞

y0(t)

A(t)
= c, 0 < c < ∞,

see Lemma 2.3. This property is needed for obtaining the continuity of the
fixed point operator, see [16, Theorem 1]. If (3) holds and

� ∞

1
b(t)

� ∞

t

1

a(s)
dsdt = ∞,
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then all solutions of (16) tend to zero as t → ∞. In this situation, it seems hard
to obtain the continuity of T , since the solutions T (xn) are principal solutions,
but the sequence {T (xn)} could converge to a nonprincipal solution.

Remark 4.9. BVPs on the half-line for equations involving the operator ΦE

or ΦM with sign-changing coefficient have attracted very minor attention, es-
pecially when the boundary conditions concern the behavior of solutions on
the whole half-line [1,∞). According to our knowledge, the only paper in this
direction is [19], in which the existence of a global positive solution, bounded
away from zero, is obtained. It should be interesting to extend Theorem 3.1
and Theorem 3.3 for obtaining the solvability of (1) and (2) when the function
b does not have fixed sign.

Remark 4.10. Analougous results to the ones obtained in Theorems 3.1 and 3.3
can be formulated also for the BVP (5). Nevertheless the existence of solutions
of (5) requires weaker assumptions than those in Theorems 3.1 or 3.3. Indeed,
in this situation the operator T is defined via the linear equation

(a(t)x�)� + b(t)
F (u(t))

u(t)
x = 0. (49)

This fact permit us to simplify the above argument, by considering the set Ω
as a subset of C([1,∞),R) instead of C([1,∞),R2), because a-priori bounds
for the quasiderivative are not necessary. In addition, no assumptions on α are
needed. The details are left to the reader.
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for solutions of nonlinear second order differential equations with gen-

eral linear part and periodic boundary conditions. We impose asymp-
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(for large-norm solutions) when the parameter belongs to a (nontrivial)

continuum of real numbers. Our results extend and complement those

in the literature. The proofs are based on degree theory, continuation

methods, and bifurcation from infinity techniques.

Keywords: Nonlinear periodic bvp, maximum principles, principal eigenvalue, reso-
nance, multiplicity, bifurcation from infinity, oscillatory conditions, a-priori estimates.
MS Classification 2010: 34B08, 34B15, 34C23, 34C25.

1. Introduction

We consider nonlinear second order differential equations with general linear
part and periodic boundary conditions

u
�� + b(x)u� + c(x)u+ λu+ g(x, u) = h(x) a.e. in (0, 2π),

u(0)− u(2π) = u
�(0)− u

�(2π) = 0,
(1)

where the coefficients b, c ∈ L
1(0, 2π) with c bounded from above; i.e., c(x) ≤ c0

for a.e. x ∈ (0, 2π) for some (fixed) constant c0 ∈ R. The non-homogeneous
term h ∈ L

1(0, 2π), and the nonlinearity g : (0, 2π) × R → R (which may
be unbounded) is an L

1(0, 2π)-Carathéodory function which is sublinear in u

at infinity (i.e., g(x, u) = o(|u|) as |u| → ∞), uniformly for a.e. x ∈ (0, 2π)
(see conditions (C1) and (C2) below). The (real) parameter λ varies in some
neighborhood of λ1, where λ1 ∈ R is the principal eigenvalue (see below) of the
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second order linear periodic boundary value problem

−u
�� − b(x)u� − c(x)u = λu, a.e. on (0, 2π),

u(0)− u(2π) = u
�(0)− u

�(2π) = 0,
(2)

where λ is a real spectral parameter.
Throughout this paper, we shall use standard notations for Lebesgue spaces

L
p(0, 2π), Sobolev spacesW k,p(0, 2π) (withW

k,2(0, 2π) denoted byH
k(0, 2π)),

and spaces of continuous functions Ck([0, 2π]), where k is a non-negative integer
and p ∈ R with p ≥ 1 (see e.g. [1, 6])).

It should be pointed out that all functions defined on (0, 2π) are understood
to be appropriately extended to the entire real line as 2π-periodic functions
(possibly in a discontinuous fashion or in the a.e. sense if only Lebesgue mea-
surable, for e.g., so as to agree at 0 and 2π, if need be). Also the period 2π is
used only as a placeholder for convenience, any fixed period T > 0 will work.

By a solution to Eq.(1) we mean a function u ∈ W
2,1
P (0, 2π) which satisfies

the first equation in (1) a.e., where

W
2,1
P (0, 2π) :=

�
u ∈ W

2,1(0, 2π) : u(0)− u(2π) = u
�(0)− u

�(2π) = 0
�
.

(Observe that by the Fundamental Theorem of Calculus the space W
2,1(0, 2π)

is equivalent to AC
1([0, 2π]); i.e., the collection of absolutely continuous u such

that u� is also absolutely continuous on [0, 2π], see e.g. [1].)
Periodic solutions of nonlinear second order ordinary differential equations

have been studied extensively. For a more recent account of the progress in
this area (in the framework of resonance and nonresonance problems), we re-
fer to the excellent monograph by A. Fonda [6]. Let us mention that when
the function g ≡ 0, then the Fredholm Alternative type arguments describe
completely the structure of the solution-set for Eq.(1) once the existence and
isolation of the eigenvalue λ1 are shown. That is, if λ �= λ1 (near λ1), then
Eq.(1) is uniquely solvable for every h ∈ L

1(0, 2π). Otherwise, it is solvable
only for those h ∈ L

1(0, 2π) that are orthogonal (in the sense of ‘duality pair-
ing’) to the eigenspace associated with λ1, and the associated solutions can be
taken as large (in an appropriate norm) as one would like since solutions are
(uniquely) determined ‘modulo’ the associated eigenspace.

However, when g �≡ 0 is a (genuine) nonlinearity, the structure of the
solution-set may be quite different from that of the linear problem. Therefore,
we are interested in the solution-set structure for the nonlinear problem (1) for
λ in a neighborhood of λ1, and the nonlinearity g (which may be unbounded)
satisfies some asymptotic conditions. In particular, we are concerned with the
existence of multiple large-norm solutions.

Roughly speaking, in addition to a (fairly) general existence result (see
Theorem 3.1), our results state that as long as the nonlinearity g satisfies
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(asymptotically) a ‘sign-like’ condition, then when λ is in an interval on one

side of the principal eigenvalue λ1 (see Section 2 below), Eq.(1) has at least
two solutions, provided h is in an appropriate range (using the duality pairing)
which includes orthogonality. Moreover, as λ → λ1 (strictly from one side),
the norm of these solutions become infinitely large, whereas all solutions with
λ on the other side (of λ1) are uniformly bounded. In this way, we locate
the solution-set and describe its behavior in terms of bifurcation from infinity
as the parameter λ varies. Our asymptotic conditions include (very) ‘strong
resonances’ (see Theorem 3.2); i.e., g → 0 as |u| → ∞ at λ = λ1, and no
‘decay-rate’ at infinity is required; ‘weaker resonances’ (see Theorem 3.4) such
as the so-called Landesman-Lazer type conditions (i.e., g � 0 as |u| → ∞); as
well as an asymptotic (‘one-sided’) oscillatory behavior (see Theorem 3.5); i.e.,
asymptotically g has infinitely many discrete-countable ‘bounce-off’ zeros in u.
We point out that the case when the nonlinearity g is unbounded is included
in our results as well.

We use an abstract set up on appropriate spaces, establish a priori esti-
mates, and use a combination of degree theory (see e.g. Mawhin [10]), continu-
ation methods and Rabinowitz bifurcation from infinity techniques ([7, 12, 17,
18, 19, 20]) to prove our results. An important ingredient in obtaining the nec-
essary estimates is the use of comparison principles and estimates for the linear
problem obtained in Section 2 below (under somewhat weaker conditions than
those usually considered in the literature; particularly in the one-dimensional
case (see e.g. [3, 4, 16])).

Let us recall that some results on multiplicity or bifurcation from infinity
for nonlinear problems with periodic boundary conditions have been obtained
before under a different set of conditions (see e.g. [5, 6, 8, 12] and references
therein). However, our results are more in line with those in [12, 13] and
references therein; herein we consider a more general linear part and more
general nonlinearities.

We wish to mention that a systematic study of periodic solutions of (au-
tonomous) nonlinear differential equations with small parameters was initiated
by H. Poincaré in his celebrated treatise on celestial mechanics ([14]) in con-
nection with the three body problem (also see [11, 15]). Since then, a great
deal of work has been devoted to the study of periodic solutions of nonlinear
differential equations depending on parameters in many different directions;
especially using homotopy, continuation, as well as global methods (see e.g.
[6, 7, 10, 17, 18]). In the last fifty years Professor Mawhin has tremendously
contributed in an unparalleled way to the development of the theory of peri-
odic solutions of nonlinear differential equations; which most likely served as a
catalyst to his introducing the coincidence degree theory ([10]); an extension of
Leray-Schauder degree to nonlinear problems which cannot necessarily be writ-
ten as compact perturbations of the identity. It is with an immense gratitude
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that we write this paper on periodic solutions in his honor.
This paper is organized as follows. In Section 2, we consider the linear

problem and obtain the necessary comparison principles and estimates that
will be needed for the nonlinear problem. As indicated above, these results are
of independent interest in their own right. In Section 3, we give the general
assumptions on the data, state our main results for nonlinear problems, and
give some simple illustrative examples (for the reader’s convenience) along the
way. In Section 4, we cast the problem in an abstract setting and establish
the necessary a priori estimates for possible solutions. Finally, Section 5 is
devoted to the proofs of our main results. Remarks are included throughout
as appropriate, and a visual rendition sketch of a bifurcation diagram for a
‘bounce-off’ oscillatory nonlinearity is given in Section 3.

2. A general periodic linear eigenproblem and estimates

In this section, we consider the issue of comparison principle(s) and the ex-
istence of a (unique) principle eigenvalue for a general (i.e., not necessarily
symmetric) linear periodic problems with (possibly) unbounded coefficients.
We also obtain some estimates on the linear problem that will prove useful
when considering nonlinear problems.

Pick µ ∈ R be such that µ > c0; which implies that µ−c(x) ≥ µ−c0 > 0 for
a.e. x ∈ (0, 2π). Consider the (‘augmented’) linear differential operator defined
on W

2,1
P (0, 2π) by

Lµu = −u
�� − b(x)u� − c(x)u+ µu. (3)

We first set a(x) := e

� x
0 b(s) ds, and multiply Lµu by the ‘integrating factor’

a(x). It follows that the operator Lµ is transformed into the linear differential
operator

Sµu := − (a(x)u�)
�
+ a(x)(µ− c(x))u; (4)

which (despite its appearance) is not necessarily symmetric on W
2,1
P (0, 2π).

Observe that a pair (λ,ϕ) with ϕ ∈ W
2,1
P (0, 2π)\{0} is an eigenpair for the

eigenvalue problem
Lµu = λu (5)

if and only if it is also an eigenpair for the eigenvalue problem with weight

Sµu = λa(x)u. (6)

We shall show that the eigenvalue problem (5) has a (real) positive principal
eigenvalue with a positive (i.e., bounded away from zero) eigenfunction on the
closed interval [0, 2π], even when b, c ∈ L

1(0, 2π) are not necessarily locally
bounded (with c bounded from above only), as indicated. We first investigate
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some properties of the linear differential operator Lµ on the space W 2,1
P (0, 2π).

As a first result in that direction, we have the following order-preserving or
weak minimum/comparison principle.

Proposition 2.1. Suppose that u ∈ W
2,1
P (0, 2π) satisfies the differential in-

equality Lµu ≥ 0 for a.e. x ∈ (0, 2π). Then u ≥ 0 on [0, 2π].

Proof. Let u ∈ W
2,1
P (0, 2π) be such that Lµu ≥ 0 for a.e. x ∈ (0, 2π), by using

the ‘integrating factor’ a(x) := e

� x
0 b(s) ds, it follows immediately that Sµu ≥ 0

for a.e. x ∈ (0, 2π); which implies that (a(x)u�)� ≤ a(x)(µ − c(x))u for a.e.
x ∈ (0, 2π).

Now, suppose that u(x) < 0 for some x ∈ [0, 2π], then u has a negative
minimum value in this interval, say at x0 ∈ [0, 2π]. Therefore, there is a
neighborhood Iδ := (x0 − δ, x0 + δ) such that u(x0) ≤ u(x) < 0 for all x ∈ Iδ

and u
�(x0) = 0, where we have used the continuity of u(x) and (possibly)

the 2π-periodic extension of u if x0 is an end-point of the interval [0, 2π]. It
follows that (a(x)u�)� ≤ a(x)(µ−c(x))u < a(x)(µ−c0)u < 0 for a.e. x ∈ Iδ. The
Fundamental Theorem of Calculus immediately implies that a(x)u� is (strictly)
decreasing in Iδ. Since u

�(x0) = 0 (i.e., a(x0)u�(x0) = 0), we obtain that
a(x)u�(x) > 0 for x ∈ (x0 − δ, x0) and a(x)u�(x) < 0 for x ∈ (x0, x0 + δ); that
is, u�(x) > 0 for x ∈ (x0− δ, x0); which implies that u(x) is (strictly) increasing
in (x0 − δ, x0). This is a contradiction with the fact that u(x0) is a (negative)
minimum value of the function u. Therefore, u(x) ≥ 0 on [0, 2π], and the proof
is complete.

This proposition immediately implies that λ = 0 is not an eigenvalue of the
differential operator Lµ in Eq.(5), since any possible eigenfunction would be
identically zero in this case. We now want to show that λ = 0 is actually in the
‘resolvent’ of Lµ; that is; to show that the equation Lµu = e(x) has a (unique)
solution u ∈ W

2,1
P (0, 2π) for every e ∈ L

1(0, 2π). For that purpose, we need
the following a priori estimate; which will be also useful in studying nonlinear
problems.

Lemma 2.2. There exists a constant α := α(b, c, µ) > 0 such that

|Lµu|L1(0,2π)
≥ α|u|

W
2,1
P

(0,2π)
for all u ∈ W

2,1
P (0, 2π). (7)

Proof. Suppose the conclusion doe not hold. Then, there is a sequence (un) ⊂
W

2,1
P (0, 2π) \ {0} such that for all n ∈ N one has that

|Lµun|L1(0,2π)
≤ 1

n
|un|

W
2,1
P

(0,2π)
.

Setting vn := un/|un|
W

2,1
P

(0,2π)
and Lµvn = hn, we get that |vn|

W
2,1
P

(0,2π)
= 1 for

all n ∈ N, and that hn → 0 in L
1(0, 2π) as n → ∞. By the continuous imbed-

ding of W 2,1
P (0, 2π) into C

1
P [0, 2π], one has that there exist a constant C1 > 0
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(independent of n) such that |vn|C1
P

[0,2π]
≤ C1. Moreover, since W

2,1
P (0, 2π) is

compactly imbedded into W
1,1
P (0, 2π), one has (by going to a subsequence rela-

beled (vn), if need be) that there is a function v ∈ W
1,1
P (0, 2π) such that vn → v

in W
1,1
P (0, 2π) as n → ∞; which implies (for a subsequence similarly relabeled

if need be) that vn(x) → v(x) and v
�
n(x) → v

�(x) for a.e. x ∈ (0, 2π) (see e.g.
[1, Theorem 4.9]). Since |b(x)v�n(x)| ≤ C1|b(x)| and |c(x)vn(x)| ≤ C1|c(x)| for
a.e. x ∈ (0, 2π), it follows from the Lebesgue Dominated Convergence Theorem
that b(·)v�n → b(·)v� and c(·)v → c(·)v in L

1(0, 2π) as n → ∞. This and the fact
that v��n = −hn − b(x)v�n − c(x)vn + µvn imply that v��n → −b(x)v� − c(x)v+ µv

in L
1(0, 2π) with vn → v in W

1,1
P (0, 2π) as n → ∞. The (strong) closedness

(see e.g. [1, p. 204, Remark4]) of the differentiation-operator from W
1,1
P (0, 2π)

into L
1(0, 2π) implies that v ∈ W

2,1
P (0, 2π) and that vn → v in W

2,1
P (0, 2π) as

n → ∞ with v
�� = −b(x)v�− c(x)v+µv for a.e. x ∈ (0, 2π); that is, Lµv = 0 for

a.e. x ∈ (0, 2π). It follows immediately from Proposition 2.1 that v ≡ 0. This
is a contradiction with the fact that |vn|

W
2,1
P

(0,2π)
= 1 for all n ∈ N and vn → v

in W
2,1
P (0, 2π) as n → ∞. The proof is complete.

Since the linear operator Lµ : W 2,1
P � L

1(0, 2π) → L
1(0, 2π) is compactly

and densely defined, takes bounded sets in W
2,1
P (0, 2π) into bounded sets in

L
1(0, 2π) and is one-to-one (see Lemma 2.2), we claim that it is onto L

1(0, 2π);
i.e., Lµ is invertible on L

1(0, 2π). In fact, one has the following existence (and
uniqueness) result.

Lemma 2.3. For every e ∈ L
1(0, 2π), the equation Lµu = e(x) a.e. in (0, 2π)

has a (unique) 2π-periodic solution u ∈ W
2,1
P (0, 2π).

Proof. Uniqueness follows from Proposition 2.1 or Lemma 2.2. To prove exis-
tence, we use the topological degree theory by considering the homotopy

−u
�� + θ (−b(x)u� + (µ− c(x))u) + (1− θ)(µ− c0)u = θe(x) a.e. in (0, 2π),

where θ ∈ [0, 1]. Notice that the homotopy reduces to the equation Lµu = e(x)
when θ = 1, and when θ = 0 it reduces to the periodic linear differential
equation with constant coefficients −u

��+(µ−c0)u = 0 on [0, 2π], where µ−c0 >

0. It therefore suffices to show that all possible solutions to the homotopy are
(uniformly) bounded inW

2,1
P (0, 2π) independently of θ ∈ [0, 1]. Indeed, suppose

that this is not the case, then one can find sequences (un) ⊂ W
2,1
P (0, 2π) \ {0}

and (θn) ⊂ [0, 1] such that for all n ∈ N, |un|
W

2,1
P

(0,2π)
≥ n and

u
��
n = θn (−b(x)u�

n + (µ− c(x))un)+ (1− θn)(µ− c0)un − θne(x) a.e. in (0, 2π).

Setting vn := un/|un|
W

2,1
P

(0,2π)
and using the fact that W

2,1
P (0, 2π) is continu-

ously imbedded into C
1
P [0, 2π] and compactly imbedded into W

1,1
P (0, 2π), the
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Lebesgue Dominated Convergence Theorem, the closedness of the differentia-
tion operator, and arguments similar to those used in the proof of Lemma 2.2,
it follows that there exist v ∈ W

2,1
P (0, 2π) and θ0 ∈ [0, 1] such that (by going if

necessary to subsequences similarly relabeled) vn → v in W
2,1
P (0, 2π), θn → θ0

as n → ∞, and v satisfies the homogeneous linear equation

−v
�� − θ0b(x)v

� + θ0(µ− c(x))v + (1− θ0)(µ− c0)v = 0 for a.e. in (0, 2π).

Since θ0b ∈ L
1(0, 2π) and θ0(µ− c(x)) + (1− θ0)(µ− c0) ≥ µ− c0 > 0 for a.e.

x ∈ (0, 2π), it follows from arguments used in the proof of Proposition 2.1 that
v ≥ 0 and v ≤ 0; that is, v = 0. This is a contradiction with the fact that
|vn|

W
2,1
P

(0,2π)
= 1 for all n ∈ N and vn → v in W

2,1
P (0, 2π) as n → ∞. The proof

is complete.

Now, we wish to show that a strong minimum/comparison principle also
holds for the differential operator Lµ under the weak assumptions imposed on
the coefficient-functions b and c. That is, a strong positivity or strong order
preserving property holds for the second order differential operator Lµ. (Some
techniques from [21] and periodicity prove useful here.)

Proposition 2.4. Suppose that u ∈ W
2,1
P (0, 2π) satisfies the differential in-

equality Lµu ≥ 0 for a.e. x ∈ (0, 2π) with u �≡ 0, then u > 0 on the closed

interval [0, 2π]; that is u is positive and bounded away from zero on the whole

closed interval [0, 2π], unless it is identically zero.

Proof. Since u ∈ W
2,1
P (0, 2π) satisfies the differential inequality Lµu ≥ 0 for a.e.

x ∈ (0, 2π), one has immediately that Sµu ≥ 0 for a.e. x ∈ (0, 2π). Moreover,
it follows from Proposition 2.1 that u(x) ≥ 0 for all x ∈ [0, 2π]. Since u �≡ 0 is
2π-periodic, one has that either u > 0 on [0, 2π] (in which case the conclusion
holds), or otherwise, one may assume (without loss of generality) that there is
a point x0 ∈ (0, 2π] such that u(x0) = 0 and u(x) > 0 for all x ∈ (x0 − δ, x0),
where δ ∈ (0, 2π) is a (fixed) constant; that is, the function u has a strict local
minimum at a point x0 in a (deleted) left-neighborhood of x0; which implies
that u

�(x0) ≤ 0. Actually, the 2π-periodicity of u implies that u
�(x0) = 0

for otherwise one reaches a contradiction in the light of Proposition 2.1 (by
possibly extending the function u periodically if x0 = 2π, and hence x0 = 0 as
well). It follows that a(x0)u�(x0) = 0, and by using the Fundamental Theorem
of Calculus and (4), one has that u(x) =

� x
x0

u
�(s) ds and that −a(x)u�(x) ≤� x0

x a(s)(µ − c(s))u(s) ds for all x ∈ (x0 − δ, x0). This implies that −u
�(x) ≤

v(x)
�
a0

� 2π
0 a(s)(µ− c(s)) ds

�
, where v(x) := max

s∈[x,x0]
u(s) > 0 and a

−1
0 =

min
s∈[0,2π]

a(s). Therefore, by the Fundamental Theorem of Calculus again, one
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has that

u(x) ≤ (x0 − x)v(x)

�
a0

� 2π

0
a(s)(µ− c(s)) ds

�
for all x ∈ (x0 − δ, x0).

For every n ∈ N such that n > 1/δ, let xn ∈ [x0 − 1
n , x0) be a point such that

max
[x0− 1

n ,x0]
u(s) := u(xn); which exists since the function u is continuous on the

compact interval [x0 − 1
n , x0]. Given that [xn, x0] ⊂ [x0 − 1

n , x0], it follows that
v(xn) := max

[xn,x0]
u(s) = u(xn), and 0 < x0 − xn ≤ 1/n for all n ∈ N such that

n > 1/δ. Therefore, by setting A := a0

� 2π
0 a(s)(µ− c(s)) ds, one has that

0 < u(xn) ≤ (x0 − xn)v(xn)A ≤ A

n
v(xn) =

A

n
u(xn) < u(xn)

for all n ∈ N such that n > max (A, 1/δ). This is a contradiction. Thus,
u(x) > 0 on the closed interval [0, 2π], and the proof is complete.

Now, we let K :=
�
u ∈ H

1
P (0, 2π) : u ≥ 0

�
⊂ H

1
P (0, 2π) be the (solid) cone

with non-empty interior. Setting Tµ := L
−1
µ : L

1(0, 2π) → W
2,1
P (0, 2π) �

L
1(0, 2π), it follows from Lemma 2.3 that (the scalar) zero is not an eigenvalue

of the compact linear operator Tµ : L
1(0, 2π) → L

1(0, 2π); although, it is
always in the spectrum of Tµ (see e.g. [1, p. 164, Theorem 6.8]). Moreover,
due to Proposition 2.4, one can show that Tµ has a positive spectral radius
r := r(Tµ) > 0. By Proposition 2.1, one has that Tµ(K) ⊂ K. Since (the
restriction) Tµ : H1

P (0, 2π) → H
1
P (0, 2π) satisfies all the assumptions of the

Krein-Rutman Theorem, it follows that r(Tµ) is a (real) positive eigenvalue
of Tµ with an eigenfunction φ1 ∈ K, φ1 �≡ 0. In addition, r(T ∗

µ) = r(Tµ)
is also an eigenvalue of the adjoint T

∗
µ with an eigenfunction φ

∗
1 ∈ K

∗ :=�
f ∈

�
H

1
P (0, 2π)

�∗
: f(x) ≥ 0 for all x ∈ K

�
called the dual cone of K; which

in this instance is also a cone in
�
H

1
P (0, 2π)

�∗
since one can easily show that

K
∗∩ (−K

∗) = {0} by using the definition of K∗ and the fact that H1
P (0, 2π) =

K −K (i.e., the cone K “reproduces” the space H
1
P (0, 2π)).

Before proceeding, we want to make a few observations that will be needed
later on. First observe that φ1 ∈ W

2,1
P (0, 2π) since it is in the range of Tµ

(i.e., regularity of solutions). Also, notice that by using the (equivalent) inner

product (u, v) :=
� 2π
0 u

�
v
�
dx +

� 2π
0 (µ − c(x))uv dx for all u, v ∈ H

1
P (0, 2π) (or

simply the standard inner product), it follows from the Riesz-Fréchet Repre-
sentation Theorem (see e.g. [1, p. 135, Theorem 5.5]) that the Hilbert space
H

1
P (0, 2π) may be (isometrically) identified with its dual; i.e.,

�
H

1
P (0, 2π)

�∗ ∼=
H

1
P (0, 2π)), and hence φ

∗
1 may be identified with an element of H

1
P (0, 2π),

still denoted by φ
∗
1 ∈ H

1
P (0, 2π) ⊂ L

∞(0, 2π). Furthermore, using the fact



BIFURCATION AND MULTIPLICITY FOR PERIODIC BVP 173

that the dual
�
L
1(0, 2π)

�∗
= L

∞(0, 2π) by the Riesz Representation The-
orem (see e.g. [1, p. 99, Theorem 4.11]), one has that the duality pairing
�·, ·� := �·, ·�

(L∞(0,2π)),L1(0,2π))
implies that

�L∗
µ(φ

∗
1), u�

def
= �φ∗

1, Lµ(u)�(L∞(0,2π),L1(0,2π))
= (φ∗

1, u)−
� 2π

0
b(x)φ∗

1u
�
dx

for all u ∈ Dom(Lµ) = W
2,1
P (0, 2π) ⊂ L

1(0, 2π) (see e.g. [1, p. 44]); that is,

�L∗
µ(φ

∗
1), u� = �φ∗

1, Lµ(u)� =
� 2π

0
φ
∗
1
�
u
�
dx+

� 2π

0
(µ− c(x))φ∗

1u dx

−
� 2π

0
b(x)φ∗

1u
�
dx

for all u ∈ Dom(Lµ) = W
2,1
P (0, 2π). This type of identity holds true for L0 and

L
∗
0 as well (i.e., when µ = 0); it boils down to multiplying φ

∗
1 ∈ H

1
P (0, 2π) ⊂

L
∞(0, 2π) by L0(u) for any u ∈ W

2,1
P (0, 2π) and integrating over [0, 2π]. (It

will be used repeatedly in the sequel.)

Now, under the weaker conditions imposed on the coefficients of the linear
operator Lµ, it follows from Proposition 2.4 above and the (stronger version of)
the Krein-Rutman Theorem that φ1 is in the interior of the cone K and that
the corresponding eigenvalue is simple. However, by using the periodicity of
φ1 and the uniqueness of solutions to linear initial value problems, we present
below a shorter and simpler proof adapted to our specific situation since it also
allows us to get more information on the (‘dual’) eigenfunction φ

∗
1. Indeed, we

have the following result.

Proposition 2.5. The linear spectral problem

L0u := −u
�� − b(x)u� − c(x)u = λu, u ∈ W

2,1
P (0, 2π), (8)

has a real simple eigenvalue λ1 with nonnegative eigenfunction φ1 ∈ W
2,1
P (0, 2π)

which is actually positive; i.e., bounded away from zero on the whole closed

interval [0, 2π]. Moreover, λ1 is also a real eigenvalue of the adjoint operator

L
∗
0 of L0 with a nonnegative eigenfunction φ

∗
1.

If, in addition, the coefficient b ∈ ACP ([0, 2π]) = W
1,1
P (0, 2π), then φ

∗
1 is

also positive on the closed interval [0, 2π].

Proof. As above, we first consider the (‘augmented’) invertible linear operator
Lµ given by Lµu = −u

�� − b(x)u� +(µ− c(x))u whose inverse is denoted by Tµ.
Then, by the Krein-Rutman Theorem, the spectral problem Tµφ = λφ has a
(real) eigenvalue λ := r(Tµ) > 0 with a nonnegative eigenfunction φ1 as indi-
cated above. Applying Lµ on both sides, one deduces that Lµφ1 = (r(Tµ))−1

φ1;
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which implies immediately that λ1 := (r(Tµ))−1−µ is an eigenvalue of the op-
erator L0u := −u

�� − b(x)u� − c(x)u with nonnegative eigenfunction φ1, and
that it is also an eigenvalue of the operator L∗

0 with a nonnegative eigenfunction
φ
∗
1. Now, if there is x0 ∈ [0, 2π] such that φ1(x0) = 0, then x0 is a minimum

point for φ1, and hence (extending φ1 by 2π-periodicity if x0 is a boundary
point) φ

�
1(x0) = 0 as well since φ1 ∈ W

2,1
P (0, 2π) ⊂ C

1
P ([0, 2π]). Therefore,

uniqueness results for (Carathéodory) solutions (see e.g. [21]) to initial value
problems for second order homogeneous linear ordinary differential equations
with L

1(0, 2π)-coefficients (written as integral solutions to a first order system
and use of generalized Gronwall’s inequality on their norm) would imply that
the only solution to L0φ1 − λ1φ1 = 0 a.e. is given by φ1 ≡ 0 on [0, 2π]; which
would contradict the fact that φ1 is an eigenfunction. Thus φ1 is positive (and
hence bounded away from zero) on [0, 2π] as needed.

To show that λ1 is simple, let w ∈ W
2,1
P (0, 2π) be an eigenfunction asso-

ciated with λ1. Then, one has that L0(φ1 + tw) = λ1(φ1 + tw) for all t ∈ R.
Since φ1 is positive on [0, 2π] and w is continuous, it follows that for |t| small
one has that φ1 + tw remains positive on [0, 2π], and that for some t ∈ R with
|t| large, φ1 + tw does not remain positive on [0, 2π] since w �≡ 0. Therefore,
by continuity (and connectedness), one has that there is t0 ∈ R such that
(φ1 + t0w)(x) ≥ 0 on [0, 2π], and (φ1 + t0w)(x0) = 0 for some x0 ∈ [0, 2π]
with L0(φ1 + t0w) − λ1(φ1 + t0w) = 0 a.e. on (0, 2π). The above uniqueness
argument implies that (φ1 + t0w) ≡ 0 on [0, 2π]; that is, w = −t

−1
0 φ1, and the

simplicity of λ1 follows.
If in addition b ∈ ACP ([0, 2π]) = W

1,1
P (0, 2π), then one has that (bφ∗

1) ∈
W

1,1
P (0, 2π). Using integration by parts in the pairing, one has that φ

∗
1 ∈

H
1
P (0, 2π) satisfies

� 2π

0
φ
∗
1
�
u
�
dx = −

� 2π

0
(bφ∗

1)
�
u dx+

� 2π

0
c(x)φ∗

1u dx+ λ1

� 2π

0
φ
∗
1u dx

for every u ∈ Dom(L0) = W
2,1
P (0, 2π), and hence in particular for every u ∈

C
∞
0 (0, 2π); which implies that φ∗

1 ∈ W
2,1(0, 2π) by the definition of the Sobolev

space W
1,1(0, 2π) (see e.g. [1, p. 202]). Since (bv)� = b

�
v + bv

� ∈ L
1(0, 2π) for

every v ∈ W
1,1(0, 2π) = AC([0, 2π]), and the (formal) adjoint linear operator

L
∗
0 is explicitly given by

L
∗
0v = −v

�� + (b(x)v)� − c(x)v = −v
�� + b(x)v� − (c(x)− b

�(x))v,

it follows that L
∗
0(φ

∗
1) − λ1φ

∗
1 = 0 a.e. on (0, 2π) with φ

∗
1 ∈ W

2,1
P (0, 2π). The

nonnegativity of φ∗
1 and the above uniqueness arguments can now be used to

show that φ∗
1 is positive on the closed interval [0, 2π]. The proof is complete.

The following result will prove useful in obtaining a priori estimates for
possible solutions to some nonlinear periodic problems in subsequent sections.
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Proposition 2.6. There exists a constant λ0 > 0 such that for all p ∈ L
1(0, 2π)

with 0 ≤ p(x) ≤ λ0 and all u ∈ W
2,1
P (0, 2π) satisfying a.e. the equation

u
�� + b(x)u� + c(x)u+ λ1u+ p(x)u = 0,

one has that either u = 0 on [0, 2π] or min
[0,2π]

|u(x)| > 0 (i.e., u is either positive

or negative on [0, 2π]).

Proof. Since u ≡ 0 is a solution to the (homogeneous linear periodic) equation,
we may suppose without loss of generality that u ∈ W

2,1
P (0, 2π) \ {0}, and we

claim that under the above assumptions one must have that min
[0,2π]

|u(x)| > 0.

Indeed, assume that the conclusion of the proposition does not hold. Then,
for every n ∈ N there exist pn ∈ L

1(0, 2π) with 0 ≤ pn(x) ≤ 1/n a.e. and
un ∈ W

2,1
P (0, 2π) with |un|W2,1(0,2π)

= 1 such that min
[0,2π]

|un(x)| = 0 and for a.e.

x ∈ (0, 2π) one has that

u
��
n + b(x)u�

n + c(x)un + λ1un + pn(x)un = 0.

Using the fact that W
2,1
P (0, 2π) is continuously imbedded into C

1
P [0, 2π] and

compactly imbedded into W
1,1
P (0, 2π), the Lebesgue Dominated Convergence

Theorem, the closedness of the differentiation operator, and arguments similar
to those used in the proof of Lemma 2.2, it follows (by going if necessary to
subsequence relabeled (un)) that there exist u ∈ W

2,1
P (0, 2π) \ {0} such that

un → u in W
2,1(0, 2π), |u|

W2,1(0,2π)
= 1, and u

�� + b(x)u� + c(x)u + λ1u = 0.
Therefore, u is an eigenfunction associated with the simple eigenvalue λ1, and
hence is proportional to φ1. Thus, it has one sign and is bounded away from zero
by Proposition 2.5; i.e., min

[0,2π]
|u(x)| > 0. This fact and the uniform convergence

of un to u in C
0
P [0, 2π] imply that there is n0 ∈ N such that for all n ≥ n0 one has

that min
[0,2π]

|un(x)| > 0. This is a contradiction, and the proof is complete.

Remark 2.7. Propositions 2.4 and 2.5 may be used (in conjunction with the
Krein-Rutman Theorem) to show that the eigenvalue λ1 is principal and unique;
i.e., it is the only (real) eigenvalue with a positive eigenfunction φ1 and one-
dimensional eigenspace (see e.g. [1]). Moreover, an analysis of the proof of
Proposition 2.1 and the result in Proposition 2.5 show that if λ �= λ1 is a real
eigenvalue of the spectral problem (8), then λ > λ1. Indeed, if λ < λ1 is an
eigenvalue of Eq.(8) with eigenfunction u ∈ W

2,1
P (0, 2π); i.e., L0u+λu = 0 a.e.

on [0, 2π], then using the fact that φ1 is positive on [0, 2π] and setting v := u/φ1,
one has that −λv = [φ1(·)]−1

L0(vφ1). Using direct calculations of L0(vφ1)
through the product rule for derivatives and collecting terms, it follows easily
that v ∈ W

2,1
P (0, 2π) satisfies a.e. the homogeneous linear differential equation
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v
��+d(x)v�+(λ−λ1)v = 0 with λ−λ1 < 0, where d(x) = b(x)+2φ�

1(x)/φ1(x).
Now, arguments similar to those used in the proof of Proposition 2.1 imply
that v ≥ 0 and −v ≥ 0 for all x ∈ [0, 2π]. That is, v ≡ 0, and hence u ≡ 0;
contradicting the fact that u �= 0 is an eigenfunction.

3. Main results

From now on, we shall write the nonlinear equation (1) in the equivalent form

u
�� + b(x)u� + c(x)u+ λ1u+ λu+ g(x, u) = h(x) a.e. in (0, 2π),

u(0)− u(2π) = u
�(0)− u

�(2π) = 0,
(9)

where λ1 ∈ R is the principal eigenvalue obtained in Proposition 2.5, and the
parameter λ ∈ R will vary in a neighborhood of zero. Therefore, Eq.(1) is
equivalent to

Lu+ λu+ g(x, u) = h(x) a.e. in (0, 2π),

u(0)− u(2π) = u
�(0)− u

�(2π) = 0,
(10)

where the linear operator L : W 2,1
P (0, 2π) → L

1(0, 2π) is defined by

Lu := u
�� + b(x)u� + c(x)u+ λ1u

for which the scalar λ = 0 is the principal eigenvalue with associated (positive)
eigenfunction φ1. (Notice that λ = 0 is also a principal eigenvalue of the adjoint
L
∗ of L with associated nonnegative eigenfunction φ

∗
1 �= 0.)

In this section we state our general assumptions on the nonlinearity g

and the function h. We assume that g : (0, 2π) × R → R is an L
1(0, 2π)-

Carathéodory function which is sublinear at infinity in u, uniformly a.e. in
x, and satisfies ‘sign-like’ conditions. We also impose asymptotic conditions
on g and their relationship with the forcing term h. These conditions include,
among others, strong resonance conditions, Landesman-Lazer type conditions,
as well as oscillatory conditions. (Some results herein were motivated by [9].)

In addition to a (fairly) general existence result, we state our main results
on multiplicity of solutions (with large norms for λ ‘small’) when λ is in an
interval on one side of the first eigenvalue, and the existence of (at least) one
solution for λ on the other side. The existence of a third solution (with a
somewhat ‘smaller norm’) is also discussed. Simple examples are provided to
motivate and illustrate the results.

As mentioned above, we specifically assume the following general conditions;
the first three of which refer to the nonlinearity g, whereas the last one relate
the nonhomogeneous term h to the asymptotic behavior of g and the null-space
associated with the eigenvalue λ1.
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(C1) g(·, u) is measurable for all u ∈ R, g(x, ·) is continuous for a.e. x ∈ (0, 2π),
and for every r > 0 there is a function γr ∈ L

1(0, 2π) such that

|g(x, u)| ≤ γr (x), (11)

for a.e. x ∈ (0, 2π) and all u ∈ R with |u| ≤ r.

(C2) lim
|u|→∞

g(x, u)

u
= 0 uniformly a.e. in x; that is, for every ε > 0 there is a

constant rε > 0 such that

|g(x, u)| ≤ ε|u| for a.e. x ∈ (0, 2π) and all u ∈ R with |u| ≥ rε. (12)

(C3) g satisfies ‘sign-like’ conditions, i.e., there are functions A,B ∈ L
1(0, 2π)

and constants r < 0 < R such that

g(x, u) ≥ A(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≥ R,

g(x, u) ≤ B(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≤ r.

(C4) Moreover, we assume that the non-homogeneous term h ∈ L
1(0, 2π) sat-

isfies the ‘orthogonality-like’ conditions

� 2π

0
B(x)φ∗

1 dx ≤
� 2π

0
h(x)φ∗

1 dx ≤
� 2π

0
A(x)φ∗

1 dx, (13)

where as aforementioned φ
∗
1 is the eigenfunction associated with the (prin-

cipal) eigenvalue λ1 through the dual linear operator.

Before taking up the issue of multiplicity of solutions and the behavior of
the solution-set, we first state an existence result for all λ ≤ λ0 (where λ0

is given by Proposition 2.6), and establish uniform a priori bounds when the
parameter λ lies in appropriate intervals around zero.

Theorem 3.1. Assume that the assumptions (C1)–(C4) hold, then Eq.(9) (or

equivalently Eq.(10)) has at least one solution for every λ ∈ R with λ ≤ λ0.

Moreover, for 0 < λ ≤ λ0, all solutions are uniformly bounded in W
2,1(0, 2π),

independently of λ.

Recall that no multiplicity results occur for Eq.(9) when g ≡ 0 and either
λ < 0 or 0 < λ ≤ λ0, since the Fredholm alternative argument guarantees
uniqueness in this case. We claim that, by somewhat strengthening either
(C3) or (C4), we obtain multiplicity results and more importantly describe the
behavior of the solution-set. The first result is motivated by the fact that one
may allow the equality A(x) = B(x) for a.e. x ∈ [0, 2π] in the assumption (C3).
We would like to point that, in this instance, multiplicity may occur only for one
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value of λ; more precisely at λ = 0 (even if g �≡ 0), with the bifurcation branches
in the (λ, |u|∞)-plane being only (semi-infinite) straight line rays located on
the vertical |u|∞ -axis. It suffices to consider any (nonlinearity) g such that
g(x, u) = 0 outside a rectangular region [0, 2π] × [−R,R]. Indeed, for λ = 0,
it is easily seen that the function defined by ut := tφ1 is a solution to Eq.(9)
for every t ∈ R that is such that |t| min

[0,2π]
{φ1(x)} ≥ R; provided h ≡ 0 of

course. Actually an analysis of the proof of the above existence result (or more
precisely, the multiplicity results obtained below) indicates that, provided h is

such that
� 2π
0 hφ

∗
1 dx = 0, λ = 0 is the only parameter-value for which large

solutions exist, and the bifurcation from infinity branches are (semi-infinite)
straight line rays on the |u|∞-axis in the (λ, |u|

C0([0,2π])
)-plane, as described

above. Therefore, the bifurcation from infinity parameter-interval collapses to
just one-point interval {λ} = {0}.

For the rest of the paper, we will be interested in nonlinearities g that
satisfy a sign-like condition and that are not identically null outside a compact
u-interval in R. In the following result we strengthen somewhat the condition
(C3) by requiring strict inequalities (on subsets of ∂Ω of positive measure)
while still retaining the condition (C4).

A simple example to keep in mind here is the (continuous) function g given
by g(x, u) := η+(x)(1 + u

2)−1 for u ≥ R > 0 and g(x, u) := −η−(x)(1 + u
2)−1

for u ≤ −r < 0, where η± ∈ C
0
P [0, 2π] are nonnegative functions which are

positive on subsets of [0, 2π] of positive measure, or a non-bounded coun-
terpart g(x, u) := 3

√
u sin2(u) ± η±(x)(1 + u

2)−1. Here, A = B = 0 and� 2π
0 hφ

∗
1 dx = 0 by (C4). Notice that for the bounded case lim

|u|→∞
g(x, u) =

0 and lim
|u|→∞

ug(x, u) = 0 on ∂Ω, whereas for the unbounded counterpart

lim inf
u→∞

g(x, u) = 0 = lim sup
u→−∞

g(x, u) and lim inf
u→∞

ug(x, u) = 0 = lim sup
u→−∞

ug(x, u);

that is, no (linear) decay ‘rate’ at infinity is required. Thus, the terminol-
ogy (asymptotic) ‘very’ strong resonance. Observe also that the so-called
Landesman-Lazer condition (see below) fails since one has equality in (C4);
however, we are able to ‘locate’ and ‘describe’ the solution-branches. The fol-
lowing result is an extension of the main result in [13] to more general linear
operators and more general nonlinearities (also see Remark 3.3 below).

Theorem 3.2. Assume that conditions (C1)–(C2) are met, and that (C3) holds

with strict inequalities on subsets of [0, 2π] of positive measure; that is, there

are functions A,B ∈ L
1(0, 2π) and constants r < 0 < R such that

g(x, u) > A(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≥ R,

g(x, u) < B(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≤ r,

Then, provided (C4) holds, there is a constant λ− < 0 such that, for every

ε ∈ (0, |λ−|), Eq.(9) has at least two solutions, denoted (λ+
ε , uε) and (λ−

ε , vε),
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with −ε < λ
±
ε < 0 and

lim
ε→0+

min
�
|uε|C0([0,2π])

, |vε|C0([0,2π])

�
= ∞;

that is, they bifurcate from infinity since λ
±
ε → 0 as ε → 0+.

Moreover, for 0 ≤ λ ≤ λ0, all solutions (which exist by Theorem 3.1) are

uniformly bounded, independently of λ. Therefore, bifurcation from infinity

occurs only (strictly) to the left of the eigenvalue λ1. (In some sense, the

‘strong resonance’ conditions ‘bend’ the bifurcation branches.)

Remark 3.3. An analysis of the proof of this result will show that the con-
ditions on the nonlinearity g may be replaced by the (slightly) more general
(integral) conditions

� 2π

0
g(x, u)φ∗

1 dx >

� 2π

0
A(x)φ∗

1 dx for all u ∈ R with u ≥ R,

� 2π

0
g(x, u)φ∗

1 dx >

� 2π

0
B(x)φ∗

1 dx for all u ∈ R with u ≤ R;

which are in particular fulfilled if the coefficient b ∈ ACP ([0, 2π]) = W
1,1
P (0, 2π),

and

g(x, u) ≥ A(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≥ R,

with strict inequality on a subset of (0, 2π) of positive measure,

g(x, u) ≤ B(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≤ r,

with strict inequality on a subset of (0, 2π) of positive measure,

since, in this instance, the conditions on the coefficient b imply that the eigen-
function φ

∗
1 is (strictly) positive on the interval [0, 2π] by Proposition 2.5.

In the following result we strengthen a little bit the condition (C4) by re-
quiring strict inequalities while keeping (C3) as given. This is the so-called
Landsman-Lazer type condition; which has been widely considered in the liter-
ature (see e.g. [6]). Again, a simple example to keep in mind here is the (contin-
uous) function g (independent of x) given by g(u) := 3

√
u sin2(u) + η± tanh(u)

for |u| ≥ R > 0 where η± are positive numbers with η− < η+ . Notice that
lim inf
u→∞

g(u) = η+ and lim supu→−∞ g(u) = −η−. The following result is an

extension of the main result in [12] to more general linear operators and more
general nonlinearities (at least as far as periodic solutions are concerned).

Theorem 3.4. Assume that (C1)–(C3) hold and that

� 2π

0
g−(x)φ

∗
1 dx <

� 2π

0
h(x)φ∗

1 dx <

� 2π

0
g+(x)φ

∗
1 dx, (14)
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where g+(x) := lim inf
u→∞

g(x, u) and g−(x) := lim sup
u→−∞

g(x, u).

Then there is a constant λ− < 0 such that, for every ε ∈ (0, |λ−|), Eq.(9)
has at least two solutions, denoted (λ+

ε , uε) and (λ−
ε , vε), with −ε < λ

±
ε < 0

and

lim
ε→0+

min
�
|uε|C0([0,2π])

, |vε|C0([0,2π])

�
= ∞;

that is, they bifurcate from infinity since λ
±
ε → 0 as ε → 0+.

Moreover, for 0 ≤ λ ≤ λ0, all solutions (which exist by Theorem 3.1) are

uniformly bounded, independently of λ. Again, bifurcation from infinity occurs

only (strictly) to the left of the eigenvalue λ1.

Now, we take up the case when the nonlinearity g may have (asymptoti-
cally) infinitely many (discrete-countable) zeros (i.e. a sign-like condition with
‘oscillation’). In this instance, we strengthen a little bit the condition on the
coefficient function b. Therefore, for the sake of clarity, we first state the result
for the case when A = B = 0; which again implies that the condition (C4)

is equivalent to saying that
� 2π
0 hφ

∗
1 dx = 0. The function to keep in mind

here is for instance g(x, u) = η±u
−1 sin2(u) for |u| ≥ R > 0 where η± are

positive numbers, or an unbounded counterpart g(x, u) = η±
3
√
u sin2(u) for

|u| ≥ R > 0. Therefore, we consider functions which satisfy a sign condition,
vanish asymptotically at discrete-countably many points going to infinity, and
have a strict sign in-between them.

Theorem 3.5. Let the coefficient b be such that b ∈ ACP ([0, 2π])=W
1,1
P (0, 2π).

Assume that conditions (C1) and (C2) are met. Suppose there are sequences

of real numbers 0 >> rk > rk+1 → −∞ and 0 << Rk < Rk+1 → ∞ as k → ∞
such that for all k ∈ N,

g(x, rk) = 0 and g(x,Rk) = 0 for a.e. x ∈ (0, 2π) and

g(x, u) > 0 for a.e. x ∈ (0, 2π) and all u ∈ R with Rk < u < Rk+1,

g(x, u) < 0 for a.e. x ∈ (0, 2π) and all u ∈ R with rk+1 < u < rk.

Then, provided h is L
1(0, 2π) with

� 2π

0
hφ

∗
1 dx = 0, there is a constant

λ− < 0 such that, for every ε ∈ (0, |λ−|), Eq.(9) has at least two solutions,

denoted (λ+
ε , uε) and (λ−

ε , vε), with −ε < λ
±
ε < 0 and

lim
ε→0+

min
�
|uε|C0([0,2π])

, |vε|C0([0,2π])

�
= ∞;

that is, they bifurcate from infinity since λ
±
ε → 0 as ε → 0+.

Moreover, for 0 < λ ≤ λ0, all solutions (which exist by Theorem 3.1) are

uniformly bounded, independently of λ. Therefore, bifurcation continua from

infinity occur to the left of the eigenvalue λ1.
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A visual rendition sketch for the case when g is as in the above example is
given below. (For example, g(x, u) = η±u

−1 sin2(u) when |u| ≥ R with c = 0
and h = 0.)

λλ− λ0

|u|C0
P ([0,2π])

|uε|C0
P ([0,2π])

|vε|C0
P ([0,2π])

Figure 1: Bifurcation diagram in the case of a ‘bounce-off’ oscillatory nonlin-
earity.

Remark 3.6. (Existence of a third solution) Let us mention that by using a
consequence of the Leray-Schauder Homotopy Continuation Theorem or the
so-called Wyburn Lemma (see e.g. [8, 12, 13, 10]), one can show that there
is λ

∗

− < 0 with λ− < λ
∗

− such that for every ε ∈ (0, |λ∗

−|), one has a third
solution wε in Theorems 3.2 and 3.4. (The (uniform) bound of these third
solutions could for instance be twice the uniform a-priori bound obtained for
all solutions in the homotopy.)

Remark 3.7. Let us finally point out that one can reverse the inequalities in
the conditions (C3)-(C4) appropriately to get results similar to all the ones
above. In which case, multiplicity and bifurcation from infinity occur (for λ in
a nontrivial interval) to the right of λ1 only, whereas solutions are uniformly
bounded on bounded λ-intervals to the left of λ1. The reader can easily carry
out the details.
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4. Abstract Setting and a priori Bounds

In this section we formulate the problem (9) in an abstract setting. We then
proceed to establish a priori bounds in W

2,1(0, 2π) for all possible solutions.
For that purpose we define the linear operator

L : W 2,1
P (0, 2π) � C

0([0, 2π]) ⊂ L
1(0, 2π) → L

1(0, 2π) by

Lu := u
�� + b(x)u� + c(x)u+ λ1u,

where W 2,1
P (0, 2π) � C

0([0, 2π]) denotes the compact imbedding of W 2,1
P (0, 2π)

in C
0([0, 2π]) (see e.g. [1]). Next, we define the nonlinear (Nemytsǩıi) super-

position operator

N : C0([0, 2π]) → L
1(0, 2π) by Nu = g(·, u(·)).

Eq.(9) is then equivalent to

Lu+ λu+Nu = h, u ∈ Dom(L) := W
2,1
P (0, 2π). (15)

Now, we shall establish an a priori bound for all possible solutions of Eq.(9)
or equivalently Eq.(15).

Proposition 4.1. Assume that the assumptions (C1)–(C4) hold true. Let λ0 ∈
R with λ0 > 0 be a fixed constant given in Proposition 2.6. Then, there is

a constant R0 := R0(λ0) > 0 such that all possible solutions of Eq.(9) (or

equivalently Eq.(15)) with 0 < λ ≤ λ0 satisfy

|u|
W2,1(0,2π)

≤ R0.

That is, all possible solutions of Eq.(15) are (uniformly) bounded in W
2,1(0, 2π)

independently of λ, provided 0 < λ ≤ λ0.

Proof. Suppose that all (possible) solutions in W
2,1
P (0, 2π) are not uniformly

bounded in W
2,1(0, 2π). Then, there are sequences {λn} ⊂ (0,λ0] and {un} ⊂

W
2,1
P (0, 2π) with |un|W2,1(0,2π)

≥ n for all n ∈ N such that

u
��
n + b(x)u�

n + c(x)un + λ1un + λnun + g(x, un) = h(x) a.e. in (0, 2π). (16)

Letting vn := un/|un|W2,1(0,2π)
, one has that |vn|W2,1(0,2π)

= 1 , and vn ∈
W

2,1
P (0, 2π) satisfies

v
��
n + b(x)v�n + c(x)vn + λ1vn + λnvn +

g(x, un)

|un|W2,1(0,2π)

=
h(x)

|un|W2,1(0,2π)

a.e. in (0, 2π). (17)
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Notice that, by the fact that the function g is L1(0, 2π)-Carathéodory and the
sublinear growth condition (12) with ε = 1 e.g., one has that the sequence�
g(·, un(·))/|un|W2,1(0,2π)

�
is bounded in L

1(0, 2π) since there is a function

γ1 ∈ L
1(0, 2π) such that |g(x, u)| ≤ |u| + γ1(x) for a.e. x ∈ (0, 2π) and all

u ∈ R. Therefore, since W
2,1
P (0, 2π) is continuously imbedded into C

1
P ([0, 2π]),

there is a constant C1 > 0 (independent of n) such that

|g(x, un(x))|/|un|W2,1(0,2π)
≤ |vn(x)|+|γ1(x)|/|un|W2,1(0,2π)

≤ C1+|γ1(x)|, (18)

|b(x)v�n(x)| ≤ C1|b(x)|, and |c(x)vn(x)| ≤ C1|c(x)| for a.e. x ∈ (0, 2π) and all
n ∈ N. Moreover, since λn ∈ (0,λ0] and W

2,1
P (0, 2π) is compactly imbedded

into W
1,1
P (0, 2π), one has (by going to subsequences relabeled ({λn} and {vn},

if need be) that there exist a number µ0 ∈ [0,λ0] and a function v ∈ W
1,1
P (0, 2π)

such that λn → µ0 and vn → v in W
1,1
P (0, 2π) as n → ∞; which implies (for

a subsequence similarly relabeled if need be) that vn(x) → v(x) and v
�
n(x) →

v
�(x) for a.e. x ∈ (0, 2π) (see e.g. [1, Theorem 4.9]). By using the first inequality

in (18), we deduce that g(x, un(x))/|un|W2,1(0,2π)
→ 0 as n → ∞ for a.e. x ∈

(0, 2π) where v(x) = 0. Observe that un(x) → ∞ if v(x) > 0 and un(x) → −∞
if v(x) < 0. Therefore, for a.e. x ∈ (0, 2π) such that v(x) �= 0, (considering n

sufficiently large if need be) we write the quotient g(x, un(x))/|un|W2,1(0,2π)
in

the form

g(x, un(x))

|un|W2,1(0,2π)

=

�
g(x, un(x))

un(x)

�
vn(x) → 0 · v(x) = 0 as n → ∞,

by the sublinear condition (C2). Thus, in either case one has that the sequence
g(x, un(x))/|un|W2,1(0,2π)

→ 0 as n → ∞ for a.e. x ∈ (0, 2π). By the Lebesgue

Dominated Convergence Theorem, it follows that b(·)v�n → b(·)v, c(·)vn → c(·)v
and g(·, un(·))/|un|W2,1(0,2π)

→ 0 in L
1(0, 2π) as n → ∞.

Now, by using Eq.(17), we deduce that v
��
n → −b(x)v − c(x)v − λ1v −

µ0v in L
1(0, 2π) with vn → v in W

1,1
P (0, 2π) as n → ∞ and µ0 ∈ [0,λ0].

The (strong) closedness of the differentiation-operator from W
1,1
P (0, 2π) into

L
1(0, 2π) implies that v ∈ W

2,1
P (0, 2π) and that vn → v in W

2,1
P (0, 2π) as

n → ∞ with v
�� = −b(x)v� − c(x)v − λ1v − µ0v for a.e. x ∈ (0, 2π); that is,

Lv + µ0v = 0. (19)

It follows from Proposition 2.6 that either v(x) > 0 on [0, 2π] or v(x) < 0 on
[0, 2π] since |v|

W2,1(0,2π)
= 1. Using the duality pairing (see e.g. [1]), we get

that

0 = �Lv + µ0v,φ
∗
1� = �v, L∗(φ∗

1)�+ µ0

� 2π

0
vφ

∗
1 dx = µ0

� 2π

0
vφ

∗
1 dx,
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since φ
∗
1 is an eigenfunction of the adjoint L

∗ associated with the eigenvalue
zero. This implies that µ0 = 0 since φ

∗
1 is a nonnegative eigenfunction and

|v(x)| > 0 on [0, 2π]. Therefore, Lv = 0; i.e., v = tφ1 for some real constant
t �= 0 since λ1 is simple.

In what follows, we assume without loss of generality that v(x) > 0 on
[0, 2π]; i.e., t > 0 (the case v(x) < 0 can be treated in a similar way). This
implies that there is a constant �0 > 0 such that v(x) = tφ1(x) ≥ �0 for all
x ∈ [0, 2π] since the eigenfunction φ1 of L is (strictly) positive on [0, 2π].

Since vn → v uniformly on [0, 2π], one has that un(·) = vn(·)|un|W2,1(0,2π)
→

∞ uniformly on [0, 2π]. Therefore, there exists n0 ∈ N such that for all n ≥ n0

one has that
un(x) ≥ R for all x ∈ [0, 2π], (20)

where R > 0 is the constant given in the assumption (C3). Now, using again
the duality pairing in Eq.(16), we deduce that �Lun + λnun + Nun,φ

∗
1� =� 2π

0 hφ
∗
1 dx; i.e., �un, L

∗(φ∗
1)�+λn

� 2π
0 unφ

∗
1 dx+

� 2π
0 g(x, un)φ∗

1 dx=
� 2π
0 hφ

∗
1 dx.

Since 0 < λn ≤ λ0, it follows from Eq.(16), the inequality (20) and the
assumption (C3) that for each n ≥ n0,

0 > −λn

� 2π

0
unφ

∗
1 dx =

� 2π

0
g(x, un)φ

∗
1 dx−

� 2π

0
h(x)φ∗

1 dx

≥
� 2π

0
A(x)φ∗

1 dx−
� 2π

0
h(x)φ∗

1 dx;

that is, � 2π

0
h(x)φ∗

1 dx >

� 2π

0
A(x)φ∗

1 dx;

which is a contradiction with the second inequality in the assumption (C4).
Therefore, all possible solutions of Eq.(9) (or equivalently Eq.(15)) are (uni-
formly) bounded inW

2,1(0, 2π) ⊂ C
0([0, 2π]) independently of λ, provided that

0 < λ ≤ λ0. The proof is complete.

Let us mention that a similar result holds for all λ negative (and bounded
away from zero). More precisely, we have the following uniform a priori bound.

Proposition 4.2. Let α0,α1 ∈ R be (fixed negative) constants such that −∞ <

α0 < α1 < 0. Suppose that the assumptions (C1)–(C2) hold. Then, there exists

a constant R0 := R0(α0,α1) > 0 such that all possible solutions of Eq.(9), with

α0 ≤ λ ≤ α1, satisfy

|u|W 2,1(0,2π) ≤ R0.

That is, all possible solutions of Eq.(9) (or equivalently Eq.(15)) are (uniformly)

bounded in W
2,1(0, 2π) independently of λ, provided that α0 ≤ λ ≤ α1 < 0.
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The proof is similar to the one above up to Eq.(19) where now µ0 ∈ [α0,α1].
However, since α1 < 0, it follows that µ0 ≤ α1 < 0 is in the resolvent of L
(see e.g. the second part of Remark 2.7), and hence v ≡ 0 on [0, 2π]. This is a
contradiction with the fact that |v|

W2,1(0,2π)
= 1. Therefore, all possible solu-

tions of Eq.(15) (or equivalently Eq.(9)) are (uniformly) bounded inW
2,1(0, 2π)

independently of λ, provided that α0 ≤ λ ≤ α1. The proof is complete.

5. Proofs of main results

In this section we prove the main results by using the topological degree theory,
continuation methods and bifurcation from infinity techniques. We first prove
the existence part of the results, and then proceed to show multiplicity and
bifurcation.

Proof of Theorem 3.1. First we consider the case when λ ≥ 0 is fixed. Picking
δ ∈ R such that 0 < δ < λ0, and following the notation of the previous section,
we consider the homotopy

Lu+ δu+ θ[(λ− δ)u+Nu] = θh, u ∈ Dom(L), (21)

where θ ∈ [0, 1); which, when θ = 0, reduces to the homogeneous linear problem
Lu + δu = 0 that has only the trivial solution; for otherwise, Proposition 2.6
and an argument similar to that used after Eq.(19) would imply that δ = 0.
Since the linear operator L + δI defined by L + δI : W 2,1

P (0, 2π) → L
1(0, 2π)

is bounded, one-to-one and onto (see e.g. the arguments used in the proof of
Lemma 2.3), it follows that (21) is equivalent to the fixed point homotopy

u = θ(L+ δI)−1 ((δ − λ)Iu−Nu+ h) , u ∈ Dom(L). (22)

Therefore, by the compactness of the imbedding W
2,1
P (0, 2π) into L

1(0, 2π) and
the topological degree theory (see e.g. [10]), it suffices to show that all possible
solutions of the homotopy (22) are bounded in W

2,1(0, 2π), independently of
θ ∈ [0, 1), in order to conclude that Eq.(22) has at least one solution for θ = 1
as well.

Indeed, observing that 0 < (1 − θ)δ + θλ ≤ max{λ, δ} ≤ λ0 for 0 ≤ θ <

1, it follows from Proposition 4.1 that all possible solutions of Eq.(21) (or
equivalently Eq.(22)) are (uniformly) bounded in W

2,1(0, 2π) independently
of θ ∈ [0, 1). This proves the first part of Theorem 3.1. The second part of
Theorem 3.1 follows readily from Proposition 4.1.

To prove the existence of at least one solution for λ < 0 (fixed), we consider
the homotopy (21) where δ < 0 and now θ ∈ [0, 1]. (Notice that θ = 1 is
included here.) Observing that α0 := min{λ, δ} ≤ (1−θ)δ+θλ ≤ max{λ, δ} :=
α1 < 0 for 0 ≤ θ ≤ 1, it follows from Proposition 4.2 that all possible solutions
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of Eq.(21) (or equivalently Eq.(22)) are (uniformly) bounded in W
2,1(0, 2π)

independently of θ ∈ [0, 1]. The existence of at least one solution for each
θ ∈ [0, 1] follows from topological degree arguments as above. (It should be
noted that Assumptions (C3)–(C4) do not matter when λ < 0, at least as far as
the existence of at least one solution is concerned.) The proof is complete.

Now, we take up the issue of multiplicity and bifurcation (from infinity) of
solutions for λ “near” zero; actually λ to the left of zero as it will be seen.

Proof of Theorem 3.2. We first show that all possible solutions of Eq.(15) are
(uniformly) bounded in W

2,1
P (0, 2π) when λ = 0 as well; that is, the conclusion

of Theorem 3.1 actually holds true for all λ ∈ [0,λ0]. Indeed the proof is
similar to that of Theorem 3.1 except that we consider the homotopy-parameter
θ ∈ [0, 1]. Therefore, it suffices to show that all possible solutions of the
homotopy (22) are bounded in W

2,1(0, 2π) for θ = 1 and λ = 0 as well. For
that purpose, we follow the arguments in the proof of Proposition 4.1 with
λ = 0 up to the inequality (20). Now, using the duality pairing with the
eigenfunction φ

∗
1 in Eq.(16) (recall that θ = 1 and λ = 0), and the fact that φ∗

1

is an eigenfunction of L∗, it follows from Eq.(16), the inequality (20) and the
(stronger) assumption on the functions g and A in Theorem 3.2 that for each
n ≥ n0,

0 =

� 2π

0
g(x, un)φ

∗
1 dx−

� 2π

0
hφ

∗
1 dx >

� 2π

0
A(x)φ∗

1 dx−
� 2π

0
h(x)φ∗

1 dx;

that is, � 2π

0
h(x)φ∗

1 dx >

� 2π

0
A(x)φ∗

1 dx.

This is a contradiction with the second inequality in the assumption (C4).
Hence, all possible solutions of Eq.(15) are (uniformly) bounded in W

2,1
P (0, 2π)

for λ = 0 as well. Thus, in this case, one gets the boundedness of all possible
solutions in W

2,1
P (0, 2π) as in Proposition 4.1.

Now, we proceed to look into the situation regarding multiplicity and bifur-
cation from infinity. As in the proof of Theorem 3.1, we let δ ∈ R be sufficiently
small such that 0 < δ < λ0, and observe that Eq.(15) is equivalent to the fixed
point equation

u = (δ − λ)(L+ δI)−1
u− (L+ δI)−1 (Nu− h) .

Setting

µ := δ − λ, Hu := (L+ δI)−1
u and Ku := −(L+ δI)−1 (Nu− h) ,

it follows that the above fixed point equation is equivalent to the equation

u = µHu+K(u), u ∈ C
0
P ([0, 2π]). (23)
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Notice that Eq.(23) has now an abstract form considered e.g. in [17] for bifur-
cation from infinity purposes. From this setup, it follows that, when λ = 0, the
constant µ−1 = δ

−1 is the principal eigenvalue of H and that, by the compact
imbedding of W 2,1

P (0, 2π) into C
0
P ([0, 2π]), the solution-map

H := (L+ δI)−1 : C0
P ([0, 2π]) → W

2,1
P (0, 2π)

c
�→ C

0
P ([0, 2π])

is a compact linear operator when considered as an operator from C
0
P ([0, 2π])

into C0
P ([0, 2π]). Since by the Carathédory condition (C1) the superposition op-

erator N : C0
P ([0, 2π]) → L

1(0, 2π) (defined by N (u) := g(·, u(·))) is continuous
(by e.g. using Lebesgue Dominated Convergence Theorem) and h ∈ L

1(0, 2π),
one has that N (·) + h maps C0

P ([0, 2π]) continuously into L
1(0, 2π). Therefore

K : C0
P ([0, 2π]) → W

2,1
P (0, 2π)

c
�→ C

0
P ([0, 2π])

is a completely continuous mapping when viewed as a nonlinear operator from
C

0
P ([0, 2π]) into C

0
P ([0, 2π]).

Now, we wish to show that K(u) = o(|u|C0
P ([0,2π])) as |u|C0

P ([0,2π]) → ∞.

Let us set w = K(u) for u ∈ C
0
P ([0, 2π]); that is, w ∈ W

2,1
P (0, 2π) satisfies

the operator equation (L + δI)w = −N (u) + h for u ∈ C
0
P ([0, 2π]). By the

arguments similar to those used in the proof of Lemma 2.2, there is a constant
C1 > 0 (independent of u) such that

|w|
W

2,1
P

(0,2π)
≤ C1

�
|g(·, u(·))|L1(0,2π) + |h|L1(0,2π)

�
. (24)

Using the sublinear growth condition (C2), we first proceed to show that the
real-valued function |g(·, u(·))|L1(0,2π) is a o(|u|C0

P ([0,2π])) as |u|C0
P ([0,2π]) → ∞.

Indeed, let ε > 0 be given, it follows from the Carathéodory condition (C1)
and the sublinearity assumption (C2) that there exist a constant rε > 0 and a
function aε ∈ L

1(0, 2π) \ {0} such that for every u ∈ C
0
P ([0, 2π]) one has

|g(x, u(x))| ≤ ε

2
|u(x)| ≤ ε

2
|u|C0

P ([0,2π]) a.e. where |u(x)| ≥ rε,

and
|g(x, u(x))| ≤ |aε(x)| a.e. where |u(x)| ≤ rε.

Picking Rε := R(ε) ≥ 2|aε|L1(0,2π)/ε, it follows that for |u|C0
P ([0,2π]) ≥ Rε one

has
|g(·, u(·))|

L1(0,2π)
/|u|C0([0,2π]) ≤ ε. (25)

This shows that for every ε > 0 there is a constant Rε > 0 such that the
inequality (25) holds provided |u|C0

P ([0,2π]) ≥ Rε; that is, |g(·, u(·))|L1(0,2π) =
o(|u|C0

P ([0,2π])) as |u|C0
P ([0,2π]) → ∞; which by using the inequality (24) implies

that |w|W 2,1(0,2π) = o(|u|C0
P ([0,2π])) as |u|C0

P ([0,2π]) → ∞. Since W
2,1
P (0, 2π)
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is continuously imbedded into C
0
P ([0, 2π]) and w = K(u), it follows that

|K(u)|C0
P ([0,2π]) = o(|u|C0

P ([0,2π])) for |u|C0
P ([0,2π]) → ∞; as needed.

Therefore, λ = 0 is a bifurcation point from infinity since all assumptions of
the bifurcation from infinity result are fulfilled (see e.g. [17, p. 465, Theorem
1.6 and Corollary 1.8], also see [20, 2]); that is, there exist two connected
sets of solutions C+, C− ⊂ R × C

0
P ([0, 2π]) with C+ ∩ C− = ∅ which are such

that for every (sufficiently) small ε > 0, C+ ∩ Uε �= ∅, C− ∩ Uε �= ∅ where

Uε :=
�
(λ, u) ∈ R× C

0
P ([0, 2π]) : |λ| < ε, |u|C0

P ([0,2π]) > 1/ε
�
. (Observe that,

by the regularity of solutions, u ∈ W
2,1
P (0, 2π) since it is a solution of the fixed

point equation (23).)
Now, since all 2π-periodic solutions are uniformly bounded in W

2,1(0, 2π)
for all λ ∈ [0,λ0] (see Proposition 4.1 and the above bound in the case λ = 0)
and for all λ ∈ [α0,α1] with α1 < 0 (see Proposition 4.2), there then exists a
deleted left-neighborhood of 0 in R; i.e., there is λ− < 0, such that for every ε >

0 with ε < |λ−|, there are two distinct solutions (λ+
ε , uε) ∈ C

+ and (λ−
ε , vε) ∈

C
− with −ε < λ

±
ε < 0, uε �= vε and min

�
|uε|C0([0,2π]), |vε|C0([0,2π])

�
> 1/ε.

Letting ε → 0+, it follows that λ±
ε → 0 and min

�
|uε|C0([0,2π]), |vε|C0([0,2π])

�
→

∞. The proof is complete.

Proof of Theorem 3.4. As in the proof of Theorem 3.2, we first show that all
possible solutions of Eq.(15) are (uniformly) bounded in W

2,1(0, 2π) when λ =
0 as well; that is, the conclusion of Theorem 3.1 actually holds true for all
λ ∈ [0,λ0]. As before, the proof is similar to that of Theorem 3.1 except that
we consider the homotopy-parameter θ ∈ [0, 1]. Therefore, it suffices to show
that all possible solutions of the homotopy (22) are bounded in W

2,1(0, 2π)
for θ = 1 and λ = 0 as well. For that purpose, we follow the arguments
in the proof of Proposition 4.1 with λ = 0 up to the inequality (20). Now,
using the duality pairing with the eigenfunction φ

∗
1 in Eq.(16) and the fact

that φ∗
1 is an eigenfunction of L∗, it follows from Eq.(16) that for each n ≥ n0,

0 =

� 2π

0
g(x, un)φ

∗
1 dx−

� 2π

0
hφ

∗
1 dx. The inequality (20), the assumption (C3),

and Fatou’s lemma imply that

0 = lim inf
n→∞

� 2π

0
g(x, un)φ

∗
1 dx−

� 2π

0
hφ

∗
1 dx

≥
� 2π

0
lim inf
n→∞

g(x, un)φ
∗
1 dx−

� 2π

0
hφ

∗
1 dx =

� 2π

0
g+(x)φ

∗
1 dx−

� 2π

0
hφ

∗
1 dx;

that is,

� 2π

0
hφ

∗
1 dx ≥

� 2π

0
g+(x)φ

∗
1 dx. This is a contradiction with the second

inequality in the assumption (14) of Theorem 3.4. Therefore, all possible solu-
tions of Eq.(15) are (uniformly) bounded in W

2,1(0, 2π) for λ = 0 as well. One
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can now can proceed as in the proof of Theorem 3.2 to establish multiplicity
and bifurcation from infinity. The proof is complete.

Proof of Theorem 3.5. As in the above proofs, we analyse more carefully the
behavior of all possible solutions of Eq.(15) (or equivalently Eq.(9)) when λ = 0.
We first show that all possible non-constant solutions of Eq.(15) are (uniformly)
bounded in W

2,1(0, 2π) when λ = 0. For that purpose, we follow the arguments
in the proof of Proposition 4.1 with λ = 0 up to the inequality (20) with un �=
cst for all n ≥ n0 and R = R1 is the first element of the sequence {Rk}k≥1
given in the statement of the theorem. Now, using the duality pairing with
the eigenfunction φ

∗
1 in Eq.(16) and the fact that φ

∗
1 is an eigenfunction of

L
∗, it follows from Eq.(16) that for each n ≥ n0, 0 =

� 2π

0
g(x, un)φ

∗
1 dx. By

using the (strict) positivity of the eigenfunction φ
∗
1 (see Proposition 2.5), the

inequality (20) which implies the non-negativity of g(·, un(·)) by the assumption
in the theorem, we get that g(·, un(·)) ≡ 0 a.e. on [0, 2π]. This is a contradiction
with the positivity assumption on g in the theorem since un �= constant for all
n ≥ n0 (i.e., un �≡ Rk for some k). Thus, all possible non-constant solutions of
Eq.(15) where λ = 0 are (uniformly) bounded in W

2,1(0, 2π). However, in this
instance, large (in norm) constant solutions might occur in Eq.(15) when λ = 0.
The above argument shows that if they do occur, then they must necessarily be
elements of the sequences {Rk} or {rk} of real numbers given in the statement
of the theorem (for k large enough).

Since the sequences {Rk} and {rk} are discrete sets, and the continua C+

and C+ are connected, we deduce as in the proof of Theorem 3.2 that there
exists a deleted left-neighborhood of 0 in R; i.e., there is λ− < 0, such that for
every ε > 0 with ε < |λ−|, there are two distinct solutions (λ+

ε , uε) ∈ C
+ and

(λ−
ε , vε) ∈ C

− with −ε < λ
±
ε < 0, uε �= vε, min

�
|uε|C0([0,2π]), |vε|C0([0,2π])

�
>

1/ε. It follows that λ
±
ε → 0 and min

�
|uε|C0([0,2π]), |vε|C0([0,2π])

�
→ ∞ as

ε → 0+. (Notice that these continua could ‘connect’ to the discrete set of large
constant solutions, if any; i.e, oscillate on the left of λ = 0 and ‘bounce-off’
theses discrete constant solutions as ε → 0!) The proof is complete.

Remark 5.1. As indicated above, with the coefficient b ∈ ACP ([0, 2π]) =
W

1,1
P (0, 2π), we may replace the condition A = B = 0 in Theorem 3.5 by a

(slightly) more general condition where B ≤ A are possibly nonzero constants.
In this case, in addition to assuming that the conditions (C1), (C2) and (C4)
are met, we suppose that there exist sequences of real numbers 0 >> rk >

rk+1 → −∞ and 0 << Rk < Rk+1 → ∞ as k → ∞ such that for all k ∈ N,

g(x, rk) = B and g(x,Rk) = A for a.e. x ∈ (0, 2π) and

g(x, u) > A for a.e. x ∈ (0, 2π) and all u ∈ R with Rk < u < Rk+1,

g(x, u) < B for a.e. x ∈ (0, 2π) and all u ∈ R with rk+1 < u < rk.
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That is, the (bounce-off) oscillations of the nonlinearity occur with respect to

the constants A and B. Observe that the condition

� 2π

0
hφ

∗
1 dx = 0 is now

replaced by the more general condition (C4). The proof is similar to that of
Theorem 3.5.
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[14] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, vol. I, Gauthier-
Villars et fils, Paris, 1892.



BIFURCATION AND MULTIPLICITY FOR PERIODIC BVP 191
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Global stability, or instability, of
positive equilibria of p-Laplacian

boundary value problems with p-convex
nonlinearities
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Dedicated to Jean Mawhin on the occasion of his 75th birthday

Abstract. We consider the parabolic, initial value problem

vt = ∆p(v) + λg(x, v)φp(v), in Ω× (0,∞),

v = 0, in ∂Ω× (0,∞), (IVP)

v = v0 � 0, in Ω× {0},

where Ω is a bounded domain in RN , for some integer N � 1, with
smooth boundary ∂Ω, φp(s) := |s|p−1 sgn s, s ∈ R, and ∆p denotes
the p-Laplacian, with p > max{2, N}, v0 ∈ C

0(Ω), and λ > 0. The
function g : Ω×[0,∞) → (0,∞) is C0 and, for each x ∈ Ω, the function
g(x, ·) : [0,∞) → (0,∞) is Lipschitz continuous and strictly increasing.

Clearly, (IVP) has the trivial solution v ≡ 0, for all λ > 0. In
addition, there exists 0 < λmin(g) < λmax(g) such that:

• if λ �∈ (λmin(g),λmax(g)) then (IVP) has no non-trivial, positive
equilibrium;

• there exists a closed, connected set of positive equilibria bifurcating
from (λmax(g), 0) and ‘meeting infinity’ at λ = λmin(g).

We prove the following results on the positive solutions of (IVP):

• if 0 < λ < λmin(g) then the trivial solution is globally asymptoti-
cally stable;

• if λmin(g) < λ < λmax(g) then the trivial solution is locally
asymptotically stable and all non-trivial, positive equilibria are
unstable;

• if λmax(g) < λ then any non-trivial solution blows up in finite
time.

Keywords: Global stability, positive equilibria, p-Laplacian.
MS Classification 2010: 35K92.
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1. Introduction

We consider the parabolic, initial-boundary value problem

vt = ∆p(v) + λg(x, v)φp(v), in Ω× (0,∞),

v = 0, in ∂Ω× (0,∞),

v = v0 � 0, in Ω× {0},
(1)

where Ω is a bounded domain in RN , for some integer N � 1, with smooth
boundary ∂Ω, φp(s) := |s|p−1 sgn s, s ∈ R, and ∆p denotes the p-Laplacian,
with p > max{2, N}, v0 ∈ C

0(Ω), and λ > 0.
We suppose that g : Ω× [0,∞) → (0,∞) is C0 and, for each x ∈ Ω,

g(x, ·) : [0,∞) → (0,∞) is strictly increasing, (2)

0 < g0(x) := g(x, 0) < g∞(x) := lim
ξ→∞

g(x, ξ), and g∞ ∈ L
∞(Ω). (3)

We also suppose that g is Lipschitz with respect to ξ, in the following sense:
for any K > 0 there exists LK such that

|g(x, ξ1)− g(x, ξ2)| � LK |ξ1 − ξ2|, x ∈ Ω, 0 � ξ1, ξ2 � K. (4)

We are interested in positive solutions of (1), so we introduce the following
notation: C0

+(Ω) (respectively W
1,p
0,+(Ω)) denotes the set of ω ∈ C

0(Ω) (respec-

tively ω ∈ W
1,p
0 (Ω)) with ω � 0 on Ω.

It is known that for any v0 ∈ C
0
+(Ω) and fixed λ > 0 the problem (1) has

a unique, positive solution t → vλg,v0(t) ∈ W
1,p
0,+(Ω), on some maximal interval

(0, T ), where we may have T < ∞ or T = ∞ (what we mean by a solution will
be made precise in Theorem 4.1 below). We are interested in the asymptotic
behaviour of these solutions. This asymptotic behaviour is determined by the
structure of the set of positive equilibria of (1), so we first describe this.

For a given λ > 0, a positive equilibrium is a time-independent solution
u ∈ W

1,p
0,+(Ω) of (1), that is, u satisfies∆p(u)+λg(u)φp(u) = 0 (this will be made

precise in Section 3 below). For convenience, we also call (λ, u) an equilibrium.
For any λ > 0 the function v ≡ 0 (or (λ, v) = (λ, 0)) is a (trivial) equilibrium.
Regarding non-trivial equilibria, we have the following results (see Theorem 3.1
below for a more precise description). There exists 0 < λmin(g) < λmax(g) < ∞
such that:

• if λ �∈ (λmin(g),λmax(g)) then (1) has no non-trivial, positive equilibrium
in W

1,p
0,+(Ω);
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• there exists a closed, connected set of positive equilibria (λ, e) bifurcating
from (λmax(g), 0) in R×W

1,p
0,+(Ω) and ‘meeting infinity’ at λ = λmin(g).

In some radially symmetric cases, when Ω is a ball, it is known that when
λmin(g) < λ < λmax(g) there is a unique, non-trivial equilibrium eλ ∈ W

1,p
0,+(Ω).

This is discussed briefly in Section 6 below.

We will prove the following results on the asymptotic behaviour of the
positive solutions of (1). For any 0 �= v0 ∈ C

0
+(Ω):

• if 0 < λ < λmin(g) then lim
t→∞

�vλg,v0(t)�0,p = 0

(so the trivial solution is globally asymptotically stable);

• if λmin(g) < λ < λmax(g) then:

• if v0 is ‘small’ then lim
t→∞

�vλg,v0(t)�0,p = 0

(so the trivial solution is locally asymptotically stable);
• if v0 is ‘large’ then lim

t→∞
|vλg,v0(t)|0 = ∞;

• all the non-trivial, positive equilibria are unstable;

• if λmax(g) < λ then there exists T < ∞ such that lim
t�T

|vλg,v0(·)|0 = ∞.

These results are consistent with a bifurcation analysis of the corresponding
semilinear (p = 2) problem, using the ‘principle of linearised stability’ to obtain
local stability. Such problems have been extensively investigated, see [9] and
the references therein for a summary of the main results. However, we do not
use bifurcation theory to obtain our results, which usually yields local stability
results. Instead, we use a mixture of comparison and compactness arguments
to obtain the above results.

For the quasilinear problem involving the p-Laplacian operator considered
here, these results are consistent with the results on ‘linearised stability’ in the
‘p-convex’ case in [10] (condition (2) is termed ‘p-convex’ in [10]; this terminol-
ogy has been used in other publication for very similar, but slightly different,
conditions). However, the term ‘linearised stability’ in [10] refers to the sign of
the principal eigenvalue of the linearisation of the problem at an equilibrium
solution, not to the dynamic (time-dependent) stability that we consider. For
the quasilinear problem considered here it is not clear that ‘linearised stability’,
in this sense, implies stability in the usual dynamic sense. Even if such a result
could be proved, it would give local rather than global stability.

Similar results to those obtained here have been obtained in [3, 4] for a
quasilinear problem involving the mean-curvature operator in 1-dimension. The
mean-curvature operator is significantly different to the p-Laplacian operator
considered here, so our results do not follow from those of [3, 4], even in 1-
dimension.
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2. Preliminaries

2.1. Notation

We let C
0(Ω) denote the standard space of real valued, continuous functions

defined on Ω, with the standard sup-norm on | · |0 (throughout, all function
spaces will be real); Lq(Ω), q > 1, denotes the standard space of functions on Ω
whose qth power is integrable, with norm � ·�q; W 1,p

0 (Ω) denotes the standard,
first order Sobolev space of functions on Ω which are zero on ∂Ω, with norm
� ·�1,p, and its dual space is denoted by W

−1,p�
(Ω), where p� := p/(p−1) is the

conjugate exponent of p. By our assumption that p > N , the space W
1,p
0 (Ω) is

compactly embedded into C
0(Ω).

If h : Ω × [0,∞) → R is continuous then, for any ω ∈ C
0
+(Ω), we define

h(ω) ∈ C
0
+(Ω) by

h(ω)(x) := h(x,ω(x)), x ∈ Ω.

Clearly, the ‘Nemitskii’ mapping ω → h(ω) : C0
+(Ω) → C

0
+(Ω) is continuous.

In particular, we repeatedly use the Nemitskii mapping φp : ω → φp(ω) :
C

0
+(Ω) → C

0
+(Ω).

2.2. The p-Laplacian

Formally, the p-Laplacian is defined by

∆pω := ∇ · (|∇ω|p−2∇ω),

for suitable ω, where |v| := (v21 + · · ·+ v
2
N )1/2 for v ∈ RN . More precisely, for

any ω ∈ W
1,p
0 (Ω), we define ∆p(ω) ∈ W

−1,p�
(Ω) by

�

Ω
∆p(ω)ϕ := −

�

Ω
|∇ω|p−2∇ω ·∇ϕ, ∀ϕ ∈ W

1,p
0 (Ω). (5)

A precise definition of what is meant by a solution of (1) will be given in
Section 4.1 below.

2.3. Principal eigenvalues of the p-Laplacian

We briefly consider the weighted, nonlinear eigenvalue problem

−∆p(ψ) = µρφp(ψ), ψ ∈ W
1,p
0 (Ω), (6)

where µ ∈ R and the weight function ρ ∈ L
1(Ω). We say that µ is an eigenvalue

of (6), with eigenfunction ψ ∈ W
1,p
0 (Ω)\{0}, if the following weak formulation
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of (6) holds
�

Ω
|∇ψ|p−2∇ψ ·∇ϕ = µ

�

Ω
ρφp(ψ)ϕ, ∀ϕ ∈ W

1,p
0 (Ω). (7)

A principal eigenvalue of (6) is an eigenvalue µ0 which has a positive eigenfunc-
tion ψ0 ∈ W

1,p
0,+(Ω) (which we will normalise by, say, |ψ0|0 = 1). The following

result is well known — see, for example, [6, Sections 3-4].

Lemma 2.1. Suppose that the weight function ρ satisfies: ρ � 0 on Ω, with
ρ > 0 on a set of positive Lebesgue measure. Then the eigenvalue problem (6)
has a unique principal eigenvalue µ0(ρ). This eigenvalue has the properties,
µ0(ρ) > 0, ψ0(ρ) > 0 on Ω, and

�

Ω
|∇ω|p � µ0(ρ)

�

Ω
ρ|ω|p, ∀ω ∈ W

1,p
0 (Ω). (8)

In addition, if ρ1, ρ2 are two such weight functions, then

ρ1 � ρ2 on Ω and ρ1 < ρ2 on a set of positive Lebesgue measure

=⇒ µ0(ρ1) > µ0(ρ2).

Now, since g∞ ∈ L
∞(Ω), we may define

0 < λmin(g) := µ0(g∞) < λmax(g) := µ0(g0),

and we denote the corresponding eigenfunctions by ψmin(g), ψmax(g).

3. Non-trivial, positive equilibria of (1)

A positive equilibrium of (1) is a solution of the problem

−∆p(u) = λg(u)φp(u), u ∈ W
1,p
0,+(Ω). (9)

More precisely, a solution of (9) is defined to be a function u ∈ W
1,p
0,+(Ω) which

satisfies the following weak formulation of (9),
�

Ω
|∇u|p−2∇u ·∇ϕ = λ

�

Ω
g(u)φp(u)ϕ, ∀ϕ ∈ W

1,p
0 (Ω). (10)

For convenience, we also call (λ, u) an equilibrium.
Clearly, for any λ ∈ R, the function u = 0 is a (trivial) positive equilibrium.

We denote the set of non-trivial, positive equilibria by

E+ := {(λ, u) : λ ∈ (0,∞), 0 �= u ∈ W
1,p
0,+(Ω) satisfies (9)}.

We can say somewhat more about the overall structure of the set E+. In fact,
we have the following global-bifurcation-type description of E+.
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Theorem 3.1. (a) (λ, u) ∈ E+ =⇒ λ ∈ (λmin(g),λmax(g)) and u > 0 on Ω.

(b) If (λn, un) ∈ E+, n = 1, 2, . . . , then

lim
n→∞

λn = λmin(g) ⇐⇒ lim
n→∞

�un�1,p = ∞,

lim
n→∞

λn = λmax(g) ⇐⇒ lim
n→∞

�un�1,p = 0.

(c) There exists a set S+ ⊂ E+ such that S+ ∪ (λmax(g), 0) is closed and
connected, and

PR S+ := {λ : (λ, u) ∈ S+, for some 0 �= u ∈ W
1,p
0,+(Ω)}

= (λmin(g),λmax(g)).
(11)

Proof. (a) These results follow immediately from (2), (3), Lemma 2.1 and the
definitions of λmin(g) and λmax(g), together with the form of equation (9).

(b) Consider a sequence (λn, un) ∈ E+, n = 1, 2, . . . , such that

lim
n→∞

λn = λ∞ ∈ [λmin(g),λmax(g)] and lim
n→∞

�un�1,p = N∞.

(i) Suppose that 0 < N∞ < ∞. Then, by the compactness properties de-
scribed on p. 299 of [7], we may suppose that there exists 0 �= u∞ ∈
W

1,p
0,+(Ω) such that �un − u∞�1,p → 0 and (λ∞, u∞) ∈ E+

. Part (a) now
implies that λmin(g) < λ∞ < λmax(g).

(ii) Suppose that N∞ = ∞. By defining wn := un/�un�1,p, n = 1, 2, . . . , we
may suppose (by compactness and our assumption that g∞ ∈ L

∞(Ω))
that there exists 0 �= w∞ ∈ W

1,p
0,+(Ω) such that �wn − w∞�1,p → 0 and

−∆p(w∞) = λ∞gφp(w∞),

g(x) = lim
n→∞

g(x, un(x)), x ∈ Ω.
(12)

By (2) and (3), 0 < g � g∞ ∈ L
∞(Ω), so by Lemma 2.1 and (12),

w∞(x) > 0 for each x ∈ Ω, so that un(x) → ∞, and g(x) = g∞(x).
Hence, λ∞ = λmin(g).

(iii) Suppose that 0 = N∞. A similar (slightly simpler) argument to that of
part (ii) shows that in this case λ∞ = λmax(g).

Combining the results of (i)-(iii) now proves part (b) of the theorem.

(c) We will use the Rabinowitz-type global bifurcation results in [7] to prove
this. To do this it is convenient to extend the domain of g in (9) to Ω× R, by
setting g(x,−ξ) = −g(x, ξ), x ∈ Ω, ξ > 0. Clearly, this has no effect on the
positive solutions of (9).
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Let N ⊂ R × W
1,p
0 (Ω) denote the set of non-trivial solutions of (9), with

N its closure, and let S denote the (maximal) connected component of N
containing (λmax(g), 0). The results in [7] (in particular, [7, Theorem 1.1]
and [7, Lemma 3.1]) show that S is unbounded in R × W

1,p
0 (Ω) and has the

decomposition
S = {(λmax(g), 0)} ∪ S+ ∪ S−

,

where
S± := {(λ, w) ∈ S : ±w(x) > 0 for all x ∈ Ω}.

We note that there are some very minor differences between equation (9) and
the problem discussed in [7]. For instance our g0 depends on x but the cor-
responding term in [7] is constant. However, it can be seen that the results
from [7] that we use are still valid in our case.

Clearly, S+ ⊂ E+. Furthermore, it follows from the form of our extended
function g in (9) that S+ = −S−, so both the sets S± must be unbounded,
and the sets {(λmax(g), 0)} ∪ S± are connected. The relation (11) now follows
from the connectedness and unboundedness of S+, together with the results of
parts (a), (b) of the theorem. This proves part (c), and so completes the proof
of Theorem 3.1.

4. Time-dependent solutions of (1)

In Section 3 we discussed equilibrium (time-independent) solutions of (1). In
this section we will discuss time-dependent solutions of (1). We first describe
an existence and uniqueness result, and then a comparison result, which will
be used to determine the long-time behaviour of the solutions.

4.1. Existence and uniqueness of positive solutions

Existence and uniqueness properties of solutions of the time-dependent prob-
lem (1) are known, and the results that we require were summarised in [14,
Section 3]. We will briefly restate these results here – for further details see [14],
and the references therein.

To state precisely what we mean by a solution of (1) we define the spaces

Σ(T ) := C([0, T ), L2(Ω)) ∩ C((0, T ),W 1,p
0 (Ω)) ∩ W

1,2
loc ((0, T ), L

2(Ω)), T > 0

(we allow T = ∞ here, and likewise for other such numbers below). The
space W

1,2((0, T ), L2(Ω)) is defined on p. 378 of [13], using the notation
H

1((0, T ), L2(Ω)); the loc version can be defined by a simple adaptation of
this definition. We will search for a solution of (1) in Σ(T ), for some T > 0.
Thus, in this setting, a solution v will be regarded as a time-dependent map-
ping t → v(t) : (0, T ) → W

1,p
0 (Ω), with ∆p(v(t)) ∈ W

−1,p�
(Ω) defined in a
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weak sense, for each t ∈ (0, T ) (see [14]), and satisfying the initial condition at
t = 0 as a limit in L

2(Ω). More (or less) regularity at t = 0 can be attained, de-
pending on the regularity of v0 (for example if v0 ∈ W

1,p
0,+(Ω) then the solution

will belong to C([0, T ),W 1,p
0 (Ω))), but the above setting will suffice here.

In view of this, we will rewrite (1) in the form

dv

dt
= ∆p(v) + λg(v)φp(v), v(0) = v0 ∈ C

0
+(Ω). (13)

The following theorem summarises known results on the existence and unique-
ness of solutions of (13), together with various additional properties which will
be required below. For details and references, see the proofs of Theorem 3.1 and
Corollary 3.4 in [14], together with the discussion in [5], which also describes
most of these results, with further explanations. We note that the theorem
does not require g to satisfy the monotonicity condition (2).

Theorem 4.1. Suppose that g satisfies conditions (3) and (4) on Ω × [0,∞),
and λ > 0, v0 ∈ C

0
+(Ω). Then (13) has a unique solution vλg,v0 ∈ Σ(Tλg,v0),

defined on a maximal interval [0, Tλg,v0), for some Tλg,v0 > 0, having the fol-
lowing properties:

(a) vλg,v0(0) = v0 and vλg,v0(t) ∈ W
1,p
0,+(Ω) for all t ∈ (0, Tλg,v0);

(b) the function vλg,v0 : [0, Tλg,v0) → L
2(Ω) is differentiable at almost all

t ∈ [0, Tλg,v0), and at such t,

d vλg,v0

dt
(t) , ∆p(vλg,v0(t)) ∈ L

2(Ω),

and

d vλg,v0

dt
(t) = ∆p(vλg,v0(t)) + λg(vλg,v0(t))φp(vλg,v0(t)), in L

2(Ω);

(c) the interval [0, Tλg,v0) on which the solution vλg,v0 exists is maximal, in
the sense that

Tλg,v0 < ∞ =⇒ lim
t�Tλg,v0

|vλg,v0(t)|0 = ∞. (14)

If Tλg,v0 < ∞ then the solution vλg,v0 is said to blow up in finite time.

4.2. Comparison results

We now consider the auxiliary problem

dw

dt
= ∆p(w) + λγφp(w), w(0) = w0 ∈ C

0
+(Ω), (15)
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where γ ∈ L
∞(Ω) is independent of w, and γ � 0 on Ω. This is a special case

of (13) (with g(x, ξ) having the form γ(x)) so, by Theorem 4.1, the problem (15)
has a unique solution wλγ,w0 defined on a maximal interval [0, Tλγ,w0).

Remark 4.2. Theorem 4.1 was stated for continuous functions g depending
on (x, ξ) (and Lipschitz with respect to ξ), but as noted in [14, Remark 3.3],
the result is valid for the problem (15), containing an x-dependent function
γ ∈ L

∞(Ω).

We now describe a ‘comparison’ result for solutions of (13) and (15). For any
T > 0 and functions ω1, ω2 ∈ Σ(T ), we write ω1 � ω2 on [0, T ) if ω1(t) � ω2(t),
on Ω, for each t ∈ [0, T ). Also, in inequalities involving γ, we may regard γ as
a function on Ω× [0,∞) which is constant with respect to ξ ∈ [0,∞).

Lemma 4.3. (a) If g � γ � 0 on Ω× [0,∞) and v0 � w0 � 0 on Ω, then

Tλg,v0 � Tλγ,w0 and vλg,v0 � wλγ,w0 on [0, Tλg,v0).

(b) If 0 � g � γ on Ω× [0,∞) and v0 � w0 on Ω, then

Tλg,v0 � Tλγ,w0 and vλg,v0 � wλγ,w0 on [0, Tλγ,w0).

Proof. The proof follows, with minor modifications, the proof of [12, Theo-
rem 2.5]. We omit the details. However, we note that [12, Theorem 2.5]
considers equations of the form vt = ∆p(v) + λφp(v), but the proof can be
adapted to give the above result; the argument in [12] is based on the proof of
[8, Lemma 3.1, Ch. VI], which considered the equation vt = ∆p(v).

In the next section we will use the comparison result Lemma 4.3 to describe
the behaviour of solutions of (13). The following results will be useful for this.

Lemma 4.4. Suppose that 0 �= w0 ∈ C
0
+(Ω).

(a) If λ < µ0(γ) then Tλγ,w0 = ∞ and lim
t→∞

�wλγ,w0(t)�1,p = 0.

(b) If λ > µ0(γ), then Tλγ,w0 < ∞.

Proof. (a) By following the proof of [12, Theorem 3.1], it can be shown that
Tλγ,w0 = ∞ and |wλγ,w0(·)|0 is bounded on [0,∞) (the paper [12] deals with
the case γ ≡ 1 but the extension to the case of general γ is straightforward,
using a comparison theorem similar to Lemma 4.3, which is, as noted above,
based on [12, Theorem 2.5]).

The argument in the proof of part (a) of [14, Theorem 4.1] now shows that
wλγ,w0 must converge, in W

1,p
0,+(Ω), to an equilibrium solution of equation (6),

with µ = λ and ρ = γ. But by assumption, λ < µ0(γ), so Lemma 2.1 shows
that the only equilibrium available is the trivial solution.
(b) This can be proved by following the proof of [12, Theorem 3.5].
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5. Global stability or instability of the equilibria of (1)

For any λ > 0 the time-dependent problem (13) has the trivial equilibrium
solution u = 0, and also, by Theorem 3.1, for any λ ∈ (λmin(g),λmax(g))
there is at least one non-trivial, positive equilibrium. We will now consider the
stability, and instability, of these equilibria.

Theorem 5.1. Suppose that 0 �= v0 ∈ C
0
+(Ω).

(a) 0 < λ < λmin(g) =⇒ Tλg,v0 = ∞ and lim
t→∞

�vλg,v0(t)�1,p = 0.

(b) If λmin(g) < λ < λmax(g) and eλ ∈ E+ then:

(i) α < 1 and v0 < αeλ =⇒ Tλg,v0 = ∞ and lim
t→∞

�vλg,v0(t)�1,p = 0;

(ii) β > 1 and v0 > βeλ =⇒ Tλg,v0 < ∞.

(c) λmax(g) < λ =⇒ Tλg,v0 < ∞.

Proof. Parts (a) and (c). The proofs of these parts of the theorem are simple
modifications of the proofs of parts (a) and (c) of [14, Theorem 4.1]. We note
that, for each x ∈ Ω, the function g(x, ·) is decreasing in [14], whereas it is
increasing here, so the roles of g0 and g∞, and µ0(g0) and µ0(g∞), need to be
interchanged in the comparison arguments used here, compared to those used
in [14].

Part (b)-(i). We define �gα− : Ω× [0,∞) → (0,∞) by

�gα−(x, ξ) :=
�
g(x,αeλ(ξ)), ξ > αeλ(x),

g(x, ξ), ξ � αeλ(x)
(16)

(and �gα−∞ will denote the limit of �gα− as ξ → ∞, as in (3)). Since eλ satisfies (9)
we see, by scaling eλ, that the function w = αeλ satisfies the equation

−∆p(w) = λg(eλ)φp(w), (17)

that is, αeλ is an equilibrium solution of (15), with γ = g(eλ). Also, by (2)
and (16), �gα− � �gα−∞ � g(eλ) on Ω× [0,∞), and by assumption, v0 < αeλ, so
by Lemma 4.3

vλ�gα−,v0(t) � αeλ, on [0,∞). (18)

It follows immediately from (18) that Tλ�gα−,v0
= ∞ (by Theorem 4.1), and

vλg,v0 = vλ�gα−,v0 (by (16) and uniqueness of solutions).
Next, by (2) and (16), �gα−∞ < g(eλ) on Ω, so by (17) and Lemma 2.1,

λ = µ0(g(eλ)) < µ0(�gα−∞ ) = λmin(�gα−).
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Thus, part (a) of the theorem applies to the solution vλ�gα−,v0 , and since we
have just shown that vλg,v0 = vλ�gα−,v0 , this proves part (b)-(i) of the theorem.

Part (b)-(ii). We now define �gβ+ : Ω× [0,∞) → (0,∞) by

�gβ+(x, ξ) :=
�
g(x, ξ), ξ � βeλ(x),

g(x,βeλ(ξ)), ξ < βeλ(x).
(19)

In this case the function w = βeλ satisfies (17), and a similar argument to that
in the proof of part (b)-(i) now shows that

vλ�gβ+,v0(t) � βeλ on [0, Tλ�gβ+,v0), (20)

and hence, vλg,v0 = vλ�gβ+,v0 . Also, by (2) and (19), �gβ+0 > g(eλ) on Ω, so
by (17) and Lemma 2.1,

λ = µ0(g(eλ)) > µ0(�gβ+0 ) = λmax(�gβ+).

Thus, part (c) of the theorem applies to the solution vλg,v0 = vλ�gβ+,v0 , and so
proves part (b)-(ii) of the theorem. This completes the proof of Theorem 5.1.

Part (b) of Theorem 5.1 shows that if λmin(g) < λ < λmax(g) then every
non-trivial, positive equilibrium eλ ∈ E+ is unstable, and the trivial solution
is not globally asymptotically stable. It also gives an indication of the global
asymptotic behaviour of the positive solutions of (13), viz. if v0 is ‘large’ then
vλg,v0 blows up in finite time, and if v0 is ‘small’ then vλg,v0(t) → 0 as t →
∞. However, this result does not deal with all initial conditions v0 ∈ C

0
+(Ω).

Specifically, it does not deal with any initial condition v0 which ‘crosses’ all
the non-trivial, positive equilibria. More unfortunately, it does not prove the
stability of the trivial solution, in the sense that there are initial conditions v0
with arbitrarily small norm (either |v0|0 or �v0�1,p) which do not satisfy the
hypothesis in part (b)-(i) of the theorem (for arbitrarily small � there exist v0
with |v0|0 < �, but with v0(x) > eλ(x) for x near the boundary ∂Ω). The
following theorem rectifies some of these omissions, and proves stability of the
trivial solution when λmin(g) < λ < λmax(g).

Theorem 5.2. Suppose that λmin(g) < λ < λmax(g). Then there exists � > 0
such that

|v0|0 < � =⇒ Tλg,v0 = ∞ and lim
t→∞

�vλg,v0(t)�1,p = 0. (21)
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Proof. For δ > 0, define gδ ∈ C
0(Ω) by

gδ(x) := g(x, δ), x ∈ Ω.

It follows from the properties of g, and the principal eigenvalue function µ0(·)
(see Lemma 2.1 and [6]), that

gδ > g0 on Ω and lim
δ�0

|gδ − g0|0 = 0

=⇒ µ0(gδ) < µ0(g0) and lim
δ�0

µ0(gδ) = µ0(g0)

(the final limiting result is not explicitly stated in [6], but it can readily be
proved using the minimisation characterisation of µ0(ρ) in (1.3) of [6]; the
argument is similar to the proof of [6, Proposition 4.3]). Hence, since λ <

λmax(g) = µ0(g0), we may choose δ sufficiently small that λ < µ0(gδ).
Now, defining the function 1 ∈ C

0
+(Ω) by 1(x) := 1, x ∈ Ω, it follows from

Lemma 4.4 (a) that

Tλgδ,1(t) = ∞ and |wλgδ,1(t)|0 → 0. (22)

Since the mapping t → |wλgδ,1(t)|0 is continuous on [0,∞), we may define

κ := max{|wλgδ,1(t)|0 : t � 0}, � := δ/κ,

w̃�(x, t) := �wλgδ,1(x, �
p−2

t), (x, t) ∈ Ω× [0,∞),

and we see that

dw̃�

dt
= �

p−1 dwλgδ,1

dt
= �

p−1
�
∆p(wλgδ,1) + λgδφp(wλgδ,1)

�

= ∆p(w̃�) + λgδφp(w̃�),

w̃� = �1, |w̃�(t)|0 � δ, t � 0.

Furthermore, since g(x, ξ) � gδ(x) on Ω× [0, δ], a similar comparison argument
to that used in the proof of Theorem 5.1 (b) (i) now shows that

|v0|0 < � =⇒ 0 � vλg,v0(t) � w̃�(t) � δ, t � 0,

which, by (22), proves that (21) holds with the | · |0 norm. It follows from this,
by the argument in the proof of [14, Theorem 4.1], that (21) holds with the
� · �1,p norm, which completes the proof of Theorem 5.2.

6. Uniqueness of non-trivial, positive equilibria

The question of the uniqueness of the non-trivial, positive equilibria when
λ ∈ (λmin(g),λmax(g)), under conditions similar to our basic condition (2),
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is clearly of interest here, so we briefly describe some recent results concerning
this question. This problem has received considerable attention, but is still a
long way from being resolved. The main results have been obtained for the
case where Ω is a ball, say the unit ball B1 ⊂ RN , and the function g is radially
symmetric, that is, g has the form g(r, ξ), where r denotes the usual Euclidean
norm |x| in RN . For simplicity, we only discuss the case where g has the form
g(ξ).

We first observe that in this case, given our hypotheses on g, [2, Lemma 2]
shows that any non-trivial solution u ∈ W

1,p
0,+(Ω) of (9) must be radially sym-

metric, that is, u = u(r), with u(1) = 0. Thus, the question of the uniqueness
of the non-trivial solutions of the PDE (9) on B1 reduces to considering the
uniqueness of the solutions of an ODE problem on the interval [−1, 1]. Of
course, if we have such uniqueness then Theorem 5.1 (b) applies to the full
PDE problem on the ball B1 ⊂ RN .

We now briefly describe some of the known results for this case, which apply
to our problem.

The case N = 1.
This case is considered in [10], under the following hypothesis.

• The nonlinearity g(ξ)ξp−1 is ‘strictly p-convex’, as defined in [10, Defini-
tion 3] (which implies that (2) holds, see [10, Remark 6]).

Theorems 1 and 2 in [10] show that if λ ∈ (λmin(g),λmax(g)) then (9) has a
unique solution eλ ∈ W

1,p
0,+(Ω) (these theorems combined cover all combinations

of 0 � λmin(g) < λmax(g) � ∞).

The case N > 1.
This case is considered in [1, 11]. The results as stated in these papers do
not quite cover the problem considered here, but by a slight adaptation of
the arguments in [1] a uniqueness result can be obtained under the following
hypotheses (in our notation):

• the function ξ → ξg
�(ξ)/g(ξ) is increasing on (0,∞);

• g
�(ξ) > 0 on (0,∞) (which implies that (2) holds).
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1. Introduction

In the study of the range of semilinear operators L+N , finding weak solutions
to the wave equation

�u+ g(u) := utt − uxx + g(u) = f(x, t) (1)

subject to double-periodic conditions

u(x, t) = u(x, t+ 2π) = u(x+ 2π, t) for all x, t ∈ R, (2)

provides a rich source of open questions. Up to minor modifications, the results
here reviewed extend to (1) subject to the Dirichlet-periodic condition

u(0, t) = u(π, t) = 0, u(x, t) = u(x, t+ 2π) for all x ∈ (0,π), t ∈ R. (3)

Professor Jean Mawhin is a pioneer in this field. His work points out the
role of the interaction of the numerical range of N (i. e., the range of g�) with
the spectrum of L (i.e., the spectrum of −�, subject to either (2) or (3)), in
the solvability of these problems. Such spectra are given by σ(−�) = {j2 −
k
2; j, k = 0, 1, . . .} for condition (2) and by σd(−�) = {j2−k

2; j = 0, 1, . . . ; k =
1, 2, . . .} for condition (3).
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For example, from [22] it follows that if g is monotone and
�
lim inf
|u|→∞

g(u)

u
, lim sup

|u|→∞

g(u)

u

�
∩ σ(−�) = ∅, (4)

then (1)–(2), as well as (1)–(3), has a solution. The same result may be obtained
from related developments in [4, 7, 8, 25, 27, 29, 30]. Arguing as in Theorem 3
of [14] one sees that (4) may be extended to

lim inf
|u|→∞

g(u)

u
∈ (λk,λk+1), and lim sup

|u|→∞

g(u)

u
< ν

�
lim inf
|u|→∞

g(u)

u

�
, (5)

where ν(a) > a, a /∈ σ(−�) is the smallest value for which �u+au+−ν(a)u− =
0 subject to (2) has a weak solution. That is (a, ν(a)) belongs to the Fucik
spectrum of � subject to (2).

Similar results occur in systems and wave equations in several space vari-
ables, see [2, 4, 5, 24, 32, 33]. All these works assume the range of g� not to
include eigenvalues of infinite multiplicity in its interior. Note that only 0 is an
eigenvalue of infinite multiplicity both for (1)-(2) and (1)-(3).

When the periodicity condition (2) is replaced by

u(x, t) = u(x, t+ 2π) = u(x+ L, t) for all x, t ∈ R, (6)

and L is not a rational multiple of π the spectrum σ(�) may have multiple
eigenvalues of infinite multiplicity and may not be a discrete. Here again pro-
fessor Mawhin is a pioneer in the field with his work in [23, 21]. For additional
analysis of this case the reader is referred to [28]. Little is known on the solv-
ability of (1)-(6) when L is not a rational multiple of π. In [9] existence results
for cases where σ(�) is discrete and all the eigenvalues have finite multiplicity
are found including cases where the range of g� may include multiple eigenvalues
of infinite multiplicty.

If in (1) we replace � by an elliptic operator, N need not be monotone as
compactness arguments based on the absence of eigenvalues of infinite multi-
plicity suffice.

From now on we let Ω := (0, 2π)× (0, 2π) and

αk,j(x, t) = sin(kx) cos(jt), βk,j(x, t) = sin(kx) sin(jt),

γk,j(x, t) = cos(kx) cos(jt), and δk,j(x, t) = cos(kx) sin(jt).
(7)

Let K be the closed subspace of L2(Ω) spanned by

{αk,k, βk,k, γk,k, δk,k ; k = 0, 1, 2, . . .}.

That is, K is the null space of the wave operator � subject to (2). If v ∈ K

then there are unique 2π-periodic null-average functions v1 and v2 and a unique
number v̄ such that v(x, t) = v̄ + v1(t+ x) + v2(t− x).
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We let H denote the Sobolev space of functions u such that u as well as its
first order partial derivatives belong to L

2(Ω). The norm in L
2(Ω) is denoted

by � � and the norm in H by � �1. We let Y = K
⊥ ∩ H. We say that

u = y + v ∈ Y ⊕K is a weak solution of (1)-(2) if

�

Ω
{(ytŷt − yxŷx)− (g(u)− f)(ŷ + v̂)} dxdt = 0, (8)

for all ŷ + v̂ ∈ Y ⊕K.

2. Existence of forced vibrations

In [20, 35] it was established that � + N subject to (2) has dense range in
L
2(Ω) when g

�(u) ∩ σ(−�) = ∅ for u large. That is, for all f in a dense subset
of L2(Ω), the equation (1)-(2) has a weak solution. Note that here it is not
assumed g to be monotone. More precisely, if there are constants α,β, c ∈ R,
α ≤ β, such that σ(�) ∩ [α,β] = ∅, that g : R → R is globally Lipschitz
continuous, and

−c+
α

2
s
2 ≤

� s

0
g(t) dt ≤ c+

β

2
s
2 for all s ∈ R, (9)

then (1)-(2) has a solution for each f in a dense set of L2(Ω). However, to
date, it is not known if such a range (the set of all such f ’s) is all of L2(Ω).

The arguments in [20, 35] do not provide a characterization of the f ’s for
which (1)-(2) has a solution. Nevertheless, in [12, 15, 16], sufficient conditions
for f to be in the range of u �→ �(u) + g(u) are provided when

g(s) = λs+ h(s), with − λ /∈ σ(�) and lim
|u|→+∞

h
�(u) = 0. (10)

It is readily verified that functions satisfying (10) satisfy (9).
In order to find sufficient conditions on f for (1)-(2), or (1)-(3), to have a

solution the concept of functions flat on characteristics was introduced in [16].

Definition 2.1. We say that φ is not flat on characteristics if given � > 0
there exists δ > 0 such that m({x ∈ [0,π]; |φ(x, r ± x) − ρ| < δ}) < � for all
r, ρ ∈ R, where m stands for the one dimensional Lebesgue measure.

In [12, Theorem 5.1] the following was proven.

Theorem 2.2. Let −λ /∈ σ(�) and f(x, t) = cq(x, t) ∈ L
p(Ω), p ≥ 2 and φ the

solution to �(φ) + λφ = q(x, t), φ(x, t) = φ(x+ 2π, t) = φ(x, t+ 2π), x, t ∈ R.
If φ is not flat on characteristics then there exist c0 such that for |c| ≥ c0 the
equation (1)-(2) has a weak solution u ∈ L

p(Ω).
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Earlier versions of Theorem 2.2 are found in [15, 16] where the existence of
bounded solutions is considered. The proofs in [12, 15, 16] are based on first
establishing the existence of approximate solutions and then establishing the
convergence of such approximations using the compactness of (� + λI)−1 on
the range of � and convergence in K in L

p using that the projection on K of
such approximations are large due to the size of the parameter c.

3. Non-existence of continuous solutions

If |g�| is bounded away from 0 (hence g is strictly monotone) and f is smooth,
in [7, 29] it is shown smoothness of f implies smoothness of solutions to (1)-(2).
As credited by P. Rabinowitz in [29], the ideas for showing such regularity go
back to L. Nirenberg.

On the other hand, for non-monotone nonlinearities one cannot expect reg-
ularity of the solutions as shown by the following theorem and lemma.

Theorem 3.1. Assume that h(s) = g(s) − λs is a differentiable function with
support in [0, D] for some D > 0, that λ > 0, that −λ /∈ σ(�) and that
h
�(D/2) < −λD/2. Then there is c0 > 0 such that if |c| > c0 the problem

(1)-(2) has no continuous solution for f(x, t) = c sin(x+ t).

For the proof of Theorem 3.1 the reader is referred to [10, Theorem 2.1].

In contrast with Theorem 3.1 we have the following existence result.

Lemma 3.2. Let

g(t) =

�
τ1t+ h(t) if t ≤ 0

τ2t+ h(t) if t > 0,
(11)

with τ1, τ2 > 0, and h continuous such that

lim
|s|→∞

h(s)

s
= 0. (12)

If f(x, t) = p(x + t) or f(x, t) = p(x − t), with p : R → R, p ∈ L
2[0, 2π], and

p(ξ + 2π) = p(ξ) for all ξ ∈ R, then the equation (1)–(2) has a solution.

Note that the above lemma allows for resonance (−τ1,−τ2 ∈ σ(�)) and
jumping nonlinearities (τ1 �= τ2). Its proof goes as follows. One lets

Γ = {γ : R → R; γ is increasing, continuous and γ(t) ≤ g(t) for all t ∈ R}.

and
g1(t) := sup

γ∈Γ
γ(t). (13)
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The function g1 is continuous, non-decreasing, for all α ∈ R the set g−1(α) is
a closed interval, and if g(a) < g(t) for all t > a then g(a) = g1(a).

For each ξ ∈ R there exists aξ, bξ ∈ R such that g−1
1 ({ξ)}) = [aξ, bξ]. Given

f(x, t) = p(x + t), we define v(s) := bp(s). Due to τ1 > 0, τ2 > 0, and (12),
v ∈ L

2(0, 2π). Also g(v(ξ)) = p(ξ). Thus u(x, t) = v(x + t) ∈ K and is a
weak solution to (1)-(2). These solutions may have jump discontinuities along
characteristic lines where g−1

1 is not single valued. Furthermore, such solutions
need not be unique. For example, if p(s) = ξ is constant in a segment [c, d],
and aξ < bξ then defining, for any y ∈ (c, d), vy(ζ) = ap(ζ) for ζ ∈ [c, y),
vy(ζ) = bp(ζ) for ζ ∈ (y, d], and uy(x, t) = vy(x + t) we have a continuum of
solutions to (1)-(2).

4. Bifurcation

Finally we consider, subject to the periodicity condition (2), the one parameter
equation

utt − uxx + g(x, t, u,λ) = 0, x, t, u,λ ∈ R. (14)

with g(x, t, u) = g(x + 2π, t) = g(x, t + 2π). If g(x, t, u,λ) = λG(x, t, u),
G(x, t, u) = 0, and Gu(x, t, 0) = 1 one sees that (0,λk) is a point of bifurcation
for every λk ∈ σ(−�). More precisely, there is a connected set of nonzero solu-
tions to (14)-(2) containing (0,λk) in its closure. This fact is proven imitating
the arguments for the case in which � is replaced by a second elliptic operator
when λk �= 0, and a more detailed analysis for λk = 0 as shown in [31].

Bifurcation from infinity. Recently, bifurcation from infinity was considered
in [13] resulting in the following theorem.

Theorem 4.1. Let −λ0 ∈ σ(�), h : R → R a bounded continuous function.
Suppose there exists M > 0, γ > 1, and A > 0 such that

|h�(s)| ≤ |s|−γ for all |s| ≥ M, and lim
s→±∞

h(s) = ±A. (15)

If g(s) = λs + h(s), then there is �0 such that if 0 < λ0 − λ < �0 the problem
(1)-(2) has a nontrivial weak solution uλ = vλ + yλ ∈ (K ⊕ Y ) ∩ L

∞(Ω).
Furthermore, if λ → λ0, then �vλ�+ �yλ�1 → ∞.

For λ0 �= 0 the proof of Theorem 4.1 relies on the properties of sets of the
form {(x, t); |p(x, t)| < �}, for p a trigonometric polynomial of a given degree,
using the Nazarov-Turan lemma, see [19]. The case λ0 = 0, relies on the fact
that constant functions belongs to the kernel K. This case does not extend
to the boundary condition (3) due to the absence of constant functions in the
kernel of � subject to this boundary condition.
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Imperfect bifurcation. In [11], see also [6], the equation (14) for

g(x, t, u,λ) = λ(u+ λH)2k + λR(t, x, u+ λH) (16)

subject to (2) and assuming that

lim
v→0

Rv(t, x, v)

v2k−1
= 0, and k a positive integer (17)

is considered. Sufficient conditions on H �= 0 are provided for the existence of
solutions that accumulate at (0, 0). Since H �= 0 this is known as imperfect
bifurcation.
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the Consejeŕıa de Educación, Juventud y Deporte de la Comunidad de Madrid.

References

[1] A. Bahri and H. Brezis, Periodic solutions of a nonlinear wave equation, Proc.
Roy. Soc. Edinburgh Sect. A 85 (1980), 313–320.

[2] P. Bates and A. Castro, Existence and uniqueness for a variational hyperbolic

system without resonance, Nonlinear Anal. 4 (1980), no. 6, 1151–1156.
[3] K. Ben Naoum and J. Mawhin, The periodic-Dirichlet problem for some semi-

linear wave equations, J. Differential Equations 96 (1992), no. 2, 340–354.
[4] K. Ben Naoum and J. Mawhin, Periodic solutions of some semilinear wave

equations on balls and spheres, Topol. Methods Nonlinear Anal. 1 (1993), 113–
138.

[5] J. Berkovits and J. Mawhin, Diophantine approximation, Bessel functions,

and radially symmetric periodic solutions of semilinear wave equations in a ball,
Trans. Amer. Math. Soc. 353 (2001), no. 12, 5041–5055.

[6] M. Berti and L. Biasco, Forced vibrations of wave equations with non-

monotone nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006),
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boliques non linéaires, Miscellanea, Presses Univ. Bruxelles, Brussels, 1978,
pp. 301–315.

[24] J. Mawhin, Conservative systems of semi-linear wave equations with periodic-

Dirichlet boundary conditions, J. Differential Equations 42 (1981), 116–128.
[25] J. Mawhin, Nonlinear functional analysis and periodic solutions of semilinear

wave equations, Nonlinear Phenomena in Mathematical Sciences, Conference on
Nonlinear Phenomena in Math. Sci., Academic Press, 1982, pp. 671–681.

[26] J. Mawhin, Periodic solutions of some semilinear wave equations and systems:

a survey, Chaos Solitons Fractals 5 (1995), 1651–1669.



214 F. CAICEDO ET AL.

[27] J. Mawhin and J. Ward, Asymptotic nonresonance conditions in the periodic-

Dirichlet for semi-linear wave equations, Ann. Mat. Pura Appl. 135 (1983),
no. 1, 85–97.

[28] P. J. McKenna, On solutions of a nonlinear wave equation when the ratio of

the period to the length of the Interval is irrational, Proc. Amer. Math. Soc. 93
(1985), no. 1, 59–64.

[29] P. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential

equations, Commun. Pure Appl. Math. 20 (1967), 145–205.
[30] P. Rabinowitz, Large amplitude time periodic solutions of a semilinear wave

equation, Comm. Pure Appl. Math 37 (1984), no. 2, 189–206.
[31] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J.

Funct. Anal. 7 (1971), no. 3, 487–513.
[32] M. Schechter, Periodic solutions of semilinear higher dimensional wave

equaions, Chaos Solitons Fractals 12 (2001), 1029–1034.
[33] M. Smiley, Time periodic solutions of nonlinear wave equations in balls, Os-

cillations, Bifurcation and Chaos (Toronto), Canad. Math. Soc. Confer. Proc.,
1987, pp. 287–297.

[34] M. Willem, Periodic solutions of wave equations with jumping nonlinearities,
J. Differential Equations 36 (1980), no. 1, 20–27.

[35] M. Willem, Density of the range of potential operators, Proc. Amer. Math. Soc.
83 (1981), no. 2, 341–344.

Authors’ addresses:

Francisco Caicedo
Departamento de Matemáticas
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Franca had the luck of being one of his PhD students and to profit of his vast
knowledge and thoughtful advices since then, and wishes to take the chance
to commemorate the excellent mathematician and magister to which he is in-
debted in several different ways.

1. Introduction

Problems of fast oscillations are of intrinsic mathematical interest and are of
great importance in various areas of applied mathematics. It is well-known that,
when the parameters of a mechanical system are subject to rapid oscillations,
then the stability characteristics of that system may change in a substantial
way. The interesting phenomenon of stabilization of a planar pendulum via
vertical oscillations is a case in point [4], but it is far from being the only
example. Others include the elimination of a Van der Pol oscillation, and the
large-scale alteration of a stability diagram in a catalytic reactor [2, 3]. As a
somewhat different example, we mention the quadruple ion trap (Paul trap),
which is used as a component of a mass spectrometer.

In many problems of fast oscillations, one has a single parameter to deal
with, namely the frequency of the oscillation. But in other problems there
are one or more additional parameters, and these other parameters may de-
termine a bifurcation pattern. In this paper we pose the question of how the
presence of rapidly oscillating parameter disturbance can alter a bifurcation
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pattern. We will give partial answers to this question in the context of the
simplest bifurcation patterns, namely the saddle-node, transcritical, pitchfork,
and Andronov-Hopf scenarios. We will emphasize the case in which the fast os-
cillations are almost periodic in the sense of Bohr, or more generally of “strictly
ergodic” type. Of course this is considerably more general than considering pe-
riodic fast oscillations. Thus for example we can deal with a situation in which
a parameter is perturbed by two or more periodic terms whose periods are not
commensurate, rather than by a single periodic term.

We are motivated in particular by the discussion in the paper [3], where
the authors provide insights and methods which are valuable for the study of
problems involving fast oscillations and stability. Incidentally, the authors of
that paper seem rather dismissive of the scenario in which a parameter is slowly
varied, and of that in which a parameter undergoes a stochastic disturbance;
see also [2].

The starting point of this discussion is the problem

x
� = x

2 − ε (x ∈ R , ε ∈ R). (1)

Clearly equation (1) admits equilibria in x = ±
√
ε when ε > 0, where x = −

√
ε

is asymptotically stable and x = +
√
ε is unstable. These merge as ε decreases

through zero, and for ε < 0 all the solutions of (1) are unbounded in finite
time.

Let us now modify (1) by adding in a rapidly oscillating term, to obtain

x
� = x

2 − ε+
α

µ
f

�
t

µ

�
� =

d

dt
. (2)

where α is a positive number, µ is a small positive parameter, and f is an
almost periodic function with zero mean value. Note that the oscillations are
not only rapid, but also indefinitely large as µ → 0+.

To study the effect of the oscillatory term on the bifurcation pattern, we
set τ = t

µ , so that (2) takes the form

dx

dτ
= µ(x2 − ε) + αf(τ) .

Following [2], we consider
dx

dτ
= αf(τ) . (3)

Let us assume that f(τ) admits an almost periodic primitive F (τ); this is
actually a highly nontrivial hypothesis, unless f(τ) is assumed to be periodic.
There is no loss of generality in assuming that F has mean value zero. Then
the general solution of (3) is of course

x = c+ αF (τ) = h(τ, c) (4)



REMARKS ON NONAUTONOMOUS BIFURCATION THEORY. 217

where c is an arbitrary constant. Still following [2], we make the change of
variables

x = h(τ, y) = y + αF (τ) ,

which transforms (2) into

dy

dτ
= µ

�
[y + αF (τ)]2 − ε

�
. (5)

At this point we apply the method of infinite-interval averaging see Fink [10]
or Hale [15]. We will discuss the method in Section 2; here we merely state the
result.

There is a neighborhood W of y = 0, which can be fixed independently of
small µ > 0, and an invertible change of variables in w ∈ W

y = w + µG(τ, w)

such that, in the new variable w, (5) goes into

dw

dτ
= µ

�
w − ε+ α

2
F 2

�
+ o(µ) . (6)

Here the overbar indicates the mean value of the given function F . We note
explicitly that F 2 is the mean value of F 2; further the function G can be written
explicitly:

G(τ, w) = e−µτ

� τ

−∞
eµs

�
2αF (s)w + α

2
F

2(s)
�
ds

One can show that, if ε > 0 is fixed, ε > α2F 2, and µ is chosen small enough (in
dependence of ε), then (6) admits two almost periodic solutions, one of which
is asymptotically stable and the other of which is unstable. If ε < α2F 2, then
for small µ, all solutions of (6) will leave some fixed neighborhood W of w = 0
in finite time.

At this point one must note that there has been a macroscopic change in
the bifurcation pattern in (6) as compared to (2), namely the bifurcation point
ε = 0 in (2) is transferred to ε = α2F 2 in (6). Moreover, the very term
“bifurcation pattern” is in the first moment not very well-defined, because the
effect of the o(µ) terms on solutions of (6) may be quite pronounced if µ is not
“small enough” relative to ε−α2F 2, which of course takes its most interesting
values near zero.

One may not find the “α
µ”-factor in front of f in (2) to be natural. Let us

omit it and carry out the above calculations with f in place of α
µf . We obtain

the analogue of (6):

dw

dτ
= µ

�
w − ε+ µ

2
F 2

�
+ o(µ2) . (7)
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The bifurcation value of the averaged equation is ε = µ2F 2, which tends to zero
as µ → 0+. However there is still an interesting issue as far as the µ-dependent
terms are concerned, which we formulate as follows: set µ = µ(ε) and ask
“what happens” to the saddle-node pattern. We will take up this question in
Section 3: rather remarkably it admits a reasonably clean-cut answer.

The reader may object at this point that one should be able to under-
stand (2) in detail by applying repeated averaging, to obtain after r + 1 steps

dx

dτ
= µ

�
y
2 − ε+ µ

2
F 2 + . . .+ µ

r
fr(y)

�
+ o(µr+1) .

To this it can be replied that, in the first place, repeated averaging is not
always possible in the almost periodic, non-periodic world, in fact in many
circumstances it is the “exceptional case”. Second, if one envisions substituting
a generic function such as µ = ε1/s for µ with s > r, then one will still have
to deal systematically with the o(µ1+r)-term. So if µ tends to zero sufficiently
slowly we will have to consider the “o”-term on the saddle-node bifurcation
pattern.

This paper is structured as follows. In Section 2 we present a slightly gen-
eralized version of the Fink-Hale infinite-interval averaging theory. We make
use of the Bebutov hull construction and other ideas of nonautonomous dy-
namics, which, in our opinion, clarify certain aspects of this method. Then,
in Section 3, we discuss the classical bifurcation patterns when the relevant
parameter is subjected to fast zero-mean oscillations. We will rediscuss the
saddle node pattern, together with the transcritical, pitchfork, and Andronov-
Hopf scenarios. Aside from presenting information on the bifurcation problems
when fast oscillations are present, we want to illustrate what is now a rather
extensive tool kit and body of results concerning nonautonomous differential
systems. We make use of the basic Bebutov construction, some facts involving
ergodic measures, exponential dichotomies, etc. We will also refer to previous
papers concerning the nonautonomous bifurcation theory, as seems appropriate
([20, 25, 30]).

2. Preliminaries

In this section, we first present some facts from the field of topological dynamics
(see [7, 35]) which will be useful in our discussion of infinite-interval averaging.
Then we will describe our version of that averaging procedure.

Let P be a topological space. A real flow on P is determined by a family
{φt | t ∈ R} of homeomorphisms of P with the following properties:

• φ0(p) = p for all p ∈ P ;

• φt ◦ φs = φt+s for all t, s ∈ R;
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• φ : P × R → P : (t, p) → φt(p) is continuous.

Suppose now that P is a compact metric space, and let {φt} be a flow on P . A
regular Borel probability measure ξ on P is said to be φt-invariant if ξ(φt(B)) =
ξ(B) for each Borel set B ⊂ P and for each t ∈ R. An invariant measure is
said to be {φt}-ergodic if, in addition, the following indecomposibility condition
holds: if B ⊂ P is a Borel set, and if ξ(B�φt(B)) = 0 for each t ∈ R, then
either ξ(B) = 0 or ξ(B) = 1. Here � is the usual symmetric difference of sets:
A�B = (A\B) ∪ (B\A).

A famous theorem of Krylov and Bogoliubov ([23, 28]) states that, if P is
a compact metric space, and {φt} is a flow on P , then there exists at least one
{φt}-ergodic measure ξ on P . If an ergodic measure ξ on P is the only {φt}-
ergodic measure on P the flow (P, {φt}) is said to be uniquely ergodic. One can
then apply a basic theorem of Birkhoff to the triple (P, {φt}, ξ), together with
a refinement of that theorem. We state these results together.

Theorem 2.1. Let P be a compact metric space, let {φt} be a flow on P , and

let ξ be a {φt}-ergodic measure on P . If h ∈ L1(P, ξ), then

lim
t→±∞

1

t

� t

0
h(φs(p))ds =

�

P
hdξ (8)

for ξ-a.a. p ∈ P . If h : P → P is a continuous function and ξ is uniquely

ergodic, then (8) holds for all p ∈ P , and the limit is uniform in p ∈ P . That

is, given ε > 0 there exists T > 0 such that, if |t| ≥ T , then

����
1

t

� t

0
h(φs(p))ds−

�

P
hdξ

���� ≤ ε (p ∈ P ).

The first part of Theorem 2.1 can be stated and proved in the more general
context of measurable flows; see e.g. [11]. The second part of the theorem is
specific to a continuous flow {φt} defined on a compact space P [14].

Let P be a nonempty compact metric space. A flow (P, {φt}) on P is said
to be minimal if, for each p ∈ P , the orbit {φt(p) | t ∈ R} is dense in P . A
flow (P, {φt}) is said to be strictly ergodic if it is minimal and admits a unique
ergodic measure ξ.

Again let P be a nonempty compact metric space. A flow (P, {φt}) on P is
said to be Bohr almost periodic, or simply almost periodic, if there is a metric
d on P , which is compatible with the topology on P , such that

d(φt(p1),φt(p2)) = d(p1, p2)

for all p1, p2 ∈ P and for all t ∈ R. If (P, {φt}) is almost periodic, then for each
p ∈ P the orbit closure cls{φt(p) | t ∈ R} ⊂ P is strictly ergodic (in particular
it is minimal), and in fact P is the union of its minimal sets. If (P, {φt}) is an
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almost periodic minimal set, then one can give P the structure of a compact
Abelian topological group with multiplication ∗ and dense subgroup R in such
a way that φt(P ) = p ∗ t (p ∈ P , t ∈ R). Let us note finally that, although a
minimal almost periodic flow is strictly ergodic, the converse is not true, a fact
which is illustrated by the Furstenberg flows [14].

We discuss a class of concrete minimal, almost periodic flows, namely the
Kronecker flows. Let d ≥ 2 and let Td = Rd/Zd be the d-torus. Let α1, . . . ,αd

be Q-independent real numbers, let p1, . . . , pd be 1-periodic angular coordinates
on Td, and set

φt(p1, . . . , pd) = (p1 + α1t, . . . , pd + αdt) mod Zd
.

Then the flow (Td, {φt}) is minimal and almost periodic. The unique {φt}-
invariant measure is the normalized Haar measure on Td. More generally, if
α1, . . . ,αd satisfy exactly k ∈ {0, 1, 2, . . . , d − 1} independent homogeneous
Q-linear relations, then (Td, {φt}) laminates into a disjoint union of almost
periodic minimal flows, each of which is flow-isomorphic to a (d−k)-dimensional
Kronecker flow.

Next we give a brief discussion of the Bebutov construction, which actu-
ally consists of a family of mutually similar constructions. Consider a time-
dependent differential system

dx

dt
= f(t, x) t ∈ R , x ∈ Rd

. (9)

The general goal is to apply the methods of topological dynamics to study the
solutions of (9). This can be done if f satisfies certain conditions, as we now
indicate. We do not give proofs of the various assertions we make below: these
are readily available in the literature (e.g., [34]) and in any case are usually
quite easy to check directly.

First suppose that, for each compact subset K ⊂ Rd, the restriction of f to
R×K is uniformly continuous. Then there exist:

(i) a compact metrizable space P which carries a flow {φt};

(ii) a continuous function f∗ : P × Rd → Rd;

(iii) a point p∗ ∈ P such that f(t, x) = f∗(φt(p∗), x) for all t ∈ R, x ∈ Rd.

The flow {φt} is induced by the translation in t, and the points of P are actually
functions p(t, x) = limn→∞ f(t + tn, x) for appropriate sequences {tn} ⊂ R.
Here the limit is taken in the compact-open topology on R× Rd. One usually
abuses notation at this point and writes f instead of f∗ (but not p for p∗). The
upshot is that equation (9) has been embedded into the family of differential
equations

dx

dt
= f(φt(p), x) p ∈ P, x ∈ Rn (9p)
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where (9) coincides with (9p∗).
Next suppose that each equation (9p) admits a unique global solution

x(t;x0, p) for each initial value x0 ∈ Rn. Then the family of homeomorphisms

ψt : P × Rd → P × Rd : (p, x0) → (φt(p), x(t;x0, p))

defines a flow on P × Rd. One speaks of a skew-product flow because the
first factor does not depend on x0. One can now use various techniques of
topological dynamics to study the solutions of the various equation (9p), and
in particular the solutions of equation (9), alias (9p∗).

One can take account of eventual smoothness properties of f in x ∈ Rd, say
of order r ≥ 1, as follows. Let l = (l1, . . . , ld) be a multiindex of integers such
that 0 ≤ l1, . . . , ld ≤ l1 + . . .+ ld = |l| ≤ r. One requires that f together with
all its partial derivatives Dl

xf = Dl1
x1

. . . Dld
xd
f of order |l| ≤ r be uniformly

continuous on sets of the form R × K where K ⊂ Rd is compact. If this
condition holds, then there exist:

(i) a compact metric space P with a flow {φt};

(ii) a continuous function f∗ : P × Rd → Rd such that Dl
xf∗ : P × Rd → Rd

exists and is continuous for each multiindex l = (l1, . . . , ld) with |l| ≤ r;

(iii) a point p∗ ∈ P such that f(t, x) = f∗(φt(p∗), x) for all t ∈ R, x ∈ Rd.

One describes point (ii) by saying that f∗ is of class Cr in x, uniformly in
p ∈ P . In most of what we do below, we will simply assume that each function
f∗ which is encountered is C∞ in x uniformly in p ∈ P .

Let us now turn to the theory of infinite-interval averaging, which we for-
mulate in a context in which a Bebutov flow is present. The ideas discussed
here are drawn from the presentation in Fink [10] and Hale [15]. First we recall
a basic lemma [22], which extends somewhat Lemma 14.1 of Fink’s book.

Proposition 2.2. Let P and X be compact metric spaces, and let (P, {φt}) be
a uniquely ergodic flow with unique invariant measure ξ. Let f : P ×X → Rd

be a continuous function, and let

f(x) =

�

P
f(p, x)dξ(p)

be the ξ-mean value of f . If µ is a positive number, define

F (p, x, µ) =

� 0

−∞
e
µs

�
f(φs(p), x)− f(x)

�
ds .

Then there is a continuous positive function ζ : (0,∞) → (0,∞) such that

ζ(µ) → 0 as µ → 0+, and

|µF (p, x, µ)| ≤ ζ(µ) (µ > 0, p ∈ P, x ∈ X) . (10)
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Let us remark that the function ζ need not tend to zero at a prearranged
rate - to be explicit, one cannot write, say, ζ(µ) = Cµs where C is a constant
and s > 0. We give an illustrative example in Appendix B. Let us remark that,
if X ⊂ Rm is the closure of a bounded open set, and if f is Cr on X uniformly
in p ∈ P , then one can determine a continuous positive function ζ = ζ(µ) such
that ζ(µ) → 0 as µ → 0+, and such that

|µDl
xF (p, x, µ)| ≤ ζ(µ)

for all p ∈ P , x ∈ X, and for each multiindex l = (l1, . . . , ld) with |l| ≤ r.
One can generalize these statements slightly by allowing f to depend contin-

uously and smoothly on µ, for µ in some open interval containing µ = 0. This
can be seen by substituting x ∈ Rd by (x, η) ∈ Rd+1, applying Proposition 2.2,
then letting η = µ.

Continuing the discussion, let p ∈ P , x ∈ X, and set

Fµ(t, x) = F (φt(p), x, µ) = e−µt

� t

−∞
eµs

�
f(φs(p), x)− f(x)

�
ds. (11)

Of course Fµ depends on p as well. Clearly

dFµ

dt
= −µFµ + f(φt(p), x)− f(x) .

We can apply this observation to ODES with rapidly varying time dependence.
Since smoothness issues are of no particular relevance at present, let us assume
that f : P × Rd × R → Rd : (p, x, µ) → f(p, x, µ) is a function which is C∞ in
(x, µ), uniformly in p ∈ P . Consider the family of differential equations

dx

dt
= µf(φt(p), x, µ) x ∈ Rd

, µ > 0 (12p)

or equivalently
dx

ds
= f(φ s

µ
(p), x, µ)

s

µ
= t (13p)

where the rapid oscillations are displayed explicitly. For each fixed p ∈ P , make
the following change of variables

x = y + µFµ(t, y) (14)

where Fµ is defined in (11).
We state the averaging theorem of Fink and Hale in the context of the

family (12p).
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Proposition 2.3. If ∆ > 0, let B∆ be the closed ball of radius ∆ in Rd
centered

at the origin. Let P , {φt}, f , F , Fµ be as above. There exist positive numbers

∆, ∆0 and µ0 with the following properties. First, for each p ∈ P and µ ∈
(0, µ0), the transformation (14) is of class C∞

on B∆0 and has a C∞
inverse

on B∆. Second, both the transformation (14) and its inverse are C∞
on B∆0 ×

(0, µ0) respectively B∆ × (0, µ0), uniformly in p ∈ P .

We now make the change of variables (14) in equation (12p), for each p ∈ P ,
and obtain
�
I + µ

∂Fµ

∂y

�
dy

dt
= µ

�
fµ(y) + µFµ(t, y) + fµ(φt(p), x)− fµ(φt(p), y)

�
(15p)

for all 0 < µ ≤ µ0, y ∈ B∆. Here I is the identity matrix, and we have written
fµ(·) = f(·, µ). Now

fµ(p, x)− fµ(p, y) =
∂fµ

∂y
(p, y)µFµ +R

where the remainder R is of order O(|µFµ|2). Since µFµ is of order o(1) as
µ → 0+, it is natural to compare solutions of (12p) with those of the averaged
equation

dy

dt
= µfµ(y) . (16)

Generally speaking one does this on a case-by-case basis when dealing with
problems on an infinite time interval.

It should be remarked that, in the case when f has only finitely many x-
derivatives, there is in general a loss of smoothness of one degree in passing
from (12p) to (15p).

It may happen that the function f in (12p) admits a primitive in the sense
that there exists a continuous function F̃ : P × Rd × R → Rd such that

d

dt
F̃ (φt(p), x, µ) = f(φt(p), x, µ)− f(x, µ)

identically in t, p, x, µ. In this case one replaces (14) by

x = y + µF̃µ(φt(p), y)

where F̃µ(·) = F̃ (·, µ). Then (15p) takes the form
�
I + µ

∂F̃µ

∂y

�
dy

dt
= µ

�
fµ(y)− µf1(φt(p), y, µ)

�

where the non autonomous term µf1(p, y, µ) is of order O(µ) as µ → 0+ (and
not just of order o(1)). It must be emphasized, however, that a primitive need
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not exist if one has a non-periodic time dependence, i.e., if (P, {φt}) is not a
periodic flow.

We consider one last issue, which regards the continuous/smooth conver-
gence of the solutions of the rapidly oscillating equations (13p) as µ → 0+. This
issue has been treated in [9], and the results discussed there can be viewed as
an amplification of classical theorems which are proved in the averaging theory
on a finite interval [31].

We formulate a result which will be useful later. Consider the equations

dx

ds
=f(φ s

µ
(p), x, µ) µ > 0

dx

ds
=f0(x) µ = 0

(17)

where f0(x) =
�
P f(p, x, 0)dξ(p). The first equation in (17) is equation (13p),

and the second is (as we will see) the appropriate limiting equation. Assume
that, for all p ∈ P , the solution x(s;x∗, p, µ) of equation (13p) with initial
condition x∗ ∈ R2 is defined for all s ∈ (−∞,∞), and that the same condition
holds for each solution x0(s, x∗) of the equation dx

ds = f0(x). Define Ψ : P ×
R2 × [0,∞)× R → R2 as follows:

Ψ(p, x∗, µ, s) =

�
x(s;x∗, p, µ) µ > 0
x0(s, x∗) µ = 0

Proposition 2.4. The map Ψ is continuous. Furthermore for each multiindex

k = (k1, k2) with integer components k1 ≥ 0, k2 ≥ 0, the derivative Dk
xΨ exists

for all p ∈ P , x∗ ∈ R2
, µ ∈ [0,∞) and s ∈ R, and is continuous. That is

limµ→0+ x(s;x∗, p, µ) = x0(s;x∗)
limµ→0+ Dk

xx(s;x∗, p, µ) = Dk
xx0(s;x∗)

where the convergence is uniform in (p, x∗, s) ∈ K ⊂ P × R2 × R whenever K

is compact.

A proof of this Proposition can be modelled on those of Propositions 2.5
and 2.6 in [9].

3. Analysis

In this section we analyze the elementary bifurcation patterns when the pa-
rameter is subjected to rapid oscillations. We will make use of the averaging
method discussed in Section 2, of the methods used in [2, 3] for studying fast os-
cillation problems, and of various techniques from the field of Nonautonomous
Dynamics.
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3.1. The saddle-node pattern

The starting point is the differential equation

dx

dt
= x

2 − ε+ f

�
t

µ

�
µ > 0 (18)

where µ is a small positive parameter. It is convenient to carry out a Bebutov
construction on f = f(τ) where τ = t

µ . We assume that there exist a strictly

ergodic flow (P, {φτ}), a continuous function f∗ : P → R, and a point p∗ ∈ P

such that f(τ) = f∗(φτ (p∗)). In this way, equation (18) can be embedded in
the family of equations

dx

dt
= x

2 − ε+ f∗(φ t
µ
(p)) µ > 0, p ∈ P (18p)

If for example f(τ) is Bohr almost periodic, then (P, {φτ}) is an almost periodic
minimal flow. Let ξ be the normalized Haar measure on P ; then ξ is the unique
{φτ}-invariant measure on P . Assume that

�
P f∗dξ = 0.

Let us carry out an a priori analysis of (18), based on the discussion in [19,
pp. 170-172]. For this, fix µ > 0 and make the change of variables

x = −ψ�

ψ
,

� =
d

dt

which takes (18) to the form of a Schrödinger equation

−d2ψ

dt2
=

�
f

�
t

µ

�
− ε

�
ψ . (19)

Clearly ε plays the role of an eigenvalue parameter in equation (19). We will
want to consider in addition the family

−d2ψ

dt2
=

�
f∗

�
φ t

µ
(p)

�
− ε

�
ψ . (19p)

By hypothesis, the flow (P, {φt}) is strictly ergodic, hence so is the flow of
(P, {φ t

µ
}) for each µ > 0. In this case, the following information is available;

see, e.g., [18]. First, there is a critical value ε = εc(µ) such that, if ε > εc(µ),
then the family of two-dimensional linear differential systems

d

dt

�
ψ

ψ�

�
=

�
0 1

ε− f∗

�
φ t

µ
(p)

�
0

��
ψ

ψ�

�
(20p)

admits an exponential dichotomy over P . Second, if ε < εc(µ), then all nonzero

solutions of (20p) rotate infinitely often around the origin in the

�
ψ

ψ�

�
-plane,

both as t → +∞ and as t → −∞.
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It can be further be shown that, if ε > εc(µ), and if Qp : R2 → R2 denotes
the dichotomy projection at p ∈ P , then KerQp ⊂ R2 and ImQp ⊂ R2 (viewed
as lines passing through the origin in R2) make angles θ±(p) with the vertical
axis ψ = 0 which are bounded away from zero mod π. Let us note parentheti-
cally that the statements of the previous two paragraphs do not require strict
ergodicity of (P, {φτ}) but only minimality.

Returning to the x-variable via the transformation x = −ψ�

ψ , we see that,

if ε > εc(µ), then there are two compact subsets M± ⊂ P × R which are
invariant with respect to the local flow on P ×R2 induced by equations (18p).
These sets determine an attractor-repeller pair, as follows from the fact that
equations (20p) admit an exponential dichotomy for ε > εc(µ). In particular, if
ε > εc(µ) and p ∈ P , then equation (18p) admits two globally defined bounded
solutions, one of which attracts and the other of which repels nearby solutions.

On the other hand, if ε < εc(µ), then all solutions of (18p) are unbounded
in finite time (p ∈ P ). So one has an analogue of the saddle-node bifurcation
pattern as ε increases through εc(µ), for each µ > 0. However the analogy
is not complete for the following reason. At ε = εc(µ) the flow on P × R
induced by equations (18p) does admit a unique minimal subset Mc, which
would seem to correspond to the zero solution of (1) when ε = 0. However
Mc need not be homeomorphic to P . In fact if (P, {φt}) is a minimal almost
periodic flow which is not periodic, it is possible to determine f∗ in such a way
that Mc with its flow is an almost automorphic but not almost periodic ex-
tension of (P, {φ t

µ
}), [35]. Examples of this phenomenon may be constructed,

beginning with equation (20p), by using a method of Millionščikov ([27]; also
Vinograd [36]). Nowadays one can also find such examples using other tech-
niques; see e.g. [5].

Let us remark at this point that a bifurcation analysis similar to that we
have just given can be carried out for a more general equation of the form

dx

dt
= g(t, x, ε)

where ε is an appropriate bifurcation parameter, and g is almost periodic in t

and concave as a function of x. See Núñez and Obaya [29].
Until now we have not taken account of the rapid oscillations present in

equation (18). Their presence allows us to make several observations. The first
one is

Proposition 3.1. As µ → 0+, the critical value εc(µ) tends to zero.

Proof. The easiest way to prove this statement seems to be the following. Re-
turn to equations (20p). Since

�
P f∗dξ = 0, the averaged form of this equation

is the constant system

d

dt

�
ψ

ψ�

�
=

�
0 1
ε 0

��
ψ

ψ�

�
, (21)
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which has an exponential dichotomy whenever ε > 0. Fix a positive number
ε. There exists a positive number µ0 = µ0(ε) such that if 0 < µ < µ0, then
the family (20p) admits an exponential dichotomy over P . This follows from
Proposition 2.4 and the well known Sacker-Sell perturbation theorem [32].

In view of the previous analysis, this implies that lim supµ→0+ εc(µ) ≤ 0.
On the other hand, if ε < 0, we can analyze the ξ-rotation number α = α(µ)
of the family (19p). See Appendix A for a discussion of the ξ-rotation number.
By general results concerning the continuity of the rotation number, one has
that limµ→0+ α(µ) equals the rotation number of the constant system (21).
This latter rotation number is strictly positive. So for small positive values of
µ, the rotation number of α(µ) is strictly positive. This means that εc(µ) ≥ 0
for small positive values of µ, hence lim infµ→0+ εc(µ) ≥ 0. We conclude that
indeed limµ→0+ εc(µ) = 0.

Let us now suppose that µ is a function of ε: µ = µ(ε), which is continuous,
positive when ε �= 0, and such that limε→0 µ(ε) = 0. This is a particularly
interesting situation because the oscillations “become fast” near ε = 0 in an
ε-dependent way. We make a few remarks when µ depends on ε in this way
and ε → 0. We adopt the point of view that (18) with µ = µ(ε) is a bifurcation
problem with parameter ε.

We assume that the function f(τ) admits a bounded primitive F (τ) :
F �(τ) = f(τ), which can be chosen to have mean value zero. It is well-known
that, when these conditions hold, there is a continuous function F∗ : P → R
such that

�
P F∗dξ = 0 and

F∗(φt(p))− F∗(p) =

� t

0
f∗(φσ(p))dσ (t ∈ R, p ∈ P )

Following [2] we consider the equation

dx

dτ
= µf(τ) τ = t/µ

which has the general solution

x = µF (τ) + c = h(τ, c)

where c is an arbitrary constant. Setting x = h(τ, y) in (18) leads to

dy

dτ
= µ

�
(y + µF )2 − ε

�
,

and an application of the averaging procedure discussed in Section 2 leads to

dy

dt
= µ

�
y
2 − ε+ µ

2
F 2 + o(µ)y + o(µ2)

�
(22)
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where F 2 =
�
P F 2

∗ dξ. The averaged system is

dy

dt
= µ

�
y
2 − ε+ µ

2
F 2

�
. (23)

The following observations are in order. First, if µ(ε) = |ε|s for s > 1/2,
then (23) admits a saddle-node bifurcation with critical value ε = 0. On the
other hand, if µ(ε) = |ε|1/2 and if F 2 > 1, then no bifurcation occurs: (23)
takes the form:

dy

dt
= µ

�
y
2 − ε+ |ε|F 2

�

and −ε + |ε|F 2 > 0 when ε �= 0. Of course the same conclusion holds when
0 < s < 1/2. To take account of the terms o(µ)y+o(µ2), note that if |y| ≤ |ε|s,
these are dominated by |ε|F 2 − ε, so the full equation (22) also admits no
bifurcation in ε = 0.

At this point one can envisage a curve µ = µ(ε) whose graph intersects the
critical curve in a transversal way in infinitely many points (µn, εn) → (0, 0),
so that there will be infinitely many switches in the direction of the bifurcation.
One may ask about the dynamics of equation (18p) at such a point (µn, εn).
The answer follows from the earlier considerations: there is a unique minimal
subset Mn ⊂ P × R, which is an almost automorphic extension of P .

Remark 3.1. One can analyze the following somewhat more general bifurcation
problem in a similar way:

dx

dt
= ax

2 + 2bx+ f − ε (24)

where a, b, and f are functions of t/µ, and µ > 0 is small. If x = v
u and

J
d

dt

�
u

v

�
=

��
f b

b a

�
− ε

�
1 0
0 0

���
u

v

�
(25)

then x satisfies (24). Here J is the antisymmetric matrix

�
0 1
−1 0

�
. Now (25)

can be viewed as a spectral problem of Atkinson type [1, 8] with spectral pa-
rameter −ε. Such a problem has a theory which is, in general terms, anal-
ogous to that of the Schrödinger equation (19). In a bit more detail, as-
sume that there exist a strictly ergodic flow (P, {φt}) with ergodic measure
ξ, a point p∗ ∈ P , and continuous functions a∗, b∗, f∗ : P → R such that
a(τ) = a∗(φτ (p∗)), b(τ) = b∗(φτ (p∗)), f(τ) = f∗(φτ (p∗)). There is a family
of equations parametrized by p ∈ P , which corresponds to (25). Now assume
that a∗ is strictly positive on P . Then one can prove the existence of a critical
curve ε = εc(µ), defined for µ > 0, such that if ε = εc(µ) then equations (25)
admit an exponential dichotomy over P , and if ε < εc(µ) then the ξ-rotation
number of the family (25) is positive. So if µ > 0, then a saddle-node type
bifurcation occurs as ε decreases through εc(µ).
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3.2. The transcritical pattern

The starting point is the equation

dx

dt
= x

�
ε+ f

�
t

µ

�
− x

�
. (26)

As before we write τ = t
µ , and assume that f = f(τ) has associated to it a

Bebutov flow (P, {φt}) which is strictly ergodic, with unique ergodic measure
ξ. For example, f(τ) might be a Bohr-almost periodic function. There exists a
point p∗ ∈ P and a continuous function f∗ : P → R such that f(τ) = f∗(φt(p∗))
for all τ ∈ R. We assume that

�
P f∗dξ = 0. Introduce the family of equations

dx

dt
= x

�
ε+ f∗

�
φt/µ(p)

�
− x

�
. (26p)

We can carry out a priori analysis of the family (26p), in the following way.
Let

w =
1

x
,

so that (26p) takes the form

dw

dt
+
�
ε+ f∗

�
φt/µ(p)

��
w = 1 .

The substitution w = cot(θ) = u
v leads to the family

d

dt

�
u

v

�
=

�
−a 1
0 a

��
u

v

�
(27p)

where a = 1
2 [ε + f∗] and one views θ as the angular coordinate in the (u, v)-

plane. We will restrict attention to the sector 0 ≤ θ ≤ π, that is the closed
upper half (u, v)-plane.

For each fixed µ > 0 we can analyze the family (27p) along standard lines.
Since

�
P f∗dξ = 0, one has that the dynamical spectrum of (27p) reduces

to {− ε
2 ,

ε
2} for all ε ∈ R; this uses the unique ergodicity of (P, {φt}). This

implies that the family (27p) admits an exponential dichotomy over P whenever
ε �= 0 [21].

We can describe the dichotomy bundles as follows. One bundle B0 is de-
scribed by the relation v = 0 for all ε �= 0. That is B0 coincides with the

product space P × �, where � ⊂ R2 is the horizontal line

��
u

0

�
| u ∈ R

�
.

This bundle is unstable for ε < 0 and stable for ε > 0. The other bundle Bε

can be parametrized by a continuous map Θ : P → (0,π) in the sense that

Bε =

��
p,

�
u

v

��
∈ P × R2

���
�

u

v

�
=

����

�
u

v

�����

�
cos(Θ(p))
sin(Θ(p))

��
.
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Let I respectively II denote the first respectively the second quadrant in
the (u, v) space. One can check that that, if � < 0, then B� lies in P ×II, while
if � > 0 then B� lies in P × I. One can further check that B� is stable for ε < 0
and unstable for ε > 0.

All this means that, for each p ∈ P , the x-equation (26p) admits the solution
x(t) ≡ 0 together with a solution x(t) = X(φt/µ(p)), where X : P → R,
X(p) = tan(Θ(p)) is continuous. It is clear that a clean analogue of the classical
transcritical bifurcation pattern takes place at ε = 0, for each µ > 0. In fact
the solution x ≡ 0 is asymptotically stable for ε < 0 and unstable for ε > 0,
while the solution x(t) = X(φt/µ(p)) is unstable for ε < 0 and asymptotically
stable for ε > 0 (p ∈ P ). Thus ε = 0 is a critical value of the parameter ε for
each µ > 0; we write 0 = ε = εc(µ) to reflect this fact.

We have encountered what appears to be a typical difference between the
bifurcation behavior of systems with “additive noise” (namely ε + f in the
saddle-node pattern), and “multiplicative noise” (namely (ε+ f)x in the tran-
scritical pattern). That is, the critical curve εc(µ) needs not be constant in the
first case, but is constant in the second case.

It is of interest to study the solutions of (26) and of the family (26p) at
the critical value ε(µ) = 0, for positive values of µ. The simplest case is
that in which f(τ) admits a bounded primitive: thus supτ∈R |F (τ)| < ∞ and
F �(τ) = f(τ). Consider the problem

dx

dτ
= µf(τ)x τ =

t

µ

which has the general solution x = h(τ, c) = ceµF (τ) with arbitrary constant c.
Following [3], set

x = h(τ, y) = yeµF (τ)
,

which transforms (26) into

dy

dτ
= µe−µF (τ)e2µF (τ)(−y

2) = −µeµF (τ)
y
2
. (28)

It is clear that all positive solutions of (28) tend to zero as τ → ∞, and so by
boundedness of F , all positive solutions of (26) tend to zero as τ → ∞.

If f does not admit a bounded primitive, then the discussion of the positive
solutions of (26) resp. (26p) requires a bit more effort. First of all, we claim
that if p ∈ P , x0 > 0, and x(t) is the solution of (26p) such that x(0) = x0,
then lim inft→∞ x(t) = 0. We sketch a proof. Suppose for contradiction that
there exist p1 ∈ P , x1 > 0, and δ > 0 such that, if x1(t) is the solution
of (26p1) with x1(0) = x1, then x1(t) ≥ δ for all t > 0. It is clear that x(t) is
defined for all t > 0 and is uniformly bounded. Consider the local flow {ψt} on
P × {0 ≤ x < ∞} defined by ψt(p, x0) = (φt(p), x(t)). Then the ω-limit set K
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of (p1, x1) is a nonempty compact subset of P × {0 < x < ∞}, and the local
flow {ψt} extends to a global flow on K. Since (P, {φt}) is a minimal flow, we
can conclude that, for each p ∈ P , there exists a solution xp(t) of (26p) with
xp(0) > 0 such that xp(t) is uniformly bounded above and xp(t) ≥ δ for all
t ∈ R.

Next let τ = t/µ, and let f∗ : P → R be the “extension of f to P”
introduced earlier. There exists p∗ ∈ P such that F (τ) =

� τ
0 f∗(φσ(p∗))dσ is

bounded above but unbounded below [33]. Write x∗(τ) = xp∗(µτ), so that

x∗(τ) = eµF (τ)

�
x∗(0)−

� τ

0
e−µF (σ)

x
2
∗(σ)dσ

�
.

Since x∗(τ) > 0 for all τ > 0, it is clear that lim infτ→∞ x∗(τ) = 0, but this
contradicts the hypothesis. The proof is complete.

It is not clear if “lim inf” can be replaced by “lim” in the above result. We
conjecture that it cannot, though we do not have as yet a suitable example. On
the other hand, if µ > 0 is small, we can obtain more information by carrying
out a Fink-Hale type averaging procedure, beginning with equation (26). Set

τ = t/µ

Fµ(τ) = e−µτ
� τ
−∞ eµσf(σ)dσ

x = y + µFµ(τ)y

so that (26) takes the form

(1 + µFµ)
dy

dτ
= µ

�
(1 + f)µFµy − (1 + µFy)

2
y
2
�
. (29)

From (29) we can draw the following conclusion. If µ > 0 and x0 > 0, let
xµ(t, x0) be the solution of (26) such that xµ(0, x0) = x0. Let x∗ > 0 be a
positive number. Then there exists µ∗ > 0 such that, if 0 < µ ≤ µ∗ and
if x0 ≥ x∗, then there is a corresponding number δ∗ = δ∗(x∗, µ∗) with the
property that d

dtxµ(t, x0) ≤ −δ∗ for all t for which xµ(t, x0) ≥ x∗. See [20]
for another approach to the nonautonomous transcritical bifurcation problems
when fast oscillations are present.

3.3. The pitchfork bifurcation pattern

This bifurcation scenario can be studied essentially from the same point of view
as the transcritical pattern. The starting point is the equation

dx

dt
= x

�
ε+ f

�
t

µ

�
− x

2

�
(30)

together with the corresponding family

dx

dt
= x [ε+ f∗(φt/µ(p)

�
−x

2
�
. (30p)
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Make the substitution w = 1
2x2 to obtain

dw

dt
+ 2(ε+ f)w = 1 ,

then set w = cot(θ) = u
v where

d

dt

�
u

v

�
=

�
−ε− f 1

0 ε+ f

��
u

v

�
. (31)

It is clear that we can study the rapidly oscillating bifurcation pattern using the
arguments applied above. We summarize the conclusions that can be drawn.
Set ε = εc(µ) = 0 for each µ > 0; this defines the critical curve. If ε < εc(µ),
then all solutions of (30) tend to zero exponentially fast as t → ∞. On the
other hand, if ε > εc(µ), then the family

d

dt

�
u

v

�
=

�
−(ε+ f∗

�
φt/µ(p)

�
) 1

0 ε+ f∗
�
φt/µ(p)

�
��

u

v

�
(31p)

admits an exponential dichotomy over P . The unstable bundle Bε can be

parametrized by a continuous map Θ : P →
�
0, π

2

�
in the sense that

Bε =

��
P,

�
u

v

��
∈ P × R2

���
�

u

v

�
=

����

�
u

v

�����

�
cos(Θ(p))
sin(Θ(p))

��
.

Write w(p) = cot(Θ(p)), so that w(p) > 0 for all p ∈ P . Then the functions

X
±(p) =

±1�
2w(p)

give rise to solutions x±(t) = X± �
φt/µ(p)

�
of equation (30p) (p ∈ P ). These

solutions are exponentially asymptotically stable. We conclude that there is
a clean analogue of the classical pitchfork bifurcation pattern as ε increases
through zero. The behavior of solutions of the family (31p) when ε = 0 can be
studied as was done in the transcritical case; we omit the details.

3.4. The Andronov-Hopf pattern

We first consider a Van der Pol oscillator which exhibits an AH (Andronov-
Hopf) bifurcation when a parameter ε increases through zero. We will subject
the parameter to rapid oscillations and analyze “what happens”. Then we will
make some remarks concerning equations with rapidly oscillating coefficients
for which an AH-bifurcation takes place in the averaged equation. We will
take account of the (few) general results known to us concerning the “nonau-
tonomous Hopf bifurcation”. For an introduction to the AH-bifurcation theory
see [16].
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Consider the equation

d2x

dt2
−
�
ε+ f (t/µ))− x

2
� dx
dt

+ x = 0 . (32)

Compare this equation with (one version of) the Van der Pol oscillator:

d2x

dt2
−

�
ε− x

2
� dx
dt

+ x = 0 . (33)

We see that indeed the bifurcation parameter ε is subjected to fast oscillations.
Let us note parenthetically that one sometimes refers to a different equation as
that of Van der Pol, namely

d2x

dt2
− ε(1− x

2)
dx

dt
+ x = 0 ; (34)

this equation does not admit an AH-bifurcation in ε = 0 because the origin
(x, x�) = (0, 0) in the phase plane is a center. Incidentally in [3] the parameter
ε in (34) is subjected to fast oscillations. We will only discuss the version (33)
of the Van der Pol equation, or rather its perturbed form (32).

It is convenient to write equation (32) in phase coordinates x1 = x, x2 = dx
dt :

d

dt

�
x1

x2

�
=

�
x2�

ε+ f
�
t
µ

��
x2 − x2

1x2 − x1

�
(35)

Let us write τ = t/µ and apply the method of [3] to this equation. Consider
the system

d

dt

�
x1

x2

�
=

�
0

µf(τ)x2

�
. (36)

Assume that f(τ) admits a bounded primitive F (τ) which has mean value zero:
F = limτ→∞

1
τ

� τ
0 f(σ)dσ = 0. The general solution of (36) is

�
x1

x2

�
=

�
c1

c2eµF (τ)

�
= h(τ, c)

where c =

�
c1

c2

�
. The substitution x = h(τ, y) takes (35) to the form

d

dτ

�
y1

y2

�
= µ

�
y2eµF (τ)

(ε− y21)y2 − y1e−µF (τ)

�
. (37)

Next write
a(τ) = eµF (τ) , a = limτ→∞

1
τ

� τ
0 a(σ)dσ

b(τ) = e−µF (τ) , b = limτ→∞
1
τ

� τ
0 b(σ)dσ
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Note that, if f is not identically zero, then a > 1 and b > 1 by Jensen’s
inequality. We make the further assumption that a(τ)− a and b(τ)− b admit

bounded primitives A(τ) and B(τ). Write y =

�
y1

y2

�
and z =

�
z1

z2

�
, then

introduce the averaging transformation

y = z + µG(τ, z) G(τ, z) =

�
A(τ)z2

−B(τ)z1

�
;

equation (37) takes the form
�
I+ µ

�
0 A(τ)

−B(τ) 0

��
dz

dτ
= µ

��
az2

−bz1 + (ε− z21)z2

�

−µ

�
aBz1

bAz2 + 2Az1z
2
2 + (ε− z21)Bz1

�
+ o(µ)

�
.

(38)

A brief analysis of equation (38) leads to the following conclusions. First of all,
the averaged system

dz

dτ
= µ

�
az2

(ε− z21)z2 − bz1

�
(39)

exhibits an AH-bifurcation in ε = 0. However, the rate of rotation along the
AH-limit cycle is (to zeroeth order in ε) increased by a factor of (ab)1/2. This
factor tends to 1 as µ → 0+. That being said, it is worth considering what

happens if the term f

�
t
µ

�
in (32) is replaced by α

µf

�
t
µ

�
as in [2]. In that case

the rate of rotation along the limit cycle in (39) becomes (ab)1/2, where now

a = eαF (τ) and b = e−αF (τ). This quantity is larger than 1 (if f �≡ 0) and is
µ-independent.

Second, the behavior of the solutions of the original equation (32) is of
course not determined solely by those of equation (39), but is influenced also
by the τ -dependent terms in (38). These terms are of order O(µ) as µ → 0+. So
one cannot expect to construct an analogue of the AH-theory for fixed µ > 0,
with bifurcation parameter ε: if ε is near zero, the O(µ)-terms might wash away
the structure needed to obtain any sort of “nonautonomous version of the limit
cycle”. On the other hand, if µ = O(εs) where s > 1, then one suspects that
some analogue of the AH-pattern will be present for ε near zero. This is indeed
the case, as we now explain in a more general context.

Consider a differential system

dx

dt
= f

�
t

µ
, x, ε

�
x ∈

�
x1

x2

�
∈ R2 (40)

where ε ∈ R and µ > 0 are independent parameters, and f(·, 0, ·) = 0. We
assume that a Bebutov construction can be carried out on f , with the following
results.
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There exist a strictly ergodic flow (P, {φτ}) with unique ergodic measure
ξ, a continuous function f∗ : P × R2 × R → R2, and a point p∗ ∈ P such that
f∗(φτ (p∗), x, ε) = f(τ, x, ε) for all τ ∈ R, x ∈ R2, ε ∈ R. We further assume
that f∗ is a C∞ function of (x, ε), uniformly in p ∈ P ; that is, for each triple
(α1,α2,α3) of nonnegative integers the derivative

∂α1

∂x
α1
1

∂α2

∂x
α2
2

∂α3

∂x
α3
3

f∗

exists and is continuous on P × R2 × R.
Set τ = t/µ, then introduce the family of differential systems

dx

dτ
= µf∗(φτ (p), x, ε) . (40p)

Write f(x, ε) =
�
P f∗(p, x, ε)dξ(p). We assume that there exists a continuous

function F∗ : P × R2 × R → R2 such that for each τ ∈ R, p ∈ P , x ∈ R2 one
has

F∗(φτ (p), x, ε)− F∗(p, x, ε) =

� τ

0

�
f∗(φσ(p), x, ε)− f(x, ε)

�
dσ .

Thus F∗ is a “bounded continuous primitive of f∗”. Finally we assume that
F∗ is C∞ in (x, ε), uniformly in p ∈ P . When this conditions are fulfilled, the
averaging transformation

x = y + µF∗(φτ (p), y, ε)

takes (40p) to the form

dy

dτ
= µ

�
f(y, ε) + µg∗(φτ (p), y, ε, µ)

�
(41p)

for a function g∗ which is C∞ in (x, ε, µ), uniformly in p ∈ P . Here in the first
moment µ must be restricted to a neighborhood of zero, but we assume that
g∗ has been extended to all of P × R2 × R × R, so as to be C∞ in (y, ε, µ)
uniformly in p ∈ P .

Next we observe that, except for the small coefficient µ in front of the paren-
thesis {·} in (41p), equations (41p) have the form of the family of equations
studied in [12]. We digress to recall some facts stated there. Consider the
equations

dx

dt
= f(x, ε) + µg(φt(p), x, ε, µ) (42p)
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where f and g are C∞ functions of all arguments, uniformly in p ∈ P . Suppose
that f(0, ε) = g(p, 0, ε, µ) = 0 identically, and that

dx

dt
= f(x, ε) (43)

exhibits a supercritical AH bifurcation in ε = 0. More precisely it is required
that Dxf(0, ε) admits complex conjugate eigenvalues α(ε) ± iβ(ε) for ε near
zero, where α(0) = 0, α�(0) > 0 and β(0) > 0. It is further required that
the second Lyapunov coefficient is positive [24], or equivalently that the vague
attractor condition be valid in ε = 0 [26].

One of the results of [12] can be stated as follows.

Theorem 3.2. Suppose that µ = O(εs) for some s > 1. Then for sufficiently

small ε, the family (42p) admits an integral manifold Mε ⊂ P × R2
. If µ = 0

this integral manifold reduces to P × Cε where Cε ⊂ R2
is the support of the

AH-periodic orbit of system (43). The flow on Mε determined by the solutions

of the family (42p) is isomorphic to a flow in a circle extension of P .

For the precise meaning of the term “integral manifold” in this context
see [12] and [37]. To say that Mε is a circle extension of P amounts to saying
that Mε is homemorphic to P × S1 where S1 is the circle. The flow on Mε can
be studied using results and ideas of [17], [6] and other papers. Actually the
flow on Mε turns to be a so-called suspension flow, which allows a substantial
analysis to be made. In particular the classical Furstenberg flows [14] play an
important role in this “nonautonomous Andronov-Hopf” bifurcation scenario.
See [12] for details.

Let us now return to the family (41p), which we rewrite so as to emphasize
the presence of the rapid oscillations:

dy

dτ
= f(y, ε) + µg∗(φt/µ(p), y, ε, µ) . (43p)

It turns out that the integral manifold result valid for equations (42p) can
be proved for the family (43p) as well; see the forthcoming paper [13] for a
discussion of this point. We conclude that, at least if µ = O(εs) and s > 1,
then a nonautonomous AH-bifurcation occurs in the family (41p) in the sense
that the periodic orbit of dy

dy = f(y, ε) perturbs to a circle extension of P . It is
not clear how to generalize the statement to the case s = 1.

A. Remarks on Atkinson problems

We state some basic facts concerning nonautonomous linear differential sys-
tems. Consider the equations

dx

dt
= M(t)x x ∈ Rd (44)
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where M(·) is a bounded uniformly continuous function defined on R. We view
M(·) as a point in the space C = C(R,Mn) of continuous maps from the reals
into the set Mn of n×n real matrices. Give C the compact-open topology, and
let φt(c) = c(t+ ·) (t ∈ R, c ∈ C). Then {φt | t ∈ R} is the translation flow on
C. Define P = cls{φt(M) | t ∈ R} and set p∗ = M ∈ P , M∗(p) = p(0). Then
P is compact, (P, {φt}) is a flow, and (44) is the equation corresponding to p∗
of the family of linear differential systems

dx

dt
= M∗(φt(p))x (44p)

Definition A.1. We say that the family of equations (44p) admits an expo-

nential dichotomy over P if there is a continuous projection-valued function

Q2 = Q : P → Mn such that

|Φp(t)Q(p)Φp(s)−1| ≤ ke−β(t−s) t ≥ s

|Φp(t)(I −Q(p))Φp(s)−1| ≤ keβ(t−s) t ≤ s

for positive constants k,β. Here Φp(t) is the n × n matrix solution of (44p)
such that φp(0) is the n × n identity matrix; Φp(t) is the fundamental matrix

solution of equation (44p).

If equations (44p) have an exponential dichotomy over P , then the stable
and unstable bundles B+ and B− are defined as follows:

B+ = {(p, x) ∈ P × Rd | x ∈ Im Q(p)}
B− = {(p, x) ∈ P × Rd | x ∈ Ker Q(p)} .

These vector bundles over the base space P are obviously invariant with respect
to the linear skew-product flow {ψt | t ∈ R} on P × Rd defined by ψt(p, x) =
(φt(x),Φp(t)x).

Next set d = 2. Let ξ be a {φt}-ergodic measure on P . We define the
ξ-rotation number of the family (44p). Introduce polar coordinates r, θ in the
x-plane. For each p ∈ P , equation (44p) induces a differential equation for θ

which does not depend on r:

dθ

dt
= g(φt(p), θ) . (45p)

If p ∈ P and θ ∈ R, then the solution θ(t) of (45p) is

θ(t) = θ0 +

� t

0
g(φs(p), θ(s))ds .

Observe that θ(t)
t = 1

t

� t
0 g(φs(p), θ(s))ds+ o(1) as |t| → ∞, so it is natural to

compare the “average rotation” θ(t)
t with the time-averages of g, for various
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values of (p, θ0). There is no a priori guarantee that these time-averages exist.
However, using the Birkhoff ergodic theorem (Theorem 2.1), the following result
can be proved.

Proposition A.2. There is a Borel set P0 ⊂ P of ξ-measure 1, such that if

p0 ∈ P and θ0 ∈ R, then lim|t|→∞
θ(t)
t exists. The limit α = αξ does not depend

on the choice of p0 ∈ P0 and θ0 ∈ R. If ξ is the only {φt}-ergodic measure on

P , then the limit exists for all (p0, θ0) ∈ P ×R and does not depend on (p0, θ0).
In fact the limit is uniform in (p0, θ0) ∈ P × R.

For obvious reasons, the number αξ is called the ξ-rotation number of the
family (44p).

One can apply the concepts of exponential dichotomy and rotation number
to the study of Atkinson-type spectral problems. We briefly discuss this matter;
the notation used below is suggested by the application of Remark 3.1. Again
let P be a compact metric space with flow {φt}. Let a∗, b∗, f∗ : P → R
be continuous functions. Also let Γ∗ : P → M2 be a continuous function

whose values are positive semi-definite matrices. Finally set J =

�
0 1
−1 0

�
.

Consider the family of differential systems:

J
d

dt

�
u

v

�
=

��
f∗ b∗
b∗ a∗

�
(φt(p))− εΓ∗(φt(p))

��
u

v

�
(46p)

where −ε is to be viewed as a spectral parameter.

Definition A.3. Let Φp(t) be the fundamental matrix solution of (46p) when
ε = 0 (p ∈ P ). We say that the family (46p) satisfies the Atkinson condition

if for each nonzero vector

�
u0

v0

�
∈ R2

and for each p ∈ P the following

condition holds: � ∞

−∞

���Γ∗(φt(p))

�
u(t)
v(t)

����
2
dt > 0 . (45)

Here of course

�
u(t)
v(t)

�
is the solution of (46p) with initial value

�
u0

v0

�
.

The Atkinson condition (45) means that the positive semidefinite matrix
Γ∗ “sees” each nonzero solution of (46p), for each p ∈ P . Note that, if Γ∗ =�

1 0
0 0

�
, then equations 46p take the form (25) (with µ = 1). It is easy to see

that, if Γ∗ =

�
1 0
0 0

�
and if a∗ > 0 on P , then the Atkinson condition (45)

holds for the family (46p).
As before, let ξ be a {φt}-ergodic measure on P . The ξ-rotation number

of the family (46p) is a function α = α(ε) of ε. For a more general version of
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the following result (for linear systems of 2d-dimensional Hamiltonian ODEs)
see [8].

Theorem A.4. Suppose that the topological support of ξ equals P . Suppose that

the family of differential systems (46p) satisfies the Atkinson condition (45).
Then the function ε → α(ε) : R → R is continuous and monotone increasing.

The family (46p) admits an exponential dichotomy over P at ε = ε0 if and only

if ε0 is an element of an open interval I ⊂ R such that α(ε) is constant on I.

We can apply Theorem A.4 to the situation discussed in Remark 3.1 by

setting Γ∗ =

�
1 0
0 0

�
and by assuming that a∗ > 0 on P . It turns out that,

in this case, α(ε) = 0 for all sufficiently large ε. Since α(ε) is continuous and
monotone nonincreasing, it is natural to define εc = min{ε ∈ R | α(ε) = 0}.
Then Theorem A.4 states that, if ε > εc, then the family (46p) admits an
exponential dichotomy over P . If ε > εc and p ∈ P , let Qp be the dichotomy
projection of (46p). It turns out that the strict positivity of a∗ implies that

neither the image nor the kernel of Qp can contain a vertical vector

�
0
v

�
∈

R2. So, reasoning as in Section 3, we can conclude that, if ε > εc, then the
equation (24) admits two bounded solutions, one of which is attracting and the
other is repelling.

B. Fink averaging: an example

In Section 2 we stated that the function ζ(µ) of equation (10) cannot, in general,
be chosen to be of order O(µs) for any s > 0. We will give an example to
illustrate this point. We will construct a quasi-periodic function f(t) which
has mean value zero, and which has the following properties:

• µ
� 0
−∞ eµtf(t)dt is not O(µs) as µ → 0+ if s > 0;

• f �(t) is a quasi-periodic function.

This means that, in the quasi-periodic averaging theory outlined in Section 2,
the time-dependent quantity µFµ(t, y) of (14) and (15p) cannot be made to
be O(µs) for any s > 0. In this sense the o(1)-estimate on µFµ cannot be
improved.

To begin the construction, let P = R2/Z2 be the standard 2-torus with
angular coordinates θ1, θ2 mod 1. Introduce the Kronecker flow

φt(θ1, θ2) = (θ1 + t, θ2 + ωt) mod 1

where ω ∈ (0, 1) is an irrational number with the following property: there are
sequences {mk | k ≥ 1} and {nk | k ≥ 1} of integers such that nk → ∞ and

|mk + nkω| ≤ e−nk (k = 1, 2, . . .) . (46)
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If (m,n) ∈ Z2 write
εmn(θ1, θ2) = e2πimθ1e2πinθ2 ,

and set
f∗(θ1, θ2) =

�

(m,n) �=(0,0)

fm,nεmn(θ1, θ2) (47)

where the coefficients fm,n satisfy f−m,−n = fm,n for all integer values of m, n.
Here and below the overbar indicates the complex conjugate. The coefficients
fm,n will be chosen so that the right-hand side of (47) converges uniformly on
P . Let ξ be the normalized Haar measure on P , and note that

�
P f∗dξ = 0.

Next choose positive real numbers βk such that
�∞

k=1 β
−1
k < ∞. Set

µk = β
−βk

k (k = 1, 2, . . .) ,

then choose integers mk, nk such that

|mk + nkω| ≤ µ
βk

k = β
−β2

k
k (k = 1, 2, . . .) .

This can be done by using (46) to choose nk such that nk > β2
k ln(βk). Set

fmk,nk = β
−1
k = f−mk,−nk (k = 1, 2, . . .)

fm,n = 0 other values of (m,n) ∈ Z2 .

Finally define f(t) = f∗(t,ωt) so that f(t) is obtained by evaluating f∗ along
the orbit through p∗ = (0, 0) ∈ P .

Observe that, for each µ > 0,

� 0

−∞
eµsf(s)ds =

∞�

k=1

fmk,nk

�
1

µ+ 2πi(mk + nkω)
+

1

µ− 2πi(mk + nkω)

�

since fmk,nk is real. For each � = 1, 2, . . . choose µ = µ� and note that

µ�

� 0

−∞
eµ�sf(s)ds =

∞�

k=1

fmk,nk

2|µ�|2

|µ�|2 + |2π(mk + nkω)|2
.

If k = �, then the corresponding term of the series is real, positive, and greater
than

fm�,n� = β
−1
� = µ

s�
�

where s� = 1
β�

→ 0 as � → ∞. We used the fact that m� + n�ω is small
compared to µ� for � = 1, 2, . . . . If k �= �, then the corresponding term of the
series is positive. So we can conclude that µ

� 0
−∞ eµsf(s)ds cannot be O(µs)

as µ → 0+, for any number s > 0.
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Concerning the derivative of f(t), we note that

f
�(t) = −4π

∞�

k=1

(mk + nkω)fmk,nk sin[2π(mk + nkω)t] .

Since |mk + nkω| < e−(|mk|+|nk|)/2, we see that f �(t) extends to an analytic
function, call it f �

∗(θ1, θ2), on the torus P . So f �(t) is certainly a quasi-periodic
function.
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[6] K. Bjerklöv and R. Johnson, Minimal subsets of projective flows, Discr.

Cont. Dyn. Sys. B 9 (2008), 493-516.

[7] R. Ellis, Lecture on Topological Dynamics, Benjamin, New York, 1969.

[8] R. Fabbri, R. Johnson, S. Novo, C. Núñez, and R. Obaya, Nonau-
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Positive radial solutions for systems
with mean curvature operator in
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Abstract. We are concerned with a Dirichlet system, involving the
mean curvature operator in Minkowski space

M(w) = div

�
∇w�

1− |∇w|2

�

in a ball in RN . Using topological degree arguments, critical point the-
ory and lower and upper solutions method, we obtain non-existence,
existence and multiplicity of radial, positive solutions. The examples
we provide involve Lane-Emden type nonlinearities in both sublinear
and superlinear cases.

Keywords: Minkowski curvature operator, system, positive solution, non-
existence/existence, multiplicity, Leray-Schauder degree, critical point, lower and upper
solutions.
MS Classification 2010: 35J66, 34B15, 34B18.

1. Introduction

In this paper we study the existence and multiplicity of positive solutions for
radial systems of type






M(u) + g1(|x|, u, v) = 0 in B(R),
M(v) + g2(|x|, u, v) = 0 in B(R),
u|∂B(R) = 0 = v|∂B(R)

(1)

where M stands for the mean curvature operator in Minkowski space

M(w) = div

�
∇w�

1− |∇w|2

�
,

B(R) = {x ∈ RN : |x| < R}, N ≥ 2 is an integer and the functions g1, g2 :
[0, R]× [0,∞)2 → [0,∞) are continuous.
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In recent years, a particular attention was paid to Dirichlet problems (for a
single equation) involving the operator M, either in a general bounded domain
[3, 4, 11, 12, 13, 24] or in a ball [6, 5, 10, 25]. These problems are originated in
differential geometry and are related to maximal or constant mean curvature
hypersurfaces (spacelike submanifolds of codimension one in the flat Minkowski
space LN+1 = {(x, t) : x ∈ RN

, t ∈ R} endowed with the Lorentzian metric�
N

j=1(dxj)2−(dt)2), having the property that their mean extrinsic curvature is
respectively zero or constant [1, 8, 20, 28]. On the other hand, it is known that
systems with classical Laplacian (or other more general elliptic operators) bring
in discussion new and specific phenomena, which does not occur in the study of
a single equation. From the wide literature, for a basic outlook on the subject
we restrict ourselves to mention here the papers [7, 14, 16, 17, 18, 29] and the
references therein. It is worth to point out that, among various nonlinearities,
an important role is played by those of Lane-Emden type, having either the
form k1up + k2vq (see, e.g. [15, 26, 30]) or k3uαvβ (see, e.g. [16, 19, 22]).
In view of the above, it appears as a natural direction the study of systems
involving the mean curvature operator M.

In the recent paper [21], among others, the authors deal with gradient
systems of type 





M(u) + λFu(x, u, v) = 0, in Ω,
M(v) + λFv(x, u, v) = 0, in Ω,
u|∂Ω = 0 = v|∂Ω,

(2)

where Ω is a smooth bounded domain in RN and λ > 0 is a real parameter.
They obtain existence and multiplicity (at least two) of nontrivial non-negative
solutions for large values of the parameter, when the nonlinearities Fu and Fv
have a superlinear behavior near origin. On the other hand, in paper [5], for
the problem

M(u) + λµ(|x|)uα = 0 in B(R), u|∂B(R) = 0 (α > 1)

with µ > 0 on (0, R], it was shown a sharper result: there exists Λ > 0 such that
it has zero, at least one or at least two positive solutions according to λ ∈ (0,Λ),
λ = Λ or λ > Λ. It is the main goal of this paper to improve the result from [21]
in the case when F has the particular form F (x, u, v) = µ(|x|)up+1vq+1, with
the positive exponents p, q satisfying max{p, q} > 1 (this guaranties a super-
linear behavior of both Fu and Fv near origin, with respect to (u, v)) and
Ω = B(R). By adapting the strategy from [5], we prove (Theorem 5.1, Corol-
lary 5.2) that the result from [5] for a single equation remains valid for the
system (2) with the above choice of F and Ω. Notice, in this case gi in (1) have
the form

g1(|x|, u, v) = λµ(|x|)(p+ 1)upvq+1
, g2(|x|, u, v) = λµ(|x|)(q + 1)up+1vq,
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which, in particular, include Hénon-Lane-Emden nonlinearities for µ(|x|) = |x|σ

(σ > 0). We also deal with the case when g1 (resp. g2) has a sublinear growth
near origin with respect to u (resp. v). In this respect, we obtain (Theorem 3.1,
Corollary 3.3) the existence of a solution with either one or both components
positive. This enables us to consider Lane-Emden non-potential nonlinearities
having the form k1up + k2vq. Here we have in view extensions of some results
obtained in [6] for a single equation to systems of type (1).

As usual, setting r = |x| and u(x) = u(r), v(x) = v(r), the Dirichlet
problem (1) reduces to the mixed boundary value problem:






[rN−1
ϕ(u�)]

�
+ r

N−1
g1(r, u, v) = 0,

[rN−1
ϕ(v�)]

�
+ r

N−1
g2(r, u, v) = 0,

u
�(0) = u(R) = 0 = v(R) = v

�(0),

(3)

where
ϕ(y) =

y�
1− y2

(y ∈ R, |y| < 1).

By a solution of (3) we mean a couple of functions (u, v) ∈ C
1[0, R]×C

1[0, R]
with ||u�||∞ < 1, ||v�||∞ < 1 and r �→ r

N−1
ϕ(u�(r)), r �→ r

N−1
ϕ(v�(r)) of class

C
1 on [0, R], which satisfies problem (3). Here and below, we denote by � · �∞

the usual sup-norm on C := C[0, R]. We say that u ∈ C is positive if u > 0 on
[0, R). By a positive solution of (3) we understand a solution (u, v) with both
u and v positive.

The paper is organized as follows. In Section 2 we present some preliminary
results concerning the reformulation of system (3) as a fixed point problem as
well as a variational problem – in the case when it has a potential structure.
Two lemmas about the positivity of the components of the solution are also
provided. Section 3 is devoted to the case when g1 and g2 have a sublinear
behavior near origin. The lower and upper solution method and some de-
gree estimations in the superlinear case are presented in Section 4. The main
non-existence, existence and multiplicity result for an one-parameter system is
stated and proved in Section 5.

2. Preliminaries

Throughout this paper, the space C
1 := C

1[0, R] will be considered with the
norm ||u||1 = ||u||∞+ ||u�||∞. We shall use the product space C1×C

1 endowed
with the norm ||(u, v)|| = max{||u||∞, ||v||∞} + max{||u�||∞, ||v�||∞} and its
closed subspace

C
1
M

= {(u, v) ∈ C
1
× C

1 : u�(0) = u(R) = 0 = v(R) = v
�(0)};
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we shall denote Bρ := {(u, v) ∈ C1
M

: �(u, v)� < ρ}. For given f1, f2 : [0, R] ×
R2 → R continuous functions, let us consider the problem






[rN−1
ϕ(u�)]

�
+ r

N−1
f1(r, u, v) = 0,

[rN−1
ϕ(v�)]

�
+ r

N−1
f2(r, u, v) = 0,

u
�(0) = u(R) = 0 = v(R) = v

�(0),

(4)

and the linear operators

S : C → C, Su(r) =
1

rN−1

�
r

0
t
N−1

u(t)dt (r ∈ [0, R]), Su(0) = 0;

K : C → C
1
, Ku(r) =

�
R

r

u(t)dt (r ∈ [0, R]).

It is easy to see that K is bounded and S is compact. Hence, the nonlinear
operator K ◦ ϕ

−1 ◦ S : C → C
1 is compact. Denoting by Nfi

the Nemytskii
operator associated to fi (i = 1, 2), i.e.,

Nfi
: C × C → C, Nfi

(u, v) = fi(·, u(·), v(·)) (u, v ∈ C),

we have that Nfi
is continuous and takes bounded sets into bounded sets.

Below, we denote by dLS the Leray-Schauder degree. We have the following
fixed point reformulation of problem (3).

Proposition 2.1. A couple of functions (u, v) ∈ C1
M

is a solution of (4) if and
only if it is a fixed point of the compact nonlinear operator

Nf : C1
M

→ C
1
M
, Nf =

�
K ◦ ϕ

−1
◦ S ◦Nf1 ,K ◦ ϕ

−1
◦ S ◦Nf2

�
.

In addition, any fixed point (u, v) of Nf satisfies

�u
�
�∞ < 1, �v

�
�∞ < 1, �u�∞ < R, �v�∞ < R, (5)

and
dLS [I −Nf , Bρ, 0] = 1 for all ρ ≥ R+ 1.

In particular, problem (4) has at least one solution in Bρ for all ρ ≥ R+ 1.

Proof. The inequalities in (5) follow from the fact that the range of ϕ
−1 is

(−1, 1). We consider the compact homotopy

H : [0, 1]× C
1
M

→ C
1
M
, H(τ, ·) = τNf (·).

Using
H([0, 1]× C

1
M
) ⊂ BR+1,
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together with the invariance property of Leray-Schauder degree, we have

dLS [I −Nf , Bρ, 0] = dLS [I, Bρ, 0] = 1 for all ρ ≥ R+ 1.

When system (4) has the form





[rN−1
ϕ(u�)]� = r

N−1
Fu(r, u, v),

[rN−1
ϕ(v�)]� = r

N−1
Fv(r, u, v),

u
�(0) = u(R) = 0 = v(R) = v

�(0),

(6)

with F = F (r, u, v) : [0, R] × R2 → R continuous, such that Fu and Fv exist
and are continuous on [0, R]×R2, then a variational approach is available. For
this, let

K0 = {u ∈ W
1,∞[0, R] : �u�

�∞ ≤ 1, u(R) = 0}.

We know (see [2, 6]) that K is a compact subset of C. So, we have that
K0 × K0 ⊂ C × C is compact and convex. By means of ψ : C → (−∞,+∞]
defined by

ψ(u) =






�
R

0
r
N−1[1−

�
1− u�2]dr for u ∈ K0

+∞ for u ∈ C \K0,

we introduce Ψ : C × C → (−∞,+∞] by

Ψ(u, v) = ψ(u) + ψ(v), for all (u, v) ∈ C × C.

Using the arguments in [2] we deduce that Ψ is proper, convex and lower
semicontinuous. Also, the mapping

(u, v) �→ F(u, v) :=

�
R

0
r
N−1

F (r, u, v), (u, v ∈ C)

is of class C1 on C × C and its Fréchet derivative is given by

�F
�(u, v),(w1, w2)�=

�

Ω
r
N−1[Fu(r, u, v)w1+Fv(r, u, v)w2], (u, v, w1, w2 ∈ C).

The energy functional associated to (6) will be I := Ψ + F . This has the
structure required by Szulkin’s critical point theory [27]. Accordingly, (u, v) ∈
K0 ×K0 is a critical point of I if it is a solution of the variational inequality

Ψ(w1, w2)−Ψ(u, v) + �F
�(u, v),(w1 − u,w2 − v)� ≥ 0, ∀w1, w2 ∈ C. (7)
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Proposition 2.2. If (u, v) ∈ C×C is a critical point of I, then it is a solution
of system (6). Moreover, system (6) has a solution which is a minimum point
of I on C × C.

Proof. Let (u, v) be a critical point of I. By taking in (7) w2 = v, one gets

ψ(w1)− ψ(u) +

�
R

0
r
N−1

Fu(r, u, v)(w1 − u) ≥ 0, for all w1 ∈ C

i.e., u ∈ K0 is a critical point of ψ(·) + F(·, v), which by virtue of [6, Proposi-
tion 4] satisfies �

(rN−1
ϕ(u�))� = r

N−1
Fu(r, u, v),

u
�(0) = 0 = u(R).

Similarly, one obtains that v verifies
�

(rN−1
ϕ(v�))� = r

N−1
Fv(r, u, v),

v
�(0) = 0 = v(R).

The rest of the proof follows exactly as in [6, Proposition 4].

Next, let g1, g2 : [0, R]× [0,∞)2 → [0,∞) be continuous. We are interested
about positive solutions for the system (3). With this aim, we consider the
modified problem






[rN−1
ϕ(u�)]� + r

N−1
g1(r, u+, v+) = 0,

[rN−1
ϕ(v�)]� + r

N−1
g2(r, u+, v+) = 0,

u
�(0) = u(R) = 0 = v(R) = v

�(0),

(8)

where, as usual we have denoted ξ+ := max{0, ξ}.

Let J1, J2 ⊂ R. In the terminology of [9, 23], a function f = f(r, s, t) :
[0, R] × J1 × J2 → R is said to be quasi-monotone nondecreasing with respect
to t (resp. s) if for fixed r, s (resp. r, t) one has

f(r, s, t1) ≤ f(r, s, t2) as t1 ≤ t2 (resp. f(r, s1, t) ≤ f(r, s2, t) as s1 ≤ s2).

Lemma 2.3. Assume that (u, v) is a nontrivial solution of problem (8) and

(H1
g
) g1(r, ξ, 0) > 0 < g2(r, 0, ξ), ∀ξ > 0, ∀r ∈ (0, R],

then u ≥ 0 ≤ v and either u or v is positive and strictly decreasing.

If in addition to hypothesis (H1
g
) one has that g1(r, s, t) (resp. g2(r, s, t)) is

quasi-monotone nondecreasing with respect to t (resp. s) and it holds

(H2
g
) g1(r, 0, ξ) > 0 < g2(r, ξ, 0), ∀ξ > 0, ∀r ∈ (0, R],

then (u, v) is a positive solution with both u and v strictly decreasing.
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Proof. From

r
N−1

ϕ(u�) = −

r�

0

τ
N−1

g1(τ, u+, v+)dτ (9)

it follows u� ≤ 0, which means that u is decreasing. Similarly, one obtains that
v is decreasing. Then u(R) = 0 implies u ≥ 0 and analogously, v is ≥ 0. If we
assume u ≡ 0, on account of

r
N−1

ϕ(v�) = −

r�

0

τ
N−1

g2(τ, 0, v)dτ

and v(0) > 0, from (H1
g
) one obtains v

�
< 0; thus v is strictly decreasing and

v > 0 on [0, R). Similarly, if v ≡ 0 one has that u is positive and strictly
decreasing.

To prove the second part, suppose that u is positive and let us show that v
is positive, too. If v(0) = 0, from the second equation we get g2(r, u(r), 0) = 0
for all r ∈ [0, R], contradicting (H2

g
). So, we have v(0) > 0. Then, using that

g2(r, s, t) is quasi-monotone nondecreasing with respect to s, it follows

r
N−1

ϕ(v�) = −

r�

0

τ
N−1

g2(τ, u, v)dτ ≤ −

r�

0

τ
N−1

g2(τ, 0, v)dτ < 0.

Hence, v� < 0 and v is strictly decreasing.

Lemma 2.4. Assume that

(H3
g
) (i) g1(r, s, t) > 0 < g2(r, s, t), ∀s, t > 0, ∀r ∈ (0, R];

(ii) g1(r, ξ, 0) = g2(r, 0, ξ) = 0, ∀ξ > 0, ∀r ∈ (0, R].

If (u, v) is a nontrivial solution of problem (8), then (u, v) is a positive solution
with both u and v strictly decreasing.

Proof. From the second equation we have

r
N−1

ϕ(v�) = −

r�

0

τ
N−1

g2(τ, u+, v+)dτ, (10)

which gives v� ≤ 0, meaning that v is decreasing. Similarly, one obtains that u
is decreasing. From u(R) = 0 we have u ≥ 0 and analogously v ≥ 0. Assuming
that u ≡ 0, from v �≡ 0, equality (10), (ii) in (H3

g
) and v(R) = 0 we get v ≡ 0,

which is a contradiction. It follows that u �≡ 0. A similar argument shows that
v �≡ 0. Then, from (10), hypothesis (i) in (H3

g
) and u(0) > 0 < v(0) we get

v
�
< 0, thus v is strictly decreasing and v > 0 on [0, R). Similarly, u is positive

and strictly decreasing.
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Remark 2.5. Under the assumptions of Lemmas 2.3 and 2.4 any nontrivial
solution of problem (8) actually solves the system (3).

3. Sublinear nonlinearities near origin

In this section we deal with positive solutions of problem (3) when g1 (resp. g2)
has a sublinear growth near origin with respect to u (resp. v).

Theorem 3.1. Assume that g1, g2 : [0, R] × [0,∞)2 → [0,∞) are continuous
and satisfy hypothesis (H1

g
) in Lemma 2.3. If g1(r, s, t) (resp. g2(r, s, t)) is

quasi-monotone nondecreasing with respect to t (resp. s) and

lim
s→0+

g1(r, s, 0)

s
= +∞ uniformly with r ∈ [0, R], (11)

lim
t→0+

g2(r, 0, t)

t
= +∞ uniformly with r ∈ [0, R], (12)

then problem (3) has a solution (u, v) with u ≥ 0 ≤ v and either u or v positive
and strictly decreasing. If in addition, (H2

g
) in Lemma 2.3 holds true, then

problem (3) has a positive solution (u, v) with both u and v strictly decreasing.

Proof. We make use of some ideas from [6]. First, we show that there exists
ρ ∈ (0, R+ 1) such that problem






(rN−1
ϕ(u�))� + r

N−1[g1(r, u+, v+) + τ ] = 0

(rN−1
ϕ(v�))� + r

N−1[g2(r, u+, v+) + τ ] = 0

u
�(0) = u(R) = 0 = v(R) = v

�(0)

(13)

has at most the trivial solution in Bρ, for all τ ∈ [0, 1]. By contradiction, assume
that there exist {τk} ⊂ [0, 1], {(uk, vk)} ⊂ C1

M
\{(0, 0)}, �(uk, vk)� → 0, such

that (uk, vk) is a nontrivial solution of (13) with τ = τk, for all k ∈ N. From
Lemma 2.3 we have that either uk or vk is positive and strictly decreasing. We
may assume that e.g., uk is positive for all k ∈ N. Choose m > 0, with

m(R/3)N

N(2R/3)N−1
>

3

R
. (14)

Then, using (11) (similar reasoning with (12) when all vk are positive) we can
find k0 ∈ N such that

g1(r, uk(r), 0) ≥ mϕ(uk(r)) for all r ∈ [0, R] and k ≥ k0. (15)
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Moreover, integrating over [0, r] the first equation in (13) with τ = τk, u = uk,

v = vk, using that g1(r, ξ+, η+) is quasi-monotone nondecreasing with respect
to η and taking into account (15) one has

−ϕ(u�
k
) ≥ mS[ϕ(uk)].

Next, following exactly the estimations in the proof of [6, Proposition 1] we
obtain

ϕ(3uk(R/3)/R)

ϕ(uk(R/3))
≥

m(R/3)N

N(2R/3)N−1
,

for k sufficiently large. By passing with k → ∞, and taking into account that
uk(R/3) → 0 we get a contradiction with (14).

Note that (13) has no solution in Bρ, for any τ ∈ (0, 1].
Next, we consider the compact homotopy H : [0, 1]×Bρ → C1

M
,

H(τ, (u, v)) = Ng+τ (u, v),

where by Ng+τ we have denoted the fixed point operator associated to (13).
Notice, the Leray-Schauder condition on the boundary

(u, v) �= H(τ, (u, v)), for all (τ, (u, v)) ∈ [0, 1]× ∂Bρ

is fulfilled. Then, from the invariance under homotopy of the Leray-Schauder
degree we have

dLS [I −H(0, ·), Bρ, 0] = dLS [I −H(1, ·), Bρ, 0].

So, assuming that dLS [I −H(1, ·), Bρ, 0] �= 0, we infer that there exists (u, v) ∈
Bρ with H(1, (u, v)) = (u, v), a contradiction. Consequently,

dLS [I −H(1, ·), Bρ, 0] = 0.

Using Proposition 2.1 together with the excision property of Leray-Schauder
degree one obtains

dLS [I −Ng, BR+1\Bρ, 0] = 1,

where Ng is the fixed point operator associated to problem (8). Therefore,
there exists a solution (u, v) ∈ BR+1\Bρ of (8). The conclusion follows by
Lemma 2.3 and Remark 2.5.

Remark 3.2. From [6, Theorem 1] it is known that, if g : [0, R] × [0,∞) →

[0,∞) is continuous, g(r, s) > 0, for all (r, s) ∈ (0, R]× (0,∞) and

lim
s→0+

g(r, s)

s
= +∞ uniformly with r ∈ [0, R],
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then the mixed boundary value problem
�

(rN−1
ϕ(u�))� + r

N−1
g(r, u) = 0,

u
�(0) = 0 = u(R)

has a positive solution. It is easily seen that this result also follows from
Theorem 3.1 by taking g1(r, ξ, η) = g(r, ξ) = g2(r, η, ξ).

Corollary 3.3. Let g1, g2 : [0, R]× [0,∞)2 → [0,∞) be continuous and satisfy
hypothesis (H1

g
) in Lemma 2.3. If g1(r, s, t) (resp. g2(r, s, t)) is quasi-monotone

nondecreasing with respect to t (resp. s) and (11), (12) hold true, then the
system (1) has a solution (u,v) with u ≥ 0 ≤ v and either u or v positive and
radially strictly decreasing. If in addition, (H2

g
) in Lemma 2.3 is satisfied, then

problem (1) has a positive solution (u,v) with both u and v strictly decreasing.

Example 3.4. Let p1, q2 ∈ (0, 1) and q1 ≥ 0 ≤ p2.

(i) The system





M(u) + up1 + uvq1 = 0, in B(R),
M(v) + vup2 + vq2 = 0, in B(R),
u|∂B(R) = 0 = v|∂B(R)

has a solution (u,v) with u ≥ 0 ≤ v and either u or v positive and radially
strictly decreasing.

(ii) The system





M(u) + up1 + vq1 = 0, in B(R),
M(v) + up2 + vq2 = 0, in B(R),
u|∂B(R) = 0 = v|∂B(R)

has a solution (u,v) with u > 0 < v on B(R) and both u and v radially strictly
decreasing.

4. Lower and upper solutions; degree estimations

A lower solution of (4) is a couple of functions (αu,αv) ∈ C
1 × C

1
, such that

�α�
u
�∞ < 1, �α�

v
�∞ < 1, the mappings r �→ r

N−1
ϕ(α�

u
(r)), r �→ r

N−1
ϕ(α�

v
(r))

are of class C1 on [0, R] and satisfies






[rN−1
ϕ(α�

u
)]� + r

N−1
f1(r,αu,αv) ≥ 0,

[rN−1
ϕ(α�

v
)]� + r

N−1
f2(r,αu,αv) ≥ 0,

αu(R) ≤ 0, αv(R) ≤ 0.

An upper solution (βu,βv) ∈ C
1×C

1 is defined by reversing the above inequal-
ities.
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Proposition 4.1. If (4) has a lower solution (αu,αv) and an upper solution
(βu,βv) such that αu(r) ≤ βu(r), αv(r) ≤ βv(r) for all r ∈ [0, R] and f1(r, s, t)
(resp. f2(r, s, t)) is quasi-monotone nondecreasing with respect to t (resp. s),
then (4) has a solution (u, v) such that αu(r) ≤ u(r) ≤ βu(r) and αv(r) ≤

v(r) ≤ βv(r) for all r ∈ [0, R].

Proof. Define the modified functions

Γ1(r, u, v) = f1(r, γ1(r, u), γ2(r, v))− u+ γ1(r, u),

Γ2(r, u, v) = f2(r, γ1(r, u), γ2(r, v))− v + γ2(r, v).

where γi are given by

γ1(r, ξ) = max{αu(r),min{ξ,βu(r)}}, γ2(r, ξ) = max{αv(r),min{ξ,βv(r)}}.

Then Γ1,Γ2 : [0, R] × R2 → R are continuous and we consider the modified
problem 





[rN−1
ϕ(u�)]� + r

N−1Γ1(r, u, v) = 0,

[rN−1
ϕ(v�)]� + r

N−1Γ2(r, u, v) = 0,

u
�(0) = u(R) = 0 = v(R) = v

�(0).

(16)

From Proposition 2.1 it follows that problem (16) has at least one solution. We
show now that if (u, v) is a solution of (16) then αu(r) ≤ u(r) ≤ βu(r) and
αv(r) ≤ v(r) ≤ βv(r) for all r ∈ [0, R]. We only prove that αu ≤ u on [0, R],
the remainder can be obtain analogously.

By contradiction, suppose that exists r0 ∈ [0, R] such that

max
[0,R]

(αu − u) = αu(r0)− u(r0) > 0. (17)

If r0 ∈ (0, R), then α
�
u
(r0) = u

�(r0) and there exists a sequence {rk} ⊂ (0, r0)
converging to r0 such that α

�
u
(rk) − u

�(rk) ≥ 0. Since ϕ is increasing, this
implies

r
N−1
k

ϕ(α�
u
(rk))− r

N−1
0 ϕ(α�

u
(r0)) ≥ r

N−1
k

ϕ(u�(rk))− r
N−1
0 ϕ(u�(r0)),

which yields
[rN−1

ϕ(α�
u
(r))]�

r=r0
≤ [rN−1

ϕ(u�(r))]�
r=r0

.

Hence, because (αu,αv) is a lower solution of (3) and f1 is quasi-monotone
nondecreasing with respect to v, we obtain

[rN−1
ϕ(α�

u
(r))]�

r=r0
≤ [rN−1

ϕ(u�(r))]�
r=r0

= r
N−1
0 [−f1(r0,αu(r0), γ2(r0, v(r0))) + u(r0)− αu(r0)]

< r
N−1
0 [−f1(r0,αu(r0), γ2(r0, v(r0)))]

≤ r
N−1
0 [−f1(r0,αu(r0),αv(r0))]

≤ [rN−1
ϕ(α�

u
(r))]�

r=r0
,
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a contradiction. If r0 = R then αu(R)−u(R) > 0, contradiction with αu(R) ≤
0. Finally, if r0 = 0, then there exists r1 ∈ (0, R] such that αu(r) − u(r) > 0
for all r ∈ [0, r1] and α

�
u
(r1)− u

�(r1) ≤ 0. It follows that

r
N−1
1 ϕ(α�

u
(r1)) ≤ r

N−1
1 ϕ(u�(r1)).

Integrating the first equation in problem (16) from 0 to r1 and using the fact
that (αu,αv) is a lower solution of (4) and f1 is quasi-monotone nondecreasing
with respect to v we get

r
N−1
1 ϕ(u�(r1)) =

�
r1

0
r
N−1[−f1(r,αu(r), γ2(r, v(r))) + u(r)− αu(r)]dr

<

�
r1

0
r
N−1[−f1(r,αu(r), γ2(r, v(r)))]dr

≤

�
r1

0
r
N−1[−f1(r,αu(r),αv(r))]dr

≤

�
r1

0
[rN−1

ϕ(α�
u
(r))]�dr

= r
N−1
1 ϕ(α�

u
(r1)),

a contradiction. Consequently, αu(r) ≤ u(r) for all r ∈ [0, R].

Lemma 4.2. Assume that (4) has a lower solution (αu,αv) and an upper so-
lution (βu,βv) such that αu(r) ≤ βu(r), αv(r) ≤ βv(r) for all r ∈ [0, R] and
f1(r, s, t) (resp. f2(r, s, t)) is quasi-monotone nondecreasing with respect to t

(resp. s). Let

Aα,β := {(u, v) ∈ C
1
M

: αu ≤ u ≤ βu, αv ≤ v ≤ βv}.

Assume also that (4) has an unique solution (u0, v0) in Aα,β and there exists
ρ0 > 0 such that B((u0, v0), ρ0) ⊂ Aα,β . Then

dLS [I −Nf , B((u0, v0), ρ), 0] = 1, for all 0 < ρ ≤ ρ0,

where Nf stands for the fixed point operator associated to (4).

Proof. Let NΓ be the fixed point operator associated to (16). From Proposi-
tion 2.1 and the proof of Proposition 4.1 it follows that any fixed point (u, v) of
NΓ is contained in Aα,β and it is fixed point of Nf . Using again Proposition 2.1
together with the excision property of the Leray-Schauder degree one has that

dLS [I −NΓ, B((u0, v0), ρ), 0] = 1 for all 0 < ρ ≤ ρ0.

The conclusion follows from the fact that NΓ = Nf on Aα,β ⊃ B((u0, v0), ρ0).
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Lemma 4.3. Assume that g1, g2 : [0, R]× [0,∞)2 → [0,∞) are continuous and
satisfy hypothesis (H3

g
) in Lemma 2.4. If there is some M > 0 such that either

lim
s→0+

g1(r, s, t)

s
= 0 uniformly with r ∈ [0, R], t ∈ [0,M ] (18)

or

lim
t→0+

g2(r, s, t)

t
= 0 uniformly with r ∈ [0, R], s ∈ [0,M ], (19)

then there exists ρ0 > 0 such that

dLS [I −Ng, Bρ, 0] = 1 for all 0 < ρ ≤ ρ0,

where Ng is the fixed point operator associated to problem (8).

Proof. Let 0 < ε < N/R
2
. Assume (18) (similar reasoning when (19) holds

true). Then there exists sε > 0 such that for all s ∈ (0, sε),

g1(r, s, t) ≤ εϕ(s) for all r ∈ [0, R], t ∈ [0,M ]. (20)

Consider the compact homotopy

H : [0, 1]× C
1
M

→ C
1
M
, H(τ, u, v) = τNg(u, v).

We show that there exists ρ0 > 0 such that

(u, v) �= H(τ, u, v), for all (τ, u, v) ∈ [0, 1]× (Bρ0\{(0, 0)}).

By contradiction, assume that

(uk, vk) = τkNg(uk, vk),

with τk ∈ [0, 1], (uk, vk) ∈ C1
M
\{(0, 0)} for all k ∈ N and �(uk, vk)� → 0.

From Lemma 2.4 we have that both uk and vk are strictly positive on [0, R).
We may assume (passing if necessary to a subsequence) that �uk�∞ ≤ sε and
�vk�∞ ≤ M for all k ∈ N. Using (20) it follows that

g1(r, uk(r), vk(r)) ≤ εϕ(�uk�∞) for all r ∈ [0, R], k ∈ N.

For any k ∈ N we obtain

�uk�∞ ≤

�
R

0
ϕ
−1

�
1

tN−1

�
t

0
r
N−1

g1(r, uk(r), vk(r))dr

�
dt

≤

�
R

0
ϕ
−1

�
1

tN−1

�
t

0
r
N−1

εϕ(�uk�∞)dr

�
dt

≤Rϕ
−1

�
ε
R

N
ϕ(�uk�∞)

�
.
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It follows that
ϕ(�uk�∞/R)

ϕ(�uk�∞)
≤

εR

N
, ∀k ∈ N.

By passing with k → ∞, we get 1/R ≤ εR/N , contradicting the choice of ε.

Then, from the invariance under homotopy of Leray-Schauder degree we
have that for any ρ ∈ (0, ρ0],

dLS [I −Ng, Bρ, 0] = dLS [I, Bρ, 0] = 1,

which completes the proof.

5. Non-existence, existence and multiplicity

In this section we study the one-parameter gradient system






[rN−1
ϕ(u�)]� + λr

N−1
µ(r)(p+ 1)up

v
q+1 = 0,

[rN−1
ϕ(v�)]� + λr

N−1
µ(r)(q + 1)up+1

v
q = 0,

u
�(0) = u(R) = 0 = v(R) = v

�(0),

(21)

under the hypothesis:

(H) The positive exponents p, q satisfy max{p, q} > 1 and the function µ :
[0, R] → [0,∞) is continuous and µ(r) > 0 for all r ∈ (0, R].

Theorem 5.1. Assume (H). Then there exists Λ > 0 such that the system (21)
has zero, at least one or at least two positive solutions according to λ ∈ (0,Λ),
λ = Λ or λ > Λ.

Proof. We assume that p > 1, q > 0 and we divide the proof in two steps.

1. Existence of Λ; the cases λ ∈ (0,Λ) and λ = Λ. First, notice that, by
Lemma 2.4 and Remark 2.5, (u, v) is a positive solution of problem (21) if and
only if (u, v) is a nontrivial solution of






[rN−1
ϕ(u�)]� + λr

N−1
µ(r)(p+ 1)up

+v
q+1
+ = 0,

[rN−1
ϕ(v�)]� + λr

N−1
µ(r)(q + 1)up+1

+ v
q

+ = 0,

u
�(0) = u(R) = 0 = v(R) = v

�(0)

(22)

and in this case, u, v are strictly decreasing. We set

S :={λ > 0 : (21) has a positive solution}.
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Let λ > 0 and (u, v) be a positive solution of (21). Integrating the first
equation in (21) on [0, r], one obtains

−r
N−1

ϕ(u�(r)) = λ(p+ 1)

�
r

0
t
N−1

µ(t)up(t)vq+1(t)dt for all r ∈ [0, R].

Since u, v are strictly decreasing on [0, R], we deduce

−r
N−1

u
�(r) ≤ −r

N−1
ϕ(u�(r))

≤ λ(p+ 1)µMu
p(0)vq+1(0)rN/N,

where µM := max
[0,R]

µ. This gives

u(0) ≤ λ(p+ 1)µMu
p(0)vq+1(0)R2

/(2N). (23)

From 0 < u(0), v(0) < R and p > 1 we obtain

λ > 2N/[(p+ 1)µMR
p+q+2]. (24)

The energy functional Iλ : C ×C → (−∞,+∞] associated to problem (22)
is

Iλ(u, v) =
2RN

N
−

�
R

0
r
N−1[

�
1− u�2+

�
1− v�2]dr−λ

�
R

0
r
N−1

µ(r)up+1
+ v

q+1
+ dr

for (u, v) ∈ K0 ×K0 and Iλ ≡ +∞ on C ×C \K0 ×K0. Computing the value
of Iλ at u0(r) = v0(r) = R − r we obtain that Iλ(u0, v0) < 0, for λ > 0 large
enough. Hence, for such λ, the functional Iλ has a negative minimum and, as
Iλ(0, 0) = 0, from Proposition 2.2 we have that problem (22) has a nontrivial
solution. In particular, S �= ∅. We denote

Λ = Λ(R) := inf S (< +∞)

and we show that Λ ∈ S. For this, let {λk} ⊂ S be a sequence converging to Λ
and (uk, vk) ∈ C1

M
with uk > 0 < vk on [0, R) such that

uk = K ◦ ϕ
−1

◦ S ◦ [λk(p+ 1)µup

k
v
q+1
k

],

vk = K ◦ ϕ
−1

◦ S ◦ [λk(q + 1)µup+1
k

v
q

k
].

From (5) and Arzela-Ascoli theorem we obtain that there exists (u, v) ∈ C×C

such that, passing eventually to a subsequence, {(uk, vk)} converges to (u, v)
in C × C. Hence, u ≥ 0 ≤ v and

u = K ◦ ϕ
−1

◦ S ◦ [Λ(p+ 1)µup
v
q+1],

v = K ◦ ϕ
−1

◦ S ◦ [Λ(q + 1)µup+1
v
q].
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Using (23) we infer that there is a constant c > 0 such that uk(0) > c for all k
sufficiently large. This leads to u(0) ≥ c, hence by Lemma 2.4 we get u > 0 < v

on [0, R). Consequently, Λ ∈ S. Also, from (24) it is clear that

Λ > 2N/[(p+ 1)µMR
p+q+2].

2. The case λ > Λ. First, we show that (Λ,∞) ⊂ S. With this aim, let
λ0 ∈ (Λ,∞) be arbitrarily chosen and (uΛ, vΛ) be a positive solution for (21)
with λ = Λ. Then, (uΛ, vΛ) is a lower solution of (22) with λ = λ0. In order
to construct an upper solution for (22), we first observe that if H1 > 0 < H2,

the mixed boundary value problem





[rN−1
ϕ(u�)]� + r

N−1
H1 = 0,

[rN−1
ϕ(v�)]� + r

N−1
H2 = 0,

u
�(0) = u(R) = 0 = v(R) = v

�(0).

(25)

has as the unique (positive) solution the couple

uH1(r) =
N

H1

��
1 +

H
2
1

N2
R2 −

�
1 +

H
2
1

N2
r2

�
, r ∈ [0, R],

vH2(r) =
N

H2

��
1 +

H
2
2

N2
R2 −

�
1 +

H
2
2

N2
r2

�
, r ∈ [0, R].

Below, R̃ will be > R. For fixed λ̃ > λ0, let (uH1 , vH2) be the solution of (25)
corresponding to

H1 = λ̃(p+ 1)µM R̃
p+q+1

,

H2 = λ̃(q + 1)µM R̃
p+q+1

.

Using that R < R̃, together with

λ0(p+ 1)µ(r)up

H1
v
q+1
H2

(r) ≤ λ̃(p+ 1)µM R̃
p+q+1

, r ∈ [0, R̃],

λ0(q + 1)µ(r)up+1
H1

v
q

H2
(r) ≤ λ̃(q + 1)µM R̃

p+q+1
, r ∈ [0, R̃],

it follows that (uH1 , vH2) is an upper solution for (22) with λ = λ0. From the
fact that

uH1(R) = N

��
R̃−2(p+q+1)

(λ̃(p+ 1)µM )2
+

R̃2

N2
−

�
R̃−2(p+q+1)

(λ̃(p+ 1)µM )2
+

R2

N2

�
,

there exists R̃ sufficiently large, such that uH1(R) > uΛ(0) and similarly, we
may assume that vH2(R) > vΛ(0). Taking into account that uH1 , vH2 , uΛ, vΛ
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are strictly decreasing it follows that uΛ < uH1 and vΛ < vH2 on [0, R]. From
Proposition 4.1 we obtain that λ0 ∈ S.

Next, we show that for λ0 ∈ (Λ,∞) problem (22) with λ = λ0 has a second
positive solution. For this, let (uΛ, vΛ) be the lower solution and (uH1 , vH2)
be the upper solution constructed as above. We fix (u0, v0) a positive solu-
tion of (21) with λ = λ0 such that (u0, v0) ∈ A := A(uΛ,vΛ),(uH1 ,vH2 )

(see
Lemma 4.2).

Firstly, we claim that there exists ε > 0 such that B((u0, v0), ε) ⊂ A. Note
that, for all r ∈ [0, R] we have

uH1(r) =

�
R̃

r

ϕ
−1

�
1

tN−1

�
t

0
s
N−1[λ̃(p+ 1)µM R̃

p+q+1]ds

�
dt

>

�
R

r

ϕ
−1

�
1

tN−1

�
t

0
s
N−1[λ̃(p+ 1)µM R̃

p+q+1]ds

�
dt

≥

�
R

r

ϕ
−1

�
1

tN−1

�
t

0
s
N−1[λ0(p+ 1)µ(s)up

0(s)v
q+1
0 (s)]ds

�
dt

=u0(r).

Analogously we obtain that vH2(r) > v0(r). Thus, there exists ε1 > 0 such that
if (u, v) ∈ C1

M
then

�u− u0�∞ ≤ ε1 ⇒ u ≤ uH1 and �v − v0�∞ ≤ ε1 ⇒ v ≤ vH2 . (26)

Using similar arguments we have uΛ(r) < u0(r) and vΛ(r) < v0(r) on [0, R/2].
So, we can find ε

�
1 > 0 such that if (u, v) ∈ C1

M
then

�u− u0�∞ ≤ ε
�
1 ⇒ uΛ ≤ u and �v − v0�∞ ≤ ε

�
1 ⇒ vΛ ≤ v on [0, R/2]. (27)

On the other hand, for r ∈ [R/2, R] one obtains u�
0(r) < u

�
Λ(r) and v

�
0(r) <

v
�
Λ(r). Thus, there is some ε

��
1 ∈ (0, ε�1) such that if (u, v) ∈ C1

M
, then

�u
�
− u

�
0�∞ ≤ ε

��
1 ⇒ u

�
Λ > u

� and �v
�
− v

�
0�∞ ≤ ε

��
1 ⇒ v

�
Λ > v

� on [R/2, R].

From uΛ(R) = 0 = u(R) we deduce that u > uΛ (and, similarly v > vΛ) on
[R/2, R). This means that

�u
�
−u

�
0�∞ ≤ ε

��
1 ⇒ uΛ ≤ u and �v

�
−v

�
0�∞ ≤ ε

��
1 ⇒ vΛ ≤ v on [R/2, R]. (28)

The claim follows from (26), (27) and (28), by taking 0 < ε < min{ε1, ε��1}.

Next, if (22) has a second solution contained in A, then it is nontrivial and
the proof is complete. If not, by Lemma 4.2 we infer that

dLS [I −Nλ0 , B((u0, v0), ρ), 0] = 1 for all 0 < ρ ≤ ε,
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where Nλ0 stands for the fixed point operator associated to (22) with λ = λ0.
Also, from Proposition 2.1 we have

dLS [I −Nλ0 , Bρ, 0] = 1 for all ρ ≥ R+ 1,

and from Lemma 4.3 we get

dLS [I −Nλ0 , Bρ, 0] = 1 for all ρ > 0 sufficiently small.

Let ρ1, ρ2 > 0 be sufficiently small and ρ3 ≥ R + 1 such that B̄((u0, v0), ρ1) ∩
B̄ρ2 = ∅ and B̄((u0, v0), ρ1)∪ B̄ρ2 ⊂ Bρ3 . From the additivity-excision property
of Leray-Schauder degree it follows that

dLS [I −Nλ0 , Bρ3\[B̄((u0, v0), ρ1) ∪ B̄ρ2 ], 0] = −1.

Therefore, Nλ0 has a fixed point (u, v) ∈ Bρ3\[B̄((u0, v0), ρ1)∪ B̄ρ2 ]. We obtain
that (22) has a second positive solution.

Corollary 5.2. Assume (H). Then there exists Λ > 0 such that the problem





M(u) + λµ(|x|)(p+ 1)upvq+1 = 0 in B(R),
M(v) + λµ(|x|)(q + 1)up+1vq = 0 in B(R),
u|∂B(R) = 0 = v|∂B(R)

has zero, at least one or at least two positive solutions according to λ ∈ (0,Λ),
λ = Λ or λ > Λ.

Remark 5.3. Analyzing the proof of Theorem 5.1, the reader will emphasize
that the potentiality of the system (21) is only involved in showing that the
set S is nonempty. This means that a topological proof of this fact could allow
to consider non-potential systems which are superlinear near origin.
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Abstract. We consider the dissipative Kepler problem for a family
of dissipations that is linear in the velocity. Under mild assumptions
on the drag coefficient, we show that its forward dynamics is qualita-
tively similar to the one obtained in [15] and [16] for a constant drag
coefficient. In particular, we extend to this more general framework the
existence of a continuous vector-valued first integral I obtained as the
limit along the trajectories of the Runge-Lenz vector. We also establish
the existence of asymptotically circular orbits, so improving the result
about the range of I contained in [16].
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1. Introduction

In our previous papers [15] and [16] we studied the global dynamics of a Kepler
problem with linear drag

ẍ+ �ẋ = − x

|x|3 , x ∈ R2 \ {0}, � > 0. (1)

The main conclusion was the existence of a vector-valued first integral I =
(I1, I2), Ii = Ii(x, ẋ). This integral was obtained in a rather indirect way and
we do not know if it has an explicit formula. In contrast it has a very intuitive
dynamical description. The vector I(x, ẋ) can be interpreted as the eccentricity
vector of an ellipse E such that the solution x(t) tends to the origin along a
spiral modelled after E (see Figure 1). Also, we proved that the existence of
I implies that such spiral is described with angular velocity which increases
exponentially with time.

The aim of this work is to extend this type of results to the family of
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Figure 1: In red, an orbit x(t) of (1) with � = 0.01 plotted for t ∈ [0, 35].
In blue, the approximate shape of E , obtained by plotting the final segment of
the curve y(t) = e2�tx(t) → E (see [16] for more details).

dissipative Kepler problems

ẍ+D(|x|)ẋ = − x

|x|3 , x ∈ R2 \ {0}, (2)

where D : [0,+∞[→ R+ is a locally Lipschitz continuous function which satis-
fies

D(r) ≥ A1 for any r ≥ 0 (3)

for a suitable positive real number A1.
It is a curious fact that the spiralling faster and faster towards the Sun

of a celestial body was already described by Euler in a letter written in 1749
and published in Philosophical Transactions [8]. There Euler postulated the
existence of small resistance forces around the planets and he described the
consequent gradual approach of the Earth to the Sun as follows: “...The effect
of this Resistance will gradually bring the Planets nearer and nearer to the
Sun; and as their Orbits thereby become less, their periodical Times will also
be diminished.”

More than one century later Poincaré went back to the study of the effect of
a resistive medium on the motion of a planet in his course “Leçons sur les hy-
pothéses cosmogoniques” [20]. In these lectures he discussed several hypotheses
on the formation of the solar system. In Chapter VI, devoted to an hypothesis
due to T.J.J. See, Poincaré considered the class of dissipative Kepler problems

ẍ+R
ẋ

|ẋ| = − x

|x|3 , x ∈ R2 \ {0}, (4)

where R = h|x|−β |ẋ|α and α and β are positive constants. After some compu-
tations with astronomical coordinates Poincaré found out that the semi major
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axis of an orbit of elliptic type is, essentiellement, decreasing with time and
observed that this fact implies an increase of the orbital velocity of the planet.

Moreover, from his computations he concluded that if the exponents α and
β are sufficiently large then the value of the orbital eccentricity decreases after
each complete revolution. Poincaré also presented a qualitative argument1 to
justify the decrease of the eccentricity of an orbit in presence of a general
resistive force.

Both these arguments suggest that dissipation has a circularizing effect on
orbits, that is, that their eccentricity will eventually approach zero. In this
connection, we note that our results for the linear drag (α = 1, β = 0) imply
that for an open set of initial conditions the eccentricity of the corresponding
orbit will converge to a positive constant, and so we cannot expect a circular-
ization effect for many orbits of (1). This fact has been observed previously
in [12] (for more information on the notion of circularization see [9] and [1]).

When β = 0 the family (4) was already considered by Jacobi in his book on
mechanics [13] but he only discussed some formal aspects. Another member
of the family (4) that has been considered in the recent literature is the so
called Poynting-Plummer-Danby drag (see [1, 6, 7] and the references therein),
corresponding to α = 1 and β = 2. In this case it is possible to obtain in
closed form the equation of the orbits. We point out that for this family of
resistive forces the qualitative behaviour of the solutions differs sharply from
the qualitative behaviour we obtained in [15] and [16] for the solutions of (1)
and that, in this paper, we show also to hold for the solutions of (2). In
fact, for the Poynting-Plummer-Danby drag, many non rectilinear solutions,
corresponding to an open set of initial conditions, collide in finite time and
with finite velocity at the singularity, winding around the origin just a finite
number of times before collision. This is nicely described in the unpublished
master thesis of Mauricio Misquero Castro2.

The Runge-Lenz vector, denoted by R, is a well-known first integral of the
conservative Kepler problem. If its norm is less than one, then R corresponds
to a family of elliptic orbits whose eccentricity is |R|. In the presence of friction
this vector is no longer a constant of motion but it is still useful and it has
been employed in the literature on dissipative problems (see [11, 14, 17]). We
will show that for linear dissipations the Runge-Lenz vector has a limit I =
limt→+∞ R(t) that becomes a first integral such that |I| ≤ 1. This approach to
construct integrals is inspired by the ideas on asymptotic integrals developed
by Moser in [18] for the study of the Störmer problem (see also [19]).

We notice that in our setting the circularization of an orbit is equivalent
to I = 0. Orbits satisfying this condition were called asymptotically circular

1”en gros et sans calcul”

2Castro, M. Misquero, El problema de Kepler disipativo, Master thesis, Universidad de

Granada, (2016)
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in our previous paper [16], but at that time we were unable to decide whether
they existed or not. In this work we show that they actually exist, although
they are not typical. In this aspect the results of this paper improve those
in [16] even for the case D = �. This approach to construct integrals is inspired
by the ideas on asymptotic integrals developed by Moser in [18] for the study
of the Störmer problem (see also [19]).

This paper can be seen as a contribution to the construction of a qualitative
theory of the Kepler problem with dissipation. Many interesting problems in
this topic are still to be addressed. For example, to determine the region of
parameters (α,β) producing circularization on an open set of initial conditions
seems a challenging question. Also, the study of more realistic drags involved
in satellite dynamics appears to be relevant (see [2]).

The rest of the paper is organized as follows.
In the second section we study the forward dynamics of (2), showing that

the singularity is a global attractor. Our proof makes use of an extension
to singular systems of the LaSalle invariance principle, which may have an
independent interest. In Section 3 we extend to (2) the results given in [15]
about the asymptotic values of the energy of solutions. This is done by adapting
the approach based on the Levi-Civita transformation for the dissipative setting
already considered in [15] for the linear drag. We recall that the Levi-Civita
regularization in a dissipative setting was introduced by [3] for the numerical
study of the global dynamics of a restricted three body problem with drag. In
the fourth section we construct the asymptotic first integral for (2) and we show
that it is continuous and invariant under planar rotations. In the fifth section
we prove that its range is the unit disk. This is achieved by establishing the
existence of asymptotically circular orbits of (2). It is interesting to note that
for this aim we employ the Brouwer degree to show that there is a continuation
from the circular solutions of the conservative case. Finally, in the Appendix
we sketch the proofs of some results about rectilinear motions.

2. Dynamics in forward time: attraction towards the

singularity

In this section we study the behaviour of the solutions of (2) when t → ω,
where ω is the right endpoint of their maximal interval of definition. We show
that the singularity x = 0 is a global attractor of (2). First we prove that non
rectilinear solutions are defined up to ω = +∞ and are bounded. Then we
state and apply a version LaSalle’s invariance principle which is well suited for
singular equations. An analogous result is given in [4]. Finally, we show that
all the rectilinear motions collide in finite time with x = 0.

We point out that in [15] the property that the origin is a global attractor
was obtained by applying the results in [5], where such result is proved for
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a family of resistive forces of the form F (x, ẋ) = −k(|ẋ|)
|ẋ| ẋ which includes the

linear drag. Here, rather than trying to adapt to our setting such results we
have preferred to provide a direct proof of the global attractiveness of the
singularity.

The dissipative Kepler problem described by equation (2) with is equivalent
to the system �

ẋ = v
v̇ +D(|x|)v = − x

|x|3
(5)

in the phase space Ω = (R2 \ {0})× R2.
Throughout the paper we will always assume that D : [0,+∞[→ R+ is a

locally Lipschitz continuous function which satisfies (3).
In what follows, for any fixed (x0, v0) ∈ Ω, we will sometimes employ the

notation x(t;x0, v0) for the solution of (2) such that x(0) = x0, v(0) = v0. If
we consider the functions of the real variables (x, v) given respectively by

E(x, v) =
1

2
|v|2 − 1

|x| , (energy) (6)

and
C(x, v) = x ∧ v, (angular momentum) (7)

then along the solutions of (2) it is

Ė(t) :=
dE

dt
(x(t), ẋ(t)) = −D(|x(t)|)|ẋ(t)|2. (8)

and

Ċ(t) :=
dC

dt
(x(t), ẋ(t)) = −D(|x(t)|)C(t),

from which it follows

C(t) = C(0)e−
� t
0 D(|x(τ)|) dτ , C(0) := x(0) ∧ ẋ(0). (9)

We rewrite now equation (2) using polar coordinates. If we consider the
change of variables x = reiθ, the new coordinates satisfy the following differ-
ential system: �

r̈ − rθ̇2 +D(r)ṙ = − 1
r2

d
dt (r

2θ̇) = −D(r)r2θ̇.
(10)

Recalling that |x ∧ ẋ| = ±r2θ̇, by (9) we get that the radial component of
the solutions of (2) satisfies the integro-differential equation

r̈ − α2 e−2
� t
0 D(r(s))ds

r3
+D(r)ṙ = − 1

r2
(11)
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where α = |C(0)|.
We are now in a position to state our result about the non rectilinear mo-

tions of (2).

Proposition 2.1. Let x(t) = r(t)eiθ(t) be a maximal solution of (2) with α �= 0,
and let [0,ω[ be its domain in forward time. Then ω = +∞, and r(t) = |x(t)|
is bounded on [0,+∞[.

Proof. We prove first that r(t) is bounded on [0,ω[ and then we show that
ω = +∞.

To get the boundedness of the solutions we argue as follows. Either r(t) ≤
α2 when t is sufficiently close to ω and we have nothing to prove, or there
exists a sequence tn → ω such that r(tn) > α2. If this is the case, there are two
possible occurrences:

i) r(t) > α2 in [τ,ω[ for some τ ∈ [0,ω[;

ii) there exists a sequence of intervals In = [an, bn] ⊆ [0,ω[ such that r(t) >
α2 if and only if t ∈]an, bn[.

If i) holds, by (11) it follows that if t ∈ [τ,ω[

d

dt
(e

� t
τ D(r(s))dsṙ) = e

� t
τ D(r(s))ds(r̈ +D(r)ṙ) ≤ 0 (12)

and by integrating this inequality we obtain

ṙ(t) ≤ e−
� t
τ D(r(s))dsṙ(τ) ≤ e−A1(t−τ)|ṙ(τ)|, t ∈ [τ,ω[,

which implies

r(t) ≤ r(τ) +
|ṙ(τ)|
A1

(1− e−A1(t−τ)) < r(τ) +
|ṙ(τ)|
A1

, t ∈ [τ,ω[.

The proof of boundedness of r(t) on [0,ω[ in case i) is concluded.
In case ii) we note that, since for any n we have r(an) = |x(an)| = α2,

then from E(a1) ≥ E(an), it follows that |ṙ(an)| ≤ |ẋ(an)| ≤ |ẋ(a1)| for any n.
Then, taking into account that on In (12) holds, in a similar manner as above
we get ṙ(t) ≤ e−A1(t−an)|ṙ(an)|, t ∈ In, and then

r(t) ≤ α2 +
|ẋ(a1)|
A1

, t ∈ In.

Since the constant that bounds the solution is the same for all the intervals In
and since r(t) ≤ α2 on the set [0,+ω[\ ∪n In, the proof of the boundedness of
r(t) in case ii) is finished.
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We conclude that r(t) is bounded on [0,ω[.

To prove that ω = +∞ assume by contradiction that ω < +∞. The stan-
dard theory for initial value problems implies that one of the following cases
hold:

(i) there exists a sequence tn ↑ ω such that x(tn) → 0;

(ii) |x(t)| ≥ δ if t ∈ [0,ω[ for some δ > 0 and limt↑ω |ẋ(t)| = +∞.

If condition (i) were valid then E(tn) → +∞ as n → +∞ and this is incom-
patible with (8). In fact,

E(tn) ≥
α2

2r2(tn)
e−2

� tn
0 D(r(s))ds − 1

r(tn)
≥ 1

2r2(tn)
[α2e−2Mtn − r(tn)],

where M := supt∈[0,ω[ D(r(t)) is finite since D(r) is continuous on [0,+∞[ and
r(t) is bounded in [0,ω[. Assume now that (ii) holds. From |x(t)| ≥ δ for any
t ∈ [0,ω[ we get

1

2
|ẋ(t)|2 − 1

δ
≤ E(t) ≤ E(0).

Since this inequality gives a bound for |ẋ(t)| on [0,ω[ we get a contradiction
with the limit in (ii).

To prove that all the non rectilinear solutions of equation (2) tend to the
singularity as t → +∞ we need the following general auxiliary result, which is
an extension to singular systems of the LaSalle invariance principle.

Proposition 2.2. Let Ω ⊂ Rd be an open set and assume that the existence
and uniqueness of solution holds for the system ẋ = f(x) with f : Ω → Rd

continuous. Let φt(x) denote the value at time t of the solution of ẋ = f(x)
which starts from x at t = 0 and let Ix ⊂ R be its maximal interval of definition.
Assume there exists a continuous function V : Ω → R such that

V (φt(x)) < V (x), t ∈ Ix, t > 0, x ∈ Ω. (13)

If x∗ ∈ Ω is such that [0,+∞[⊂ Ix∗ , then

Lω(x∗) ∩ Ω = ∅,

where Lω(x∗) denotes the ω−limit set of x∗.

Note that in the above statement the limit set is defined as

Lω(x∗) = ∩t≥0{φτ (x∗) : τ ≥ t},

where the closure is taken in Rd.
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Remark 2.1. The following variant of the Proposition will be useful later. We
can assume that the condition (13) only holds for points x lying on a closed
subset F of Ω. If the set F is invariant under the flow then the conclusion on
the limit set will be valid for the orbits lying on F .

Proof. By contradiction, assume that there exists tn→+∞ such that φtn(x∗)→
ξ ∈ Ω. By the continuous dependence of the solutions of ẋ = f(x) on the initial
value, given σ > 0 such that σ ∈ Iξ we know that, for large n, σ ∈ Iφtn (x∗) and
φσ+tn(x∗) → φσ(ξ). For each n there exists µ(n) > n such that tµ(n) > tn + σ.
Then,

V (φtµ(n)
(x∗)) < V (φtn+σ(x∗)).

Letting n → +∞ we get
V (ξ) ≤ V (φσ(ξ)),

and this is a contradiction

As a corollary we get:

Proposition 2.3. Let x(t) = r(t)eiθ(t) be a non rectilinear solution of (2).
Then

lim
t→+∞

x(t) = 0.

Proof. Assume by contradiction that there exists a sequence tn → +∞ such
that |x(tn)| ≥ δ > 0 for a suitable δ. From the energy inequality

E(tn) =
1

2
|ẋ(tn)|2 −

1

|x(tn)|
≤ E(0)

we deduce that |ẋ(tn)|2 ≤ E(0)+ 1
δ . As by Proposition 2.1 x(tn) is bounded, it

must be Lω(x(0), ẋ(0)) ∩Ω �= ∅. Since ẍ(t) �= 0 when ẋ(t) = 0, we deduce that
the zeros of ẋ(t) are isolated. Then the formula Ė = −D(|x|)|ẋ|2 implies that
the energy function E is strictly decreasing on the solutions of (2) and (13)
holds. Now we can apply the previous proposition with V = E and get a
contradiction.

As to the solutions with zero angular momentum, the so called rectilinear
motions, they satisfy the equation

r̈ +D(r)ṙ = − 1

r2
, (14)

obtained from (11) by setting α = 0.
For this class of solutions we state the following result. Its proof is analogous

to the one of Proposition 3.1 in [15], and we only sketch it in the Appendix.

Proposition 2.4. All solutions of (14) are collision solutions, that is ω is
finite and

lim
t→ω−

r(t) = 0, lim
t→ω−

ṙ(t) = −∞.
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3. The Levi-Civita transformation and the

asymptotic behaviour of the energy

In this section we study the behaviour of the energy of the solutions of (2) as
they approach the singularity.

The starting point is to adapt to equation (2) the Levi-Civita regularization
that was introduced in a dissipative setting in [15] to deal with the linear drag.
We recall that, after the natural identification of x = (x1, x2) with the complex
number x1 + ix2, the Levi-Civita regularization is defined by the change of
variables

x = w2, ds =
dt

|x| . (15)

Using this regularization, equation (2) is transformed into the system of ODEs
in the new time s

w� = v, v� =
Ew

2
−D(|w|2)|w|2v, E� = −2D(|w|2)(E|w|2 + 1). (16)

This system has to be considered on the invariant manifold

M = {(w, v,E) ∈ C2 × R : E|w|2 + 1− 2|v|2 = 0}, (17)

which contains all the physically meaningful solutions.
A solution of (2) starting from (x0, v0) ∈ Ω is transformed in a solution of

(16) starting from (w0, v̂0, E0) ∈ M, where w0 is a square root of x0, v̂0 = |x0|v0
2w0

and E0 = 1
2 |v0|

2 − 1
|x0| . Vice-versa, a solution of (16) starting on M and such

that w(0) �= 0 corresponds to the solution x(t) := w2(S(t)) of (2), where S(t)
is the inverse function of T (s) :=

� s
0 |w(σ)|2 dσ.

Notice that if the points (x0, v0) belong to a compact subset K of Ω, then
the triplets (w0, v̂0, E0) lie on a compact subset K of M.

Lemma 3.1. Let (w0, v0, E0) be a point of M and let (w(s), v(s), E(s)) denote
the solution of (16) passing through this point at s = 0. Then this solution is
well defined on [0,+∞[ and

lim
s→+∞

E(s) = −∞.

Proof. Let [0,σ[ be the maximal interval to the right of the solution. By a
contradiction argument we assume that σ < +∞. The third equation of (16)
and the invariance of M imply that

E�(s) = −4D(|w(s)|2)|v(s)|2 ≤ 0.
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In particular E(s) ≤ E(0) for each s ∈ [0,σ[. Again, the invariance of M leads
to the differential inequality

d

ds
|w(s)| ≤ |w�(s)| =

�
1 + E(s)|w(s)|2

2
≤ 1 + |E(0)| 12 |w(s)|√

2
.

It follows that |w(s)| remains bounded in [0,σ[. This fact implies that the
function D(|w(s)|2) is bounded on [0,σ[ and by the last equation of (16) we
conclude that the same is true for |E(s)|. The definition of M implies now that
|v(s)| is bounded on [0,σ[. It follows that the solution (w(s), v(s), E(s)) cannot
blow up at s = σ and this gives a contradiction with σ < +∞. We conclude
that the solution is well defined on [0,+∞[.

Since on this interval we have E�(s) ≤ 0, then E∞ = lims→+∞ E(s) exists
and belongs to [−∞, E(0)]. We prove now that E∞ = −∞. Let us assume by
contradiction that E∞ ∈ R and distinguish two cases:

(i) E∞ ≥ 0;

(ii) E∞ < 0.

If (i) holds, we know that E(s) ≥ E∞ ≥ 0 if s ≥ 0. After integrating the third
equation of (16), we have

E(s) = E(0)− 2

� s

0
D(|w(ξ)|2)(E(ξ)|w(ξ)|2 + 1) dξ ≤ E(0)− 2A1s → −∞

as s → −∞, and we get a contradiction.

Assume now that (ii) holds. We note that system (16), defined on Ω =
C2 × R, is in the conditions of the remark after Proposition 2.2 with F = M
and V = E. Once we are onM we know from the discussions of the case (i) that
it is not restrictive to assume that E(s) < 0 if s ≥ 0, and we claim that the zeros
of v(s) on [0,+∞[ are isolated. Indeed, v(s) = 0 implies |w(s)|2 = 1

|E(s)| > 0

and then v�(s) = E(s)w(s)
2 �= 0. Thus

E(s)− E(0) = −4

� s

0
D(|w(ξ)|2)|v(ξ)|2 dξ < 0

when s > 0 and then condition (13) holds on M with V = E. As a consequence,
the ω-limit set of our solution is empty. From the identity

E(s)|w(s)|2 + 1 = 2|v(s)|2 ≥ 0

we deduce that

lim sup
s→+∞

|w(s)|2 ≤ 1

|E∞| .
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Also,

lim sup
s→+∞

|v(s)|2 ≤ 1

2
.

Then the forward orbit {(w(s), v(s), E(s)) : s ≥ 0} is bounded and the ω-limit
set is a non empty compact set of M. This is the searched contradiction.

As an immediate consequence of this lemma we have the following:

Proposition 3.2. If x(t) is a solution of (2) with non zero angular momentum,
then

lim
t→+∞

E(t) = −∞.

Proof. By choosing a branch of the square root, a non rectilinear solution x(t)
of (2) is transformed by (15) in a solution of (16) on M such that w(s) =�

x(T (s)), where T (s) is the inverse function of s = S(t) =
� t
0

1
|x(τ)| dτ . By

Proposition 2.1 we conclude that s → +∞ when t → +∞, and the claim follows
from Lemma 3.1.

As to the energy of the rectilinear solutions x = r(t) of (2) we have the
following result. Its proof is analogous to the one of the corresponding results
given in [15] for the linear drag (see Proposition 3.1 and Proposition 4.2 therein)
and therefore it is just outlined in the Appendix. Here we stress that the Levi-
Civita regularization is used to get the second part of the statement.

Proposition 3.3. Collisions occur with finite energy. Energy at collision may
have any arbitrarily prescribed real value.

4. Existence and properties of the Runge-Lenz-type first

integral

As proved in the previous sections, a solution of (2) (and hence of (5)) such
that x(0) = x0 and ẋ(0) = v0 is defined for t ∈ [0,ω[ where ω = ω(x0, v0) is
finite in the case of a rectilinear motion, whereas ω = +∞ for a non rectilinear
motion.

We recall that, if we consider the energy E(x, v), the angular momentum
C(x, v) and the vector

R(x, v) = v ∧ (x ∧ v)− x

|x| , (Runge− Lenz vector) (18)

then the two following functional relationships hold among them as functions
of the real variables (x, v) (see also [10], 3-9):

|x|+ < R, x >= |C|2, for any x ∈ R2 \ {0} , (19)
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where < v,w > denotes the inner product between the vectors v and w, and

|R|2 − 1 = 2|C|2E. (20)

In the conservative case, E, C and R are first integrals of the Kepler problem.
In particular, if 0 < |R| < 1, the vector R is the eccentricity vector correspond-

ing to the Keplerian ellipse defined by (19), the unit vector
R

|R| is the direction

of its major axis and e = |R| is its eccentricity.
To end our preparatory work, we state the following lemma, needed to prove

the continuity on Ω of the Runge-Lenz-type first integral I we define below in
Theorem 4.2.

Lemma 4.1. Let K be a compact subset of Ω. Then, there exist numbers mK >
0 and µK > 0 such that

|x(t;x0, v0)| ≤ mK (21)

and
|ẋ(t;x0, v0)||x(t;x0, v0)|

1
2 ≤ µK (22)

for any (x0, v0) ∈ K and t ∈ [0,ω[.

Proof. To prove the first estimate, we proceed as in the last part of the proof of
Lemma 2.2 in [16], to which the reader should refer for the details. As pointed
out in the previous section, the Levi-Civita regularization transforms the solu-
tions of (2) starting in (x0, v0) ∈ K into solutions of system (16) starting in a
compact set K ⊂ M. By Lemma 3.1 these solutions are defined on [0,+∞[ and
are such that their energy E(s) becomes, eventually, negative, say less than
− 1

2 .
3 If we consider the w component of a solution of (16), the invariance of

M gives the bound |w(s)|2 < 2 for sufficiently large s. Then, by a standard
compactness argument, solutions of (16) starting in K are such that the pre-
vious bound on |w(s)| holds for s greater than a suitable s∗ uniformly in K.
For such solutions the existence of a uniform bound for |w(s)| on [0,+∞[ easily
follows. Going back to the original variables one gets (21) for |x| = |w|2 when
(x0, v0) ∈ K.

To prove the second estimate we observe that since the energy is decreasing,
E(t) ≤ E(0) for any t ∈ [0,ω[, and we get the following bound on the velocity:

|ẋ(t)| ≤

�

2

�
E(0) +

1

|x(t)|

�
, t ∈ [0,ω[. (23)

Multiplying (23) by |x(t)| 12 we obtain (22) with µK :=
�
2(EKmK + 1) and

EK := maxK |E(x0, v0)|.

3The discussion in [16] on the inequality (62) appearing in the proof of Lemma 2.2 was

incomplete. This inequality is valid and follows from Lemma 3.1.
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We are now in a position to state the main result of this section. This
result provides a continuous vector first integral I = (I1, I2) which is invariant
under the group of planar rotations and whose components are two functionally
independent scalar first integrals (see Remark 1 in [16]).

As in the case of the linear drag, I can be interpreted as an asymptotic
eccentricity vector and its norm as an asymptotic eccentricity. In particular,
solutions with |I| < 1 tend to the origin along a spiral determined asymptoti-
cally by I.

Theorem 4.2. There exists a continuous vector field

I : Ω → R2, I = I(x, v)

satisfying

(i) I(σx,σv) = σI(x, v), for each (x, v) ∈ Ω and each rotation σ ∈ SO(2).

(ii) The range of I is the closed unit disk, that is

I(Ω) = D, (24)

where D = {y ∈ R2 : |y| ≤ 1}.

(iii) Each solution (x(t), v(t)) of (5), defined on a maximal right interval of
the form [0,ω[, satisfies

I(x(t), v(t)) = lim
τ→ω

R(x(τ), v(τ)). (25)

Proof. Below we will prove the continuity of I and properties (i) and (iii). The
proof of (ii) is postponed to the next section, to properly highlight the fact
that it relies on the existence of asymptotically circular orbits.

Throughout the proof, K will be a fixed compact set contained in Ω, and
(x0, v0) will be a point of K. Let (x(t), v(t)) be the solution of system (5) such
that (x(0), v(0)) = (x0, v0). We denote by R(t) = R(x(t), v(t)) and denote by
Ṙ its derivative with respect to time.

Recall that we have Ċ = −D(|x(t)|)C and that

d

dt

�
x

|x|

�
= C ∧

�
x

|x|3

�
(26)

for any smooth function x = x(t). By differentiating the equality defining R(t)
and then integrating the result from 0 to t we get

R(t) = R(0)− 2

� t

0
D(|x(τ)|)ẋ(τ) ∧ C(τ) dτ. (27)
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If x0 ∧ v0 = 0, then for the corresponding rectilinear motion we have R(t) =
R(0) = R(x0, v0) = − x0

|x0| for any t ∈ [0,ω[ so that, trivially, we define

I(x0, v0) := limt→ω R(t) = R(x0, v0). Let us consider the case x0 ∧ v0 �= 0.
We claim that the estimate below holds:

|(D(|x(t)|)−D(0))ẋ(t) ∧ C(t)| ≤ Me−A1t if t ≥ 0 (28)

where the constant M is uniform with respect to K. To prove (28) let mK

and µK be the numbers provided by Lemma 4.1. Since D is locally Lipschitz
continuous on [0,+∞[, we can find a Lipschitz constant LK on the compact
interval [0,mK ]. In particular

|D(r)−D(0)| ≤ LKr if 0 ≤ r ≤ mK .

Thus, for any t ≥ 0 we have

|(D(|x(t)|)−D(0))ẋ(t) ∧ C(t)| ≤ LK |x(t)||ẋ(t)||C(t)|

≤ LKm
1
2
KµK |x0||v0|e−A1t, (29)

where we have used (3) and

|C(t)| ≤ |x0||v0|e−A1t, t ≥ 0. (30)

Once (28) has been proved, we rewrite the Runge-Lenz vector in the form

R(t) = R(0) + 2D(0)x0 ∧C(0)− 2D(0)x(t)∧C(t)− 2I1(t) + 2D(0)I2(t), (31)

with

I1(t) =

� t

0
(D(|x(τ)|)−D(0))ẋ(τ) ∧ C(τ) dτ

and

I2(t) =

� t

0
x(τ) ∧ Ċ(τ) dτ.

Formula (31) is obtained by adding and subtracting D(0) in the scalar factor
of the integral in (27) and then applying an integration by parts. From (30)
we deduce that if t ≥ 0

|x(t) ∧ C(t)| ≤ mK |x0||v0|e−A1t (32)

|x(t) ∧ Ċ(t)| ≤ mKDK |x0||v0|e−A1t (33)

where DK = max[0,mK ] D(r). Together with (28) these inequalities imply that
I = limt→+∞ R(t) exists.
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At this point it is convenient to make explicit the functional dependence of
I on the initial condition (x0, v0) ∈ Ω and write it as

I(x0, v0) = R(x0, v0) + 2D(0)x0 ∧ C(x0, v0)− 2I1(+∞;x0, v0)+

+ 2D(0)I2(+∞;x0, v0), (34)

where we set I1(+∞;x0, v0) = I2(+∞;x0, v0) = 0 if C(x0, v0) = x0 ∧ v0 = 0.
To prove the continuity of this function at each point we consider first the

case (x0, v0) ∈ Ω with x0 ∧ v0 �= 0. We can select a small closed ball centered
at (x0, v0) such that the angular momentum does not vanish on it. This will
be our set K. Then, estimates (28) and (33), together with the results on
continuous dependence of solutions with respect to initial conditions, allow to
get the continuity of I1(+∞; ·, ·) and I2(+∞; ·, ·) by applying standard results
on functions defined by parametric Lebesgue integrals. In the case x0 ∧ v0 = 0
it must be noticed that if (x0n, v0n) is a sequence converging to (x0, v0) with
x0n ∧ v0n �= 0, then the corresponding solution satisfies

Cn(t) := xn(t) ∧ ẋn(t) = e−
� t
0 D(|xn(τ)|) dτx0n ∧ v0n → 0

as n → +∞ for each t ≥ 0. Similarly, limn→+∞ Ċn(t) = 0 for each t ≥ 0. From
the estimates

|(D(|x(t)|)−D(0))ẋ(t) ∧ C(t)| ≤ LKm1/2
K µK |C(t)|, |x(t) ∧ Ċ(t)| ≤ mK |Ċ(t)|

we deduce that Ii(+∞;x0n, v0n) → 0. Note that the estimates (29) and (33)
imply that the convergence is dominated.

Then I(x0n, v0n) → I(x0, v0) = − x0
|x0| as n → ∞. Since the same property

trivially holds for sequences (x0n, v0n) converging to (x0, v0) and such that
x0n ∧ v0n = 0, the continuity of I on Ω is proved.

Properties (i) and (iii) follow immediately from the definition of I.

5. Existence of asymptotically circular orbits

In this section we complete the proof of Theorem 4.2 by showing that the range
of I is the closed unit disk. This property will be a consequence of the continuity
of I, of its invariance under rotations, and of the existence of asymptotically
circular orbits of (2), that is orbits for which I = 0. We will show below how
to obtain these orbits using the Brouwer degree to continue the circular ones
of the conservative Kepler problem.

We start by considering the set

C+ = {(ξ, η) ∈ Ω : η = |ξ|− 3
2 Jξ},
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with J =

�
0 −1
1 0

�
.

Then R(ξ, η) = 0, E(ξ, η) = − 1
2|ξ| < 0 and C(ξ, η) �= 0. We fix a point

(ξ, η) ∈ C+ and define the function F : Ω → R4

F (x, v) :=

�
R(x, v)
x− ξ

�
.

Lemma 5.1. The point (ξ, η) is a nondegenerate zero of F. Actually

detF �(ξ, η) = 2|ξ| > 0.

Proof. Clearly F (ξ, η) = 0. We have

F �(ξ, η) =

�
∂xR(ξ, η) ∂vR(ξ, η)

Id 0

�

where Id denote the identity matrix of order two, so that

detF �(ξ, η) = det[∂vR(ξ, η)] .

Since

R(x, v) =

�
x1v22 − x2v1v2
x2v21 − x1v1v2

�
− x

|x| ,

it follows that

det[∂vR(ξ, η)] = |ξ|−3

����
−ξ2ξ1 2ξ21 + ξ22

−2ξ22 − ξ21 ξ1ξ2

���� = 2|ξ|

and our proof is concluded.

Let us fix a small open ball B ⊂ R4 centred at (ξ, η) satisfying the following
properties:

• (ξ, η) is the only zero of F in B̄;

• there exists δ > 0 such that E(x0, v0) ≤ −δ < 0 if (x0, v0) ∈ B̄;

• C(x0, v0) �= 0 if (x0, v0) ∈ B̄.

In particular the Brouwer degree of F in B̄ is well defined and

deg(F,B, 0) = 1. (35)

For each � > 0 the change of variables x(t) = �
2
3 y( t� ) transforms equation (2)

into
ÿ + �D(�

2
3 |y|)ẏ = − y

|y|3 . (36)
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The Runge-Lenz vector has the invariance property

R(x, v) = R(�
2
3x, �−

1
3 v)

and so
R(x(t), ẋ(t)) = R(y(t/�), ẏ(t/�)) for any t ∈ [0,+∞[.

Letting t → +∞ we obtain the identity I1(x0, v0) = I�(�−
2
3x0, �

1
3 v0) or, equiv-

alently,
I�(x0, v0) = I1(�

2
3x0, �

− 1
3 v0) (37)

where I�(x0, v0) := limt→+∞ R(y(t;x0, v0, �), ẏ(t;x0, v0, �)) and y(t;x0, v0, �) is
the solution of the Cauchy problem for (36). The identity (37) shows that it is
sufficient to prove the existence of an asymptotically circular motion for (36)
for some � > 0.

Lemma 5.2. The function Ĩ : [0, 1]× B̄ → R2, given by Ĩ(�, x0, v0) := I�(x0, v0)
is continuous.

Proof. The continuity of Ĩ on ]0, 1] × B̄ is a consequence of (37) and of the
continuity of I1 established in Theorem 4.2. The continuity at � = 0 is a
consequence of the expansion

I�(x0, v0) = R(x0, v0) +O(�
2
3 ), uniformly in (x0, v0) ∈ B̄. (38)

To prove (38) we simplify the notation by setting y = y(t;x0, v0, �), ẏ =
ẏ(t;x0, v0, �), C = y ∧ ẏ and observe that

|y| ≤ 1

δ
, |y| 12 |ẏ| ≤

√
2. (39)

These estimates are a consequence of the inequality 1
2 |ẏ|

2 − 1
|y| ≤ −δ. Also,

|C| ≤ |x0||v0|e−�A1t and |Ċ| ≤ �Mδ|x0||v0|e−�A1t, (40)

where Mδ := maxr∈[0, 1δ ]
D(r). From the proof of Theorem 4.2 we see that I�

can be expressed in the form

I�(x0, v0) = R(x0, v0) + 2�D(0)x0 ∧ C(x0, v0)− 2I1,�(+∞;x0, v0)+

+ 2�D(0)I2,�(+∞;x0, v0). (41)

If we denote by Lδ the Lipschitz constant of D on [0, 1
δ ], by using (39) and the

first inequality of (40) we get

|I1,�| = �

����
� +∞

0
(D(�

2
3 |y|)−D(0))ẏ ∧ C dt

���� ≤ �Lδ�
2
3

� +∞

0
|y||ẏ||C| dt

≤ �
2
3Lδ

�
2

δ
|x0||v0|�

� +∞

0
e−�A1t dt = �

2
3
Lδ

A1

�
2

δ
|x0||v0|. (42)
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Now, from the first inequality of (39) and the second inequality of (40) we
get

|I2,�| =
����
� +∞

0
y ∧ Ċ dt

���� ≤
1

δ
Mδ|x0||v0|�

� +∞

0
e−A1�t dt =

Mδ

δA1
|x0||v0|,

that together with (42) gives (38).

We are now in a position to prove that for the drag in (2) there exist orbits
whose eccentricity tends asymptotically to zero.

Proposition 5.3. There exists (x0, v0) ∈ Ω such that the corresponding solu-
tion of (2) is asymptotically circular, that is (x0, v0) satisfies I(x0, v0) = 0.

Proof. Consider the family of functions F� : [0, 1]× Ω → R4, where

F�(x, v) :=

�
I�(x, v)
x− ξ

�
.

By Lemma 5.2 the family F� is continuous in [0, 1] × B̄ and, moreover,
by (38) we have that F0 = F. Then, since deg(F,B, 0) = 1, the homotopy
invariance of the degree guarantees that for sufficiently small � there exists a
zero, necessarily of the form (ξ, v(�)), of F� in B. Hence, I�(ξ, v(�)) = 0 and
by (37) we conclude that the point (x0, v0) := (�

2
3 ξ, �−

1
3 v(�)) ∈ Ω is the initial

condition of an asymptotically circular orbit of (2).

Finally, we prove our claim about the range of I.

5.1. Proof of (ii) of Theorem 4.2.

If x0 ∧ v0 �= 0 then C(t) �= 0 for any t ∈ [0,+∞[ and, by Proposition 3.2,
E(t) → −∞ when t → +∞. As a consequence, by (20) we get |R(t)|2−1 < 0 if
t is large enough, and |I| ≤ 1 follows taking the limit in t. In the case x0∧v0 = 0,

we have I(x0, v0) = − x0

|x0|
so that |I(x0, v0)| = 1. Since by Proposition 5.3 the

first integral I takes the value 0, by its continuity and by its invariance under
planar rotations we get I(Ω) = D.

The geometrical and dynamical consequences of the existence of I are anal-
ogous to the ones described in [16] for the linear drag. Namely, if x(t) =
x(t;x0, v0) = r(t)eiθ(t) is a non rectilinear motion of (2), then the trajectory

y(t) = e2
� t
0 D(|x(s)|) dsx(t)
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tends asymptotically to the curve

|y|+ < y, I(x0, v0) >= |C(x0, v0)|2.

When |I(x0, v0)| < 1 this is an ellipse whose eccentricity vector is I(x0, v0), and
in such a case the following holds: |x(t)| = r(t) tends to zero exponentially with
time, whereas the modulus of the angular velocity |θ̇(t)| increases exponentially
with time. The proofs of these facts follow taking into account that A1 ≤
D(|x(t;x0, v0)|) ≤ M = maxt≥0 D(|x(t;x0, v0)|) and following the steps in [16]
to obtain the exponential estimates on the growth of |x| and |θ̇|.

6. Appendix

6.1. Proof of Proposition 2.4

We start by regularizing the first order system equivalent to equation (14) by

the time rescaling τ = τ(t) =
� t
0

dσ
r2(σ) . We obtain the system

�
r� = r2u
u� = −D(r)r2u− 1

(43)

where the derivatives are taken with respect to the time τ. Now we proceed in
a manner that is analogous to the one employed in the proof of Proposition 3.2
of [15]. We start by noticing that r = 0 is an orbit of (43) and that this system
does not have any equilibria. Also, the set Q = {(r, u) : r > 0, u < 0} is a
positively invariant set for (43) on which the r component of the solutions of
(43) is decreasing. A key ingredient of the proof is the existence of the first
integral of (43) given by

H := u+∆(r) + τ, (44)

where ∆(r) :=
� r
0 D(σ) dσ satisfies the estimate ∆(r) ≥ A1r. Using the first

integral and the estimate, one proves that all solutions with r(0) > 0 eventually
enter the set Q. In fact, by a contradiction argument, one sees that the negation
of this property implies the existence of a bounded orbit having as its ω-limit an
equilibrium of (43) in the first quadrant. Then, in an analogous manner, it is
easily shown that all solutions are defined for τ ∈ [0,+∞[. Since if (r(0), u(0)) =
(r0, u0) ∈ Q, then r(τ) ∈ [0, r0] for any τ ∈ [0,+∞[, and since from (44) we
have

u(τ) +∆(r(τ)) = u0 +∆(r0)− τ,

we conclude that
u(τ)

τ
→ −1 as τ → +∞. (45)
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As a consequence, we get that u(τ) → −∞ as τ → +∞ and, integrating the
first equation of (43), we get also that

τ2r(τ) =
τ2

1
r0

+
� τ
0 |u(σ)| dσ

→ 2 as τ → +∞. (46)

We conclude that r(τ) → 0 as τ → +∞. To end our proof we have to show that
the maximal interval [0,ω[ of a solution r(t) of (14) is bounded. If t = T (τ) is
the inverse function of τ = τ(t), then r(τ) := r(T (τ)) is the first component of
a solution of (43), and we have

ω =

� +∞

0
T �(τ) dτ =

� +∞

0
r2(τ) dτ ∈ R,

since by (46) r2(τ) behaves like 4
τ4 for large τ.

6.2. Proof of Proposition 3.3

This proof follows the steps of the one given for the linear drag in Proposi-
tion 3.2 of [15]. Let r(t) be a maximal solution of (14) defined on [0,ω[, ω ∈ R.
Its energy, expressed in the time τ, is given by E(τ) := E(r(τ), u(τ)), where
(r(τ), u(τ)) = (r(T (τ)), ṙ(T (τ))) is a solution of (43) defined on [0,+∞[. Then,

E�(τ) = −D(r(τ))u2(τ)r2(τ), τ ∈ [0,+∞[.

By (45) and (46) we get that fixed any positive η

|E�(τ)| ≤ max
[0,M ]

D(r)
4 + η

τ2

for sufficiently large τ, where M = max[0,+∞[ r(τ) ∈ R exists since by Propo-
sition 2.4 all solutions of (14) tend to zero. We conclude that E� ∈ L1[0,+∞[

and hence E(ω) = E(0) +
� +∞
0 E�(τ) dτ ∈ R.

The proof of the fact that the energy may take any arbitrarily prescribed
value E1 ∈ R at collision is completely analogous to the proof of Proposition 4.2
in [15], and we give it for the reader’s sake. Let E1 be a prescribed value
of the energy. Let (w(s), v(s), E(s)) ∈ M be the solution of (16) such that
(w(0), v(0), E(0)) = (0,−1/

√
2, E1) ∈ M. Let s = S(t) be the local inverse of

T (s) = t1 −
� 0
s w2(σ) dσ in a suitable left neighbourhood of s = 0, where t1

is arbitrarily fixed in R. Then, the function r(t) := w(S(t))2, defined in a left
neighbourhood of t1, will solve

r̈ = −D(r)ṙ +
1

r2
J − 1

r2
,

where J (E,w, v) := E|w|2−2|v|2+1. Since M is invariant, we get that J = 0
along the solutions of (16) and we conclude that r(t) is a solution (14) which
collides with the singularity at time t1 having energy E1 at collision.
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Principal eigenvalues of weighted
periodic-parabolic problems
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Abstract. Based on a recent characterization of the strong maximum

principle, [3], this paper gives some periodic-parabolic counterparts of

some of the results of Chapters 8 and 9 of J. López-Gómez [22]. Among

them count some pivotal monotonicity properties of the principal eigen-

value σ[P+V,B, QT ], as well as its concavity with respect to the periodic

potential V through a point-wise periodic-parabolic Donsker–Varadhan

min-max characterization. Finally, based on these findings, this paper

sharpens, substantially, some classical results of A. Beltramo and P.

Hess [4], K. J. Brown and S. S. Lin [6], and P. Hess [14] on the ex-

istence and uniqueness of principal eigenvalues for weighted boundary

value problems.

Keywords: periodic-parabolic problems, maximum principle, principal eigenvalue, global
properties.
MS Classification 2010: 35K57, 35B10, 35B50, 35P05.

1. Introduction

For any given T > 0, this paper studies the existence of principal eigenvalues, λ,
for the T -periodic-parabolic weighted boundary value problem

�
∂tϕ+ Lϕ = λW (x, t)ϕ in Ω× [0, T ],
Bϕ = 0 on ∂Ω× [0, T ],

(1)

under the following general assumptions:

(A1) Ω is a bounded subdomain (open and connected set) of RN , N ≥ 1, of
class C2+θ for some 0 < θ ≤ 1, whose boundary, ∂Ω, consists of two
disjoint open and closed subsets, Γ0 and Γ1, such that ∂Ω := Γ0 ∪ Γ1 (as
they are disjoint, Γ0 and Γ1 must be of class C2+θ).

(A2) L is a non-autonomous differential operator of the form

L = L(x, t) := −
N�

i,j=1

aij(x, t)
∂2

∂xi∂xj
+

N�

j=1

bj(x, t)
∂

∂xj
+ c(x, t),
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with aij = aij , bj , c ∈ F for all i, j ∈ {1, ..., N}, where

F :=
�
u ∈ Cθ, θ2 (Ω̄× R;R) : u(·, T + t) = u(·, t) for all t ∈ R

�
. (2)

Similarly, W ∈ F . So, L− λW has exactly the same type as L, because
c−λW ∈ F . Moreover, the operator L is assumed to be uniformly elliptic
in Q̄T , where QT stands for the (open) parabolic cylinder

QT := Ω× (0, T ).

In other words, there exists µ > 0 such that

N�

i,j=1

aij(x, t)ξiξj ≥ µ |ξ|2 for all (x, t, ξ) ∈ Q̄T × RN ,

where | · | stands for the Euclidean norm of RN .

(A3) B : C(Γ0)⊕ C1(Ω ∪ Γ1) → C(∂Ω) stands for the boundary operator

Bξ :=

�
ξ on Γ0
∂ξ
∂ν + β(x)ξ on Γ1

for each ξ ∈ C(Γ0)⊕ C1(Ω ∪ Γ1), where β ∈ C1+θ(Γ1) and

ν = (ν1, ..., νN ) ∈ C1+θ(∂Ω;RN )

is an outward pointing nowhere tangent vector field. Occasionally, we will
emphasize the dependence of B on β by setting B = B[β]. Naturally,
we simply set D = B if Γ1 = ∅ (Dirichlet b.c.), or N = B if Γ0 = ∅ and
β = 0 (Neumann b.c.).

Thus, the functions c(x, t) and β(x) can change sign, in strong contrast with
the classical setting of A. Beltramo and P. Hess [4], substantially refined by P.
Hess [14, Ch. II], where c,β ≥ 0 and either Γ0, or Γ1, is empty. Note that B
is the Dirichlet boundary operator on Γ0, and the Neumann, or a first order

regular oblique derivative boundary operator, on Γ1. Naturally, either Γ0, or
Γ1, can be empty.

Subsequently, besides the space F introduced in (2), we also consider the
Banach space of Hölder continuous T -periodic functions

E :=
�
u ∈ C2+θ,1+ θ

2 (Ω̄× R;R) : u(·, T + t) = u(·, t) for all t ∈ R
�

and the periodic-parabolic operator

P := ∂t + L(x, t).
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By a principal eigenvalue of the eigenvalue problem (1) it is meant a value of
λ ∈ R for which (1) possesses a positive eigenfunction, ϕ ∈ E. The main goal
of this paper is analyzing the existence and multiplicity of eigenvalues of (1) by
adapting to the periodic-parabolic context the methodology of J. López-Gómez
[18], later refined in [19] and [22, Ch. 9], in order to sharpen the classical results
of P. Hess and T. Kato [15]. Naturally, the principal eigenvalues of the weighted
problem (1) are given by the zeroes of the principal eigenvalue

Σ(λ) = σ[P − λW,B, QT ], λ ∈ R, (3)

of the tern (P−λW,B, QT ), whose existence and uniqueness, under the general
setting of this paper, goes back to [2, 3].

Throughout this paper, a function h ∈ E is said to be a supersolution of
the tern (P,B, QT ) if

�
Ph ≥ 0 in QT ,
Bh ≥ 0 on ∂QT = ∂Ω× [0, T ].

If, in addition, some of these inequalities is strict, �, then h is said to be a
strict supersolution of (P,B, QT ). A significant portion of the mathematical
analysis carried out in this paper is based on the next result, going back to
Theorem 1.2 of [3] in its greatest generality. Based on the abstract theory of
D. Daners and P. Koch-Medina [10], it extends to a periodic-parabolic context
the corresponding elliptic counterparts of J. López-Gómez & M. Molina-Meyer
[23] and H. Amann & J. López-Gómez [2]. A special version, for β ≥ 0, had
been recently given by R. Peng and X. Q. Zhao [25].

Theorem 1.1. Suppose (A1), (A2) and (A3). Then, the following conditions

are equivalent:

(a) σ[P,B, QT ] > 0.

(b) (P,B, QT ) possesses a non-negative strict supersolution h ∈ E.

(c) The resolvent operator of (P,B, QT ) is strongly positive, i.e., any strict

supersolution u ∈ E of (P,B, QT ) satisfies u � 0, in the sense that

u(x, t) > 0 for all t ∈ [0, T ] and x ∈ Ω ∪ Γ1, and

∂νu(x, t) < 0 for all t ∈ [0, T ] and x ∈ u−1(0) ∩ Γ0.

In other words, (P,B, QT ) satisfies the strong maximum principle.

Based on Theorem 1.1 one can easily derive all monotonicity properties
of σ[P,B, QT ] given in Section 2, as well as infer the point-wise min-max
characterizations of the principal eigenvalue of Donsker–Varadhan type given
in Section 3. In Section 4, based on these min-max characterizations, we will
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adopt the methodology of J. López-Gómez [19, 21, 22], in order to establish
the concavity of σ[P + V,B, QT ] with respect to the periodic potential V ∈ F .
The most pioneering results in this vain go back to T. Kato [16]. Our proof
is based on a technical device of H. Berestycki, L. Nirenberg and S. R. S.
Varadhan [5] based on the Donsker–Varadhan characterization of the principal
eigenvalue, [13]. Later, in Section 5, the concavity with respect to V will
provide us with the concavity of Σ(λ) with respect to the parameter λ ∈ R
and the real analyticity of Σ(λ), which is derived from a classical result of
F. Rellich [26] sharpened by T. Kato [17]. From all these results one can easily
derive some important global properties of Σ(λ) that provide us with some
substantial improvements of those collected by P. Hess in Chapter II of [14],
where it was imposed, in addition, that c ≥ 0 and β ≥ 0, and that either Γ0,
or Γ1, is empty. Actually, in Sections 6 and 7 we characterize the existence,
uniqueness, multiplicity and simplicity of the principal eigenvalues of (1) in
all possible cases. Crucially, in this paper we are not requiring (P,B, QT )
to satisfy the strong maximum principle. So, our analysis is much sharper
and versatile than the classical one of P. Hess [14, Ch. II]. As a result, the
problem (1) can admit two principal eigenvalues with the same sign, which is
a situation not previously considered, even in the elliptic counterpart of (1),
by the classical theory of A. Manes & A. M. Micheletti [24] and P. Hess & T.
Kato [15].

2. Some basic properties of the principal eigenvalue

This section collects some useful properties of σ[P + V,B, QT ] that are direct
consequences from Theorem 1.1. The next one establishes its monotonicity

with respect to the potential V .

Proposition 2.1. Let V1, V2 ∈ F such that V1 � V2. Then,

σ[P + V1,B, QT ] < σ[P + V2,B, QT ].

Proof. Let ϕ1 ∈ E, ϕ1 � 0, be an eigenfunction associated to the principal
eigenvalue σ1 := σ[P + V1;B, QT ]. Then,

(P + V2 − σ1)ϕ1 = (V2 − V1)ϕ1 � 0 in QT .

Thus, ϕ1 provides us with a positive strict supersolution of the tern (P + V2 −
σ1,B, QT ). Therefore, by Theorem 1.1,

0 < σ[P + V2 − σ1,B, QT ] = σ[P + V2,B, QT ]− σ1

= σ[P + V2,B, QT ]− σ[P + V1,B, QT ],

which ends the proof.
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The next two consequences of Proposition 2.1 provide us with the continu-

ous dependence of the principal eigenvalue with respect to V .

Corollary 2.2. Let Vn ∈ F , n ≥ 1, be a sequence of potentials such that

lim
n→∞

Vn = V in C(Q̄T ).

Then,

lim
n→∞

σ[P + Vn,B, QT ] = σ[P + V,B, QT ].

Proof. For every ε > 0 there exists a natural number n0 = n0(ε) > 1 such that

V − ε ≤ Vn ≤ V + ε in Q̄T for all n ≥ n0.

Thus, thanks to Proposition 2.1, for every n ≥ n0,

σ[P + V,B, QT ]− ε ≤ σ[P + Vn,B, QT ] ≤ σ[P + V,B, QT ] + ε,

which ends the proof.

Naturally, as a byproduct, Corollary 2.2 yields

Corollary 2.3. For every W ∈ F , the map Σ : R → R defined by (3) is

continuous.

Next, we will adapt Propositions 3.1, 3.2 and 3.5 of C. Cano-Casanova and
J. López-Gómez [7] to the periodic-parabolic setting of this paper. Essentially,
they establish the monotonicities of the principal eigenvalue with respect to β
and Ω, as well as the dominance of σ[P,D, QT ].

Proposition 2.4. Suppose Γ1 �= ∅ and β1,β2 ∈ C1+θ(Γ1) satisfy β1 � β2.

Then,

σ[P,B[β1], QT ] < σ[P,B[β2], QT ].

Proof. Let ϕ1 ∈ E, ϕ1 � 0, be a principal eigenfunction associated to the
principal eigenvalue σ[P,B[β1], QT ]. Then,

(P − σ[P,B[β1], QT ])ϕ1 = 0 in QT ,

ϕ1 = 0 on Γ0, and

B[β2]ϕ1 = B[β1]ϕ1 + (β2 − β1)ϕ1 = (β2 − β1)ϕ1 � 0 on Γ1

because β2 � β1 and ϕ1(x, t) > 0 for all t ∈ [0, T ] and x ∈ Ω ∪ Γ1. Thus, ϕ1

provides us with a strict positive supersolution of

(P − σ[P,B[β1], QT ],B[β2], QT ).
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Therefore, owing to Theorem 1.1,

0 < σ[P − σ[P,B[β1], QT ],B[β2], QT ] = σ[P,B[β2], QT ]− σ[P,B[β1], QT ].

The proof is complete.

Proposition 2.5. σ[P,B, QT ] < σ[P,D, QT ] if Γ1 �= ∅.

Proof. Let ϕ � 0 be a principal eigenfunction associated to σ[P,B, QT ]. Then,
according to Theorem 1.1,

ϕ(x, t) > 0 for all x ∈ Ω ∪ Γ1 and t ∈ [0, T ].

Thus, Dϕ(x, t) = ϕ(x, t) > 0 for all x ∈ Γ1 and t ∈ [0, T ]. Hence,

Dϕ = ϕ � 0 on ∂Ω× [0, T ].

So, ϕ provides us with a positive strict supersolution of

(P − σ[P,B, QT ],D, QT )

and therefore, by Theorem 1.1,

0 < σ[P − σ[P,B, QT ],D, QT ] = σ[P,D, QT ]− σ[P,B, QT ],

which ends the proof.

Suppose Γ1 �= ∅. Then, for every proper subdomain of Ω, Ω0, of class C2+θ

with
dist (Γ1, ∂Ω0 ∩ Ω) > 0, (4)

we denote by B[Ω0] the boundary operator defined by

B[Ω0]ξ :=

�
ξ on ∂Ω0 ∩ Ω,
Bξ on ∂Ω0 ∩ ∂Ω,

(5)

for each ξ ∈ C(Γ0)⊕ C1(Ω ∪ Γ1). In particular, B[Ω0] = D if Ω̄0 ⊂ Ω, because,
in such case, ∂Ω0 ⊂ Ω. When Γ1 = ∅, by definition, B = D and we simply
set B[Ω0] := D. The next result establishes the monotonicity of the principal
eigenvalue with respect to Ω.

Proposition 2.6. Let Ω0 be a proper subdomain of Ω of class C2+θ
satisfy-

ing (4) if Γ1 �= ∅. Then,

σ[P,B, QT ] < σ[P,B[Ω0],Ω0 × (0, T )],

where B[Ω0] is the boundary operator defined by (5).
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Proof. Let ϕ � 0 be a principal eigenfunction associated to σ[P,B, QT ]. By
definition,

(P − σ[P,B, QT ])ϕ = 0 in Ω0 × (0, T ),

because Ω0 ⊂ Ω. Moreover, by construction,






ϕ > 0 on (∂Ω0 ∩ Ω)× [0, T ],
ϕ = 0 on (∂Ω0 ∩ Γ0)× [0, T ],
∂νϕ+ βϕ = 0 on (∂Ω0 ∩ Γ1)× [0, T ].

Note that ∂Ω0∩Ω �= ∅, because Ω0 � Ω. Thus, ϕ|Ω0 provides us with a positive
strict supersolution of the tern

(P − σ[P,B, QT ],B[Ω0],Ω0 × (0, T )).

Therefore, thanks again to Theorem 1.1,

0 < σ[P − σ[P,B, QT ],B[Ω0],Ω0 × (0, T )]

= σ[P,B[Ω0],Ω0 × (0, T )]− σ[P,B, QT ],

which ends the proof.

As an immediate consequence of Propositions 2.4 and 2.6, the next result
holds.

Corollary 2.7. Suppose Γ1 �= ∅. Then, for every subdomain of class C2+θ
of

Ω, Ω0, satisfying (4) if Γ1 �= ∅, and any β1,β2 ∈ C1+θ(Γ1) with β1 � β2,

σ[P,B[β1,Ω], QT ] < σ[P,B[β2,Ω0],Ω0 × (0, T )]. (6)

The same conclusion holds if β1 ≤ β2 and Ω0 � Ω.

We conclude this section with an extremely useful consequence of the unique-
ness of the principal eigenvalue. It should be compared with [14, Lem. 15.3].

Proposition 2.8. Let V ∈ F be independent of x ∈ Ω, i.e., V (x, t) = V (t) for
all (x, t) ∈ QT . Then,

σ[P + V (t),B, QT ] = σ[P,B, QT ] +
1

T

� T

0
V (t) dt. (7)

Proof. Let ϕ � 0 be a principal eigenfunction associated to σ[P,B, QT ]. The
proof consists in searching for a real function h ∈ C1(R) such that

ψ(x, t) := eh(t)ϕ(x, t), (x, t) ∈ Q̄T ,
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provides us with a principal eigenfunction of (P + V (t),B, QT ). Since

(P + V (t))ψ(x, t) =
�
σ[P,B, QT ] + h�(t) + V (t)

�
ψ(x, t),

it becomes apparent that making the choice

h(t) =
t

T

� T

0
V −

� t

0
V, t ∈ [0, T ],

we have that h(0) = h(T ) = 0 and

h�(t) + V (t) =
1

T

� T

0
V

for all t ∈ [0, T ]. Thus,

(P + V (t))ψ(x, t) =

�
σ[P,B, QT ] +

1

T

� T

0
V

�
ψ(x, t).

Therefore, by the uniqueness of the principal eigenvalue, (7) holds.

As a byproduct of (7), for every V ∈ F independent on x ∈ Ω, we have that

Σ(λ) := σ[P + λV (t),B, QT ] = σ[P,B, QT ] + λV̄

for all λ ∈ R, where, as usual, we are denoting by V̄ the average

V̄ :=
1

T

� T

0
V (t) dt.

Thus, the graph of Σ(λ) is a straight line with slope V̄ . Note that V̄ can have
any sign if V changes sign, which cannot occur in the elliptic counterpart of
the theory.

We conclude this section with the next fundamental result.

Theorem 2.9. σ[P,B, QT ] is an algebraically simple eigenvalue of (P,B, QT ).

Proof. Through this proof, we set σ := σ[P,B, QT ]. By the construction of
σ in [3], σ is geometrically simple. To show that it is algebraically simple we
should see that, for any given associated eigenfunction, ϕ � 0, the boundary
value problem �

(P − σ)u = ϕ in QT ,
Bu = 0 on ∂Ω× [0, T ],
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cannot admit a solution in E. On the contrary, suppose that it admits a
solution, u ∈ E. Then, for all ω > 0, we have that

�
(P + ω)u = (σ + ω)u+ ϕ in QT ,
Bu = 0 on ∂Ω× [0, T ].

Thus, according to Theorem 1.1, for sufficiently large ω > 0, we have that

u = (σ + ω)(P + ω)−1u+ (P + ω)−1ϕ. (8)

On the other hand, since Pϕ = σϕ, it becomes apparent that

(P + ω)−1ϕ =
1

σ + ω
ϕ and spr (P + ω)−1 =

1

σ + ω
.

Thus, dividing by σ + ω the identity (8) yields

�
spr (P + ω)−1 − (P + ω)−1

�
u =

ϕ

(ω + σ)2
� 0.

In particular,
ϕ ∈ R

�
spr (P + ω)−1 − (P + ω)−1

�
,

which contradicts Theorem 6.1(f) of [22].

3. Donsker–Varadhan min-max characterizations

This section gives two point-wise min-max characterizations of the principal
eigenvalue σ[P,B, QT ]. These results adapt to a periodic–parabolic context
the celebrated formula of M. D. Donsker and S. R. S. Varadhan [13]. The first
one can be stated as follows.

Theorem 3.1. Let C denote the set

C := {ψ ∈ E : ψ(x, t) > 0 for all (x, t) ∈ QT and Bψ ≥ 0 on ∂Ω× [0, T ]} .

Then,

σ[P,B, QT ] = sup
ψ∈C

inf
QT

Pψ

ψ
= max

ψ∈C
inf
QT

Pψ

ψ
. (9)

Proof. Set σ1 := σ[P,B, QT ] and pick λ < σ1. Then,

σ[P − λ,B, QT ] = σ1 − λ > 0

and hence, by Theorem 1.1, (P−λ,B, QT ) satisfies Theorem 1.1(c). Thus, the
problem �

(P − λ)ψ = 1 in QT ,
Bψ = 0 on ∂Ω× [0, T ],
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admits a unique solution in E, ψ1, and ψ1 � 0. In particular, ψ1 ∈ C and
hence, C �= ∅. Moreover, since ψ1(x, t) > 0 for all (x, t) ∈ QT , it follows that

λ <
Pψ1

ψ1
in QT .

Thus,

λ ≤ inf
QT

Pψ1

ψ1
≤ sup

ψ∈C
inf
QT

Pψ

ψ
. (10)

As this estimate holds for each λ < σ1, it becomes apparent that

σ1 ≤ sup
ψ∈C

inf
QT

Pψ

ψ
.

To prove the equality, we can argue by contradiction. Suppose

σ1 < sup
ψ∈C

inf
QT

Pψ

ψ
.

Then, there are � > 0 and ψ ∈ C such that

σ1 + � <
Pψ(x, t)

ψ(x, t)
for all (x, t) ∈ QT .

As this entails
�

(P − σ1 − �)ψ > 0 in QT ,
Bψ ≥ 0 on ∂Ω× [0, T ],

the function ψ provides us with a supersolution of (P − σ1 − �,B, QT ). Thus,
by Theorem 1.1,

0 < σ[P − σ1 − �,B, QT ] = −� < 0,

which is impossible. Therefore,

σ1 = sup
ψ∈C

inf
QT

Pψ

ψ
,

which provides us with the first identity of (9).
Finally, let ϕ1 ∈ E, ϕ1 � 0, be a principal eigenfunction associated to σ1.

Then, by definition,
�

Pϕ1 = σ1ϕ1 in QT ,
Bϕ1 = 0 on ∂Ω× [0, T ],

and ϕ1 ∈ C. Thus,

σ1 = inf
QT

Pϕ1

ϕ1
.
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Consequently, we also have that

σ1 = max
ψ∈C

inf
QT

Pψ

ψ
.

The proof is completed.

The next results allows us shortening C in the statement of Theorem 3.1.

Theorem 3.2. Let C+ be the subset of C defined by

C+ :=
�
ψ ∈ E : ψ(x, t) > 0 for all (x, t) ∈ Q̄T and Bψ ≥ 0 on ∂Ω× [0, T ]

�
.

Then,

σ1 := σ[P,B, QT ] = sup
ψ∈C+

inf
QT

Pψ

ψ
. (11)

Proof. Let λ < σ1 be. Then, arguing as in Theorem 3.1, it follows from The-
orem 1.1 that (P − λ,B, QT ) satisfies Theorem 1.1(c). Now, consider the
auxiliary problem

�
(P − λ)ψ = 1 in QT ,
Bψ = 1 on ∂Ω× [0, T ],

(12)

and a function h ∈ E such that

Bh = 1 on ∂Ω× [0, T ].

Then, the change of variable
ψ = h+ w

transforms (12) into

�
(P − λ)w = 1− (P − λ)h in QT ,
Bw = 0 on ∂Ω× [0, T ].

Then, owing to Theorem 1.1(c), the function

ψ := h+ (P − λ)−1[1− (P − λ)h]

provides us with the unique solution of (12) in E. By Theorem 1.1(c), ψ � 0.
In particular, ψ(x, t) > 0 for all x ∈ Ω ∪ Γ1 and t ∈ [0, T ]. Moreover, since
Bh = 1 on ∂Ω×[0, T ], we also have that h = ψ = 1 on Γ0 and hence, ψ(x, t) > 0
for all x ∈ ∂Ω and t ∈ [0, T ]. So, ψ ∈ C+. As, due to (12), we also have that

λ <
Pψ1(x, t)

ψ1(x, t)
for all (x, t) ∈ QT ,
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it becomes apparent that

λ ≤ inf
QT

Pψ1

ψ1
≤ sup

ψ∈C+

inf
QT

Pψ

ψ
. (13)

Therefore, since this inequality holds for every λ < σ1, we find that

σ1 ≤ sup
ψ∈C+

inf
QT

Pψ

ψ
.

Finally, since C+ ⊂ C,

σ1 ≤ sup
ψ∈C+

inf
QT

Pψ

ψ
≤ sup

ψ∈C
inf
QT

Pψ

ψ
.

Consequently, (11) follows from Theorem 3.1.

4. Concavity with respect to the potential

This section establishes the concavity of the map

F −→ R
V �→ σ[V ] := σ[P + V,B, QT ]

with respect to potential V . This sharpens some classical results of T. Kato [16]
and Lemma 5.2 of P. Hess [14], assuming positivity of c(x, t) and β(x). Al-
though D. Daners and P. Koch removed these restrictions on Section 14 of [10]
under slightly less general boundary conditions than our’s, in this paper we
are providing an elementary proof of this feature avoiding the use of abstract
functional analytic methods. Our proof reveals in a rather direct way the role
played by the ellipticity of the differential operator L in the underlying theorem,
which can be stated as follows.

Theorem 4.1. For every V1, V2 ∈ F and � ∈ [0, 1], the following inequality

holds

σ[�V1 + (1− �)V2] ≥ � σ[V1] + (1− �)σ[V2]. (14)

Proof. Throughout this proof, we will set

ξ := (ξ1, ..., ξN ), ψ := (ψ1, ...,ψN ) ∈ RN .

Since L is strongly uniformly elliptic in Q̄T with aij = aji, setting

A(x, t) := (aij(x, t))1≤i,j≤N ,
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it is apparent that, for every (x, t) ∈ Ω̄× [0, T ], the bilinear form

a(ξ,ψ) :=
N�

i,j=1

aij(x, t)ξiψj = �A(x, t)ξ,ψ�, ξ,ψ ∈ RN ,

defines a scalar product in RN . Thus, setting

|ξ|a :=
�
a(ξ, ξ), ξ ∈ RN ,

we find from the Cauchy–Schwarz inequality that

2a(ξ,ψ) = 2
N�

i,j=1

aij(x, t)ξiψj ≤ 2|ξ|a|ψ|a ≤ |ξ|2a + |ψ|2a

=
N�

i,j=1

aij(x, t)ξiξj +
N�

i,j=1

aij(x, t)ψiψj

(15)

for all ξ,ψ ∈ RN and (x, t) ∈ Ω̄ × [0, T ]. From this inequality it is easily seen
that the map Q : E → F defined by

Q(u) = −
N�

i,j=1

aij(x, t)
∂u

∂xi

∂u

∂xj
= −a(∇u,∇u), u ∈ E,

is concave. Indeed, by (15), the following chain of inequalities holds for every
u1, u2 ∈ E and � ∈ [0, 1]:

Q(�u1 + (1− �)u2) = −a(∇(�u1 + (1− �)u2),∇(�u1 + (1− �)u2))

= �2Q(u1) + (1− �)2Q(u2)− 2�(1− �)a(∇u1,∇u2)

≥ �2Q(u1) + (1− �)2Q(u2) + �(1− �)(Q(u1) +Q(u2))

= �Q(u1) + (1− �)Q(u2).

Therefore, the map G : E → F defined by

G(u) := (P − c)u+ c+Q(u), u ∈ E,

is concave, because Q(u) is concave and u �→ (P − c)u is linear and, hence,
concave. Our interest in G comes from the fact that, for every ψ ∈ C+,

Pψ

ψ
= G(logψ), (16)

which can be established through a direct, elementary, calculation, whose de-
tails are omitted here.
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Subsequently, we considerer V1, V2 ∈ F , � ∈ [0, 1] and ψ1,ψ2 ∈ C+ arbitrary.
Since ψ ∈ C+ implies ψ, 1/ψ ∈ C(Q̄T ) and ∇ψ ∈ C(Q̄T ,RN ), we have that
ψ�
1 ,ψ

1−�
2 ∈ C+. Thus, the concavity of G(u) yields

[P + �V1 + (1− �)V2](ψ
�
1ψ

1−�
2 )

ψ�
1ψ

1−�
2

= �V1 + (1− �)V2 +
P(ψ�

1ψ
1−�
2 )

ψ�
1ψ

1−�
2

= �V1 + (1− �)V2 +G(log[ψ�
1ψ

1−�
2 ])

= �V1 + (1− �)V2 +G(� logψ1 + (1− �) logψ2)

≥ �V1 + (1− �)V2 + �G(logψ1) + (1− �)G(logψ2)

= �
(P + V1)ψ1

ψ1
+ (1− �)

(P + V2)ψ2

ψ2

≥ � inf
QT

(P + V1)ψ1

ψ1
+ (1− �) inf

QT

(P + V2)ψ2

ψ2
.

Consequently, since the previous inequality holds for every ψ1,ψ2 ∈ C+, we
find that

sup
ψ∈C+

inf
QT

[P + �V1 + (1− �)V2]ψ

ψ
≥ � inf

QT

(P + V1)ψ1

ψ1
+ (1− �) inf

QT

(P + V2)ψ2

ψ2
.

Therefore, by Theorem 3.2,

σ[�V1 + (1− �)V2] ≥ � sup
ψ1∈C+

inf
QT

(P + V1)ψ1

ψ1
+ (1− �) sup

ψ2∈C+

inf
QT

(P + V2)ψ2

ψ2

= �σ[V1] + (1− �)σ[V2],

which ends the proof.

5. Analyticity of Σ(λ) := σ[P + λV,B, QT ]

The main result of this section establishes the analyticity of the principal eigen-
value Σ(λ) (see (3)) with respect to λ. It extends Lemma 15.1 of P. Hess [14],
under the assumption that c(x, t) and β(x) are non-negative, to our more gen-
eral setting. Unfortunately, the proof of [14, Lem. 15.1] contains a gap, as
there was not detailed how to infer the analyticity from M. G. Crandall and P.
H. Rabinowitz [8]. For it, one might adapt the proof of [20, Lem. 2.1.1]. The
main result of this section reads as follows.

Theorem 5.1. For every V ∈ F , the map

Σ(λ) := σ[P + λV,B, QT ], λ ∈ R, (17)
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is real analytic and concave in the sense that Σ��(λ) ≤ 0 for all λ ∈ R. Fur-

thermore, either Σ�� ≡ 0 in R, or there exists a discrete subset Z ⊂ R such that

Σ��(λ) < 0 for all λ ∈ R\Z.

Proof. Set
T (λ) := P + λV, λ ∈ R,

and regard T (λ), λ ∈ R, as a family of closed operators with domain E and
values in F . Then, for every λ0 ∈ R, we can express

T (λ)u = T u+ (λ− λ0)T (1)u, u ∈ E,

where
T := P + λ0V, T (1) := V,

and there exists a constant C > 0 such that

�T (1)u�F = �V u�F ≤ C�u�E + �T u�F , (18)

where

�v�F := �v�∞ + sup
x,y∈Ω,x �=y,

t∈[0,T ]

|v(x, t)− v(y, t)|
|x− y|θ + sup

t,s∈[0,T ],t �=s,
x∈Ω̄

|v(x, t)− v(x, s)|
|t− s| θ2

for all v ∈ F , and

�u�E := �u�C2,1(Q̄T ) +
�

|α|≤2

sup
x,y∈Ω,x �=y,

t∈[0,T ]

|Dα
xv(x, t)−Dα

xv(y, t)|
|x− y|θ

+
�

|β|≤1

sup
t,s∈[0,T ],t �=s,

x∈Ω̄

|Dβ
t v(x, t)−Dβ

t v(x, s)|
|t− s| θ2

for all u ∈ E. Note that, by definition,

�u�F ≤ �u�E for all u ∈ E. (19)

To prove (18), we can argue as follows. By definition of the norm, for every
u ∈ E,

�V u�F = �V u�∞ + sup
x,y∈Ω,x �=y,

t∈[0,T ]

|V (x, t)u(x, t)− V (y, t)u(y, t)|
|x− y|θ

+ sup
t,s∈[0,T ],t �=s,

x∈Ω̄

|V (x, t)u(x, t)− V (x, s)u(x, s)|
|t− s| θ2

.
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Obviously, the first term can be estimated as follows

�V u�∞ ≤ �V �∞�u�∞ ≤ �V �F �u�F .

To estimate the second term, let x, y ∈ Ω be with x �= y and pick t ∈ [0, T ].
Then,

|V (x, t)u(x, t)−V (y, t)u(y, t)|
|x− y|θ ≤ |V (x, t)u(x, t)− V (x, t)u(y, t)|

|x− y|θ

+
|V (x, t)u(y, t)− V (y, t)u(y, t)|

|x− y|θ

≤ �V �∞
|u(x, t)−u(y, t)|

|x− y|θ +
|V (x, t)−V (y, t)|

|x− y|θ �u�∞

≤ �V �∞�u�F + �V �F �u�∞ ≤ 2�V �F �u�F

and hence,

sup
x,y∈Ω,x �=y,

t∈[0,T ]

|V (x, t)u(x, t)− V (y, t)u(y, t)|
|x− y|θ ≤ 2�V �F �u�F .

Similarly,
|V (x, t)u(x, t)− V (x, s)u(x, s)|

|t− s| θ2
≤ 2�V �F �u�F .

Hence, taking sups yields

sup
t,s∈[0,T ],t �=s,

x∈Ω̄

|V (x, t)u(x, t)− V (x, s)u(x, s)|
|t− s| θ2

≤ 2�V �F �u�F .

Thus, setting C := 5�V �F and using (19), we find that, for every u ∈ E,

�T (1)u�F = �V u�F ≤ 5�V �F �u�F ≤ C�u�F + �T u�F ≤ C�u�E + �T u�F

and so, (18) holds. Consequently, according to Theorem 2.6 of Section VII.2.2
of T. Kato [17], which extends a previous result of F. Rellich [26] for self-adjoint
families, T (λ) is a real holomorphic family of type (A). Thus, by Remark 2.9
of Section VII.2.3 of T. Kato [17], it follows from Theorem 2.9 that Σ(λ) is real
analytic in λ, as well as the map

R → F
λ �→ ϕ(λ)

where ϕ(λ) � 0 is the unique eigenfunction of Σ(λ) such that
�
QT

ϕ2(λ) = 1.
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Now, we will show that

Σ��(λ) ≤ 0 for all λ ∈ R. (20)

Although this is a rather standard fact on concave functions from elementary
calculus, by the sake of completeness we will give complete details here. Ac-
cording to Theorem 4.1, for every λ1,λ2 ∈ R and � ∈ (0, 1],

Σ(�λ1 + (1− �)λ2) = σ[P + �λ1V + (1− �)λ2V,B, QT ]

≥ � σ[P + λ1V,B, QT ] + (1− �)σ[P + λ2V,B, QT ]

= �Σ(λ1) + (1− �)Σ(λ2).

Thus,
Σ(λ2 + �(λ1 − λ2)) ≥ Σ(λ2) + �(Σ(λ1)− Σ(λ2))

and hence,
Σ(λ2 + �(λ1 − λ2))− Σ(λ2)

�
≥ Σ(λ1)− Σ(λ2).

Therefore, for every � ∈ (0, 1] and λ1,λ2 ∈ R with λ1 > λ2,

Σ(λ2 + �(λ1 − λ2))− Σ(λ2)

�(λ1 − λ2)
≥ Σ(λ1)− Σ(λ2)

λ1 − λ2
. (21)

Consequently, letting � ↓ 0 yields

lim
�→0

Σ(λ2 + �(λ1 − λ2))− Σ(λ2)

�(λ1 − λ2)
≥ Σ(λ1)− Σ(λ2)

λ1 − λ2

for every λ1 > λ2. In other words,

Σ�(λ2) ≥
Σ(λ1)− Σ(λ2)

λ1 − λ2
if λ1 > λ2.

So, by the mean value theorem, we find that, for every λ1,λ2 ∈ R with λ1 > λ2,
there exists λ ∈ (λ2,λ1) such that

Σ�(λ2) ≥ Σ�(λ). (22)

So, Σ��(λ) ≤ 0 for all λ ∈ R. Indeed, if there would exist λ2 ∈ R such that
Σ��(λ2) > 0, then Σ� should be increasing in a neighborhood of λ2, which
contradicts (22). Finally, since Σ is real analytic, also Σ�� is real analytic and
therefore, either Σ�� = 0, or the set of zeroes of Σ�� must be discrete, possibly
empty. The proof is complete.

Naturally, combining Proposition 2.1 with Theorem 5.1 the next result
holds.
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Proposition 5.2. For any given V ∈ F , the map

Σ(λ) := ΣV (λ) = σ[P + λV,B, QT ], λ ∈ R,

satisfies the following properties:

(a) V � 0 implies Σ�(λ) > 0 for all λ ∈ R.

(b) V � 0 implies Σ�(λ) < 0 for all λ ∈ R.

Proof. Suppose that V � 0 on QT . Then, by Proposition 2.1 and Theorem 5.1,
we find that Σ�(λ) ≥ 0 for all λ ∈ R. Moreover, by analyticity, either Σ� ≡ 0, or
Σ� vanishes, at most, on a discrete set. Since V � 0, Σ(λ) cannot be constant.
Thus, it satisfies the second option. Let us suppose that Σ�(λ0) = 0 for some
λ0 ∈ R. Then, by Theorem 5.1,

0 ≤ Σ�(λ) = Σ�(λ)− Σ�(λ0) =

� λ

λ0

Σ�� ≤ 0 for all λ ≥ λ0.

So, Σ� = 0 in [λ0,∞) which is impossible. Therefore, Σ�(λ) > 0 for all λ ∈ R,
which ends the proof of Part (a).

Now, suppose that V � 0 in QT . Then,

ΣV (λ) = Σ−V (−λ) for all λ ∈ R, (23)

and hence, since −V � 0, Part (a) yields

Σ�
V (λ) = −Σ�

−V (−λ) < 0

for all λ ∈ R, which ends the proof of Part (b).

6. Global behavior of Σ(λ) := σ[P + λV,B, QT ]

The next result provides us with a simple periodic-parabolic counterpart of [22,
Th. 9.1]. Note that both results differ substantially.

Theorem 6.1. Given V ∈ F , consider the map Σ(λ) defined in (17). Then:

(a) If there exists x+ ∈ Ω such that V (x+, t) > 0 for all t ∈ [0, T ], or,

alternatively, � T

0
min
x∈Ω̄

V (x, t) dt > 0, (24)

then,

lim
λ↓−∞

Σ(λ) = −∞. (25)
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(b) If there exists x− ∈ Ω such that V (x−, t) < 0 for all t ∈ [0, T ], or,

alternatively, � T

0
max
x∈Ω̄

V (x, t) dt < 0, (26)

then,

lim
λ↑∞

Σ(λ) = −∞. (27)

(c) If there exist x+, x− ∈ Ω such that V (x+, t) > 0 and V (x−, t) < 0 for all

t ∈ [0, T ], then (25) and (27) are satisfied and hence, for some λ0 ∈ R,

Σ(λ0) = max
λ∈R

Σ(λ). (28)

Moreover, Σ�(λ0) = 0,Σ�(λ) > 0 if λ < λ0, and Σ�(λ) < 0 if λ > λ0. So,

λ0 is unique.

Proof. Suppose that there exists x+ ∈ Ω such that V (x+, t) > 0 for all t ∈
[0, T ]. Then, by continuity, there exists R > 0 such that

B+ := BR(x+) � Ω and min
B̄+×[0,T ]

V = ω > 0.

Thus, according to Proposition 2.6,

Σ(λ) = σ[P + λV,B, QT ] < σ[P + λV,D, B+ × (0, T )],

and hence, by Proposition 2.1, we find that

Σ(λ) < σ[P,D, B+ × (0, T )] + λω for all λ < 0.

Letting λ ↓ −∞ in this inequality yields (25).
Now, suppose (24). Then, thanks to Propositions 2.1 and 2.8, it becomes

apparent that, for every λ < 0,

Σ(λ) = σ[P + λV,B, QT ] ≤ σ[P + λmin
x∈Ω̄

V (x, t),B, QT ]

= σ[P,B, QT ] +
λ

T

� T

0
min
x∈Ω̄

V (x, t) dt.

Therefore, by (24), letting λ ↓ −∞ in this inequality also provides us with (25).
This completes the proof of Part (a). Part (b) follows easily from (23), by
applying Part (a) to the potential −V .

Finally, suppose that there exist x+, x− ∈ Ω such that

V (x+, t) > 0 and V (x+, t) < 0 for all t ∈ [0, T ].
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Then, by Parts (a) and (b), (25) and (27) hold. Thus, there exists λ0 ∈ R
satisfying (28). Obviously, Σ�(λ0) = 0. Suppose that Σ�(λ−) ≤ 0 for some
λ− < λ0. Then,

0 ≤ −Σ�(λ−) = Σ�(λ0)− Σ�(λ−) =

� λ0

λ−

Σ�� ≤ 0

and hence,

Σ�(λ−) = −
� λ0

λ−

Σ�� = 0.

So, Σ�� = 0 on [λ−,λ0], which implies Σ�� = 0 in R, by analyticity. Conse-
quently, there are two constants, a, b ∈ R, such that,

Σ(λ) = aλ+ b for all λ ∈ R.

By (25) and (27), this is impossible. Therefore, Σ�(λ) > 0 for all λ < λ0

Similarly, Σ�(λ) < 0 for all λ > λ0. This ends the proof.

As illustrated by Figure 1, the two sufficient conditions for (25) established
by Theorem 6.1(a) are supplementary, even when V � 0.

Figure 1: Two admissible nodal configurations of V .

In Figure 1, the dark regions represent the set of (x, t) ∈ QT where V (x, t) >
0, while the white regions are the portions of QT where V (x, t) = 0. In Case
(A), V (x, t) > 0 for all t ∈ [0, T ] as soon as x ∈ Ω is chosen appropriately, but

� T

0
min
x∈Ω̄

V (x, t) dt = 0.
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Contrarily, in Case (B), there cannot exist a point x ∈ Ω for which V (x, t) > 0
for all t ∈ [0, T ], though

� T

0
min
x∈Ω̄

V (x, t) dt ≥
� t2

t1

min
x∈Ω̄

V (x, t) dt > 0

provided V (x, t) > 0 for all (x, t) ∈ Ω̄ × (t1, t2). Similarly, the two sufficient
conditions for (27) established by Theorem 6.1(b) are supplementary, even in
case V � 0.

Note that, since

� T

0
min
x∈Ω̄

V (x, t) dt ≤
� T

0
max
x∈Ω̄

V (x, t) dt,

conditions (24) and (26) cannot hold simultaneously. Moreover, if there exists
x+ ∈ Ω for which V (x+, t) > 0 for all t ∈ [0, T ], then

� T

0
max
x∈Ω̄

V (x, t) dt ≥
� T

0
V (x+, t) dt > 0

and hence, (26) fails. Similarly, if there exists x− ∈ Ω such that V (x−, t) < 0
for all t ∈ [0, T ], then

� T

0
min
x∈Ω̄

V (x, t) dt ≤
� T

0
V (x−, t) dt < 0

and so, (24) fails.
Note that, under the assumptions of Theorem 6.1(a),

� T

0
max
x∈Ω̄

V (x, t) dt > 0. (29)

Similarly, any of the assumptions of Theorem 6.1(b) implies

� T

0
min
x∈Ω̄

V (x, t) dt < 0. (30)

Therefore, the next result provides us with a substantial extension of Theo-
rem 6.1. The first assertions of Parts (a) and (b) generalize [14, Lem. 15.4],
going back to A. Beltramo and P. Hess [4], where it was assumed that c ≥ 0
and β ≥ 0, and Proposition 3.2 of D. Daners [9], where no assumption on the
sign of c(x, t) was imposed, but only for Dirichlet boundary conditions.

Theorem 6.2. Given V ∈ F , consider the map Σ(λ) defined in (17). Then:
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(a) Condition (29) implies limλ↓−∞ Σ(λ) = −∞, and

� T

0
max
x∈Ω̄

V (x, t) dt < 0 (31)

implies limλ↓−∞ Σ(λ) = ∞.

(b) Condition (30) implies limλ↑∞ Σ(λ) = −∞, and

� T

0
min
x∈Ω̄

V (x, t) dt > 0 (32)

implies limλ↑∞ Σ(λ) = ∞.

(c) If � T

0
min
x∈Ω̄

V (x, t) dt < 0 <

� T

0
max
x∈Ω̄

V (x, t) dt,

then Σ(λ0) = maxλ∈R Σ(λ) holds for some λ0 ∈ R. Moreover, Σ�(λ0) =
0,Σ�(λ) > 0 if λ < λ0, and Σ�(λ) < 0 if λ > λ0. Thus, λ0 is unique.

Proof. Since Part (b) follows easily from Part (a) and, arguing as in Theo-
rem 6.1, Part (c) is an easy consequence of Parts (a) and (b), it suffices to
prove Part (a). Suppose (29). Then, arguing as in A. Beltramo and P. Hess [4],
there exists a T -periodic function κ ∈ C2(R;Ω) such that

� T

0
V (κ(t), t) dt > 0.

Essentially, κ(t) follows the points where V (·, t) takes the maximum, even if
they lie on the boundary! Let ψ : RN ×R → RN ×R be the C2-diffeomorphism
defined by

(y, t) = ψ(x, t) := (x− κ(t), t).

Then, the original boundary value problem
�

Pϕ+ λV ϕ = Σ(λ)ϕ in Ω× R,
Bϕ = 0 on ∂Ω× R, (33)

where ϕ ∈ E, ϕ � 0, is transformed into
�

Pψϕψ + λVψϕψ = Σ(λ)ϕψ in ψ(Ω× R),
Bψϕψ = 0 on the lateral boundary of ψ(Ω× R), (34)

where Pψ is a certain periodic-parabolic operator of the same type as P (see
the proof of [14, Lem. 15.4]), Bψ is a boundary operator of the same type as
B whose explicit expression is not important here, and

Vψ = V ◦ ψ−1|ψ(Ω̄×R), ϕψ = ϕ ◦ ψ−1|ψ(Ω̄×R).
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By construction,

p :=

� T

0
Vψ(0, t) dt =

� T

0
V (κ(t), t) dt > 0.

Moreover, since Vψ is uniformly continuous, there exists ε > 0 such that B̄ε ×
R ⊂ ψ(Ω× R) and

Vψ(y, t) ≥ c(t) = Vψ(0, t)−
p

2T
for all (y, t) ∈ B̄ε × R,

where Bε stands for the ball of radius ε centered at 0.
According to (34), the restriction h := ϕψ|B̄ε×R provides us with a positive

strict supersolution of

(Pψ + λVψ − Σ(λ),D, Bε × (0, T )) .

Thus, thanks to Theorem 1.1,

σ [Pψ + λVψ − Σ(λ),D, Bε × (0, T )] > 0.

Equivalently,
Σ(λ) < σ [Pψ + λVψ,D, Bε × (0, T )] .

Since Vψ ≥ c, we have that λVψ ≤ λc for all λ < 0. Hence, by Propositions 2.1
and 2.8, it becomes apparent that

Σ(λ) < σ [Pψ + λc(t),D, Bε × (0, T )] = σ [Pψ,D, Bε × (0, T )] +
λ

T

� T

0
c(t) dt.

On the other hand, by the definition of c(t) and p, we have that
� T

0
c(t) dt =

� T

0
Vψ(0, t) dt−

p

2
= p− p

2
=

p

2
.

Therefore,

Σ(λ) < σ [Pψ,D, Bε × (0, T )] +
pλ

2T
for all λ < 0.

Since p > 0, letting λ → −∞ shows that Σ(λ) → −∞. This ends the proof of
the first claim.

Finally, suppose (31). Then, for every λ < 0, we have that

λV (x, t) ≥ λmax
x∈Ω̄

V (x, t)

and hence, by Propositions 2.1 and 2.8,

Σ(λ) ≥ σ[P,B,Ω× (0, T )] +
λ

T

� T

0
max
x∈Ω̄

V (x, t) dt.

Thanks to (31), letting λ ↓ −∞ in the previous estimate yields Σ(λ) → ∞ and
concludes the proof.
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Although the construction in the first part of the proof follows mutatis

mutandis the proof of Lemma 15.4 of P. Hess [14], the second half seems new.
Anyway, thanks to Theorem 1.1, it is considerably shorter than the extremely
intricate comparison argument of the proof of [14, Lem. 15.4].

7. Principal eigenvalues of the weighted boundary value
problem

This section studies the weighted boundary value problem
�

Pϕ = λW (x, t)ϕ in QT ,
Bϕ = 0 on ∂Ω× [0, T ],

(35)

where W ∈ F and λ ∈ R. Denoting V := −W and setting

Σ(λ) := σ[P + λV,B, QT ] = σ[P − λW,B, QT ], λ ∈ R,

it is apparent that λ∗ ∈ R is a principal eigenvalue of (35) if Σ(λ∗) = 0.
The next theorem characterizes the existence of the principal eigenvalue

of (35) when W � 0, i.e., V = −W � 0.

Theorem 7.1. Suppose W � 0, which implies
� T
0 maxx∈Ω̄ W (x, t) dt > 0.

Then, (35) possesses a principal eigenvalue if and only if

Σ(−∞) := lim
λ↓−∞

Σ(λ) > 0. (36)

Moreover, it is unique if it exists and if we denote it by λ∗
, then, λ∗

is a simple

eigenvalue of (P − λW,W ) as discussed by Crandall and Rabinowitz [8], i.e.,

Wϕ∗ /∈ R[P − λ∗W ] (37)

for all principal eigenfunction ϕ∗ � 0 of (35) associated to λ∗
.

Proof. Since V = −W � 0, according to Proposition 5.2, Σ�(λ) < 0 for all
λ ∈ R. Thus, the limit (36) is well defined. It might be finite, or infinity.
Indeed, if

min
Q̄T

W > 0, (38)

then, for every λ < 0, we have that

Σ(λ) = σ[P − λW,B, QT ] ≥ σ[P,B, QT ]− λmin
Q̄T

W

and hence, letting λ ↓ −∞ yields Σ(−∞) = ∞. Now, instead of (38), assume
that there exists an open set Ω0 � Ω such that

W = 0 on Ω0 × [0, T ].



WEIGHTED PERIODIC-PARABOLIC PROBLEMS 311

Then,
Σ(λ) = σ[P − λW,B, QT ] ≤ σ[P,D,Ω0 × (0, T )]

for all λ ∈ R and hence,

Σ(−∞) ≤ σ[P,D,Ω0 × (0, T )].

On the other hand, by Theorem 6.1(b),

lim
λ↑∞

Σ(λ) = −∞. (39)

Suppose Σ(−∞) > 0. Then, Σ(λ1) > 0 for some λ1 ∈ R and hence, by (39),
there exists a unique λ∗ ∈ R such that Σ(λ∗) = 0. Conversely, if there exists
λ∗ ∈ R such that Σ(λ∗) = 0, then, Σ(λ) > 0 for all λ < λ∗ and therefore,
Σ(−∞) > 0.

It remains to prove (37). Let ϕ(λ) denote the principal eigenfunction asso-
ciated to Σ(λ) normalized so that

�
QT

ϕ2(λ) = 1. By Theorem 5.1, Σ(λ) and

ϕ(λ) are real analytic in λ. Thus, differentiating with respect to λ the identity

(P − λW )ϕ(λ) = Σ(λ)ϕ(λ), λ ∈ R,

we find that

(P − λW )ϕ�(λ)−Wϕ(λ) = Σ�(λ)ϕ(λ) + Σ(λ)ϕ�(λ), λ ∈ R.

Thus, since Σ(λ∗) = 0, particularizing at λ = λ∗ yields

(P − λ∗W )ϕ�(λ∗) = Wϕ(λ∗) + Σ�(λ∗)ϕ(λ∗). (40)

Set ϕ∗ := ϕ(λ∗). To prove (37) we can argue by contradiction. Suppose that

Wϕ∗ ∈ R[P − λ∗W ].

Then, (40) implies
Σ�(λ∗)ϕ∗ ∈ R[P − λ∗W ]

and, since Σ�(λ∗) < 0, it becomes apparent that

N [P − λ∗W ] = span [ϕ∗] and ϕ∗ ∈ R[P − λ∗W ].

As, for every ω > 0, we have that

(P − λ∗W + ω)ϕ∗ = ωϕ∗

and, owing to Theorem 1.1, (P − λ∗W + ω)−1 is strongly order preserving,
because

σ[P − λ∗W + ω,B, QT ] = ω > 0,
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by the Krein–Rutman theorem (see [22, Th. 6.3]), it becomes apparent that

1

ω
= spect (P − λ∗W + ω)−1.

On the other hand, since ϕ∗ ∈ R[P − λ∗W ], there exists u ∈ E such that

(P − λ∗W + ω)u = ωu+ ϕ∗.

Equivalently,
1

ω
u− (P − λ∗W + ω)−1u =

1

ω
ϕ∗ > 0,

which contradicts Theorem 6.3(f)(b) of [22] and ends the proof.

Remark 7.2. Based on a very recent technical device of D. Daners and C.
Thornett [12], one can characterize the non-negative potentials W for which
Σ(−∞) < ∞. This analysis will appear in [11].

Remark 7.3. Under the assumptions of Theorem 7.1, when Σ(−∞) > 0 we
have that 





λ∗ > 0 if Σ(0) > 0,
λ∗ = 0 if Σ(0) = 0,
λ∗ < 0 if Σ(0) < 0,

as it has been illustrated in Figure 2.

Figure 2: The graph of Σ(λ) when W � 0 and Σ(−∞) > 0.

Essentially, the proof of (37) is based on the fact that Σ�(λ∗) �= 0. Thus,
the last assertion of Theorem 7.1 holds true as soon as

Σ(λ∗) = 0 and Σ�(λ∗) �= 0.

Consequently, the proof of Theorem 7.1 can be easily adapted to get the next
result, whose proof is omitted here.
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Theorem 7.4. Suppose W � 0, which implies
� T
0 minx∈Ω̄ W (x, t) dt < 0.

Then, (35) possesses a principal eigenvalue if and only if

Σ(∞) := lim
λ↑∞

Σ(λ) > 0.

Moreover, it is unique if it exists and if we denote it by λ∗
, then, λ∗

is a simple

eigenvalue of (P − λW,W ) as discussed by Crandall and Rabinowitz [8].

According to Proposition 5.2, when W � 0 we have that Σ�(λ) > 0 for all
λ ∈ R. Figure 3 shows the graph of Σ(λ) in this case. Since Σ�(λ) > 0 for all
λ ∈ R, we have that λ∗ < 0 if Σ(0) > 0, λ∗ = 0 if Σ(0) = 0, and λ∗ > 0 if
Σ(0) < 0.

Figure 3: The graph of Σ(λ) when W � 0 and Σ(∞) > 0.

According to Theorems 7.1 and 7.4, if W �= 0 has constat sign, then, the
problem (35) has a principal eigenvalue, if and only if,

σ[P − λW,B, QT ] > 0 for some λ ∈ R.

In the general case when W changes sign, as a byproduct of Theorem 6.1(c),
the next result holds.

Theorem 7.5. Suppose

� T

0
min
x∈Ω̄

W (x, t) dt < 0 <

� T

0
max
x∈Ω̄

W (x, t) dt. (41)

Then, by Theorem 6.1(c),

lim
λ↓−∞

Σ(λ) = lim
λ↑∞

Σ(λ) = −∞.
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Moreover, there exists a unique λ0 ∈ R such that

Σ(λ0) = max
λ∈R

Σ(λ).

Furthermore, Σ�(λ0) = 0, Σ�(λ) > 0 if λ < λ0, and Σ�(λ) < 0 if λ > λ0.

Therefore, (35) possesses a principal eigenvalue, if and only if, Σ(λ0) ≥ 0.
Moreover, λ0 provides us with unique principal eigenvalue of (35) if Σ(λ0) =
0, while (35) possesses two principal eigenvalues, λ∗

− < λ∗
+, if Σ(λ0) > 0.

Actually, in this case,

λ∗
− < λ0 < λ∗

+,

and λ∗
− and λ∗

+ are simple eigenvalues of (P−λW,W ) as discussed by Crandall

and Rabinowitz [8].

Since Σ�(λ0) = 0, zero cannot be a simple eigenvalue of (P − λ0W,W ) if
Σ(λ0) = 0. When Σ(λ0) > 0, then:

λ∗
− < 0 < λ∗

+ if Σ(0) > 0,

0 = λ∗
− < λ∗

+ if Σ(0) = 0 and Σ�(0) > 0,

λ∗
− < λ∗

+ = 0 if Σ(0) = 0 and Σ�(0) < 0,

0 < λ∗
− < λ∗

+ if Σ(0) < 0 and Σ�(0) > 0,

λ∗
− < λ∗

+ < 0 if Σ(0) < 0 and Σ�(0) < 0.

In particular, (35) admits two eigenvalues with contrary sign if, and only if,
σ[P,B, QT ] > 0. Figure 4 shows the graph of Σ(λ) when Σ(0) �= 0.

Figure 4: The graph of Σ(λ) when W changes sign and Σ(λ0) > 0.

Naturally, from this abstract theory the following generalized version of a
classical result of K. J. Brown and S. S. Lin [6] holds.
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Corollary 7.6. Suppose Σ(0) = 0 and W ∈ F satisfies (41). Then:

(a) The problem (35) possesses a negative principal eigenvalue, λ∗
− < 0, if,

and only if, Σ�(0) < 0. Moreover, in such case, λ∗
− is the unique non-zero

eigenvalue of (35) and Σ�(λ∗
−) > 0. Therefore, λ∗

− is a simple eigenvalue

of (P − λW,W ) as discussed by Crandall and Rabinowitz [8].

(b) The problem (35) possesses a positive principal eigenvalue, λ∗
+ > 0, if,

and only if, Σ�(0) > 0. Moreover, in such case, λ∗
+ is the unique non-zero

eigenvalue of (35) and Σ�(λ∗
+) < 0. Therefore, λ∗

+ is a simple eigenvalue

of (P − λW,W ) as discussed by Crandall and Rabinowitz [8].

When, in addition, Σ�(0) = 0, then λ = 0 is the unique principal eigenvalue

of (35), as illustrated in the third picture of Figure 5.

Figure 5 sketches each of the possible cases considered by Corollary 7.6.

Figure 5: The graph of Σ(λ) when W changes sign and Σ(0) = 0.

In the classical elliptic context of K. J. Brown and S. S. Lin [6] and the
periodic-parabolic counterpart of P. Hess [14], it is imposed that Γ0 = ∅, β = 0
on Γ1 = ∂Ω, and c = 0 in QT . In other words, B is the Neumann operator on
∂Ω and c = 0. Thus, since P1 = 0 in QT and B1 = 0 on ∂Ω, it is apparent
that λ = 0 provides us with an eigenvalue of the problem (35), and that ϕ = 1
is a principal eigenfunction associated to λ = 0. Thus, Σ(0) = 0 and

(P − λW )ϕ(λ) = Σ(λ)ϕ(λ), λ ∈ R,

where ϕ(0) = 1 and ϕ(λ) is real analytic. Hence, differentiating with respect
to λ and particularizing at λ = 0, it becomes apparent that

Pϕ�(0)−W = Σ�(0).
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Therefore, integrating in QT yields

Σ�(0) = − 1

|QT |

�

QT

W (x, t) dx dt, (42)

because �

QT

Pϕ�(0) =

�

QT

∂tϕ
�(0) +

�

QT

Lϕ�(0) = 0. (43)

Indeed, since ϕ�(0) ∈ F , for every x ∈ Ω̄, we have that

� T

0
∂tϕ

�(0) = ϕ�(0)(x, T )− ϕ�(0)(x, 0) = 0.

Moreover, for every t ∈ [0, T ], integrating by parts in Ω it becomes apparent
that �

Ω
Lψ�(0) dx =

�

Ω
ϕ�(0)L∗1 dx = 0.

Therefore, (43), and hence (42), holds. Consequently, Corollary 7.6 can be
reformulated in terms of the sign of the total mass

�
QT

W , providing us with
the following periodic-parabolic counterpart of the main theorem of K. J. Brown
and S. S. Lin [6].

Corollary 7.7. Suppose Γ0 = ∅, β = 0 on Γ1 = ∂Ω, c = 0 in QT , and W ∈ F
satisfies (41). Then:

(a) The problem (35) possesses a negative principal eigenvalue, λ∗
− < 0, if,

and only if,
�
QT

W > 0. Moreover, in such case, λ∗
− is the unique non-

zero eigenvalue of (35) and Σ�(λ∗
−) > 0. Therefore, λ∗

− is a simple eigen-

value of (P − λW,W ) as discussed by Crandall and Rabinowitz [8].

(b) The problem (35) possesses a positive principal eigenvalue, λ∗
+ > 0, if,

and only if,
�
QT

W < 0. Moreover, in such case, λ∗
+ is the unique non-

zero eigenvalue of (35) and Σ�(λ∗
+) < 0. Therefore, λ∗

+ is a simple eigen-

value of (P − λW,W ) as discussed by Crandall and Rabinowitz [8].

If
�
QT

W = 0, then λ = 0 is the unique principal eigenvalue of (35).
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Instituto de Matemática Interdisciplinar

Universidad Complutense de Madrid

28040-Madrid, Spain

E-mail: Lopez Gomez@mat.ucm.es

Received May 18, 2017

Revised September 4, 2017



Rend. Istit. Mat. Univ. Trieste
Volume 49 (2017), 319–333
DOI: 10.13137/2464-8728/16218

Dirichlet problems without asymptotic
conditions on the nonlinear term

Gabriele Bonanno

Dedicated with immense esteem to Jean Mawhin

on occasion of his 75th birthday

Abstract. This paper is devoted, with my great esteem, to Jean

Mawhin. Jean Mawhin, who is for me a great teacher and a very good

friend, is a fundamental reference for the research in nonlinear dif-

ferential problems dealt both with topological and variational methods.

Here, owing to this occasion in honor of Jean Mawhin, Dirichlet prob-

lems depending on a parameter are investigated, ensuring the existence

of non-zero solutions without requiring asymptotic conditions neither

at zero nor at infinity on the nonlinear term which, in addition, is not

forced by subcritical or critical growth. The approach is based on a com-

bination of variational and topological tools that in turn are developed

by starting from a fundamental estimate.

Keywords: Nonlinear eigenvalue problems; critical point; sub-super solutions.
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1. Introduction

Nonlinear eigenvalue problems have been widely investigated over years (see,
for instance, [1, 2, 3, 10, 12, 20, 21, 26, 27, 30, 33, 37] and the references therein)
and even today they are a major topic of nonlinear analysis (see, for instance,
[8, 9, 23, 24, 31, 34]). In this paper, the following Dirichlet problem depending
on a positive parameter λ is investigated






−∆u = λf(u) in Ω

u = 0 on ∂Ω,
(Dλ)

where Ω is a bounded domain in R
n, n ≥ 3, and f : R → R is a continuous

function. Precisely, by requiring only an algebraic condition on the nonlinear
term, which expresses a suitable growth of f in an arbitrary real interval [d, s],
the existence of at least one non-zero solution for (Dλ) is obtained for each λ
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belonging to a precise real interval (see Corollary 3.2). Our results are true
also for n = 1 and, as an example, here, a special case is presented.

Theorem 1.1. Let f : [0,+∞[→ [0,+∞[ be a continuous function. Assume

that there are two positive constants d, s, with d < s, such that

maxt∈[0,s] f(t)

s
<

� d

0
f(t)dt

d2
. (1.1)

Then, for each λ ∈




8

d2
� d

0
f(t)dt

, 8
s

max
t∈[0,s]

f(t)




, the problem






−u�� = λf(u) in ]0, 1[

u(0) = u(1) = 0
(Tλ)

admits at least one positive classical solution uλ ∈ C2([0, 1]) such that �uλ�∞ ≤
s.

In Theorem 1.1, no asymptotic condition at zero and at infinity on f is
requested. The unique assumption is essentially a suitable growth on f in an
arbitrary interval [d, s], that is, condition (1.1). Clearly, if f is sublinear at
zero, that is

lim
t→0+

f(t)

t
= +∞, (1.2)

condition (1.1) in Theorem 1.1 is satisfied and the interval of parameters be-
comes �

0, 8 sup
s>0

s

max
t∈[0,s]

f(t)

�
.

Of course, condition (1.2) is in turn more general than the classical

f(0) > 0. (1.3)

On the contrary, condition (1.1) can be satisfied also in the cases for which f
is superlinear, or linear, at zero, that is, Dirichlet problems (Tλ) (and, more
generally, (Dλ)) may admit positive solutions even if condition (1.2) is not
verified.

The existence of non-zero solutions for nonlinear Dirichlet problems (Dλ)
has been widely studied in several papers by topological methods (see for in-
stance the paper of Amann [1]) as well as, by variational methods (see for
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instance the paper of Crandall-Rabinowitz [20]). In these latest papers, one of
the key assumptions in order to obtain solutions for ordinary and elliptic case
respectively, is condition (1.3). Moreover, also nonlinear problems with specific
equations having a nonlinear term satisfying (1.2) and for which f(0) = 0 have
been studied. In this direction, we recall the paper of Boccardo-Escobado-
Peral [10], where the existence of one non-zero solution, without requiring the
restriction of a subcritical growth on the nonlinear term, is established, as well
as the paper of Ambrosetti-Brezis-Cerami [3], where the existence of two pos-
itive solutions, under a growth at most critical, has been obtained again for a
combined effect of concave and convex nonlinearities. It is worth noticing that,
in all previous cited papers, the existence of the best parameter λ∗, for which
the problem (Dλ) admits positive solutions for each λ ≤ λ∗, has been proved.
However, such a parameter λ∗ has not been numerically determined, but only
lower or upper bound estimations have been obtained. Indeed, on estimates
from above, that is upper bounds of λ∗, there is a very wide literature (see, for
instance, [3, 19, 20, 22, 34] and the references therein), while, at the best of
our knowledge, only few papers are devoted to estimate from below the best
value λ∗. Precisely, a lower bound of λ∗ has been established in [34] for the
specific nonlinear term f(u) = uq + up, 0 < q < 1 < p, and only for n = 1.
In [7], in the case n = 2, and in [11] when f(0) �= 0. In this paper, as a conse-
quence of our main result a lower bound of the best parameter λ∗ is obtained.
For instance, in the ordinary case, from Theorem 1.1 the following estimate is
established

λ∗ ≥ 8 sup
s>0

s

max
[0,s]

f
.

Summarizing, in this paper two novel aspects, which are different among them,
are pointed out. On one hand, the existence of non-zero solutions to (Dλ) with-
out requiring the sublinearity at zero of the nonlinear term (see Corollary 3.2
and Example 3.10) and, on the other hand, when the nonlinear term is sublin-
ear at zero, a precise lower bound of the best parameter for which (Dλ) admits
positive solutions is given (see Corollary 3.3, Remark 3.12 and Example 3.11).

The paper is organized as follows. The main result, Theorem 3.1, is pre-
sented in Section 3 and it establishes the existence of positive solutions for
elliptic Dirichlet problems without requiring any condition at zero and at infin-
ity. As a consequence, Corollary 3.2 and Corollary 3.3 are obtained. The first
one is the parametric version of Theorem 3.1 and the second one is a special case
when the nonlinear term is sublinear at zero. It is also pointed out that such re-
sults are true for the ordinary case (see Corollary 3.6). It is worth noticing that
Corollary 3.2 can be applied to problems where the nonlinear term may be not
sublinear at zero for which the classical results as [1] and [20] cannot be applied
(see Remark 3.8 and Example 3.10) and Corollary 3.3 establishes a lower bound
of the best parameter λ∗ (see Example 3.11 and Remark 3.12). Previously, in
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Section 2, the result given in [11], that is Theorem 2.1, is recalled. Here, a
variational proof, different from the topological proof established in [11], based
on the fixed point theorem obtained by Arino-Gautier-Penot [5], is proposed.
We point out that a fundamental tool for such proofs, both variational and
topological, is a fruitful estimate due to Talenti in [36] (see the beginning of
Section 2).

2. Preliminaries and introductory results

Fix a bounded domain Ω ⊆ R
n, n ≥ 3, with a C1,1− boundary ∂Ω and

v ∈ L∞(Ω). Moreover, consider the problem






−∆u = v(x) in Ω

u = 0 on ∂Ω.
(P )

It is well known that (P ) admits a unique strong solution u ∈ W 1,2
0 (Ω) ∩

W 2,p(Ω), for all p ≥ 1 (see, for instance, [25, Theorem 9.15]); in particular,
u ∈ L∞(Ω) (see, for instance, [25, Theorem 7.10]). Moreover, by [36, Theorem 2
and Remark 1] one has

�u�∞ ≤ B�v�∞ (2.1)

where

B =
1

2nπ

�
Γ
�
1 +

n

2

�
|Ω|

� 2
n
. (2.2)

Now, we point out the following result.

Theorem 2.1. Let f : R → R be a continuous function. Assume that there is

r > 0 such that

max
t∈[−Br,Br]

|f(t)| ≤ r, (2.3)

where B is given by (2.2).
Then, the problem






−∆u = f(u) in Ω

u = 0 on ∂Ω
(D)

admits at least one strong solution u0 ∈ W 1,2
0 (Ω)∩W 2,p(Ω), for all p ≥ 1, such

that �u0�∞ ≤ Br.
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Proof. Let fr : R → R be the continuous function defined as follows

fr(t) =






f(t) if |t| ≤ Br

f(Br) if t > Br

f(−Br) if t < −Br.

Moreover, put Fr(t) =

� t

0
fr(τ)dτ for all t ∈ R. Clearly, one has fr(t) ≤

max
t∈[−Br,Br]

|f(t)| for all t ∈ R, for which from (2.3) we get

fr(t) ≤ r (2.4)

for all t ∈ R. Now, take X = W 1,2
0 (Ω) endowed with the norm

�u� =

��

Ω
|∇u(x)|2dx

� 1
2

,

and put

Φ(u) =
1

2
�u�2 Ψr(u) =

�

Ω
Fr(u(x))dx Ir(u) = Φ(u)−Ψr(u)

for all u ∈ X. Standard computations show that Ir is continuously Fréchet
differentiable and weakly lower semi-continuous. Moreover, from (2.4) it follows
that Ir is coercive. Therefore, the direct method of the calculus of variations
(see, for instance, [29, Theorem 1.1]) ensures the existence of a global minimizer
u0. It follows that I �r(u0) = 0 and u0 is a weak solution of the problem






−∆u = fr(u) in Ω

u = 0 on ∂Ω.

Owing to (2.1) one has �u0�∞ ≤ B�fr(u0)�∞. So, from (2.4) one has

�u0�∞ ≤ B supt∈R |fr(t)| ≤ Br, that is

�u0�∞ ≤ Br.

Therefore, one has f(u0(x)) = fr(u0(x)) for all x ∈ Ω for which u0 is also a
weak solution of (D) and the conclusion is achieved.

As a consequence of Theorem 2.1 the following result is obtained.
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Corollary 2.2. Let f : R → R be a nonnegative continuous function such

that f(0) > 0. Put

λ̄ =
1

B
sup
s>0

s

max
t∈[0,s]

f(t)
,

where B is given by (2.2).
Then for each λ ∈]0, λ̄[, problem (Dλ) admits at least one positive strong

solution uλ ∈ W 1,2
0 (Ω) ∩W 2,p(Ω), for all p ≥ 1.

Proof. Let f∗ : R → R be the nonnegative continuous function defined as
follows

f∗(t) =






f(t) if t ≥ 0

f(0) if t < 0

and fix λ ∈]0, λ̄[. So, there is s > 0 such that λ <
1

B

s

max
t∈[0,s]

f∗(t)
. Clearly, by

setting r =
s

B
, one has max

t∈[−Br,Br]
|λf∗(t)| < r. Hence, Theorem 2.1 ensures

the existence of one weak solution uλ for the problem





−∆u = λf∗(u) in Ω

u = 0 on ∂Ω

which is non-zero since f∗(0) �= 0 and, then it is positive owing to the strong
maximum principle. It follows that uλ is also a weak solution of (Dλ) and the
conclusion is achieved.

Remark 2.3. If in Corollary 2.2, we assume in addition that lim
t→+∞

f(t)

t
= +∞

then the conclusion also for λ = λ̄ holds true and, moreover, one has

�uλ�∞ ≤ s̄ ∀λ ∈]0, λ̄],

where s̄ > 0 is such that λ̄ =
1

B

s̄

max[0,s̄] f
.

Indeed, one has lim
s→0+

s

max[0,s] f
= lim

s→+∞

s

max[0,s] f
= 0 for which the func-

tion
s

max[0,s] f
admits a point of global maximum s̄ in ]0,+∞[ and λ̄ =

1

B
maxs∈]0,+∞[

s

max[0,s] f
, so that the same proof of Corollary 2.2 ensures the

conclusion.
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Remark 2.4. Clearly, the existence of a non-trivial solution to problem (Dλ)
in Corollary 2.2 is deduced from the assumption f(0) > 0. Moreover, such a
condition, without requiring that f be nonnegative everywhere and by standard
computations (see, for instance, [16, Lemma 2.3]), ensures that the obtained
solution is nonnegative in Ω.

Remark 2.5. Theorem 2.1 and Corollary 2.2 also for the ordinary case, that
is n = 1, are true. Indeed, fixed v ∈ L∞(]a, b[), the problem






−u�� = v(x) in ]a, b[

u(a) = u(b) = 0

admits a unique solution u ∈ W 2,∞(]a, b[) such that

�u�∞ ≤ (b− a)2

8
�v�∞

(see, for instance, [6, Lemma 1(1) and Lemma 2(3)]). As an example, we report
below a version of Corollary 2.2 for n = 1.

Corollary 2.6. Let f : R → R be a nonnegative continuous function such

that f(0) > 0. Put

λ̄ = 8 sup
s>0

s

max
t∈[0,s]

f(t)
.

Then for each λ ∈]0, λ̄[, problem (Tλ) admits at least one positive classical

solution uλ.

Remark 2.7. We recall that for a precise class of nonnegative continuous func-
tions f : R → R satisfying, in particular, the following conditions:

1. f(0) > 0;

2. lim
t→+∞

f(t)

t
= +∞,

Crandall and Rabinowitz in [20] established the existence of λ∗ > 0 such that,
for each λ ∈]0,λ∗[, the problem (Dλ) admits at least two positive weak so-
lutions. Moreover, they also proved that such value λ∗ is the best value for
which the problem admits solutions. However, no lower bound of λ∗ is given
there. We observe that Corollary 2.2 allows us to establish a lower bound of
λ∗. Precisely, one has

λ∗ ≥ λ̄ =
1

B
max
s>0

s

max
t∈[0,s]

f(t)
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(see also Remark 2.3). We recall that, in order to obtain the second solution
in the elliptic case, the classical AR− condition, stronger than condition 2., is
requested (see [4, 35]).

The same remark, also for the ordinary case, can be pointed out. In fact,
Amann in [1] established the same type of result for a two-point boundary
value problem, by obtaining a positive value λ∗ for which the ordinary problem
admits two positive solutions for λ < λ∗, one solution for λ = λ∗, and no
solution for λ > λ∗. As an example, from the result of Amann [1], we obtain
that there is λ∗ > 0 such that the problem






−u�� = λeu in ]0, 1[

u(0) = u(1) = 0

admits positive classical solutions if and only if λ ∈]0,λ∗]. So, owing to Corol-
lary 2.6 we obtain a lower bound of λ∗, that is,

λ∗ ≥ 8

e
.

Taking also [22, Theorem 3.2, page 367] into account, it follows that

λ∗ ∈
�
8

e
,
π2

e

�
.

Remark 2.8. We recall that Theorem 2.1 has been established in [11] (see
also [13]) by topological methods (see [11, Theorem 1]). We observe that in
order to obtain a non-zero solution by such a result we must assume f(0) �= 0
(see Corollary 2.2). So, we point out here that the proof of Theorem 2.1 is
variational and it gives us an additional information, that is, the solution is a
global minimizer of the associated functional Ir. Such information allows us
to obtain a positive solution under an assumption which is more general than
f(0) �= 0, as it is shown in Section 3.

Remark 2.9. The proof of Theorem 2.1 presented here is based on the direct
method of the calculus of variations, which is a fundamental tool of variational
methods. The proof obtained in [11] instead is based on the fixed point theorem
for sequentially weakly continuous maps proved by Arino-Gautier-Penot in [5],
which is a standard tool in topological methods. Both the proofs are based on
an estimate given by Talenti established in [36], which is, hence, fundamental
for our purposes. We wish to recall that such a result has been applied in order
to obtain solutions to nonlinear differential problems for the first time in [28]
(see also [17, 18]), where also set-valued techniques have been used.
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3. Main results

In this Section, we present our main result, Theorem 3.1, and its consequences
and applications. To this end, put R(x) = sup{δ : B(x, δ) ⊆ Ω} for all x ∈ Ω,
and R = supx∈Ω R(x), for which there exists x0 ∈ Ω such that B(x0, R) ⊆ Ω.
We have the following result.

Theorem 3.1. Let f : R → R be a nonnegative continuous function. Assume

that

(a) there is r > 0 such that

max
t∈[0,Br]

f(t) ≤ r,

where B is given by (2.2);

(b) there is d > 0, with d < Br, such that

� d

0
f(t)dt >

2(2n − 1)

R2
d2.

Then, problem (D) admits at least one strong positive solution u0 ∈ W 1,2
0 (Ω)∩

W 2,p(Ω), p ≥ 1, such that �u0�∞ ≤ Br.

Proof. Without loss of generality, we can assume f(t) = f(0) for all t < 0.
From the proof of Theorem 2.1 we obtain that the solution u0 of (D) is a
global minimizer for the functional Ir. Now, put

ud(x) :=






0 if x ∈ Ω \B(x0, R)

2d

R
(R− |x− x0|) if x ∈ B(x0, R) \B(x0, R/2)

d if x ∈ B(x0, R/2).

Clearly, one has that ud ∈ X and �ud�∞ = d < Br for which Fr(d) >
2(2n − 1)

R2
d2. It follows

Ψr(ud)

Φ(ud)
≥ R2

2(2n − 1)

Fr(d)

d2
> 1. Therefore, one has

Ir(ud) < Ir(0) and hence we obtain Ir(u0) ≤ Ir(ud) < 0, for which u0 �= 0 and
from the maximum principle the conclusion follows.

As a consequence of Theorem 3.1 we obtain the following result.
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Corollary 3.2. Let f : R → R be a nonnegative continuous function. Put

F (t) =
� t
0 f(ξ)dξ for all t ∈ R and assume that there are two positive constants

s, d, with d < s, such that

maxt∈[0,s] f(t)

s
<

�
R2

2B(2n − 1)

�
F (d)

d2
. (3.1)

Then for each λ ∈
�
2(2n − 1)

R2

d2

F (d)
,
1

B

s

maxt∈[0,s] f(t)

�
, problem (Dλ) admits

at least one positive strong solution uλ ∈ W 1,2
0 (Ω) ∩W 2,p(Ω), p ≥ 1, such that

�uλ�∞ ≤ s.

Proof. Fix λ as in the conclusion. Therefore, one has

B
maxt∈[0,s] f(t)

s
<

1

λ
<

�
R2

2(2n − 1)

� � d
0 f(ξ)dξ

d2
.

So, setting r =
s

B
it follows

maxt∈[0,Br] λf(t)

r
< 1 and

R2

2(2n − 1)

� d
0 λf(ξ)dξ

d2
>

1, for which Theorem 3.1 ensures the conclusion.

Finally, as a special case of Corollary 3.2, we point out the following result.

Corollary 3.3. Let f : R → R be a nonnegative continuous function such

that

lim
t→0+

f(t)

t
= +∞.

Put

λ̄ =
1

B
sup
s>0

s

max
t∈[0,s]

f(t)
,

where B is given by (2.2).
Then for each λ ∈]0, λ̄[, problem (Dλ) admits at least one positive strong

solution uλ ∈ W 1,2
0 (Ω) ∩W 2,p(Ω), p ≥ 1.

Proof. Fix λ < λ̄. Therefore, there is s > 0 such that λ <
1

B

s

maxt∈[0,s] f(t)
.

From limt→0+
R2

2(2n − 1)

F (t)

t2
= +∞ one has that there is d ∈]0, s[ such that

R2

2(2n − 1)

F (d)

d2
>

1

λ
for which

2(2n − 1)

R2

d2

F (d)
< λ <

1

B

s

maxt∈[0,s] f(t)
. Hence,

Corollary 3.2 ensures the conclusion.
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Remark 3.4. Condition (b) in Theorem 3.1 is imposed in order to obtain that
the solution is non-trivial. We recall that in literature this type of condition
has been already considered (see, for instance, [32, Theorem 3.7, (h18)] and [15,
Theorem 3.1, (3.1)]). Moreover, in order to obtain nonnegative solutions to
problem (D), without requiring that f be nonnegative everywhere, it is enough
to assume in Theorem 3.1 only f(0) ≥ 0 (see Remark 2.4).

Remark 3.5. Theorem 3.1 and Corollaries 3.2 and 3.3 hold also for n = 1
(see Remark 2.5). So, in particular, we obtain Theorem 1.1 presented in the
Introduction and the corollary below.

Corollary 3.6. Let f : R → R be a nonnegative continuous function such

that

lim
t→0+

f(t)

t
= +∞.

Put

λ̄ = 8 sup
s>0

s

max
t∈[0,s]

f(t)
.

Then for each λ ∈]0, λ̄[, problem (Tλ) admits at least one positive solution

uλ ∈ C2([0, 1]).

Remark 3.7. If in Corollary 3.3, or in Corollary 3.6, we assume in addition

that lim
t→+∞

f(t)

t
= +∞ then the conclusion also for λ = λ̄ holds true and,

moreover, one has
�uλ�∞ ≤ s̄ ∀λ ∈]0, λ̄],

where s̄ > 0 is such that λ̄ =
1

B

s̄

max[0,s̄] f
(see Remark 2.3).

Remark 3.8. Corollary 3.2 ensures the existence of positive solutions to (Dλ)
without any condition at zero or at infinity on the nonlinear term. We note
that, in literature, a condition at zero as (1.3) (or, in some cases, as (1.2)) is
requested (see [1, 2, 10, 20, 26, 37]). Therefore, such a result can be applied to
problems where the nonlinear term is not sublinear at zero, as Example 3.10
below shows. Clearly, results in [1, 2, 10, 20, 26, 37] cannot be applied to the
problem in Example 3.10.

Remark 3.9. When the nonlinear term, in particular, is sublinear at zero,
Corollary 3.3 ensures the existence of positive solutions to (Dλ) for each positive
λ ≤ λ̄. In literature, there are several results in this direction again for specific
equations (see for instance [3, 10]) establishing the existence of the best λ∗ for
which the problem (Dλ) admits solutions. However, no estimate on λ∗ is given
in [3] and [10]. In [34] a lower bound of λ∗ is guaranteed, but only for the
ordinary case (see [34, Corollary 1]. Our result ensures a lower bound of λ∗,
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that is, λ∗ ≥ λ̄, which can be used also for elliptic case differently to result
obtained in [34] which can be applied only to ordinary case (see Remark 3.12
and Example 3.11).

Example 3.10. Let f : R → R be the function defined as follows

f(t) =






t
�
|t| if t < 1,

√
t if 1 ≤ t ≤ 10,

h(t) if t > 10,

where h : [10,+∞[→ R is a completely arbitrary function. Owing to Corol-
lary 3.2, the problem

�
−u�� = 25f(u) in ]0, 1[,
u(0) = u(1) = 0

admits at least one positive classical solution u0 such that �u0�∞ ≤ 10. It is
enough to choose d = 1, s = 10 by verifying that one has 8 1� 1

0 t
√
tdt

< 25 < 8 10√
10
.

We explicitly observe that in this case, the nonlinearity f is not sublinear at
zero and its behavior at infinity is completely arbitrary.

Example 3.11. Consider the problem





−∆u = µuq + up in Ω

u = 0 on ∂Ω,
(Dµ)

where 0 < q < 1 < p and µ is a positive parameter, and put

µ̄ =

�
1

B

� p−q
p−1 (p− 1)(1− q)

1−q
p−1

(p− q)
p−q
p−1

. (3.2)

Owing to Corollary 3.3 the problem (Dµ) admits at least one positive solution
for each µ ≤ µ̄. So that µ̄ is a lower bound of the best parameter Λ guaranteed
by [3] (see also [34]) for which (Dµ) admits two solutions. Indeed, applying
Corollary 3.3 to 





−∆u = λ (µuq + up) in Ω

u = 0 on ∂Ω,
(Dλ

µ)

the existence of solutions is obtained for each λ ≤ λ̄, where

λ̄ =
1

B
max
s>0

s

max
t∈[0,s]

f(t)
=

1

B
max
s>0

s

µsq + sp
=

1

B

1

µ
p−1
p−q

��
1−q
p−1

� q−1
p−q

+
�

1−q
p−1

� p−1
p−q

� ,
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for which λ̄ ≥ 1 being µ ≤ µ̄.
As an example, by picking Ω = {x ∈ R

3 : |x| < 1} and q = 1
2 , p = 3

2 we obtain
µ̄ = 9.

Remark 3.12. Problem (Dµ) has been introduced in [3] (see also [10]) estab-
lishing the existence of Λ > 0 for which it admits solutions if and only if µ ≤ Λ
(also a growth at most critical is assumed in order to obtain a second solution
for µ < Λ). No estimate on such parameter is provided. As a consequence of
Corollary 3.3 we obtain µ̄ as a lower bound of Λ, that is

Λ ≥ µ̄,

(see (3.2) in Example 3.11). In [34], only for the ordinary case, a lower bound
of Λ is given. Our estimate instead can be applied also to the elliptic case (see
Example 3.11).

Remark 3.13. To observe that the proof of our main result is actually a com-
bination of variational and topological tools may be interesting. Indeed, the
assumption (a) of Theorem 3.1 is equivalent to assume that −∆−1r (that is,
the unique solution of −∆u = r in Ω, u∂Ω = 0) is an upper solution of (D).
We also observe that a totally variational proof in order to obtain solutions
for (Dλ) has been obtained in [15] by applying the local minimum theorem
established in [14].

Acknowledgments

The author is a member of the Gruppo Nazionale per l’Analisi Matematica, la
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1. Introduction

This paper is concerned with the study of the periodic boundary value problem
associated with the first order scalar ODE

(Es) x
� + g(t, x) = s,

where s is a real parameter and g is a continuous function, T -periodic in the
variable t.

Interest in this kind of parameter-dependent equations can be found in con-
nection to the celebrated Ambrosetti-Prodi problem that was first investigated
in the setting of the Dirichlet problem for elliptic PDEs (see [1, 2, 5]). The
study of the Ambrosetti-Prodi problem for second order ODEs with periodic
boundary conditions is a broad and active research area in which many inves-
tigators have been involved (see, for instance, [8, 23, 26] for some significant
contributions in this field). In this latter context, the analysis is focused on the
existence, nonexistence and multiplicity of (periodic) solutions for parameter
dependent equations of the form

x
�� + F (t, x, x�) = s.
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For the generalized Liénard equation

(LE s) x
�� + f(x)x� + g(t, x) = s,

a relevant contribution in this direction is represented by the work of Fabry,
Mawhin and Nkashama [8]. We recall here their result.

Theorem 1.1. Suppose that f : R → R and g : R × R → R are continuous

functions, g is T -periodic in t and satisfies hypothesis

(H) lim
|x|→+∞

g(t, x) = +∞, uniformly in t.

Then, there exists a number s0 such that

1◦ for s < s0, equation (LE s) has no T -periodic solutions;

2◦ for s = s0, equation (LE s) has at least one T -periodic solution;

3◦ for s > s0, equation (LE s) has at least two T -periodic solutions.

The above theorem has motivated a rich area of research, including investi-
gations on problems with singularities [9] and on nonlinear operators of p-
Laplacian type [20].

The Ambrosetti-Prodi problem for first order periodic ODEs was studied by
McKean and Scovel in [22] and by Vidossich in [29]. A version of Theorem 1.1
for equation (Es) was carried out by Mawhin in [16, 17] and it can be stated
as follows.

Theorem 1.2. Suppose that g : R× R → R is continuous and T -periodic in t.

Assume (H). Then, there exists a number s0 such that

1◦ for s < s0, equation (Es) has no T -periodic solutions;

2◦ for s = s0, equation (Es) has at least one T -periodic solution;

3◦ for s > s0, equation (Es) has at least two T -periodic solutions.

Notice that the results obtained for equation (Es) can be stated also for

x
� = q(t, x)± θ,

where θ a real parameter. More precisely, we can reduce the above equation to
(Es), mainly in two ways. One is due to the obvious position g(t, x) = −q(t, x)
and s = ±θ. The other one follows from the change of variable t �→ −t, so that
g(t, x) = q(−t, x) and s = ∓θ (see also [16, Remark 1]).

As described in [18], a possible application of Theorem 1.2 is to the Riccati
differential equation

x
� + γ2(t)x

2 + γ1(t)x+ γ3(t) = 0.
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In this case, the coercivity condition (H) is satisfied if

γ2(t) ≥ κ > 0, for all t.

The motivation to study this topic is well presented in [18], by means of several
interesting references describing the state of the art up to the middle of the
Eighties.

Remark 1.3. The works [16, 17, 18] of Mawhin, for equation (Es), have stim-
ulated a great deal of researches in this area. Even if, at first glance, the
search of periodic solutions for equation (Es) could appear “elementary”, it has
been and, especially, it is still a source of interesting and, sometimes, chal-
lenging problems. Among the problems leading directly or indirectly to first
order equations, we recall the study on the number of limit cycles for planar
polynomial autonomous systems, which is connected to Hilbert sixteenth prob-
lem, and questions arising from single species population dynamics connected
to periodic Kolmogorov equations (see the detailed presentations, as well as
the comprehensive list of references, in [7, 25] that cover a great part of the
literature concerning these equations up to the early 2000s).

In [28] we have proposed a possible variant of Theorem 1.1 for equation
(LE s) in which the coercivity condition (H) is replaced by a local one, thus
avoiding the uniformity in the variable t. Taking into account this generaliza-
tion, the natural question which arises in the context of first order equations
is whether the same outcome holds in the setting of Theorem 1.2. A clue that
this conjecture is true can be found in the study of the Kolmogorov equation
x
� = xh(t, x) and in the particular case of the Verhulst (logistic) equation,

namely for h(t, x) = r(t)−γ2(t)x. Indeed, from [3, 27, 31, 32], a classical result
for equation

x
� + γ2(t)x

2
− r(t)x = 0,

with r, γ2 : R → R continuous and T -periodic functions, is the existence of
exactly two T -periodic solutions, the trivial one and another one positive, pro-
vided that � T

0
r(t) dt > 0 and γ2(t) ≥ 0 ∀ t, γ2 �≡ 0.

In the present paper we propose an extension of Theorem 1.2, in the spirit
of [28]. In particular, we replace condition (H) by an average-type assumption
at infinity of Gaetano Villari’s type, which reads as follows.

(GV ) Given K1 > 0 and K2 > 0, for each σ there exists dσ > 0 such that

1
T

� T
0 g(t, x(t)) dt > σ for each x ∈ CT with |x(t)| ≥ dσ for all t ∈ [0, T ]

and such that |x|max ≤ K1|x|min +K2 .
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We remark also that an immediate consequence of condition (H) is that the
function g is bounded from below. In our case, such lower bound is no more
guaranteed and therefore we impose the following one-sided growth assumption:

(G0) ∃ a0, b0 ∈ L
1([0, T ],R+) : g(t, x) ≥ −a0(t)|x|− b0(t), ∀x ∈ R, t ∈ [0, T ].

In this setting, we are in position to present our main result.

Theorem 1.4. Suppose that g : R× R → R is continuous and T -periodic in t.

Assume (G0) and (GV ). Then, there exists a number s0 such that

1◦ for s < s0, equation (Es) has no T -periodic solutions;

2◦ for s = s0, equation (Es) has at least one T -periodic solution;

3◦ for s > s0, equation (Es) has at least two T -periodic solutions.

A possible corollary of Theorem 1.4 is the following.

Corollary 1.5. Let γ0, γ1, γp : R → R be continuous and T -periodic functions

and let p > 1. Suppose that γp(t) ≥ 0 for all t with γp �≡ 0. Then, for equation

(RE s) x
� + γp(t)|x|

p + γ1(t)x+ γ0(t) = s,

the following result holds. There exists a number s0 such that:

1◦ for s < s0, equation (RE s) has no T -periodic solutions;

2◦ for s = s0, equation (RE s) has at least one T -periodic solution;

3◦ for s > s0, equation (RE s) has at least two T -periodic solutions.

Looking again at the uniform condition (H) and applying it to (RE s), then we
need to require that γp(t) is positive and uniformly bounded away from zero.
On the other hand, by Corollary 1.5, we observe that the coercivity condition in
our setting is of local type. Notice also that g(t, x) = γp(t)|x|p+γ1(t)x+γ0(t) is
not necessarily bounded from below but it satisfies the growth assumption (G0).

The scheme of the proof already developed in [8, 16, 17] is reconsidered here
to prove Theorem 1.4. In more detail, we combine topological degree arguments
and the method of upper-lower solutions with some new tools adapted from [28].
We will also take advantage of some preliminary lemmas needed to treat the
case of first order equations. We stress the fact that all our results will be
formulated in the Carathéodory setting. In this manner we also improve some
previous results in [24].
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2. Preliminaries

In this section we deal with the periodic boundary value problem associated
with the first order differential equation

x
� + ψ(t, x) = 0, (1)

where we assume that ψ : [0, T ]×R → R is a Carathéodory function. As usual,
by a T -periodic solution of (1) we mean a generalized solution x : [0, T ] → R
of the equation (1) which satisfies the boundary condition

x(0) = x(T ).

Equivalently, one could extend the map ψ(·, x) on R by T -periodicity and then
consider T -periodic solutions x : R → R with x absolutely continuous (AC). In
the frame of Mawhin’s coincidence degree theory we will find a priori bounds
and will provide existence results for periodic solutions of equation (1).

The standard setting to enter in the framework of the coincidence degree is
the following. Let

X = CT := {x ∈ C([0, T ]) : x(0) = x(T )},

endowed with the norm �x�X := �x�∞ and Z = L
1([0, T ]) with the norm

�x�Z := �x�1. Let L : X ⊇ domL → Z be defined as Lx := −x
�
, with

domL = W
1,1
T := {x ∈ X : x ∈ AC}.

According to [14], a natural choice for the projections is given by

Qx :=
1

T

� T

0
x(t) dt, ∀x ∈ Z, Px = Qx, ∀x ∈ X.

This way, we have kerL = ImP = R and cokerL = ImQ = R. Moreover, we take
J as the identity in R. Notice that, for each w ∈ Z, the vector v = KP (I−Q)w
is the (unique) solution of the linear boundary value problem

�
−v

�(t) = w(t)− 1
T

� T
0 w(t) dt,

v(0) = v(T ),
� T
0 v(t) dt = 0.

Lastly, as nonlinear operator N , we take the associated Nemytskii operator,
namely

(Nx)(t) := ψ(t, x(t)), ∀x ∈ X.

By a standard argument, it is possible to verify that the operator N is L-
completely continuous and, moreover, the map x̃(·) is a T -periodic solution
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of (1) if and only if x̃ ∈ domL with Lx̃ = Nx̃. Analogously, solutions to
the abstract equation Lx = λNx, with 0 < λ ≤ 1, correspond to T -periodic
solutions of

x
� + λψ(t, x) = 0, 0 < λ ≤ 1. (2)

In the next two lemmas we provide some a priori bounds for the solutions
of the parameter dependent equation (2) that will be useful for the application
of Theorem 5.1 in the Appendix to the equation (1).

Lemma 2.1. Let ψ : [0, T ]× R → R be a Carathéodory function satisfying

(H0) ∃ a0 , b0 ∈ L
1([0, T ],R+) : ψ(t, x) ≥ −a0(t)|x| − b0(t), ∀x ∈ R and a.e.

t ∈ [0, T ].

Then, there exist constants C ≥ 1 and K > 0 such that any T -periodic solution

of (2) satisfies






xmax ≤ C
−1

xmin + C
−1

K if xmin < −K,

|x(t)| ≤ K, ∀ t if −K ≤ xmin < 0,

xmax ≤ Cxmin +K, if xmin ≥ 0.

(3)

Moreover, in any case

|x|max ≤ C|x|min +K, (4)

with C = 1 when a0 ≡ 0.

Proof. Without loss of generality, let us suppose that xmin < xmax and let
t0 < t1 < t0 + T be such that x(t0) = xmin and x(t1) = xmax . The theory
of differential inequalities guarantees that, for all t ∈ [t0, t1], we have that
x(t) ≤ y(t), where y is the solution of the initial value problem

y
� = a0(t)|y|+ b0(t), y(t0) = x(t0) = xmin . (5)

Notice that the solution y(t) of the equation in (5) is monotone non-decreasing
and therefore y(t) ≥ y(t0) for all t ∈ [t0, t1].

First of all, let us suppose that xmin = y(t0) < 0 and let [t0, t̂[ be the
maximal open interval contained in [t0, t1[ such that y(t) < 0. Accordingly,

y
�(t) = −a0(t)y(t) + b0(t), for a.e. t ∈ [t0, t̂].

An integration of the linear equation on [t0, t] ⊆ [t0, t̂] yields to

y(t) = y(t0) exp(−A(t)) +

� t

t0

b0(ξ) exp(A(ξ)−A(t)) dξ

≤ y(t0) exp(−A(t)) + B(t),
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where we have set

A(t) :=

� t

t0

a0(ξ) dξ, B(t) :=

� t

t0

b0(ξ) dξ.

Using the fact that y(t0) < 0, it follows that

x(t) ≤ y(t) ≤ exp(−A(t))y(t0) + B(t)

≤ exp

�
−

� T

0
a0(t) dt

�
xmin +

� T

0
b0(t) dt

holds for all t ∈ [t0, t̂]. By setting

K := exp

�� T

0
a0(t) dt

�� T

0
b0(t) dt,

we immediately obtain that y(t) < 0 for all t ∈ [t0, t̂] if xmin < −K and
therefore, by the maximality of t̂ we conclude that t̂ = t1. Hence,

xmax = x(t1) ≤ y(t1) ≤ exp

�
−

� T

0
a0(t) dt

�
xmin +

� T

0
b0(t) dt

and this proves the first inequality in (3) for

C := exp

�� T

0
a0(t) dt

�
.

On the other hand, if −K ≤ xmin < 0, either x(t) ≤ 0 for all t ∈ [t0, t1],
or xmax > 0 and there exists a first time t̂ ∈ [t0, t1[ such that x(t̂) = 0. By
assumption, −K ≤ xmin ≤ x(t) ≤ 0 for all t ∈ [t0, t̂], while x(t) ≤ v(t) on [t̂, t1],
where v is the solution of

v
� = a0(t)v + b0(t), v(t̂) = x(t̂) = 0 .

An integration of the linear equation on [t̂, t1] yields to

xmax = x(t1) ≤ v(t1) =

� t1

t̂
b0(ξ) exp(A(t)−A(ξ)) dξ

≤ exp

�� T

0
a0(t) dt

�� T

0
b0(t) dt = K.

Hence, in any case, we can conclude that −K ≤ xmin ≤ x(t) ≤ xmax ≤ K, for
all t and the second inequality in (3) is verified.
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At last, let us suppose that xmin = y(t0) ≥ 0, so that (5) takes the form

y
� = a0(t)y + b0(t), for a.e. t ∈ [t0, t1].

An integration of the linear equation yields to

y(t) = y(t0) exp(A(t)) +

� t

t0

b0(ξ) exp(A(t)−A(ξ)) dξ

≤ (y(t0) + B(t)) exp(A(t)) ≤ (xmin + B(t)) exp(A(t)).

Therefore,
xmax = x(t1) ≤ y(t1) ≤ Cxmin +K

and the third inequality in (3) is verified.
Finally, (4) follows straightforwardly from (3)

Remark 2.2. It is crucial to observe that the constants C and K in Lemma 2.1
depend only on a0 and b0 and do not depend on the function ψ or the parameter
λ ∈ ]0, 1].

For the main results of this section let us introduce the following definitions.

Definition 2.3. Let α ∈ W
1,1
T . We say that α is a lower solution of (1) if

α
�(t) + ψ(t,α(t)) ≤ 0, for a.e. t ∈ [0, T ]. (6)

If α is not a solution, we say that it is proper. In particular, if

α
�(t) + ψ(t,α(t)) < 0, for a.e. t ∈ [0, T ], (7)

we say that the lower solution α is strongly proper.

An upper solution of (1) is defined in the same manner, just by reversing
the inequality in (6) (respectively in (7), when it is strongly proper). Given
u, v ∈ CT , we denote by u ≤ v if u(t) ≤ v(t) for all t ∈ [0, T ] and by u ≺ v if
u ≤ v and u �≡ v.

In the next definition we recall Villari’s conditions [30] which is presented
here in a slightly modified form. For other generalizations in different contexts,
we refer to [4, 11, 21].

Definition 2.4. We say that ψ(t, x) satisfies the Villari’s condition at −∞

(respectively, at +∞) if, given K1 > 0 and K2 > 0, there exists a constant

d0 > 0 such that

∃ δ = ±1 : δ

� T

0
ψ(t, x(t)) dt > 0

for each x ∈ CT such that x(t) ≤ −d0, ∀ t ∈ [0, T ] (respectively, x(t) ≥ d0,

∀ t ∈ [0, T ]) and |x|max ≤ K1|x|min +K2.
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Now we are in position to state the following.

Theorem 2.5. Let ψ : [0, T ] × R → R be a Carathéodory function satisfying

(H0) and the Villari’s condition at −∞ with δ = 1. Suppose there exists α ∈

W
1,1
T which is a strongly proper lower solution for equation (1). Then, (1) has

at least a T -periodic solution x̃ such that x̃ ≺ α. Moreover, there exists R0 ≥ d0

such that any T -periodic solution of (1) with x ≤ α, satisfies x(t) > −R0 for

all t ∈ [0, T ].

Let us make a comment before proceeding with the proof of the theorem. In
presence of a lower solution, one can expect to find a solution x̃ ≥ α. Indeed,
what we are going to do, is to treat α as an upper solution of the problem.
Our notation is consistent with the one in [7, 25], nevertheless other authors
overturn the terminology (cf. [24]). Actually, for Theorem 2.5 the terminology
is not relevant and what matters is that α satisfies (7).

Proof. Following a standard approach, we define the truncated function

ψ̂(t, x) :=

�
ψ(t, x) for x ≤ α(t),

ψ(t,α(t)) for x ≥ α(t),

and consider the parameter dependent equation

x
� + λψ̂(t, x) = 0, 0 < λ ≤ 1. (8)

First of all, as a consequence of (H0), we remark that

ψ̂(t, x) ≥ −a0(t)|x|− b1(t), ∀x ∈ R and a.e. t ∈ [0, T ],

where b1(t) = b0(t) + a0(t)|α(t)|. Therefore ψ̂ satisfies (H0), too. According
to Lemma 2.1 (applied to ψ̂ in place of ψ) any T -periodic solution x of (8)
satisfies

|x|max ≤ K1|x|min +K2

for some suitable constants K1 ≥ 1 and K2 > 0 possibly depending in α but
independent on x and λ.

Next, we choose a constant d1 ≥ d0 with d1 > �α�∞ and we claim that
maxx > −d1 . Indeed, if we suppose by contradiction that x(t) ≤ −d1 for
all t ∈ [0, T ], then x(t) < α(t) for all t ∈ [0, T ] and so x(t) is a T -periodic
solution of (2). Hence, an integration on [0, T ] of (2) (divided by λ > 0), yields
to

� T
0 ψ(t, x(t)) dt = 0, which clearly contradicts Villari’s condition at −∞ as

−d1 ≤ −d0 . Having proved that x(t) > −d1 for some t ∈ [0, T ] and hence
maxx > −d1 , we obtain that

minx > −R0 , for R0 := K1d1 +K2 .
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Now, we claim that there exists t̄ ∈ [0, T ] such that x(t̄) < α(t̄). If, by con-
tradiction, x(t) ≥ α(t) for all t ∈ [0, T ], then x is a T -periodic solution of
x
� + λψ(t,α(t)) = 0, for 0 < λ ≤ 1 and then an integration on [0, T ] of this

equation (divided by λ > 0), yields to
� T
0 ψ(t,α(t)) dt = 0. On the other hand,

an integration of (7) on [0, T ] gives
� T
0 ψ(t,α(t)) dt < 0, thus a contradiction.

Having proved that x(t) < �α�∞ for some t ∈ [0, T ] and hence minx < �α�∞ ,

we can also deduce that

maxx < K1�α�∞ +K2 .

Writing equation
−x

� = ψ̂(t, x) (9)

as a coincidence equation of the form Lx = N̂x in the space CT , from the a
priori bounds, we find that the coincidence degree DL(L−N̂ ,O) is well defined
for any open and bounded set O ⊂ CT of the form

O := {x ∈ CT : −R
−
< x(t) < R

+
, ∀ t ∈ [0, T ]}

where R
− ≥ R0, R

+ ≥ K1�α�∞ +K2 .

As a last step, we consider the averaged scalar map

ψ̂
# : R → R, ψ̂

#(ξ) :=
1

T

� T

0
ψ̂(t, ξ) dt, ∀ ξ ∈ R.

We have −JQN̂ |kerL = −ψ̂
# and ψ̂

#(−R
−) > 0 > ψ̂

#(R+).
In more detail, since R

− ≥ d1, the first inequality follows from Villari’s condi-
tion, while

� T
0 ψ(t,α(t)) dt < 0 and the choice R

+ ≥ �α�∞ , imply the second
inequality. An application of Theorem 5.1 guarantees that DL(L− N̂ ,O) = 1
and hence equation (9) has a T -periodic solution x̃ with −R

−
< x̃(t) < R

+
,

for all t ∈ [0, T ].
In order to conclude, we check that x̃ ≺ α. This is a standard fact, however

we give the details for the reader’s convenience. From the previous part of the
proof we already know that any T -periodic solution of (8) is below α, at least
for some t, thus the same must occur for x̃. Let t∗ be such that x̃(t∗) < α(t∗).
Suppose, by contradiction, that there exists a t

∗ such that x̃(t∗) > α(t∗). Let
[t1, t2] be such that t1 < t

∗
< t2 with v(t) > 0 for all t ∈ ]t1, t2[ and, moreover,

v(t1) = v(t2) = 0. On the interval [t1, t2], we have that x̃�(t)+ψ(t,α(t)) = 0 and
hence, recalling (7), we find that v�(t) > 0, for a.e. t ∈ [t1, t2]. An integration on
[t1, t2] gives immediately a contradiction. We have thus proved that x̃(t) ≤ α(t)
for all t ∈ [0, T ] and therefore x̃ is a T -periodic solution of (1) satisfying x̃ ≤ α.

Moreover, since α is proper, we conclude that x̃ ≺ α.
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Remark 2.6. Notice that, under additional hypothesis ensuring that the T -
periodic solutions x with x ≤ α are such that x � α, namely x(t) < α(t) for
all t, we can also prove that:

there exist R0 ≥ d0 such that for each R > R0, we have DL(L−N,Ω) = 1
for Ω = {x ∈ CT : −R < x(t) < α(t) ∀ t ∈ [0, T ]}.

A possible additional hypothesis guaranteeing x � α could be

(A) For all t0 ∈ [0, T ] and u0 ∈ R and ε > 0 , there exists δ > 0 such that
|t− t0| < δ, |u− u0| < δ ⇒ |ψ(t, u)− ψ(t, u0)| < ε.

Observe that (A) is always satisfied when ψ is continuous. Such kind of condi-
tions are widely discussed in [6] for second order equations.

We propose now a dual version Theorem 2.5 whose proof can be obtained
via minor changes.

Theorem 2.7. Let ψ : [0, T ] × R → R be a Carathéodory function satisfying

(H0) and the Villari’s condition at +∞ with δ = 1. Suppose there exists α ∈

W
1,1
T which is a strongly proper lower solution for equation (1). Then, (1) has

at least a T -periodic solution x̃ such that x̃ � α. Moreover, there exists R0 ≥ d0

such that any T -periodic solution of (1) with x ≥ α, satisfies x(t) < R0 for all

t ∈ [0, T ].

Proof. We define the truncated function

ψ̂(t, x) :=

�
ψ(t, x) for x ≥ α(t),

ψ(t,α(t)) for x ≤ α(t),

and consider the parameter dependent equation (8). The proof now follows
the same scheme as that of Theorem 2.5 till to the introduction of an open
bounded set O := {x ∈ CT : −S

−
< x(t) < S

+
, ∀ t ∈ [0, T ]} where S

− and
S
+ are suitable constants obtained similarly as R

− and R
+. In this case, one

can compute the coincidence degree and find that DL(L − N̂ ,O) = −1, thus
ensuring the existence of a T -periodic solution x̃ ∈ O. Finally, by the same
argument as above, we prove that x̃ � α.

It is a well-known fact (cf. [14]), that results like Theorem 2.5 or Theo-
rem 2.7, obtained by using strict inequalities, can be relaxed by considering
weak inequalities. Accordingly, from Theorem 2.5, the following result holds.

Corollary 2.8. Let ψ : [0, T ]× R → R be a Carathéodory function satisfying

(H0) and such that, given K1 > 0 and K2 > 0, there exists d0 > 0 for which� T
0 ψ(t, x(t)) dt ≥ 0 for each x ∈ CT with x(t) ≤ −d0, ∀ t ∈ [0, T ] and |x|max ≤

K1|x|min + K2. Suppose there exists a lower solution α ∈ W
1,1
T for equation

(1). Then, (1) has at least a T -periodic solution x̃ such that x̃ ≤ α.
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Proof. We introduce the auxiliary functions

�(x) := max{−1,−x− �α�∞ − 1}, ψ
ε(t, x) := ψ(t, x) + ε�(x), ε > 0

and apply Theorem 2.5 to equation x
� +ψ

ε(t, x) = 0. Moreover, one can easily
check that the constant R0 can be taken uniformly with respect to ε. The
conclusion then follows via Ascoli-Arzelà theorem.

A corollary similar to the above one can be stated with respect to Theo-
rem 2.7.

3. Existence and multiplicity theorems

Here we discuss the number of T -periodic solutions for the parameter dependent
equation

(Es) x
� + g(t, x) = s.

Throughout this section we suppose that g : [0, T ] × R → R satisfies the
Carathéodory conditions.

Moreover, in the sequel, the following hypotheses will be considered:

(G0) ∃ a0, b0 ∈ L
1([0, T ],R+) : g(t, x) ≥ −a0(t)|x| − b0(t), ∀x ∈ R and a.e.

t ∈ [0, T ];

(G1) ∃ x0 , g0 ∈ R : g(t, x0) ≤ g0 for a.e. t ∈ [0, T ];

(G−
2 ) given K1 > 0 and K2 > 0, for each σ there exists dσ > 0 such that

1
T

� T
0 g(t, x(t)) dt > σ for each x ∈ CT such that x(t) ≤ −dσ for all

t ∈ [0, T ] and |x|max ≤ K1|x|min +K2;

(G+
2 ) given K1 > 0 and K2 > 0, for each σ there exists dσ > 0 such that

1
T

� T
0 g(t, x(t)) dt > σ for each x ∈ CT such that x(t) ≥ dσ for all t ∈ [0, T ]

and |x|max ≤ K1|x|min +K2.

Theorem 3.1. Assume (G0), (G1) and, either (G−
2 ) or (G+

2 ). Then, there

exists s0 ∈ R∪ {−∞} such that for every s > s0 equation (Es) has at least one

T -periodic solution.

Proof. For any given parameter s ∈ R, we set

ψs(t, x) := g(t, x)− s,

so that equation (Es) is of the form (1). Just to fix a case, let us suppose that
(G−

2 ) holds.
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We start by choosing a parameter s1 > g0 . In this situation, the constant
function α(t) ≡ x0 is a strongly proper lower solution. Indeed, we have

α
�(t) + g(t,α(t))− s1 = g(t, x0)− s1 ≤ −(s1 − g0) < 0

On the other hand, for σ = s1 , condition (G−
2 ) implies the Villari’s condition at

−∞ with δ = 1. Hence, an application of Theorem 2.5 guarantees the existence
of at least one T -periodic solution x of (Es1) with x ≺ x0 .

Next, we claim that if, for some s̃ < s1 the equation has a T -periodic
solution (that we will denote by w), then equation (Es) has a T -periodic solution
for each s ∈ ]s̃, s1[ . We write equation (Es) as

x
� + g(t, x)− s̃− (s− s̃) = 0,

so that α(t) ≡ w(t) is a strongly proper lower solution of (Es). Indeed, we have

α
�(t) + g(t,α(t))− s = w

�(t) + g(t, w(t))− s = −(s− s̃) < 0.

On the other hand, for σ = s , condition (G−
2 ) implies the Villari’s condition

at −∞ with δ = 1. An application of Theorem 2.5 guarantees the existence of
at least one T -periodic solution x of (Es) with x ≺ w and the claim is proved.

Since we can take s1 arbitrarily large, we conclude that the set of the pa-
rameters s for which equation (Es) has T -periodic solutions is an interval J
with supJ = +∞. Setting

s0 := inf{s ∈ R : (Es) has at least one T -periodic solution} ∈ R ∪ {−∞},

the thesis follows. The same argument applies if, instead of (G−
2 ), we assume

(G+
2 ) and apply Theorem 2.7.

Remark 3.2. Let us make some comments that arise from Theorem 3.1. The
first one is about the critical parameter s0. Without supplementary conditions,
we cannot say, a priori, whether s0 = −∞ or s0 ∈ R and, in this latter case, if
the equation (Es0) has T -periodic solutions. Simple examples can be provided
for each of these cases. However, from the proof, it is clear that s0 ≤ g0 . As a
second comment, we observe that the Villari’s conditions (G±

2 ) guarantee the
existence of upper solutions. In fact, suppose that w is a T -periodic solution of
(Es1) for some s1 > g0 . Then β(t) ≡ w(t) is a strongly proper upper solution of
(Es) for any s < s1 . Indeed, we have β�(t)+g(t,β(t))−s = w

�(t)+g(t, w(t))−s =
s1 − s > 0. Hence, a posteriori along the proof, we have discovered that for
s ∈ ]g0, s1[ , there are both a strongly proper upper solution β and a strongly
proper lower solution α with β ≺ α or α ≺ β, according to the assumption
(G−

2 ) or (G+
2 ), respectively. Thus we enter in the setting of [25] where a detailed

analysis is performed about continua of T -periodic solutions and their stability.
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The previous result concerns the case in which the conditions (G±
2 ) are

applied in a separately way. The next theorem considers the situations in
which Villari’s conditions hold at the same time.

Theorem 3.3. Assume (G0), (G1), (G
−
2 ) and (G+

2 ). Then there exists s0 ∈ R
such that:

1◦ for s < s0, equation (Es) has no T -periodic solutions;

2◦ for s = s0, equation (Es) has at least one T -periodic solution;

3◦ for s > s0, equation (Es) has at least two T -periodic solutions.

Proof. Without loss of generality, we can suppose that the map σ �→ dσ is
defined on [0,+∞) and is monotone non-decreasing.

We claim that there exists a constant ν0 ≤ 0 such that, if s < ν0, equation
(Es) has no T -periodic solution.

Indeed, let x be a T -periodic solution of (Es) for any s ≤ 0. The function
ψs(t, x) = g(t, x) − s satisfies condition (H0), uniformly for s ≤ 0. Hence,
according to Lemma 2.1 and Remark 2.2, there exist two constants C ≥ 1 and
K > 0 such that (4) holds for each T -periodic solution of (Es). Consider now
condition (G+

2 ) that we read now for σ = 0 and K1 = C, K2 = K. It implies
that if x(t) ≥ d0 for all t ∈ [0, T ], then

� T
0 g(t, x(t)) dt > 0. On the other hand,

x
� + g(t, x) = s ≤ 0 and a contradiction follows. This implies that xmin < d0 .

In the same manner, using (G−
2 ) for σ = 0 and K1 = C, K2 = K, we can prove

that xmax > −d0 . In conclusion, we have proved that |x|min < d0 . Therefore,
from (4) we find that

|x|max < R
∗ := Cd0 +K. (10)

We stress the fact that (10) holds for any possible Tperiodic solution of (Es)
with s ≤ 0. Now, let ρ ∈ L

1([0, T ],R+) be such that

|g(t, ξ)| ≤ ρ(t), ∀ ξ ∈ [−R
∗
, R

∗] and a.e. t ∈ [0, T ].

Let us consider again x
� + g(t, x) = s with s ≤ 0. Integrating the equation on

[0, T ], we have

sT =

� T

0
g(t, x(t)) dt ≥ −�ρ�1 .

We have thus proved that if there exists a T -periodic solution of (Es) for s ≤ 0,
then, necessarily

s ≥ ν0 := −
1

T
�ρ�1 .

Hence, if s < ν0, equation (Es) has no T -periodic solution. The claim is proved.
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After this preliminary observation, we proceed now as in the proof of The-
orem 3.1. We fix (arbitrarily) s1 > g0 and using (G−

2 ), as well as (G+
2 ), we

prove the existence of at least two T -periodic solutions x
(−) and x

(+) with
x
(−) ≺ x0 ≺ x

(+)
.

Next, we claim that if, for some s̃ < s1 the equation has a T -periodic
solution (that we will denote by w), then equation (Es) has at least two T -
periodic solutions for each s ∈ ]s̃, s1[ .

We write equation (Es) as

x
� + g(t, x)− s̃− (s− s̃) = 0,

so that α(t) ≡ w(t) is a strongly proper lower solution of (Es) (as in Theo-
rem 3.1). On the other hand, for σ = s , condition (G−

2 ) implies the Villari’s
condition at −∞ with δ = 1 and, similarly, (G+

2 ) implies the Villari’s condition
at +∞ with δ = 1 An application of Theorem 2.5 and Theorem 2.7 guarantees
the existence of at least one T -periodic solution u

(−) of (Es) with u
(−) ≺ w and

the existence of at least one T -periodic solution u
(+) of (Es) with u

(+) � w.
Clearly, u(−) �≡ u

(+)
.

Since we can take s1 arbitrarily large, we conclude that the set of the pa-
rameters s for which equation (Es) has T -periodic solutions is an interval J
with supJ = +∞. Setting

s0 := inf{s ∈ R : (Es) has at least one T -periodic solution} ∈ R ∪ {−∞},

we know that s0 is finite, indeed, ν0 ≤ s0 ≤ g0 . Moreover, by the above
discussion, we also know, that for each s > s0 equation (Es) has at least two
T -periodic solutions. By construction, we also know that for s < s0, there is
no T -periodic solution for (Es).

To conclude the proof, we have to check that for s = s0 there is at least
one T -periodic solution. This will be achieved following an argument borrowed
from [8]. Let s2 < s0 < s1 be fixed and let θn be a decreasing sequence of
parameters with θn → s0 and θn ∈ ]s0, s1] for all n. By the estimates developed
previously, we know that, for each n there exists at least one (actually two)
T -periodic solution wn of equation x

� + g(t, x) = θn with �wn�∞ ≤ M, where
M is a uniform a priori bound obtained as R

∗ in (10). An application of the
Ascoli-Arzelà theorem, passing to the limit as n → ∞, provides the existence of
at least one T -periodic solution of (Es) for s = s0 . This completes the proof.

Remark 3.4. Notice that assuming the Villari’s condition (GV ) is equivalent
to require both (G−

2 ) and (G+
2 ). As in [17, Remark 2], we also observe that all

the results remain true if s in (Es) is replaced by sϕ(t) with ϕ ∈ L
∞(0, T ) and

positive (i.e. essinfϕ > 0).
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4. Applications

In this section we show a few applications of the preceding theorems in order to
treat some classical examples in literature. In particular, we focus our attention
to consequences of Theorem 3.3.

As a first example, we consider the periodic problem associated with

(WE s) x
� + γ(t)φ(x) = s+ p(t).

In this case, a multiplicity result reads as follow.

Corollary 4.1. Let φ : R → R be a continuous function and suppose that

(Hφ) lim
|x|→∞

φ(x) = +∞.

Let γ, p ∈ L
∞(0, T ) with γ(t) ≥ 0 for a.e. t ∈ [0, T ] and

� T
0 γ(t) dt > 0. Then,

there exists s0 ∈ R such that:

1◦ for s < s0, equation (WE s) has no T -periodic solutions;

2◦ for s = s0, equation (WE s) has at least one T -periodic solution;

3◦ for s > s0, equation (WE s) has at least two T -periodic solutions.

Proof. We apply Theorem 3.3 for

g(t, x) := γ(t)φ(x)− p(t).

Let us set φ0 := minξ∈R φ(ξ). For any d > max{φ0, 0}, we introduce the
following constants:

ζ
−(d) := min{φ(x) : x ≤ −d}, ζ

+(d) := min{φ(x) : x ≥ d}.

From (Hφ) it follows that ζ
±(d) → +∞ for d → +∞.

Let x ∈ CT be such that |x(t)| ≥ d > 0 for all t ∈ [0, T ]. If x(t) ≤ −d, ∀ t,
then

1

T

� T

0
g(t, x(t)) dt =

1

T

� T

0
γ(t)φ(x(t)) dt−

1

T

� T

0
p(t) dt

≥
ζ
−(d)

T

� T

0
γ(t) dt−

1

T

� T

0
p(t) dt.

In the other case, if x(t) ≥ d, ∀ t, then

1

T

� T

0
g(t, x(t)) dt ≥

ζ
+(d)

T

� T

0
γ(t) dt−

1

T

� T

0
p(t) dt.
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Hence, the Villari’s condition (GV ) is satisfied by the properties of ζ±(d).
Hypothesis (G0) is satisfied by choosing as b0(t) the positive part of p(t)−

γ(t)φ0 and a0 ≡ 0. Also (G1) holds for x0 = 0 and any constant g0 ≥

�γ�∞φ(0) + �p�∞ . Now, an application of Theorem 3.3 gives the result.

Corollary 4.1 extends [24, Corollary 3.1], where the periodic problem for
equation (WE s) was considered only for γ ≡ 1.

Our second example deals with a generalized Riccati equation of the form

(RE s) x
� + γp(t)|x|

p + γ1(t)x+ γ0(t) = s.

Also in this case a multiplicity result can be stated.

Corollary 4.2. Let γ0 ∈ L
∞(0, T ) and γ1, γp ∈ L

1(0, T ), with γp(t) ≥ 0 for

a.e. t ∈ [0, T ] and
� T
0 γp(t) dt > 0. Then, there exists s0 ∈ R such that:

1◦ for s < s0, equation (RE s) has no T -periodic solutions;

2◦ for s = s0, equation (RE s) has at least one T -periodic solution;

3◦ for s > s0, equation (RE s) has at least two T -periodic solutions.

Proof. We show, that all the hypotheses of Theorem 3.3 are fulfilled for

g(t, x) := γp(t)|x|
p + γ1(t)x+ γ0(t).

Condition (G0) holds for a0 := |γ1| and b0 := |γ0|. Concerning hypothesis (G1)
we observe that it is satisfied with x0 = 0 and g0 ≥ �γ0�∞ . Finally, we verify
the validity of the Villari’s condition (GV ). Let us suppose that K1 ≥ 1 and
K2 > 0 are fixed and x ∈ CT is such that |x|max ≤ K1|x|min +K2 .

1

T

� T

0
g(t, x(t)) dt =

1

T

� T

0

�
γp(t)|x(t)|

p + γ1(t)x(t) + γ0(t)
�
dt

≥ |x|
p
min�γp�1 − |x|max�γ1�1 − �γ0�1

≥ |x|
p
min�γp�1 − |x|minK1�γ1�1 −K2�γ1�1 − �γ0�1 .

Therefore,
1

T

� T

0
g(t, x(t)) dt → +∞, as |x|min → +∞,

so that (GV ) is satisfied.

Remark 4.3. The nonlinear term γp(t)|x|p + γ1(t)x+ γ0(t) in equation (RE s)
is convex in x (and strictly on a set of positive measure). We can then apply a
result of Mawhin in [17, Proposition 3] which guarantees that there are at most
two T -periodic solutions for each s ∈ R. As a consequence, in the situation of
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Corollary 4.2, we conclude that for each s > s0 equation (RE s) has exactly two
T -periodic solutions x

(−)
< x

(+)
. Moreover, x(+) is asymptotically stable and

x
(−) is unstable (cf. [25]). Figure 1 shows an example for this case. The same

conclusion holds also for Corollary 4.1 if we assume that φ is strictly convex.

(a) The four solutions in the interval
[−60, 0] show evidence of the presence of
an unstable periodic solution.

(b) The four solutions in the interval
[0, 120] show evidence of an asymptoti-
cally stable periodic solution.

Figure 1: A numerical simulation for equation (RE s). The example is obtained
for γ2(t) = max{0, sin t − 0.9}, γ1(t) = cos t, γ0(t) = 0, p = 1.1 and s = 1.
We have considered the solutions corresponding to four initial points x(0) =
−90,−50 (magenta), 0 (black), 120. Consistently with Remark 4.3 we give evidence
of two 2π-periodic solutions.

5. Appendix: Mawhin’s coincidence degree

For the reader’s convenience, we briefly recall here a few basic facts from coinci-
dence degree theory which are used in the present paper. We refer to [10, 15, 19]
for the general theory.

Let X,Z be real normed spaces and let Ω be an open bounded set in X.

We consider a coincidence equation of the form

Lx = Nx, x ∈ domL ∩ Ω, (11)

where L : X ⊇ domL → Z is a linear (non-invertible) Fredholm mapping of
index zero and N : X → Z is a nonlinear operator. We also consider two
linear and continuous projections P : X → kerL and Q : Z → ImL, as well
as, the (continuous) right inverse of L, denoted by KP : ImL → domL ∩X0 ,

where X0 := kerP ≡ X/kerL is a complementary subspace of kerL in X. In
this manner (11) is equivalent to the fixed point problem

x = Φ(x) := Px+ JQNx+KP (I −Q)Nx, x ∈ Ω, (12)
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where J : cokerL = ImQ ≡ Z/ImL → kerL is a linear isomorphism. We further
suppose that N is a continuous operator which maps bounded sets to bounded
sets and such that, for any bounded set B in X, the set KP (I − Q)N(B) is
relatively compact (i.e., N is L-completely continuous [19]). As a consequence,
the operator Φ, defined in (12), is completely continuous, too.

If we suppose that

Lx �= Nx, ∀x ∈ domL ∩ ∂Ω,

then also I −Φ never vanishes on ∂Ω and, therefore, we can define the coinci-

dence degree

DL(L−N,Ω) := deg(I − Φ,Ω, 0),

where “deg” denotes the Leray-Schauder degree. Notice that, usually one de-
fines the coincidence degree with absolute value, namely |DL(L − N,Ω)| =
|deg(I − Φ,Ω, 0)| in order to make the degree independent from the choice
of the projections P,Q, the isomorphism J and the orientations of kerL and
cokerL (see [19]). In our applications no sign ambiguity will arise because we
fix the natural orientations on kerL and cokerL, which are identified by R and
we choose P, Q and J in an obvious way.

If we denote by “degB” the (finite dimensional) Brouwer degree, then, ac-
cording to Mawhin’s continuation theorem (see [12, 13]), the following result
holds.

Theorem 5.1. Let L and N be as above and let Ω ⊆ X be an open and bounded

set. Suppose that Lx �= λNx, ∀x ∈ domL ∩ ∂Ω, ∀λ ∈ ]0, 1] and QN(x) �= 0,
∀x ∈ ∂Ω ∩ kerL. Then,

DL(L−N,Ω) = degB(−JQN |kerL,Ω ∩ kerL, 0).

As a consequence, if degB(−JQN |kerL,Ω ∩ kerL, 0) �= 0, then (11) has at leat

one solution.

We also point out that the classical properties of the Leray-Schauder degree,
such as additivity/excision, homotopic invariance, hold also in the coincidence
degree framework.
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Abstract. Given a C∞ manifold X, denote by Cm
X the sheaf of m-

times differentiable real-valued functions and by D
m,r
X the sheaf of dif-

ferential operators of order ≤ m with coefficient functions of class C r.
We prove that the natural morphism D

m−r,r
X −→ H omRX (Cm

X ,C r
X) is

an isomorphism.
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1. Introduction

Sheaves were invented by Jean Leray [6] as a special mathematical tool which
provides a unified approach for establishing connections between local and
global properties of topological spaces (in particular geometric objects). It is
a powerful method for studying many problems in contemporary algebra, ge-
ometry, topology, and analysis (see [5] for more details and references therein).
There are many natural examples of sheaves [5].

Leray defined cohomology groups for continuous maps, and related them
to the cohomology of the source space by means of the spectral sequence that
was introduced for this purpose. Henri Cartan reformulated sheaf theory and,
together with Jean-Pierre Serre, gave striking applications to the theory of an-
alytic spaces in their seminal work [2]. Subsequently Serre, and Grothendieck
extended these methods to algebraic geometry. Indeed, the latter’s use of
schemes led to a complete reconceptualization of the subject and the devel-
opment of new and powerful methods. Finally Sato introduced D-modules,
creating micro-local analysis (see [9] and any references therein). For this rea-
son it seems natural to apply this theory to differential operators.

In this paper, we investigate the relationship between the sheaf of linear
differential operators that satisfies a certain condition to be given in Section 2
and the sheaf of R-linear morphisms of certain sheaves.

The paper is organized as follows. In Section 2, we recall some basic def-
initions and state the main theorem. Finally, we prove in Section 3 the main
theorem by cases.
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2. Basic Facts and Main Theorem

Let X be an n-dimensional C∞-manifold and m a nonnegative integer. We de-
note by Cm

X the sheaf of real-valued functions of class Cm on X. Furthermore,
for 0 ≤ r ≤ ∞, we denote by D

m,r
X the sheaf of differential operators of order

≤ m with coefficients of class C r. Note that, for any nonnegative integer r,
the sheaf D

0,r
X coincide with the sheaf C r

X , i.e.

D
0,r
X = C

r
X .

As is usually the case in the literature, we recall that RX denotes the
constant sheaf on the C∞ manifold X, and C∞

X denotes the sheaf of C∞ real-
valued functions on X.

Moreover, we also recall that, for any local coordinate system (xi)1≤i≤n of
X, a section P of the sheaf D

m,r
X on U , is given by (see [3, p. 13])

P =
�

|α|≤m

aα(x)∂
α
x , (1)

where aα are real-valued functions of class C r.
In (1), α stands for the multi-index α := (α1, . . . ,αn), where, for every

1 ≤ i ≤ n, αi ∈ {0, 1, 2, . . . }, and

∂α
x := ∂α1

1 · · · ∂αn
n .

We also set by classical conventions:

|α| :=
�

αi and α! := α1! · · ·αn!.

The number |α| is called the order or degree of α.
For x0 ∈ X, one defines the sheaf Mm

X,x0
as the subsheaf of Cm

X of functions
vanishing up to order m at x0. Note that Mm

X,x0
(U) = Cm

X (U) for x0 /∈ U .
More precisely, the module Mm

X,x0
(U) consists of Cm-functions ϕ : U −→ R

such that, for all |α| ≤ m,
(∂α

|Uϕ)(x0) = 0.

Let us denote by
H omRX (Cm

X ,C r
X),

the sheaf of R-linear morphisms from the sheaf of real-valued Cm-functions to
the sheaf of real-valued C r

X -functions on X.
For any nonnegative integers m and r such that m ≥ r, we consider the

natural morphism

θ : D
m−r,r
X −→ H omRX (Cm

X ,C r
X)

P �−→ θ(P ),
(2)
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defined, for any section ϕ of Cm
X , by θ(P )ϕ := P (ϕ).

On the other hand, we set

D
m−r,r
X = 0, if m− r < 0. (3)

Our main result is as follows.

Theorem 2.1. For any nonnegative integers m and r, the natural morphism

θ : D
m−r,r
X −→ H omRX (Cm

X ,C r
X)

P �−→ θ(P ) : ϕ �−→ θ(P )ϕ := P (ϕ),

is an isomorphism.

Theorem 2.1 is associated, in a natural way, with Peetre’s theorem ([7, 8]).
Peetre proves the following:

Theorem 2.2 (Peetre [7, 8]). Let X be a smooth manifold. Let DX and C∞
X

denote the sheaves of differential operators of finite order and of C∞
X real-valued

functions on X, respectively. Then we have

DX
∼= H omRX (C∞

X ,C∞
X ). (4)

Note that the Peetre’s Theorem appeared first in 1959 (see [7] for more
details). The proof was incomplete and this was pointed out by M. Carleson [8].
In that proof, Peetre considered the family of functions {aα} given in (1) to be
finite at each of the local chart. This gap, in the proof, was later rectified by
the same author in the article [8] published a year later, in 1960. The new proof
given in [8] is quite different from the original, and the modified technique led
to a more general representation formula for linear maps P of DX into suitable
subspaces of DX , P being assumed to shrink supports, so as to correspond with
a sheaf homomorphism.

3. Proof of Theorem 2.1

To prove Theorem 2.1, we need some intermediary results which are summa-
rized into lemmas below.

First, let us recall the following classical result (see, for instance [4, Lemma
1.1.1, p. 5]).

Lemma 3.1. Let {Ui}i∈I be a finite open covering of the unit sphere Sn−1.
Then, there exists a family of nonnegative real-valued functions of class C∞

σi : Sn−1 −→ R such that

(i) suppσi ⊆ Ui, for all i,
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(ii) 0 ≤ σi(x) ≤ 1, for all x ∈ Sn−1, i ∈ I,

(iii)
�

i∈I

σi(x) = 1, for all x ∈ Sn−1.

In keeping with the notations of Lemma 3.1, we let, for every i ∈ I, ψi :
Rn \ {0} −→ R be the map given by

ψi(x) = σi

�
x

||x||

�
. (5)

Clearly, ψi is C∞ on Rn \ {0}. Next, let m ∈ N and η : Rn −→ R be a Cm

real-valued function such that (∂αη)(0) = 0, for all |α| ≤ m. For every i ∈ I
and every multi-index α, set

(∂α(ψi · η))(x) =






�

{β:β≤α}

�
α

β

�
(∂βψi)(x)(∂

α−βη)(x), if x �= 0,

0, if x = 0.

(6)

It is clear that
η =

�

i∈I

ψi · η. (7)

Therefore, we have the following.

Lemma 3.2. Let U be an open neighborhood of 0 in Rn. For m ≥ 0 and
η ∈ Mm

Rn,0(U), every function ψiη ∈ Cm
Rn(U \ {0}) extends as a function of

Mm
Rn,0(U).

Proof. Consider the map

λ : Rn \ {0} −→ Sn−1, λ(x) = x/||x||.

Then ψi = σi ◦ λ. One checks that for any β ∈ Nn, there exists a constant
C > 0 such that

||∂βλ(x)|| ≤ C · ||x||−|β|,

and a similar result holds for ψi:

||∂βψi(x)|| ≤ C · ||x||−|β|.

On the other hand, since η ∈ Mm
Rn,0(U), for |α| ≤ m, one has, by Taylor’s

formula,

∂βη(x) = ||x||m−|β|ε(x), with ε(x) → 0 when x → 0.
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Therefore
||∂βψi · ∂α−βη|| ≤ C · ||x||−|β| · ||x||m−|α|+|β|ε(x),

that is,
||∂βψi · ∂α−βη|| ≤ C||x||m−|α|ε(x).

Since, by the formula (6), ∂α(ψ · η) is a linear combination of ∂βψi ·∂α−βη, the
result follows.

Furthermore, we have the following.

Lemma 3.3. For any open neighborhood U of 0 in Rn and nonnegative integer
m, if u ∈ H omRRn (C

m
Rn ,C 0

Rn)(U), then

u(Mm
Rn,0) ⊆ M

0
Rn,0.

Proof. First, let us consider the unit sphere Sn−1, and denote by N and S the
north and south poles of Sn−1.

Next, consider the following open covering of Sn−1: {U1, U2}, where U1

contains N and does not intersect some open neighborhood V1 of S, and, sim-
ilarly, U2 contains S and does not intersect some open neighborhood V2 of N .
By Lemma 3.1, we let {σ1,σ2} be a partition of unity subordinate to the cov-
ering {U1, U2}, and let ψ1, ψ2 be functions derived from the σi as in (5). We
denote by R+Vi the open cone generated by Vi, i = 1, 2. It is obvious that ψi

vanishes on R+Vi, and so does (ψi|U )σ ≡ ψi · σ, for any σ ∈ Mm
Rn,0(U). As

u : Cm
Rn |U −→ C 0

Rn |U is a sheaf morphism, it follows that

u(ψiσ)|R+Vi

= 0,

thus, since u(ψi · σ) is continuous,

u(ψi · σ)|R+Vi

= 0,

from which we deduce that u(ψi · σ)(0) = 0, for every i = 1, 2. Thus,

u(σ)(0) = u(ψ1σ)(0) + u(ψ2σ)(0) = 0,

and hence,
u(σ) ∈ M

0
Rn,0(U),

which completes the proof.

We are now set for the proof of a particular case of Theorem 2.1: the
isomorphism

D
m−r,r
X

∼= H omRX (Cm
X ,C r

X),

where the integers m, r are such that 0 ≤ r ≤ m.
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Definition 3.4. Let (U,φ) ≡ (U, (x1, · · · , xn)) be a local chart in an n-dimen-
sional C∞-manifold X and Pm be the ring of polynomials in (xi)1≤i≤n of
degree ≤ m. We define by Pm

φ(U) the constant sheaf on φ(U), whose stalk is
Pm.

In keeping with the notations of Definition 3.4 above, we have the following.

Lemma 3.5. Let (U,φ) be a local chart of X, and u ∈ H omRX (Cm
X ,C 0

X)(U).
If u(φ∗(Pm

φ(U))) = 0, where φ∗(Pm
φ(U)) is the inverse image of Pm

φ(U), then
u = 0.

Proof. One may assume that X is open in Rn. Let ϕ ∈ Cm
X (V ), where V is a

sub-open of X containing x0. Then we have

ϕ = q + ψ,

where q ∈ P
m−1
X (V ) and ψ ∈ Mm

Rn,x0
(V ). Then, by virtue of the hypothesis

and Lemma 3.3, we have
u(ϕ) ∈ M

0
Rn,x0

(V ),

therefore
u(ϕ)(x0) = 0.

But since this holds for all x0 ∈ V , sub-open V of X, and ϕ ∈ Cm
X (V ), we

deduce that u = 0.

We are going to consider two cases to prove the Theorem 2.1.

3.1. Case 0 ≤ r ≤ m

Lemma 3.6. Let X be an n-dimensional C∞-manifold and D
m,r
X the sheaf of

differential operators of order ≤ m and whose coefficients are of class C r.
Then, the natural morphism

θ : D
m−r,r
X −→ H omRX (Cm

X ,C r
X)

P �−→ θ(P ) : f �−→ θ(P )f := P (f),
(8)

is an isomorphism.

Proof. The morphism (8) is clearly injective. Indeed, let P be a section of
D

m−r,r
X such that θ(P )(f) = 0 for all polynomials f (in a local chart), then

P = 0. Let us now show that it is surjective.
To this end, let u ∈ H omRX (Cm

X ,C r
X)(U), where U is an open subset of

X. We will show that u is in fact a differential operator of order ≤ m − r
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and whose coefficient functions are of class C r. For this purpose, consider the
differential operator

P =
�

|β|≤m−r

aβ(x)∂
β
x ,

with the coefficients aβ being of class Cr and defined by induction on |β| in the
following way. Let I : U −→ R be the constant function defined by I(x) = 1,
for any x ∈ U ; and we set

a0(x) = u(I) ≡ a0.

For any multi-index α, suppose that we have defined aβ for all |β| < |α| ≤ m−r;
define aα by setting

aα(x) =



u−
�

|β|<|α|≤m−r

aβ(x)∂
β
x



 (xα), (9)

where xα = xα1
1 · · ·xαn

n . Clearly, aα ∈ C r
X(U). Denote by ∧α the set of all

multi-indices α� such that |α�| = |α| ≤ m− r. By easy calculations, one shows
that

∂
α�

1
x1 · · · ∂α�

n
xn (x

α1
1 · · ·xαn

n ) =






α1!α2! · · ·αn! if αi = α�
i, i = 1, . . . , n,

0 otherwise.

Without loss of generality, suppose that α� �= α in ∧α, and α�
1 = α1. Then, for

some 2 ≤ j ≤ n, α�
j > αj , we have

∂α�

x (xα) = ∂
α�

1
x1 · · · ∂α�

n
xn (x

α1
1 · · ·xαn

n ) = 0.

It follows that �
�

α�∈∧α

aα�(x)∂α�

x

�
(xα) = 0.

On the other hand, since for any β such that |β| > |α|, we have ∂β
x (x

α) = 0, it
follows, using (9), that

P (xα) =




�

|β|<|α|≤m−r

aβ(x)∂
β
x



 (xα) + aα(x)∂
α
x (x

α)

=




�

|β|<|α|≤m−r

aβ(x)∂
β
x



 (xα) + α!



u−
�

|β|<|α|≤m−r

aβ(x)∂
β
x



 (xα),
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with α! := α1!α2! · · ·αn!. Thus, we deduce that, for every xα, with |α| ≤ m−r,



u− 1

α!



P − (1− α!)
�

|β|<|α|≤m−r

aβ(x)∂
β
x







 (xα) = 0,

which implies that



u− 1

α!



P − (1− α!)
�

|β|<|α|≤m−r

aβ(x)∂
β
x







 (Pm−r
φ(U) ) = 0.

Hence, by Lemma 3.5,

u =
1

α!



P − (1− α!)
�

|β|<|α|≤m−r

aβ(x)∂
β
x



 ,

and the proof is complete.

In particular we deduce, from Lemma 3.6, that H omRX (Cm
X ,Cm

X ) ∼= Cm
X .

3.2. Case m < r

Lemma 3.7. For any nonnegative integers m and r such that m < r,

H omRX (Cm
X ,C r

X) = 0.

Proof. Since C r
X ⊆ Cm

X , then

H omRX (Cm
X ,C r

X) ⊆ H omRX (Cm
X ,Cm

X ) ∼= C
m
X .

Therefore, we are reduced to prove that given m < r, if u ∈ Cm(U) and also
u · f ∈ C r(U) for any f ∈ Cm(U), then u = 0. Indeed, assume that u is not
identically 0 and let x0 with u(x0) �= 0. Let v = u−1. Then f = v · u · f would
be of class C r in a neighborhood of x0.
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Fortuné Massamba
School of Mathematics, Statistics and Computer Science
University of KwaZulu-Natal
Private Bag X01, Scottsville 3209, South Africa
and
The Abdus Salam International Centre for Theoretical Physics
Trieste, Italy
E-mail: massfort@yahoo.fr, Massamba@ukzn.ac.za

Patrice P. Ntumba
Department of Mathematics and Applied Mathematics
University of Pretoria
Hatfield 0002, South Africa
E-mail: patrice.ntumba@up.ac.za

Received October 8, 2016
Accepted April 9, 2017





367

Editorial Note

The Managing Editors would like to remind the authors of the ethical rules
set out in the document of IMU “Best current practices for Journals” (see
www.mathunion.org). In particular, we stress the following:

“Authors must abide by high standards of research integrity and good scholar-
ship. It is the responsibility of authors to submit a well written, mathematically
correct article, if necessary seeking advice if it is not written in their native lan-
guage, to clearly describe any novel and non-trivial content, and to suitably
acknowledge the contributions of others, including referees. Submission of a
paper to a journal implies that it is not currently under consideration by any
other journal, and that any substantial overlap with other published or submit-
ted papers is duly acknowledged. In addition authors should be responsive to
correspondence with the journal. Multiple authors should communicate fully,
speak with one voice, and accept mutual responsibility in their communications
with the journal. All authors are expected to have materially contributed to
the paper, and to be familiar with its content.”

Alessandro Fonda

Emilia Mezzetti

Pierpaolo Omari

Maura Ughi





369

Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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