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Theory of the (m, �)-general functions
over infinite-dimensional Banach spaces

Claudio Asci

Abstract. In this paper, we introduce some functions, called (m,�)-
general, that generalize the (m,�)-standard functions and are defined in

the infinite-dimensional Banach space EI of the bounded real sequences

{xn}n2I
, for some subset I of N⇤

. Moreover, we recall the main results

about the di↵erentiation theory over EI , and we expose some properties

of the (m,�)-general functions. Finally, we study the linear (m,�)-
general functions, by introducing a theory that generalizes the standard

theory of the m⇥m matrices.

Keywords: Infinite-dimensional Banach spaces, infinite-dimensional di↵erentiation the-
ory, (m,�)-general functions.
MS Classification 2010: 28A15, 46B99.

1. Introduction

In this paper, we generalize the results of the articles [3] and [4], where, for
any subset I of N⇤, we define the Banach space EI ⇢ RI of the bounded real
sequences {xn}n2I

, the �-algebra BI given by the restriction to EI of B(I) (de-
fined as the product indexed by I of the same Borel �-algebra B on R), and a
class of functions over an open subset of EI , with values on EI , called (m,�)-
standard. The properties of these functions generalize the analogous ones of
the standard finite-dimensional di↵eomorphisms; moreover, these functions are
introduced in order to provide a change of variables’ formula for the integra-
tion of the measurable real functions on

�
RI

,B
(I)
�
. For any strictly positive

integer k, this integration is obtained by using an infinite-dimensional measure

�
(k,I)
N,a,v

, over the measurable space
�
RI

,B
(I)
�
, that in the case I = {1, ..., k}

coincides with the k-dimensional Lebesgue measure on Rk.
In the mathematical literature, some articles introduced infinite-dimen-

sional measures analogue of the Lebesgue one (see for example the paper of
Léandre [8], in the context of the noncommutative geometry, that one of Tsile-
vich et al. [10], which studies a family of �-finite measures on R+, and that
one of Baker [5], which defines a measure on RN⇤

that is not �-finite).
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In the paper [3], we define the linear (m,�)-standard functions. The motiva-
tion of this paper follows from the natural extension to the infinite-dimensional
case of the results of the article [2], where we estimate the rate of convergence
of some Markov chains in [0, p)k to a uniform random vector. In order to
consider the analogue random elements in [0, p)N

⇤
, it is necessary to overcome

some di�culties: for example, the lack of a change of variables formula for
the integration in the subsets of RN⇤

. A related problem is studied in the
paper of Accardi et al [1], where the authors describe the transformations of
generalized measures on locally convex spaces under smooth transformations of
these spaces. In the paper [4], we expose a di↵erentiation theory for the func-
tions over an open subset of EI , and in particular we define the functions C

1

and the di↵eomorphisms; moreover, we remove the assumption of linearity for
the (m,�)-standard functions, and we present a change of variables’ formula
for the integration of the measurable real functions on

�
RI

,B
(I)
�
; this change

of variables is defined by the (m,�)-standard di↵eomorphisms, with further
properties. This result agrees with the analogous finite-dimensional result.

In this paper, we introduce a class of functions, called (m,�)-general, that
generalizes the set of the (m,�)-standard functions given in [4]. In Section 2,
we recall the main results about the di↵erentiation theory over the infinite-
dimensional Banach space EI . Moreover, we expose some properties of the
(m,�)-general functions. In Section 3, we study the linear (m,�)-general func-
tions and we expose a theory that generalizes the standard theory of the m⇥m

matrices and the results about the linear (m,�)-standard functions, given in [3].
The main result is the definition of the determinant of a linear (m,�)-general
function, as the limit of a sequence of the determinants of some standard ma-
trices (Theorem 3.6 and Definition 3.7). Moreover, we study some properties
of this determinant, and we provide an example (Example 3.19). In Section 4,
we expose some ideas for further study in the probability theory.

2. Theory of the (m, �)-general functions

Let I 6= ; be a set and let k 2 N⇤; indicate by ⌧ , by ⌧
(k), by ⌧

(I), by B,
by B

(k), by B
(I), and by Leb, respectively, the euclidean topology on R, the

euclidean topology on Rk, the topology
O

i2I

⌧ , the Borel �-algebra on R, the

Borel �-algebra on Rk, the �-algebra
O

i2I

B, and the Lebesgue measure on R.

Moreover, for any setA ⇢ R, indicate by B(A) the �-algebra induced by B onA,
and by ⌧(A) the topology induced by ⌧ on A; analogously, for any set A ⇢ RI ,

define the �-algebra B
(I)(A) and the topology ⌧ (I)(A). Finally, if S =

Y

i2I

Si is

a Cartesian product, for any (xi : i 2 I) 2 S and for any ; 6= H ⇢ I, define
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xH = (xi : i 2 H) 2

Y

i2H

Si, and define the projection ⇡I,H on
Y

i2H

Si as the

function ⇡I,H : S �!

Y

i2H

Si given by ⇡I,H (xI) = xH .

Henceforth, we will suppose that I, J are sets such that ; 6= I, J ⇢ N⇤;
moreover, for any k 2 N⇤, we will indicate by Ik the set of the first k elements
of I (with the natural order and with the convention Ik = I if |I| < k);

furthermore, for any i 2 I, set |i| = |I \ (0, i]|. Analogously, define Jk and |j|,
for any k 2 N⇤ and for any j 2 J .

Definition 2.1. For any set I 6= ;, define the function k·k
I
: RI

�! [0,+1]
by

kxk
I
= sup

i2I

|xi|, 8x = (xi : i 2 I) 2 RI
,

and define the vector space

EI = {x 2 RI : kxk
I
< +1}.

Moreover, indicate by BI the �-algebra B
(I)(EI), by ⌧I the topology ⌧

(I)(EI),
and by ⌧k·kI

the topology induced on EI by the the distance d : EI ⇥ EI �!

[0,+1) defined by d(x, y) = kx� yk
I
, 8x, y 2 EI ; furthermore, for any set

A ⇢ EI , indicate by ⌧k·kI
(A) the topology induced by ⌧k·kI

on A. Finally,

for any x0 2 EI and for any � > 0, indicate by B(x0, �) the set {x 2 EI :
kx� x0kI < �}.

Remark 2.2: For any A ⇢ EI , one has ⌧ (I)(A) ⇢ ⌧k·kI
(A); moreover, EI is a

Banach space, with the norm k·k
I
.

Proof. The proof that ⌧ (I)(A) ⇢ ⌧k·kI
(A), 8A ⇢ EI , follows from the defini-

tions of ⌧ (I) and ⌧k·kI
; moreover, the proof that EI is a Banach space can be

found, for example, in [3] (Remark 2).

The following concept generalizes the definition 6 in [3] (see also the theory
in the Lang’s book [7] and that in the Weidmann’s book [11]).

Definition 2.3. Let A = (aij)i2I,j2J
be a real matrix I ⇥ J (eventually infi-

nite); then, define the linear function A = (aij)i2I,j2J
: EJ �! RI

, and write

x �! Ax, in the following manner:

(Ax)
i
=
X

j2J

aijxj, 8x 2 EJ , 8 i 2 I, (1)

on condition that, for any i 2 I, the sum in (1) converges to a real number. In
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particular, if |I| = |J |, indicate by II,J =
�
�ij

�
i2I,j2J

the real matrix defined

by

�ij =

⇢
1 if |i| = |j|

0 otherwise
,

and call �ij generalized Kronecker symbol. Moreover, indicate by A
(L,N)

the

real matrix (aij)i2L,j2N
, for any L ⇢ I, for any N ⇢ J , and indicate by

t
A = (bji)j2J,i2I

: EI �! RJ
the linear function defined by bji = aij, for any

j 2 J and for any i 2 I. Furthermore, if I = J and A = t
A , we say that A

is a symmetric function. Finally, if B = (bjk)j2J,k2K
is a real matrix J ⇥K,

define the I ⇥K real matrix AB = ((AB)
ik
)
i2I,k2K

by

(AB)
ik

=
X

j2J

aijbjk, (2)

on condition that, for any i 2 I and for any k 2 K, the sum in (2) converges

to a real number.

Proposition 2.4. Let A = (aij)i2I,j2J
be a real matrix I ⇥ J ; then:

1. The linear function A = (aij)i2I,j2J
: EJ �! RI

given by (1) is defined

if and only if, for any i 2 I,

X

j2J

|aij | < +1.

2. One has A(EJ) ⇢ EI if and only if A is continuous and if and only if

sup
i2I

X

j2J

|aij | < +1; moreover, kAk = sup
i2I

X

j2J

|aij |.

3. If B = (bjk)j2J,k2K
: EK �! EJ is a linear function, then the linear

function A �B : EK �! RI
is defined by the real matrix AB.

Proof. The proofs of points 1 and 2 are analogous to the proof of Proposition 7
in [3]. Moreover, the proof of point 3 is analogous to that one true in the
particular case |I|, |J | , |K| < +1 (see, e.g., the Lang’s book [7]).

The following definitions and results (from Definition 2.5 to Proposition
2.19) can be found in [4] and generalize the di↵erentiation theory in the finite
case (see, e.g., the Lang’s book [6]).

Definition 2.5. Let U 2 ⌧k·kJ
; a function ' : U ⇢ EJ �! EI is called

di↵erentiable in x0 2 U if there exists a linear and continuous function A :
EJ �! EI defined by a real matrix A = (aij)i2I,j2J

, and one has

lim
h!0

k'(x0 + h)� '(x0)�Ahk
I

khk
J

= 0. (3)
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If ' is di↵erentiable in x0 for any x0 2 U , ' is called di↵erentiable in U . The

function A is called di↵erential of the function ' in x0, and it is indicated by

the symbol d'(x0).

Remark 2.6: Let U 2 ⌧k·kJ
and let ', : U ⇢ EJ �! EI be di↵erentiable

functions in x0 2 U ; then, for any ↵,� 2 R, the function ↵'+ � is di↵eren-
tiable in x0, and d(↵'+ � )(x0) = ↵d'(x0) + �d (x0).

Remark 2.7: A linear and continuous function A = (aij)i2I,j2J
: EJ �! EI ,

defined by

(Ax)
i
=
X

j2J

aijxj , 8x 2 EJ , 8 i 2 I,

is di↵erentiable and d'(x0) = A, for any x0 2 EJ .

Remark 2.8: Let U 2 ⌧k·kJ
and let ' : U ⇢ EJ �! EI be a function dif-

ferentiable in x0 2 U ; then, for any i 2 I, the component 'i : U �! R
is di↵erentiable in x0, and d'i(x0) is the matrix Ai given by the i-th row of
A = d'(x0). Moreover, if |I| < +1 and 'i : U ⇢ EJ �! R is di↵erentiable in
x0, for any i 2 I, then ' : U ⇢ EJ �! EI is di↵erentiable in x0.

Remark 2.9: Let U 2 ⌧k·kJ
and let ' : U ⇢ EJ �! EI be a function di↵eren-

tiable in x0 2 U ; then, ' is continuous in x0.

Definition 2.10. Let U 2 ⌧k·kJ
, let v 2 EJ such that kvk

J
= 1 and let a func-

tion ' : U ⇢ EJ �! RI
; for any i 2 I, the function 'i is called di↵erentiable

in x0 2 U in the direction v if there exists the limit

lim
t!0

'i(x0 + tv)� 'i(x0)

t
.

This limit is indicated by
@'i

@v
(x0), and it is called derivative of 'i in x0 in the

direction v. If, for some j 2 J , one has v = ej, where (ej)k = �jk, for any k 2

J , indicate
@'i

@v
(x0) by

@'i

@xj
(x0), and call it partial derivative of 'i in x0, with

respect to xj. Moreover, if there exists the linear function defined by the matrix

J'(x0) =
⇣
(J'(x0))ij

⌘

i2I,j2J

: EJ �! RI
, where (J'(x0))ij = @'i

@xj
(x0), for

any i 2 I, j 2 J , then J'(x0) is called Jacobian matrix of the function ' in x0.

Remark 2.11: Let U 2 ⌧k·kJ
and suppose that a function ' : U ⇢ EJ �! EI

is di↵erentiable in x0 2 U ; then, for any v 2 EJ such that kvk
J
= 1 and for any

i 2 I, the function 'i : U ⇢ EJ �! R is di↵erentiable in x0 in the direction v,
and one has

@'i

@v
(x0) = d'i(x0)v.
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Corollary 2.12. Let U 2 ⌧k·kJ
and let ' : U ⇢ EJ �! EI be a function

di↵erentiable in x0 2 U ; then, there exists the function J'(x0) : EJ �! RI
,

and it is continuous; moreover, for any h 2 EJ , one has d'(x0)(h) = J'(x0)h.

Theorem 2.13. Let U 2 ⌧k·kJ
, let ' : U ⇢ EJ �! EI be a function di↵eren-

tiable in x0 2 U , let V 2 ⌧k·kI
such that V � '(U), and let  : V ⇢ EI �! EH

a function di↵erentiable in y0 = '(x0). Then, the function  �' is di↵erentiable

in x0, and one has d( � ')(x0) = d (y0) � d'(x0).

Definition 2.14. Let U 2 ⌧k·kJ
, let i, j 2 J and let ' : U ⇢ EJ �! R be a

function di↵erentiable in x0 2 U with respect to xi, such that the function
@'

@xi

is di↵erentiable in x0 with respect to xj. Indicate
@

@xj

⇣
@'

@xi

⌘
(x0) by

@
2
'

@xj@xi
(x0)

and call it second partial derivative of ' in x0 with respect to xi and xj. If

i = j, it is indicated by
@
2
'

@x
2
i
(x0). Analogously, for any k 2 N⇤

and for any

j1, ..., jk 2 J , define
@
k
'

@xjk
...@xj1

(x0) and call it k-th partial derivative of ' in x0

with respect to xj1 , ...xjk .

Definition 2.15. Let U 2 ⌧k·kJ
and let k 2 N⇤

; a function ' : U ⇢ EJ �! EI

is called C
k
in x0 2 U if, in a neighbourhood V 2 ⌧k·kJ

(U) of x0, for any

i 2 I and for any j1, ..., jk 2 J , there exists the function defined by x �!

@
k
'i

@xjk
...@xj1

(x), and this function is continuous in x0; ' is called C
k
in U if,

for any x0 2 U , ' is C
k
in x0. Moreover, ' is called strongly C

1
in x0 2 U

if, in a neighbourhood V 2 ⌧k·kJ
(U) of x0, there exists the function defined by

x �! J'(x), this function is continuous in x0, and one has kJ'(x0)k < +1.

Finally, ' is called strongly C
1
in U if, for any x0 2 U , ' is strongly C

1
in x0.

Definition 2.16. Let U 2 ⌧k·kJ
and let V 2 ⌧k·kI

; a function ' : U ⇢ EJ �!

V ⇢ EI is called di↵eomorphism if ' is bijective and C
1
in U , and the function

'
�1 : V ⇢ EI �! U ⇢ EJ is C

1
in V .

Remark 2.17: Let U 2 ⌧k·kJ
and let ' : U ⇢ EJ �! EI be a function C

1 in
x0 2 U , where |I| < +1, |J | < +1, then ' is strongly C

1 in x0.

Theorem 2.18. Let U 2 ⌧k·kJ
, let ' : U ⇢ EJ �! R be a function C

k
in

x0 2 U , let i1, ..., ik 2 J , and let j1, ..., jk 2 J be a permutation of i1, ..., ik.

Then, one has

@
k
'

@xi1 ...@xik

(x0) =
@
k
'

@xj1 ...@xjk

(x0).
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Proposition 2.19. Let U =

0

@
Y

j2J

Aj

1

A \ EJ 2 ⌧k·kJ
, where Aj 2 ⌧ , for any

j 2 J , and let ' : U ⇢ EJ �! EI be a function C
1
in x0 2 U , such that

'i(x) =
X

j2J

'ij(xj), 8x = (xj : j 2 J) 2 U , 8 i 2 I, (4)

where 'ij : Aj �! R, for any i 2 I and for any j 2 J ; moreover, suppose

that, in a neighbourhood V 2 ⌧k·kJ
(U) of x0, there exists the function defined

by x �! J'(x) and one has sup
x2V

kJ'(x)k < +1. Then, ' is continuous in x0;

in particular, if ' is strongly C
1
in x0 and |I| < +1, ' is di↵erentiable in x0.

Definition 2.20. Let m 2 N⇤
and let U =

0

@U
(m)

⇥

Y

j2J\Jm

Aj

1

A\EJ 2 ⌧k·kJ
,

where U
(m)

2 ⌧
(m)

, Aj 2 ⌧ , for any j 2 J\Jm. A function ' : U ⇢ EJ �! EI

is called m-general if, for any i 2 I and for any j 2 J\Jm, there exist some

functions '
(I,m)
i

: U (m)
�! R and 'ij : Aj �! R such that

'i(x) = '
(I,m)
i

(xJm) +
X

j2J\Jm

'ij(xj), 8x 2 U.

Moreover, for any ; 6= L ⇢ I and for any Jm ⇢ N ⇢ J , indicate by '
(L,N)

the

function '
(L,N) : ⇡J,N (U) �! RL

defined by

'
(L,N)
i

(xN ) = '
(I,m)
i

(xJm) +
X

j2N\Jm

'ij(xj), 8xN 2 ⇡J,N (U), 8 i 2 L. (5)

Furthermore, for any ; 6= L ⇢ I and for any ; 6= N ⇢ J\Jm, indicate by

'
(L,N)

the function '
(L,N) : ⇡J,N (U) �! RL

given by

'
(L,N)
i

(xN ) =
X

j2N

'ij(xj), 8xN 2 ⇡J,N (U), 8 i 2 L. (6)

In particular, suppose that m = 1; then, let j 2 J such that {j} = J1

and indicate U
(1)

by Aj and '
(I,1)
i

by 'ij, for any i 2 I; moreover, for any

; 6= L ⇢ I and for any ; 6= N ⇢ J , indicate by '
(L,N)

the function '
(L,N) :

⇡J,N (U) �! RL
defined by formula (6).

Furthermore, for any l, n 2 N⇤
, indicate '

(Il,N)
by '

(l,N)
, '

(L,Jn) by '(L,n)
,

and '
(Il,Jn) by '

(l,n)
.
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Definition 2.21. Let m 2 N⇤
, let U =

0

@U
(m)

⇥

Y

j2J\Jm

Aj

1

A \ EJ 2 ⌧k·kJ
,

where U
(m)

2 ⌧
(m)

, Aj 2 ⌧ , for any j 2 J\Jm, and let � : I\Im �! J\Jm be

an increasing function; a function ' : U ⇢ EJ �! EI m-general and such that

|J | = |I| is called (m,�)-general if:

1. 8 i 2 I\Im, 8 j 2 J\ (Jm [ {�(i)}), 8 t 2 Aj, one has 'ij(t) = 0; more-

over

'
(I\Im,J\Jm)

�
⇡J,J\Jm

(U)
�
⇢ EI\Im

.

2. 8 i 2 I\Im, 8x 2 U , there exists J'i(x) : EJ �! R; moreover, 8xJm 2

U
(m)

, one has

X

i2I\Im

���J
'

(I,m)
i

(xJm)
��� < +1.

3. 8 i 2 I\Im, the function 'i,�(i) : A�(i) �! R is constant or injective;

moreover, 8x�(I\Im) 2

Y

j2�(I\Im)

Aj, one has sup
i2I\Im

���'0

i,�(i)

�
x�(i)

���� < +1

and inf
i2I'

���'0

i,�(i)

�
x�(i)

���� > 0, where I' = {i 2 I\Im : 'i,�(i) is injective}.

4. If, for some h 2 N, h � m, one has |�(i)| = |i| , 8 i 2 I\Ih, then,

8x�(I\Im) 2

Y

j2�(I\Im)

Aj, there exists

Y

i2I'

'
0

i,�(i)

�
x�(i)

�
2 R⇤

.

Moreover, set

A = A(') = {h 2 N, h � m : |�(i)| = |i| , 8 i 2 I\Ih} .

If the sequence

n
J
'

(I,m)
i

(xJm)
o

i2I\Im

converges uniformly on U
(m)

to the

matrix (0 . . . 0) and there exists a 2 R such that, for any " > 0, there exists

i0 2 N, i0 � m, such that, for any i 2 I' \ (I\Ii0) and for any t 2 A�(i), one

has

���'0

i,�(i) (t)� a

��� < ", then ' is called strongly (m,�)-general.

Furthermore, for any Im ⇢ L ⇢ I and for any Jm ⇢ N ⇢ J , define the

function '
(L,N) : U ⇢ EJ �! RI

in the following manner:

'
(L,N)
i

(x) =

8
<

:

'
(L,N)
i

(xN ) 8 i 2 Im, 8x 2 U

'i(x) 8 i 2 L\Im, 8x 2 U

'i,�(i)(x�(i)) 8 i 2 I\L, 8x 2 U

.

Finally, for any l, n 2 N, l, n � m, indicate '
(Il,N)

by '
(l,N)

, '
(L,Jn) by

'
(L,n)

, '
(Il,Jn) by '

(l,n)
, and '

(m,m)
by '.
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Definition 2.22. A function ' : U ⇢ EJ �! EI (m,�)-general is called

(m,�)-standard (or (m,�) of the first type) if, for any i 2 I\Im and for any

xJm 2 U
(m)

, one has '
(I,m)
i

(xJm) = 0. Moreover, a function ' : U ⇢ EJ �!

EI (m,�)-standard and strongly (m,�)-general is called strongly (m,�)-stand-
ard (see also Definition 28 in [4]).

Remark 2.23: Let ' : U ⇢ EJ �! EI be a m-general function; then:

1. Let ; 6= L ⇢ I and let Jm ⇢ N ⇢ J such that '(L,N) (⇡J,N (U)) ⇢ EL;
then, for any n 2 N, n � m, the function '

(L,N) : ⇡J,N (U) �! EL is
n-general.

2. Let ; 6= L ⇢ I and let ; 6= N ⇢ J\Jm such that '(L,N) (⇡J,N (U)) ⇢ EL;
then, for any n 2 N⇤, the function '(L,N) (⇡J,N (U)) �! EL is n-general.

3. If m = 1, let ; 6= L ⇢ I and let ; 6= N ⇢ J such that '(L,N) (⇡J,N (U)) ⇢
EL; then, for any n 2 N⇤, the function '

(L,N) : ⇡J,N (U) �! EL is
n-general.

Proof. The proof follows from the definition of '(L,N).

Proposition 2.24. Let ' : U ⇢ EJ �! EI be a (m,�)-general function; then:

1. � is bijective if and only if |�(i)| = |i|, 8 i 2 I\Im.

2.

Y

j2J\Jm

Aj ⇢ EJ\Jm
if and only if there exist a 2 R+

and m0 2 N,

m0 � m, such that, for any j 2 J\Jm0 , one has Aj ⇢ (�a, a).

3. Let Im ⇢ L ⇢ I and let Jm ⇢ N ⇢ J ; then, one has '
(L,N) (⇡J,N (U)) ⇢

EL and '
(L,N)(U) ⇢ EI ; moreover, the function '

(L,N) : U ⇢ EJ �! EI

is (m,�)-general.

4. For any x 2 U , there exists the function J'(I\Im,J)(x) : EJ �! EI\Im
,

and it is continuous.

5. If, for any j 2 J\Jm and for any t 2 Aj, one has
P

i2I\Im

��'0

i,j
(t)
�� < +1,

then, for any n 2 N, n � m, ' is (n, ⇠)-general, where the increasing

function ⇠ : I\In �! J\Jn is defined by:

⇠(i) =

⇢
�(i) if �(i) 2 J\Jn

min (J\Jn) if �(i) /2 J\Jn
, 8 i 2 I\In. (7)
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6. Suppose that � is injective; moreover, for any Im ⇢ L ⇢ I such that

|L| < +1 and for any Jm ⇢ N ⇢ J , let bm = |maxL| 2 N\{0, ...m� 1};

then, for any n 2 N, n � bm, the function '
(L,N)

is

⇣
n, �|

I\In

⌘
-standard.

Proof.

1. The proof follows from the fact that � is increasing.

2. The proof follows from the definition of EJ\Jm
.

3. 8x 2 ⇡J,N (U), let y 2 U such that yN = x; then, 8 i 2 L\Im, we have

'
(L,m)
i

(xJm) = 'i(y)� 'i,�(i)

�
y�(i)

�
, and so

sup
i2L\Im

���'(L,m)
i

(xJm)
���  sup

i2L\Im

|'i(y)|+ sup
i2L\Im

��'i,�(i)

�
y�(i)

��� < +1;

then, we obtain

sup
i2L\Im

���'(L,N)
i

(x)
���  sup

i2L\Im

���'(L,m)
i

(xJm)
���+ sup

i2L\Im

��'i,�(i)

�
y�(i)

��� < +1,

from which '(L,N) (⇡J,N (U)) ⇢ EL. Moreover, 8 z 2 U , 8 i 2 I\Im, we
have ���'(L,N)

i
(z)
��� 

���'(I,m)
i

(zJm)
���+
��'i,�(i)

�
z�(i)

��� ,

and so sup
i2I\Im

���'(L,N)
i

(z)
��� < +1; then, '(L,N)(U) ⇢ EI . Finally, from

the definition of '(L,N), the function '(L,N) : U ⇢ EJ �! EI is (m,�)-

general.

4. 8x 2 U , 8 i 2 I\Im, we have

kJ'i(x)k =
���J

'
(I,m)
i

(xJm)
���+

���'0

i,�(i)

�
x�(i)

���� ;

furthermore, since
P

i2I\Im

���J
'

(I,m)
i

(xJm)
��� < +1, we have

sup
i2I\Im

���J
'

(I,m)
i

(xJm)
��� < +1,

and so

sup
i2I\Im

kJ'i(x)k

 sup
i2I\Im

���J
'

(I,m)
i

(xJm)
���+ sup

i2I\Im

���'0

i,�(i)

�
x�(i)

���� < +1;

then, from Proposition 2.4, there exists the function J'(I\Im,J)(x) :EJ �!

EI\Im
, and it is continuous.
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5. 8n 2 N, n � m, and 8xJn 2 ⇡J,Jn(U), we have

X

i2I\In

���J
'

(I,n)
i

(xJn)
���

=
X

i2I\In

���J
'

(I,m)
i

(xJm)
���+

X

j2Jn\Jm

0

@
X

i2I\In

��'0

i,j
(xj)

��

1

A < +1;

then, by Definition 2.21 and by definition of ⇠, ' is (n, ⇠)-general.

6. From points 3 and 5 and since � is injective, 8n 2 N, n � bm, '(L,N)

is
⇣
n, �|

I\In

⌘
-general; moreover, since � is increasing, 8 i 2 I\In and

8xJn 2 ⇡J,Jn(U), we have '(I,n)
i

(xJn) = 0; then, we have the statement.

Remark 2.25: Let ' : U ⇢ EJ �! EI be a (m,�)-general function such that

U
(m) =

Y

j2Jm

Aj , where Aj 2 ⌧ , for any j 2 Jm, and

'
(I,m)
i

(xJm) =
X

j2Jm

'ij(xj), 8xJm 2 U
(m), 8 i 2 I,

where 'ij : Aj �! R, for any i 2 I and for any j 2 Jm; moreover, suppose
that, for any j 2 Jm, for any t 2 Aj , one has sup

i2I\Im

|'i,j (t)| < +1, and, for

any j 2 J\Jm, for any t 2 Aj , one has
P

i2I\Im

��'0

i,j
(t)
�� < +1; furthermore, let

; 6= L ⇢ I and let ; 6= N ⇢ J such that |I\L| = |J\N | < +1. Then, for any
n 2 N, n � m, the function '(L,N) : ⇡J,N (U) �! RL is (n, ⇢)-general, where
the function ⇢ : L\Ln �! N\Nn is defined by

⇢(i) =

⇢
�(i) if �(i) 2 N\Nn

min {j > �(i) : j 2 N\Nn} if �(i) /2 N\Nn

, 8 i 2 L\Ln.

Proof. We have |L| = |N |; moreover, 8n 2 N, n � m, 8 i 2 L\Ln and 8x 2

⇡J,N (U), let y 2 U such that yN = x; we have

|'i (x)| 
X

j2N\Jm

|'i,j (xj)|+
��'i,�(i)

�
y�(i)

���

) k' (x)k
L\Ln



X

j2N\Jm

sup
i2L\In

|'i,j (xj)|+ sup
i2L\In

��'i,�(i)

�
y�(i)

��� < +1,
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from which ' (⇡J,N (U)) ⇢ EL. Analogously, 8n 2 N, n � m, and 8xNn 2

⇡J,Nn(U), we have

X

i2L\Ln

���J
'

(L,Nn)
i

(xNn)
���

=
X

i2L\Ln

���J
'

(L,Nn\Jm)
i

(xNm\Jm)
���+

X

j2Nn\Jm

0

@
X

i2L\Ln

��'0

i,j
(xj)

��

1

A < +1;

then, by definition of ⇢, '(L,N) is (n, ⇢)-general.

Proposition 2.26. Let ' : U ⇢ EJ �! EI be a (m,�)-general function such

that there exists m0 2 N, m0 � m, such that, for any j 2 J\Jm0 , Aj is

bounded; moreover, suppose that � (I\Im)\(J\Jm0) 6= ; and, for any i 2 I\Im,

'
(I,m)
i

is bounded; then, there exists m1 2 N, m1 � m, such that, for any

i 2 I\Im1 , 'i is bounded. In particular, if |I| = +1, ' is not surjective.

Proof. Let j0 = min (� (I\Im) \ (J\Jm0)), let i0 = min
�
�
�1 (j0)

�
2 I, let bm =

|i0| � 1 and let H =
�
i 2 I\Ibm : 'i,�(i) is not bounded

 
; we have |H| < +1;

indeed, 8 i 2 H, the set A�(i) is bounded, and so there exists ti 2 A�(i) such that���'0

i,�(i)(ti)
��� > |i|; then, 8x�(I\Im) 2

Y

j2�(I\Im)

Aj such that
�
x�(i) : i 2 H

�
=

(ti : i 2 H), by supposing by contradiction |H| = +1, we would obtain

sup
i2I\Im

���'0

i,�(i)

�
x�(i)

���� � sup
i2H

���'0

i,�(i)

�
x�(i)

���� = sup
i2H

���'0

i,�(i) (ti)
��� = +1

(a contradiction). Then, there exists m1 2 N, m1 � m, such that, 8 i 2 I\Im1 ,
'i,�(i) is bounded, and so 'i is bounded. In particular, 8 i 2 I\Im1 , 'i is not
surjective; then, if |I| = +1, ' is not surjective.

Proposition 2.27. Let ' : U ⇢ EJ �! EI be a (m,�)-general function such

that 'ij(xj) = 0, for any i 2 Im, for any j 2 J\Jm and for any xj 2 Aj; then:

1. If the functions 'i,�(i), for any i 2 I\Im, and '
(m,m)

are injective, and

� is surjective, then ' is injective.

2. If the functions 'i,�(i), for any i 2 I\Im, and '
(m,m)

are surjective, and

� is injective, then ' is surjective.

Proof.
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1. Let x, y 2 U be such that '(x) = '(y); we have '
(m,m) (xJm) =

('(x))
Im

= ('(y))
Im

= '
(m,m) (yJm); then, if '(m,m) is injective, we

have xJm = yJm ; moreover, 8 i 2 I\Im:

'
({i},m) (xJm) + 'i,�(i)(x�(i))

= 'i(x) = 'i(y) = '
({i},m) (yJm) + 'i,�(i)(y�(i)),

from which 'i,�(i)(x�(i)) = 'i,�(i)(y�(i)); then, if 'i,�(i) is injective, we
have x�(i) = y�(i); finally, if � is surjective, we obtain xJ\Jm

= yJ\Jm
,

and so x = y; then, ' is injective.

2. Let y 2 EI ; moreover, if the functions 'i,�(i), for any i 2 I\Im, and

'
(m,m) are surjective, and � is injective, define x 2 U

(m)
⇥

Y

j2J\Jm

Aj in

the following manner:

xJm =
⇣
'
(m,m)

⌘�1
(yIm) 2 U

(m)
,

xj = '
�1
��1(j),j(zi) 2 Aj , 8 j 2 � (I\Im) ,

xj = 0, 8 j 2 J\� (I\Im) ,

where
zi = yi � '

(I,m)
i

(xJm) , 8 i 2 I\Im. (8)

Let x0 = (x0,j : j 2 J) 2 U ; 8 i 2 I\Im, we have

��x�(i)

�� =
���'�1

i,�(i)(zi)� x0,�(i) + x0,�(i)

���



���'�1
i,�(i)(zi)� '

�1
i,�(i)('i,�(i)(x0,�(i)))

���+
��x0,�(i)

�� ; (9)

moreover, the function '�1
i,�(i) : R �! A�(i) is derivable, and

⇣
'
�1
i,�(i)

⌘0
(t) =

1

'
0

i,�(i)('
�1
i,�(i)(t))

2 R⇤, 8 i 2 I\Im, 8 t 2 R; (10)

then, the Lagrange theorem implies that, for some

⇠i 2
�
min{zi,'i,�(i)(x0,�(i))},max{zi,'i,�(i)(x0,�(i)}

�
,

we have
���'�1

i,�(i)(zi)� '
�1
i,�(i)('i,�(i)(x0,�(i)))

���

=

����
⇣
'
�1
i,�(i)

⌘0
(⇠i)

����
��zi � 'i,�(i)(x0,�(i))

�� ;
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thus, from (9) and (10), we obtain

��x�(i)

�� 
��zi � 'i,�(i)(x0,�(i))

��
���'0

i,�(i)('
�1
i,�(i)(⇠i))

���
+
��x0,�(i)

�� . (11)

Furthermore, from point 3 of Proposition 2.24, we have '(I,m)(U (m)) ⇢
EI , and so, from (8), we have

kzk
I\Im

 kyk
I\Im

+ sup
i2I\Im

���'(I,m)
i

(xJm)
��� < +1, (12)

and analogously

'i,�(i)(x0,�(i)) = 'i (x0)� '
(I,m)
i

�
(x0)Jm

�
, 8 i 2 I\Im

=) sup
i2I\Im

��'i,�(i)(x0,�(i))
��

 k'(x0)kI\Im + sup
i2I\Im

���'(I,m)
i

�
(x0)Jm

���� < +1. (13)

Moreover, we have inf
i2I'

���'0

i,�(i)('
�1
i,�(i)(⇠i)

��� > 0; furthermore, since, 8 i 2

I\Im, 'i,�(i) is surjective, then 'i,�(i) is injective too, and so I' = I\Im;

then, there exists c 2 R+ such that sup
i2I\Im

���'0

i,�(i)('
�1
i,�(i)(⇠i))

���
�1

 c, and

so formulas (11), (12) and (13) imply

sup
i2I\Im

��x�(i)

��  c

 
kzk

I\Im
+ sup

i2I\Im

��'i,�(i)(x0,�(i))
��
!

+ kx0kJ < +1;

then, we have x 2 EJ , from which x 2 U . Finally, it is easy to prove that
'(x) = y, and so ' is surjective.

Proposition 2.28. Let m 2 N⇤
, let ; 6= L ⇢ I, let Jm ⇢ N ⇢ J and let

' : U ⇢ EJ �! EI be a function m-general and C
1
in x0 = (x0,j : j 2 J) 2 U ;

then:

1. If '
(L,N) (⇡J,N (U)) ⇢ EL, then the function '

(L,N) : ⇡J,N (U) �! EL is

C
1
in (x0,j : j 2 N).

2. If ' is (m,�)-general and Im ⇢ L, then the function '
(L,N) : U ⇢ EJ �!

EI is C
1
in x0.
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3. If ' is (m,�)-general, Im ⇢ L and |N | < +1, then there exists the

function J
'(L,N)(x0) : EJ �! EI , and it is continuous.

4. If ' is strongly (m,�)-general, Im ⇢ L and |N | < +1, then '
(L,N)

is

di↵erentiable in x0.

5. If ' is strongly C
1
in x0 and strongly (m,�)-general, then ' is di↵eren-

tiable in x0.

Proof.

1. By assumption, there exists a neighbourhood V =
Y

j2J

Vj 2 ⌧k·kJ
(U) of

x0 such that, 8 i 2 I, 8 j 2 J , there exists the function x �!
@'i(x)
@xj

on

V , and this function is continuous in x0; then, 8x 2

Y

j2N

Vj , let x = (xj :

j 2 J) 2 V such that (xj : j 2 N) = x; since ' is a m-general function,
8 i 2 L, 8 j 2 N , we have

@'
(L,N)
i

(x)

@xj

=
@'i(x)

@xj

,

from which '(L,N) is C1 in (x0,j : j 2 N).

2. Let V 2 ⌧k·kJ
(U) be the neighbourhood of x0 defined in the proof of point

1; if ' is (m,�)-general and Im ⇢ L, 8x 2 V , we have

@'
(L,N)
i

(x)

@xj

=

(
@'i(x)
@xj

if (i, j) /2 (Im ⇥ (J\N)) [ ((I\L)⇥ Jm)

0 if (i, j) 2 (Im ⇥ (J\N)) [ ((I\L)⇥ Jm)
,

and so '(L,N) is C1 in x0.

3. If ' is C
1 in x0 and (m,�)-general, Im ⇢ L and |N | < +1, then,

from point 2, 8 i 2 Im, the function '
(L,N)
i

: U ⇢ EJ �! R is C
1

in x0 and depends only on a finite number of variables; then, we have���J
'

(L,N)
i

(x0)
��� < +1; moreover, 8 i 2 I\Im, we have

���J
'

(L,N)
i

(x0)
���  kJ'i(x0)k ;

then, from point 4 of Proposition 2.24:

sup
i2I\Im

���J
'

(L,N)
i

(x0)
���  sup

i2I\Im

kJ'i(x0)k < +1;

then, from Proposition 2.4, there exists the function J
'(L,N)(x0) : EJ �!

EI , and it is continuous.
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4. If ' is strongly (m,�)-general, there exists a 2 R such that, 8 " > 0,
there exists bi 2 N, bi � m, such that

���J
'

(I,m)
i

(xJm)
��� <

"

4
, 8 i 2 I\Ibi, 8xJm 2 U

(m);
���'0

i,�(i) (t)� a

��� <
"

4
, 8 i 2 I' \ I\Ibi, 8 t 2 A�(i). (14)

Moreover, if Im ⇢ L and |N | < +1, 8 i 2 I, the function '(L,N)
i

: U ⇢

EJ �! R is C1 in x0 and depends only on a finite number of variables;

then, '(L,N)
i

is di↵erentiable in x0, and so there exists a neighbourhood

D =
Y

j2J

Dj 2 ⌧k·kJ
(U) of x0, where Dj is an open interval, 8 j 2 J , such

that, 8x = (xj : j 2 J) 2 D\{x0}, we have

sup
i2Ibi

���'(L,N)
i

(x)� '
(L,N)
i

(x0)� J
'

(L,N)
i

(x0)(x� x0)
���

kx� x0kJ

< ". (15)

Observe that, 8 i 2
�
I\Ibi

�
\L, 8 y=(yj : j 2 J) 2 U , we have '(L,N)

i
(y) =

'i,�(i)(y�(i)); moreover, 'i,�(i) is derivable in A�(i) and so, from the La-
grange theorem, 8x 2 D\{x0}, there exists ✓i 2 (min{x0,�(i), x�(i)},

max{x0,�(i), x�(i)}) such that

'i,�(i)

�
x�(i)

�
� 'i,�(i)

�
x0,�(i)

�
= '

0

i,�(i) (✓i)
�
x�(i) � x0,�(i)

�
,

from which
���'(L,N)

i
(x)� '

(L,N)
i

(x0)� J
'

(L,N)
i

(x0)(x� x0)
���

kx� x0kJ

=

���'i,�(i)

�
x�(i)

�
� 'i,�(i)

�
x0,�(i)

�
�'

0

i,�(i)

�
x0,�(i)

� �
x�(i)�x0,�(i)

����
kx� x0kJ

=

���'0

i,�(i) (✓i)� '
0

i,�(i)

�
x0,�(i)

����
��x�(i) � x0,�(i)

��

kx� x0kJ



⇣���'0

i,�(i) (✓i)� a

���+
���'0

i,�(i)

�
x0,�(i)

�
� a

���
⌘
1I'(i) <

"

2
. (16)

Conversely, 8 i 2
�
I\Ibi

�
\ L, 8 y = (yj : j 2 J) 2 U , we have '(L,N)

i
(y) =

'i(y); moreover, from point 3 of Proposition 2.24 and from point 1,

'
(I,m)
i

is C
1 in (x0)Jm

and so '
(I,m)
i

is C
1 in a neighbourhood M =Y

j2Jm

Mj 2 ⌧k·kJm
(U (m)) of (x0)Jm

such that Mj is an open interval,
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8 j 2 Jm, and M ⇢

Y

j2Jm

Dj ; then, from the Taylor theorem, 8x 2

0

@M ⇥

Y

j2J\Jm

Dj

1

A \{x0}, there exists ⇠Jm 2 (M\{(x0)Jm}) such that

'
(I,m)
i

(xJm)� '
(I,m)
i

((x0)Jm) = J
'

(I,m)
i

(⇠Jm) (xJm � (x0)Jm) ,

and so
���'(L,N)

i
(x)� '

(L,N)
i

(x0)� J
'

(L,N)
i

(x0)(x� x0)
���

kx� x0kJ

=
|'i(x)� 'i(x0)� J'i(x0)(x� x0)|

kx� x0kJ



���'(I,m)
i

(xJm)�'(I,m)
i

((x0)Jm)�J
'

(I,m)
i

((x0)Jm)(xJm�(x0)Jm))
���

kx� x0kJ

+

���'i,�(i)

�
x�(i)

�
�'i,�(i)

�
x0,�(i)

�
�'

0

i,�(i)

�
x0,�(i)

��
x�(i) � x0,�(i)

����
kx�x0kJ



���J
'

(I,m)
i

(⇠Jm)� J
'

(I,m)
i

((x0)Jm)
��� k(xJm � (x0)Jm)k

Jm

kx� x0kJ

+

���'0

i,�(i) (✓i)� '
0

i,�(i)

�
x0,�(i)

����
��x�(i) � x0,�(i)

��

kx� x0kJ



���J
'

(I,m)
i

(⇠Jm)�J
'

(I,m)
i

((x0)Jm)
���+

���'0

i,�(i) (✓i)�'
0

i,�(i)

�
x0,�(i)

����



���J
'

(I,m)
i

(⇠Jm)
���+

���J
'

(I,m)
i

((x0)Jm)
���

+
⇣���'0

i,�(i) (✓i)� a

���+
���'0

i,�(i)

�
x0,�(i)

�
� a

���
⌘
1I'(i) < ". (17)

Then, from (15), (16) and (17), 8x 2

0

@M ⇥

Y

j2J\Jm

Dj

1

A \{x0}, we have

��'(L,N)(x)� '
(L,N)(x0)� J

'(L,N)(x0)(x� x0)
��
I

kx� x0kJ

< "; (18)

thus, '(L,N) is di↵erentiable in x0.

5. If ' is strongly C
1 in x0 and (m,�)-general, the function  = '�'

(I,m) :
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U ⇢ EJ �! EI given by

 i(x) =

8
<

:

X

j2J\Jm

'ij(xj) 8 i 2 Im, 8x 2 U

0 8 i 2 I\Im, 8x 2 U

(19)

is strongly C
1 in x0, and so it is di↵erentiable in x0 from Proposition

2.19, since |Im| < +1; then, if ' is strongly (m,�)-general, from point 4
'
(I,m) is di↵erentiable in x0, and so this is true for ' =  + '

(I,m) too,
from Remark 2.6.

Proposition 2.29. Let ' : U ⇢ EJ �! EI be a function C
1
and m-general;

then, ' : (U,B(J)(U)) �!
�
RI

,B
(I)
�
is measurable.

Proof. From point 1 of Proposition 2.28, 8 i 2 I and 8n 2 N, n � m, the func-

tion '({i},n) : ⇡J,Jn(U) �! R is C1; thus, 8C 2 ⌧ , we have
�
'
({i},n)

��1
(C) 2

⌧
(n)(⇡J,Jn(U)) ⇢ B

(n)(⇡J,Jn(U)); then, since �(⌧) = B, 8C 2 B, we obtain�
'
({i},n)

��1
(C) 2 B

(n)(⇡J,Jn(U)). Moreover, 8 i 2 I, consider the function

b'({i},n) : U �! R defined by

b'({i},n)(x) = '
({i},n)(xJn), 8x 2 U ;

8C 2 B, we have

⇣
b'({i},n)

⌘�1
(C) =

⇣
'
({i},n)

⌘�1
(C)⇥ ⇡J,J\Jn

(U) 2 B
(J)(U),

and so b'({i},n) is
�
B
(J)(U),B

�
-measurable; then, since lim

n�!+1

b'({i},n) = 'i,

the function 'i is
�
B
(J)(U),B

�
-measurable too. Furthermore, let

⌃(I) =

(
B =

Y

i2I

Bi : Bi 2 B, 8 i 2 I

)
;

8B =
Q
i2I

Bi 2 ⌃(I), we have

'
�1(B) =

\

i2I

('i)
�1 (Bi) 2 B

(J)(U).

Finally, since � (⌃(I)) = B
(I), 8B 2 B

(I), we obtain '�1(B) 2 B
(J)(U).
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3. Linear (m, �)-general functions

Definition 3.1. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function; 8 i 2 I\Im, set �i = �i(A) = ai,�(i).

Remark 3.2: For any m 2 N⇤, a linear function A = (aij)i2I,j2J
: EJ �! EI

is m-general; moreover, if |J | = |I| and � : I\Im �! J\Jm is an increasing
function, A is (m,�)-general if and only if:

1. 8 i 2 I\Im, 8 j 2 J\ (Jm [ {�(i)}), one has aij = 0.

2. 8 j 2 Jm,
X

i2I\Im

|aij | < +1; moreover, one has sup
i2I\Im

|�i| < +1 and

inf
i2I\Im:�i 6=0

|�i| > 0.

3. If A 6= ;, there exists
Y

i2I\Im:�i 6=0

�i 2 R⇤.

Furthermore, A is strongly (m,�)-general if and only if A is (m,�)-general
and there exists a 2 R such that the sequence {�i}i2I\Im:�i 6=0 converges to a.

Finally, A is (m,�)-standard if and only if A is (m,�)-general and aij = 0,
for any i 2 I\Im, for any j 2 Jm.

Corollary 3.3. Let A = (aij)i2I,j2J
: EJ �! EI be a linear function; then,

A : (EJ ,BJ) �!
�
RI

,B
(I)
�
is measurable.

Proof. The statement follows from Remark 3.2 and Proposition 2.29.

Proposition 3.4. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function. Then:

1. A is continuous.

2. Let C =
n
h 2 N, h � m : �|

I\Ih
is injective

o
; if C 6= ;, by setting em =

min C, let iem 2 I such that |iem| = em and let

eem =

⇢
min{em, |� (iem)|} if em > m

m if em = m
; (20)

then, for any n 2 N, n � eem, the linear function
t
A : EI �! RJ

is

(n, ⌧)-general, where ⌧ : J\Jn �! I\In is the increasing function defined

by

⌧(j) = min
�
�
�1(k) : k � j, k 2 � (I\In)

 
, 8 j 2 J\Jn. (21)
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Proof.

1. Since A (EJ) ⇢ EI , the statement follows from Proposition 2.4.

2. We have

sup
j2J

X

i2I

���
�
t
A
�
ji

��� = sup
j2J

X

i2I

|aij |

= sup

(
sup
j2Jm

X

i2I

|aij | , sup
j2Jffm\Jm

X

i2I

|aij | , sup
j2J\Jffm

X

i2I

|aij |

)
. (22)

Moreover, from point 2 of Remark 3.2, we have sup
j2Jm

X

i2I

|aij | < +1;

furthermore, by definition of em and eem, 8 j 2 Jeem\Jm, we have
X

i2I

|aij | =

X

i2Ifm+1

|aij | < +1; finally, observe that

sup
j2J\Jffm

X

i2I

|aij | 

X

i2I

 
sup

j2J\Jffm

|aij |

!

=
X

i2Iffm

 
sup

j2J\Jffm

|aij |

!
+

X

i2I\Iffm

 
sup

j2J\Jffm

|aij |

!



X

i2Iffm

 
sup

j2J\Jffm

|aij |

!
+ sup

i2I\Im

|�i| . (23)

From Proposition 2.4, 8 i 2 Ieem, we have sup
j2J\Jffm

|aij | 
P

j2J\Jffm

|aij | <

+1; moreover, we have sup
i2I\Im

|�i| < +1; then, from (23), we obtain

sup
j2J\Jffm

X

i2I

|aij | < +1, from which sup
j2J

X

i2I

���(tA)
ji

��� < +1, from formula

(22), and so t
A(EI) ⇢ EJ from Proposition 2.4. Finally, from Remark

3.2, 8n 2 N, n � eem, the function t
A : EI �! EJ is (n, ⌧)-general, where

⌧ : J\Jn �! I\In is the increasing function defined by

⌧(j) = min
�
�
�1(k) : k � j, k 2 � (I\In)

 
, 8 j 2 J\Jn.

Henceforth, we will suppose that |I| = +1.
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Definition 3.5. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function; indicate by N(A) 2 {0, 1, ...,m} the number of zero columns of the

matrix A
(I\Im,Jm)

.

Theorem 3.6. Let A = (aij)i2I,j2J
: EJ �!EI be a linear (m,�)-general func-

tion; then, the sequence
�
detA(n,n)

 
n�m

converges to a real number. Moreover,

if A 6= ;, by setting m = minA, we have

lim
n�!+1

detA(n,n) =
X

p2I\Im

0

@
Y

q2I\I|p|

�q

1

A
X

j2Jm

ap,j

⇣
cofA

(|p|,|p|)
⌘

p,j

+ detA(m,m)

0

@
Y

q2I\Im

�q

1

A . (24)

Conversely, if A = ;, we have lim
n�!+1

detA(n,n) = 0.

Proof. 8 l 2 Z, set Dl = Dl(A) = {h 2 N, h � m : |�(i)| = |i|+ l, 8 i 2 I\Ih};
moreover, if Dl 6= ;, set ml = minDl; furthermore, set D = D(A) =

S
l2Z

Dl. If

there exists l 2 N such that Dl 6= ;, we will prove the statement by recursion
on N(A) = k 2 {0, 1, ...,m}. Suppose that N(A) = 0 and observe that, if
A 6= ;, we have m0 = m, since D0 = A; then, 8n 2 N, n > ml, we have

detA(n,n) =

8
>><

>>:

detA(m,m)

0

@
Y

q2In\Im

�q

1

A if l = 0

0 if l 2 N⇤

,

from which

lim
n�!+1

detA(n,n) =

8
>><

>>:

detA(m,m)

0

@
Y

q2I\Im

�q

1

A 2 R if l = 0

0 if l 2 N⇤

;

then, since we have ap,j = 0, 8 p 2 I\Im, 8 j 2 Jm, the statement is true.
Suppose that the statement is true for N(A) = k, where 0  k  m � 1, and
suppose that N(A) = k+ 1; 8n 2 N, n > ml, let in 2 I such that |in| = n; we
have

detA(n,n) =
X

j2Jn

ain,j

⇣
cofA

(n,n)
⌘

in,j

; (25)

moreover, let {j1, ..., jk+1} ⇢ Jm such that ain,j = 0, 8 j 2 Jm\ {j1, ..., jk+1}.
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If l = 0, from (25), we have

detA(n,n) =
k+1X

h=1

ain,jh

⇣
cofA

(n,n)
⌘

in,jh

+ �in detA(n�1,n�1);

then, by induction on n, we obtain

detA(n,n) = an + detA(m,m)

0

@
Y

q2In\Im

�q

1

A , 8n > m, (26)

where

an =
X

p2In\Im

0

@
Y

q2In\I|p|

�q

1

A
k+1X

h=1

ap,jh

⇣
cofA

(|p|,|p|)
⌘

p,jh

. (27)

Moreover, 8h = 1, ..., k + 1, 8 p 2 I\Im, we have
����
⇣
cofA

(|p|,|p|)
⌘

p,jh

���� =
���detA(I|p|�1,I|p|\{jh})

��� =
���detB(|p|�1,|p|�1)

jh,p

��� , (28)

where Bjh,p : EJ �! EI is the linear function obtained by exchanging the
|jh|-th column of A for the |p|-th column of A; furthermore

���detB(|p|�1,|p|�1)
jh,p

��� =

�����
X

i2Im

ai,p

⇣
cofB

(|p|�1,|p|�1)
jh,p

⌘

i,jh

�����



X

i2Im

|ai,p|

����det
⇣
A

(I\{i},J\{jh})
⌘(|p|�2,|p|�2)

���� . (29)

Observe that, 8 i 2 Im, A(I\{i},J\{jh}) : EJ\{jh}
�! EI\{i} is a linear (m�1,�)-

general function such that D0

�
A

(I\{i},J\{jh})
�
6= ;, N

�
A

(I\{i},J\{jh})
�
= k;

then, from the recursive assumption, there exists

lim
|p|�!+1

det
⇣
A

(I\{i},J\{jh})
⌘(|p|�2,|p|�2)

2 R,

and so

lim
|p|�!+1

X

i2Im

|ai,p|

����det
⇣
A

(I\{i},J\{jh})
⌘(|p|�2,|p|�2)

���� = 0, 8h = 1, ..., k + 1;

consequently, from (28) and (29), there exists b 2 R+ such that

sup

⇢����
⇣
cofA

(|p|,|p|)
⌘

p,jh

���� : h 2 {1, ..., k + 1}, p 2 I\Im

�
 b. (30)
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Moreover, since
Y

q2I\Im:�q 6=0

�q 2 R⇤, we have
Y

q2I\Im

�q ⌘ c 2 R+, where

�q =

8
<

:

1 if �q = 0
1

|�q|
if 0 < |�q| < 1

|�q| if |�q| � 1
,

and so ������

Y

q2H

�q

������
 c, 8H ⇢ I\Im. (31)

Observe that

lim
n�!+1

detA(m,m)

0

@
Y

q2In\Im

�q

1

A = detA(m,m)

0

@
Y

q2I\Im

�q

1

A 2 R; (32)

moreover, set

a =
X

p2I\Im

0

@
Y

q2I\I|p|

�q

1

A
k+1X

h=1

ap,jh

⇣
cofA

(|p|,|p|)
⌘

p,jh

; (33)

then, 8n > m, we have

a� an =
X

p2I\In

0

@
Y

q2I\I|p|

�q

1

A
k+1X

h=1

ap,jh

⇣
cofA

(|p|,|p|)
⌘

p,jh

+
X

p2In\Im

0

@
Y

q2In\I|p|

�q

1

A

0

@

0

@
Y

r2I\In

�r

1

A�1

1

A
k+1X

h=1

ap,jh

⇣
cofA

(|p|,|p|)
⌘

p,jh

. (34)

If there exists n0 2 N, n0 � m, such that �q 6= 0 8 q 2 I\In0 , we haveY

q2I\In0

�q 2 R⇤; then 8 " 2 R+, there exists n1 2 N, n1 � n0, such that,

8n 2 N, n > n1, we have

������

0

@
Y

r2I\In

�r

1

A� 1

������
< "; thus, from formulas (34),

(30) and (31), we obtain

|a� an|  bc

X

p2I\In

k+1X

h=1

|ap,jh |+ bc"

X

p2In\Im

k+1X

h=1

|ap,jh | , 8n > n1. (35)
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Finally, there exists d 2 R+ such that
X

p2I\Im

k+1X

h=1

|ap,jh |  d, and so there exists

n2 2 N, n2 � n1, such that, 8n 2 N, n � n2, we have
X

p2I\In

k+1X

h=1

|ap,jh | < ";

then, from formula (35), we obtain

|a� an|  bc"+ bcd" = bc (1 + d) ", 8n � n2.

Then, from (26) and (32), we have

lim
n�!+1

detA(n,n)

=
X

p2I\Im

0

@
Y

q2I\I|p|

�q

1

A
k+1X

h=1

ap,jh

⇣
cofA

(|p|,|p|)
⌘

p,jh

+ detA(m,m)

0

@
Y

q2I\Im

�q

1

A

=
X

p2I\Im

0

@
Y

q2I\I|p|

�q

1

A
X

j2Jm

ap,j

⇣
cofA

(|p|,|p|)
⌘

p,j

+ detA(m,m)

0

@
Y

q2I\Im

�q

1

A2 R.

Moreover, suppose that � is bijective and there exists a subsequence {�qt}t2N

⇢ {�q}q2I\Im:�q=0; then, from formulas (27) and (33), 8 t 2 N, 8n� |qt|, we

obtain

a� an =
X

p2I\In

0

@
Y

q2I\I|p|

�q

1

A
k+1X

h=1

ap,jh

⇣
cofA

(|p|,|p|)
⌘

p,jh

�

X

p2In\Im

0

@
Y

q2In\I|p|

�q

1

A
k+1X

h=1

ap,jh

⇣
cofA

(|p|,|p|)
⌘

p,jh

= �

X

p2In\I|qt|�1

0

@
Y

q2In\I|p|

�q

1

A
k+1X

h=1

ap,jh

⇣
cofA

(|p|,|p|)
⌘

p,jh

. (36)

Thus, from formulas (30), (31) and (36):

|a� an|  bc

X

p2In\I|qt|�1

k+1X

h=1

|ap,jh | , 8 t 2 N, 8n � |qt| . (37)

Finally, 8 " 2 R+, there exists t 2 N such that
X

p2In\I|qt|�1

k+1X

h=1

|ap,jh | < ",

8n � |qt|; then, from (37), we obtain

|a� an|  bc", 8n � |qt| .
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Thus, from (26) and (32), we have formula (24).
Moreover, if l 2 N⇤, from (25) we have

detA(n,n) =
k+1X

h=1

ain,jh

⇣
cofA

(n,n)
⌘

in,jh

, 8n > ml; (38)

moreover, 8h = 1, ..., k + 1, we have
����
⇣
cofA

(n,n)
⌘

in,jh

���� =
���detA(In�1,In\{jh})

��� =
����det

⇣
A

(I,J\{jh})
⌘(n�1,n�1)

���� .

(39)
Observe that A

(I,J\{jh}) : EJ\{jh}
�! EI is a linear (m, ⌧)-general function,

where ⌧ : I\Im �! J\Jm+1 is the function defined by ⌧(i) = �(i), 8 i 2 I\Im;
moreover, Dl�1

�
A

(I,J\{jh})
�
6= ;, l � 1 2 N, N

�
A

(I,J\{jh})
�
= k; then, from

the recursive assumption, there exists lim
n�!+1

det
�
A

(I,J\{jh})
�(n�1,n�1)

2 R,

and so

lim
n�!+1

|ain,jh |

����det
⇣
A

(I,J\{jh})
⌘(n�1,n�1)

���� = 0, 8h = 1, ..., k + 1;

consequently, from (38) and (39), we obtain lim
n�!+1

detA(n,n) = 0.

Furthermore, suppose that there exists l 2 Z� such that Dl 6= ;; since
the function �|

I\Iml
is injective, from Proposition 3.4, the linear function t

A :

EI �! EJ is (ml, ⌧)-general, where ⌧ : J\Jml �! I\Iml is the increasing
function defined by ⌧(j) = �

�1(j), 8 j 2 J\Jml ; moreover, we have D�l (tA) 6=
;, �l 2 N⇤; then, from the previous arguments, we obtain

lim
n�!+1

detA(n,n) = lim
n�!+1

t
A

(n,n) = 0.

Finally, if D = ;, we have

|{i 2 I\Im : �(i) = �(h), fore some h 2 I\Im, h < i}| = +1

or |(J\Jm) \�(I\Im)| = +1; then, the rows or the columns of the matrix A
(n,n)

are linearly dependent, for n su�ciently large, and so we have detA(n,n) = 0,
from which lim

n�!+1

detA(n,n) = 0.

Definition 3.7. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function; define the determinant of A, and call it detA, the real number

detA = lim
n�!+1

detA(n,n)
.
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Corollary 3.8. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function such that aij = 0, 8 i 2 Im, 8 j 2 J\Jm, or A is (m,�)-standard.
Then, if � is bijective, we have

detA = detA(m,m)
Y

i2I\Im

�i.

Conversely, if � is not bijective, we have detA = 0. In particular, if A = II,J ,
we have detA = 1.

Proof. If � is bijective, 8 i 2 I\Im, we have |�(i)| = |i|; then, 8n 2 N, n � m,
we have

detA(n,n) = detA(m,m)
Y

i2In\Im

�i,

from which

detA = lim
n�!+1

detA(n,n) = detA(m,m)
Y

i2I\Im

�i.

Moreover, suppose that A 6= ; but � is not bijective, and set m = minA; by
definition of m, we have m > m and the matrix A

(m,m) is not invertible; then,
8n 2 N, n � m, we obtain

detA(n,n) = detA(m,m)
Y

p2In\Im

�p = 0,

and so detA = lim
n�!+1

detA(n,n) = 0. Finally, if A = ;, from Theorem 3.6

we have detA = 0 again. In particular, if A = II,J , then A is (1,�)-standard,
where A

(1,1) = (1), �i = 1, 8 i 2 I\I1, and � is bijective; then, detA = 1.

Proposition 3.9. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function such that aij = 0, 8 i 2 Im, 8 j 2 J\Jm, or A is (m,�)-standard;
then:

1. One has detA 6= 0 if and only if A
(m,m)

is invertible, �i 6= 0, for any

i 2 I\Im, and � is bijective.

2. If aij = 0, 8 i 2 Im, 8 j 2 J\Jm, and detA 6= 0, then A is bijective.

3. If A is (m,�)-standard, then one has detA 6= 0 if and only if A is bijec-

tive.

Proof.
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1. If � is bijective, from Corollary 3.8, we have

detA = detA(m,m)
Y

i2I\Im

�i.

Moreover, if A
(m,m) is invertible and �i 6= 0, 8 i 2 I\Im, we have

detA(m,m)
6= 0,

Y

i2I\Im

�i =
Y

i2I\Im:�i 6=0

�i 2 R⇤, and so detA 6= 0.

Conversely, if detA 6= 0, from Corollary 3.8, � is bijective, and so

detA(m,m)
Y

i2I\Im

�i = detA 6= 0;

then, A(m,m) is invertible and �i 6= 0, 8 i 2 I\Im.

2. If aij = 0, 8 i 2 Im, 8 j 2 J\Jm, and detA 6= 0, from point 1 and
Proposition 2.27, we obtain that A is bijective.

3. The statement follows from Proposition 10 and Remark 14 in [3].

Proposition 3.10. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function such that

n
h 2 N, h � m : �|

I\Ih
is injective

o
6= ;; then, detA =

det t
A.

Proof. Since
n
h 2 N, h � m : �|

I\Ih
is injective

o
6= ;, from Proposition 3.4,

the function t
A : EI �! EJ is

⇣
eem, ⌧

⌘
-general, where eem 2 N⇤ is defined by

formula (20), and the function ⌧ : J\Jeem �! I\Ieem is given by

⌧(j) = min
�
�
�1(k) : k � j, k 2 �

�
I\Ieem

�  
, 8 j 2 J\Jeem.

Then, we have

detA = lim
n�!+1

detA(n,n)

= lim
n�!+1

det t

⇣
A

(n,n)
⌘
= lim

n�!+1

det
�
t
A
�(n,n)

= det t
A.

Proposition 3.11. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function such that
P

i2I\Im

|ai,j | < +1, for any j 2 J\Jm; moreover, let s, t 2

N⇤
, s < t, let p = max{t,m} and let it 2 I such that |it| = t; then:
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1. If there exist u = (uj : j 2 J) 2 EJ , v = (vj : j 2 J) 2 EJ , c1, c2 2 R

such that

X

j2J

|uj | < +1,

X

j2J

|vj | < +1, ait,j = c1uj + c2vj, for any

j 2 J , by indicating by U = (uij)i2I,j2J
and V = (vij)i2I,j2J

the linear

functions obtained by substituting the t-th row of A for u and v, respec-

tively, then U and V are (p, ⇠)-general, where the increasing function

⇠ : I\Ip �! J\Jp is defined by

⇠(i) =

⇢
�(i) if �(i) 2 J\Jp

min (J\Jp) if �(i) /2 J\Jp
, 8 i 2 I\Ip; (40)

moreover, one has detA = c1 detU + c2 detV .

2. If B = (bij)i2I,j2J
: EJ �! EI is the linear function obtained by ex-

changing the s-th row of A for the t-th row of A, then B is (p, ⇠)-general
and one has detB = � detA.

3. If C = (cij)i2I,j2J
: EJ �! EI is the linear function obtained by substi-

tuting the t-th row of A for the s-th row of A, or the s-th one for the t-th

one, then C is (p, ⇠)-general and one has detC = 0.

Proof.

1. Since
P

i2I\Im

|ai,j | < +1, 8 j 2 J\Jm, we have
X

i2I\Im

|uij | < +1,

X

i2I\Im

|vij | < +1, 8 j 2 J\Jm; then, from point 5 of Proposition 2.24,

the functions U and V are (p, ⇠)-general. Moreover, 8n 2 N⇤, we have
detA(n,n) = c1 detU (n,n) + c2 detV (n,n), from which

detA = lim
n�!+1

detA(n,n) = lim
n�!+1

⇣
c1 detU

(n,n) + c2 detV
(n,n)

⌘

= c1 detU + c2 detV.

2. By proceeding as in the proof of point 1, we can prove that B is (p, ⇠)-
general; moreover, 8n 2 N, n � p, B

(n,n) is the matrix obtained by
exchanging the s-th row of A(n,n) for the t-th row of A(n,n); then, one
has detB(n,n) = � detA(n,n), from which

detB = lim
n�!+1

detB(n,n) = � lim
n�!+1

detA(n,n) = � detA.

3. By proceeding as in the proof of point 1, we can prove that C is (p, ⇠)-
general; moreover, since the s-th row of C and the t-th row of C are
equals, by exchanging these rows among themselves we obtain again the
matrix C; then, from point 2, we have detC = � detC, from which
detC = 0.
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Proposition 3.12. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function such that
P

i2I\Im

|ai,j | < +1, for any j 2 J\Jm; moreover, let s, t 2

N⇤
, s < t, let p = max{t,m}, let jt 2 J such that |jt| = t, and let the function

⇠ : I\Ip �! J\Jp defined by (40); then:

1. If there exist u = (ui : i 2 I) 2 EI , v = (vi : i 2 I) 2 EI , c1, c2 2 R such

that

X

i2I

|ui| < +1,

X

i2I

|vi| < +1, ai,jt = c1ui + c2vi, for any i 2 I, by

indicating by U = (uij)i2I,j2J
and V = (vij)i2I,j2J

the linear functions

obtained by substituting the t-th column of A for u and v, respectively,

then U and V are (p, ⇠)-general and one has detA = c1 detU + c2 detV .

2. If B = (bij)i2I,j2J
: EJ �! EI is the linear function obtained by exchang-

ing the s-th column of A for the t-th column of A, then B is (p, ⇠)-general
and one has detB = � detA.

3. If C = (cij)i2I,j2J
: EJ �! EI is the linear function obtained by substi-

tuting the t-th column of A for the s-th column of A, or the s-th one for

the t-th one, then C is (p, ⇠)-general and one has detC = 0.

Proof. The proof is analogous to that one of Proposition 3.11.

Proposition 3.13. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function such that
P

i2I\Im

|ai,j | < +1, for any j 2 J\Jm. If the dimension

of the vector space generated by the rows or the columns of A is finite, then

detA = 0.

Proof. Suppose that the dimension of the vector space generated by the rows of

A is finite; then, there exist n rows v(1),...,v(n) of A, where v(k) =
⇣
v
(k)
j

: j 2 J

⌘
,

8 k 2 {1, ..., n}, such that, if v = (vj : j 2 J) is as row of A, there exist c1,...,cn 2

R such that v = c1v
(1) + ...+ cnv

(n). From Proposition 3.11, by indicating by
Vk, 8 k 2 {1, ..., n}, the linear function obtained by substituting the row v of A
for v(k), by recursion we have detA = c1 detV1 + ... + cn detVn; moreover, Vk

has two rows equals to v
(k), and so detVk = 0, 8 k 2 {1, ..., n}; then, detA = 0.

Analogously, if the dimension of the vector space generated by the columns of
A is finite, from Proposition 3.12 we obtain detA = 0.
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Remark 3.14: Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function such that
P

i2I\Im

|ai,j | < +1, for any j 2 J\Jm. Then, for any

n 2 N, n � m, for any ; 6= L ⇢ I and for any ; 6= N ⇢ J such that
|I\L| = |J\N | < +1, the linear function A

(L,N) : EN �! EL is (n, ⇢)-general,
where the function ⇢ : L\Ln �! N\Nn is defined by

⇢(i) =

⇢
�(i) if �(i) 2 N\Nn

min {j > �(i) : j 2 N\Nn} if �(i) /2 N\Nn

, 8 i 2 L\Ln.

Proof. The proof follows from Remark 2.25.

Definition 3.15. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function such that
P

i2I\Im

|ai,j | < +1, for any j 2 J\Jm; define the I ⇥ J

matrix cofA by

(cofA)ij = (�1)|i|+|j| det
⇣
A

(I\{i},J\{j})
⌘
, 8 i 2 I, 8 j 2 J .

Proposition 3.16. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function such that
P

i2I\Im

|ai,j | < +1, for any j 2 J\Jm; moreover, suppose

that aij = 0, 8 i 2 Im, 8 j 2 J\Jm, or A is (m,�)-standard; then, one has:

detA =
X

t2J

ait(cofA)it, 8 i 2 I; (41)

detA =
X

s2I

asj(cofA)sj, 8 j 2 J. (42)

Proof. Suppose that A 6= ; and set m = minA; 8 i 2 I, 8 j 2 J and 8n 2 N,
n � max{|i|, |j|,m}, we have

detA = detA(n,n)
Y

p2I\In

�p, (43)

from which

detA =
X

t2Jn

ait(cofA
(n,n))it

Y

p2I\In

�p =
X

t2Jn

ait(cofA)it;

then
detA = lim

n�!+1

X

t2Jn

ait(cofA)it =
X

t2J

ait(cofA)it.
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Analogously, from formula (43), we have

detA =
X

s2In

asj(cofA
(n,n))sj

Y

p2I\In

�p =
X

s2In

asj(cofA)sj ,

and so
detA =

X

s2I

asj(cofA)sj .

Conversely, if A = ;, 8 s 2 I, 8 t 2 J , we have A
�
A

(I\{s},J\{t})
�
= ;;

then, from Theorem 3.6, we obtain detA = det
�
A

(I\{s},I\{t})
�
= 0, and so

(cofA)st = 0; then:

detA = 0 =
X

t2J

ait(cofA)it, 8 i 2 I;

detA = 0 =
X

s2I

asj(cofA)sj , 8 j 2 J .

Corollary 3.17. Let A = (aij)i2I,j2J
: EJ �! EI be a linear (m,�)-general

function such that
P

i2I\Im

|ai,j | < +1, for any j 2 J\Jm; moreover, suppose

that aij = 0, 8 i 2 Im, 8 j 2 J\Jm, or A is (m,�)-standard; then:

1. One has

A
t (cofA) = (detA)II,I ; (44)

moreover, if A is bijective, the linear functions A
�1 : EI �! EJ and

t (cofA) : EI �! EJ are continuous.

2. If A is bijective, then one has detA 6= 0 if and only if cofA 6= 0; moreover,

in this case

A
�1 =

1

detA
t (cofA) . (45)

3. If A is (m,�)-standard and bijective, then A
�1

is
�
m,�

�1
�
-standard.

Proof.

1. From formula (41), we have

X

t2J

ait(cofA)it = detA, 8 i 2 I.
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Moreover, we have
X

t2J

ait(cofA)jt = 0, 8 i, j 2 I, i 6= j; (46)

in fact, from formula (41) and Proposition 3.11, the left side of (46) is
equal to detC, where C is the (p, ⇠)-general function obtained by substi-
tuting the j-th row of A for the i-th row of A, p = max{|i| , |j| ,m}, and
the increasing function ⇠ : I\Ip �! J\Jp is defined by (40); then, from
Proposition 3.11, we have detC = 0. This implies that

X

t2J

ait(cofA)jt = (detA)�ij , 8 i, j 2 I,

where �ij is the Kronecker symbol, and so formula (44) follows, since the
functions �ij and �ij coincide on I⇥I. Moreover, suppose that A is bijec-
tive; since A is continuous from Proposition 3.4, then the linear function
A

�1 : EI �! EJ is continuous (see, e.g., the theory in Weidmann’s book
[11]); furthermore, from formula (44), we have

t (cofA) = (detA)A�1
,

and so the linear function t (cofA) : EI �! EJ is continuous too.

2. If A is bijective, from formula (44) we have detA = 0 if and only if
cofA = 0, and so detA 6= 0 if and only if cofA 6= 0; moreover, in this
case, from formula (44) we obtain formula (45).

3. If A is (m,�)-standard and bijective, from Proposition 3.9, we have
detA 6= 0, �i 6= 0, 8 i 2 I\Im, and � is bijective; moreover, 8 y 2 EI , we
have A

�
A

�1
y
�
= y, from which

�
A

�1
y
�
i
=

yi

�i
, 8 i 2 I\Im; (47)

furthermore, we have
n
i 2 I\Im : (�i)

�1
6= 0
o
= I\Im, from which

Y

i2I\Im:(�i)
�1

6=0

(�i)
�1 =

0

@
Y

i2I\Im

�i

1

A
�1

=

0

@
Y

i2I\Im:�i 6=0

�i

1

A
�1

2 R⇤;

then, we obtain sup
i2I\Im

���(�i)�1
��� < +1 and inf

i2I\Im:(�i)
�1

6=0

���(�i)�1
��� > 0.

Finally, from formula (47) and since the linear function A
�1 : EI �! EJ

is given by formula (45), then A
�1 is

�
m,�

�1
�
-standard, with �i

�
A

�1
�
=

(�i)
�1, 8 i 2 I\Im.
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Proposition 3.18. Let ' : U ⇢ EJ �! EI be a (m,�)-general function and let

x0 = (x0,j : j 2 J) 2 U such that there exists the function J' (x0) : EJ �! EI ;

then, J' (x0) is a linear (m,�)-general function; moreover, for any n 2 N,

n � m, there exists the linear (m,�)-general function J
'(n,n) (x0) : EJ �! EI ,

and one has

det J' (x0) = lim
n!+1

det J
'(n,n) (x0) .

Proof. Since ' is (m,�)-general, from Remark 3.2, the linear function J' (x0)
is (m,�)-general; moreover, 8n 2 N, n � m, from Proposition 2.4, there exists
the linear function J

'(n,n) (x0) : EJ �! EI , and it is (m,�)-general, from

Remark 3.2; furthermore, we have A (J' (x0)) = A
�
J
'(n,n) (x0)

�
.

If A (J' (x0)) 6= ;, set m = minA (J' (x0)); 8n � m, we have

det J
'(n,n) (x0) = det J'(n,n) (x0,j : j 2 Jn)

Y

i2I\In

'
0

i,�(i)

�
x0,�(i)

�
; (48)

if |(I\Im) \I'| < +1, set i0 = max ((I\Im) \I') and bm = max{m, |i0|}; sinceQ
i2I\Icm

'
0

i,�(i)

�
x0,�(i)

�
2 R⇤, we have lim

n!+1

Q
i2I\In

'
0

i,�(i)

�
x0,�(i)

�
= 1; then, from

(48) and Theorem 3.6, we obtain

lim
n!+1

det J
'(n,n) (x0) = lim

n!+1

det J'(n,n) (x0,j : j 2 Jn) = det J' (x0) ;

conversely, suppose that |(I\Im) \I'| = +1; for n su�ciently large, we have
det J'(n,n) (x0,j : j 2 Jn) = 0, from which

det J' (x0) = lim
n!+1

det J'(n,n) (x0,j : j 2 Jn) = 0

= lim
n!+1

det J'(n,n) (x0,j : j 2 Jn)
Y

i2I\In

'
0

i,�(i)

�
x0,�(i)

�

= lim
n!+1

det J
'(n,n) (x0) .

Moreover, if A (J' (x0)) = ;, 8n 2 N, n � m, we have A
�
J
'(n,n) (x0)

�
= ;,

and so

det J' (x0) = 0 = lim
n!+1

det J
'(n,n) (x0) .
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Example 3.19: Consider the linear function A = (aij)i,j2N⇤ : EN⇤ �! EN⇤

given by

(Ax)i =

8
>>><

>>>:

P
j2N⇤

2�j
xj if i = 1

x1 +
P

j2N⇤
2�j

xj if i = 2

2�i
x1 + 22

�i

if i 2 N⇤
\{1, 2}

, 8x = (xj : j 2 N⇤) 2 EN⇤ .

Then, A is a strongly (m,�)-general function, where I = J = N⇤, m = 2,
Im = Jm = {1, 2}, � is the function given by �(i) = i, 8 i 2 N⇤

\{1, 2}, and

A = N⇤
\{1} 6= ;; moreover, we have �i = 22

�i

, 8 i 2 N⇤
\{1, 2}.

In order to calculate detA, observe that A
({2},N⇤) = u + v, where u =

A
({1},N⇤)

2 EN⇤ , and v = (vj : j 2 N⇤) 2 EN⇤ , where vj = �j1, 8 j 2

N⇤. Then, from Proposition 3.11, we have detA = detU + detV , where
U = (uij)i,j2N⇤ and V = (vij)i,j2N⇤ are the linear functions obtained by
substituting the second row of A by u and v, respectively; moreover, since
U

({1},N⇤) = U
({2},N⇤), we have detU = 0, from which

detA = detV = lim
n�!+1

detV (n,n)
. (49)

Finally, 8n 2 N⇤
\{1, 2}, we have

detV (n,n) = (�1)n+12�n detV (n�1,{2,...,n}) + 22
�n

detV (n�1,n�1)

= 22
�n

detV (n�1,n�1)
, (50)

since the second row of V (n�1,{2,...,n}) is zero, and so detV (n�1,{2,...,n}) = 0.
Then, by recursion, from (50) we obtain

detV (n,n) = detV (2,2)
nY

j=3

22
�n

,

and so formula (49) implies

detA = lim
n�!+1

detV (2,2)
nY

j=3

22
�n

= detV (2,2)2

+1P
j=3

2�n

= �
1

4
4
p

2.

4. Problems for further study

A natural extension of this paper and of the paper [4] is the generalization
of the change of variables’ formula for the integration of the measurable real
functions on

�
RI

,B
(I)
�
, by substituting the (m,�)-standard functions for the

(m,�)-general functions.
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Moreover, a natural application of this paper, in the probabilistic frame-
work, is the development of the theory of the infinite-dimensional continuous
random elements, defined in the paper [3]. In particular, we can prove the for-
mula of the density of such random elements composed with the (m,�)-general
functions, with further properties. Consequently, it is possible to introduce
many random elements that generalize the well known continuous random vec-
tors in Rm (for example, the Beta random elements in EI defined by the
(m,�)-general matrices), and to develop some theoretical results and some ap-
plications in the statistical inference. It is possible also to define a convolution
between the laws of two independent and infinite-dimensional continuous ran-
dom elements, as in the finite case.

Furthermore, we can generalize the paper [2] by considering the recursion
{Xn}n2N on [0, p)N

⇤
defined by

Xn+1 = AXn +Bn (mod p),

where X0 = x0 2 EI , A is a bijective, linear, integer and (m,�)-general func-
tion, p 2 R+, and {Bn}n2N is a sequence of independent and identically dis-
tributed random elements on EI . Our target is to prove that, with some as-
sumptions on the law of Bn, the sequence {Xn}n2N converges with geometric

rate to a random element with law
O

i2N⇤

✓
1
p
Leb

���
B([0,p))

◆
. Moreover, we wish

to quantify the rate of convergence in terms of A, p, m, and the law of Bn.
Finally, in the statistical mechanics, it is possible to describe the systems of

smooth hard particles, by using the Boltzmann equation or the more general
Master kinetic equation, described for example in the paper [9]. In order to
study the evolution of these systems, we can consider the model of countable
particles, such that their joint infinite-dimensional density can be determined
by composing a particular random element with a (m,�)-general function.
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Abstract. Let G be a group with identity e. Let R be a G-graded
commutative ring and M a graded R-module. In this paper, we will in-
troduce the concept of graded classical 2-absorbing submodules of graded
modules over a graded commutative ring as a generalization of graded
classical prime submodules and investigate some basic properties of
these classes of graded modules.
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1. Introduction and Preliminaries

Throughout this paper all rings are commutative with identity and all modules
are unitary. Badawi in [8] introduced the concept of 2-absorbing ideals of
commutative rings. We recall from [8] that a proper ideal I of R is called a
2-absorbing ideal of R if whenever r, s, t 2 R and rst 2 I implies rs 2 I or
rt 2 I or st 2 I. Later on, Anderson and Badawi in [7] generalized the concept
of 2-absorbing ideals of commutative rings to the concept of n-absorbing ideals
of commutative rings for every positive integer n � 2. We recall from [7] that a
proper ideal I of R is called an n-absorbing ideal if whenever x1 · · ·xn+1 2 I for
x1, . . . , xn+1 2 R, then there are n of the xi’s whose product is in I. In light of
[8] and [7], many authors studied the concept of 2-absorbing submodules and
n-absorbing submodules. Recently, H. Mostafanasab, U. Tekir and K.H. Oral
in [12] studied classical 2-absorbing submodules of modules over commutative
rings. Let M be an R-module. A proper submodule N of M is called classical
2-absorbing submodule, if whenever a, b, c 2 R and m 2 M with abcm 2 N,
then abm 2 N or acm 2 N bcm 2 N.

The scope of this paper is devoted to the theory of graded modules over
graded commutative rings. One use of rings and modules with gradings is in de-
scribing certain topics in algebraic geometry. Here, in particular, we are dealing
with graded classical 2-absorbing submodules of graded modules over graded
commutative rings. The notion of graded 2-absorbing ideals as a generalization
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of graded prime ideals was introduced and studied in [3, 13]. The notion of
graded 2-absorbing ideals was extended to graded 2-absorbing submodules in
[2, 11]. The notion of graded classical prime submodules as a generalization
of graded prime submodules was introduced in [9] and studied in [1, 4, 5].
The purpose of this paper is to introduced the concept of graded classical 2-
absorbing submodules as a generalization of graded classical prime submodules
and give a number of its properties (see sec. 2).

First, we recall some basic properties of graded rings and modules which
will be used in the sequel. We refer to [10, 14, 15, 16] for these basic properties
and more information on graded rings and modules.

Let G be a group with identity e and R be a commutative ring with iden-
tity 1R. Then R is a G-graded ring if there exist additive subgroups Rg of
R such that R =

L
g2G Rg and RgRh ✓ Rgh for all g, h 2 G. The elements

of Rg are called to be homogeneous of degree g where the Rg’s are additive
subgroups of R indexed by the elements g 2 G. If x 2 R, then x can be writ-
ten uniquely as

P
g2G xg, where xg is the component of x in Rg. Moreover,

h(R) =
S

g2G Rg. Let I be an ideal of R. Then I is called a graded ideal of
(R,G) if I =

L
g2G(I

T
Rg). Thus, if x 2 I, then x =

P
g2G xg with xg 2 I.

An ideal of a G-graded ring need not be G-graded.
Let R be a G-graded ring and M an R-module. We say that M is a G-

graded R-module (or graded R-module) if there exists a family of subgroups
{Mg}g2G of M such that M =

L
g2G

Mg (as abelian groups) and RgMh ✓ Mgh

for all g, h 2 G. Here, RgMh denotes the additive subgroup of M consisting
of all finite sums of elements rgsh with rg 2 Rg and sh 2 Mh. Also, we write
h(M) =

S
g2G

Mg and the elements of h(M) are called to be homogeneous. Let

M =
L
g2G

Mg be a graded R-module and N a submodule of M . Then N is

called a graded submodule of M if N =
L
g2G

Ng where Ng = N \Mg for g 2 G.

In this case, Ng is called the g-component of N . Moreover, M/N becomes a
G-graded R-module with g-component (M/N)g = (Mg +N)/N for g 2 G.

Let R be a G-graded ring and S ✓ h(R) be a multiplicatively closed sub-
set of R. Then the ring of fraction S�1R is a graded ring which is called the
graded ring of fractions. Indeed, S�1R = �

g2G
(S�1R)g where (S�1R)g = {r/s :

r 2 R, s 2 S and g = (deg s)�1(deg r)}. Let M be a graded module over a
G-graded ring R and S ✓ h(R) be a multiplicatively closed subset of R. The
module of fraction S�1M over a graded ring S�1R is a graded module which is
called module of fractions, if S�1M = �

g2G
(S�1M)g where (S�1M)g = {m/s :

m 2 M, s 2 S and g = (deg s)�1(degm)}. We write h(S�1R) = [
g2G

(S�1R)g

and h(S�1M) = [
g2G

(S�1M)g. Consider the graded homomorphism ⌘ : M !
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S�1M defined by ⌘(m) = m/1. For any graded submodule N of M, the sub-
module of S�1M generated by ⌘(N) is denoted by S�1N. Similar to non graded
case, one can prove that S�1N=

�
� 2 S�1M : �=m/s for m 2 N and s 2 S

 

and that S�1N 6= S�1M if and only if S \ (N :R M) = �. If K is a graded
submodule of S�1R-module S�1M, then K \ M will denote the graded sub-
module ⌘�1(K) of M. Moreover, similar to the non graded case one can prove
that S�1(K \M) = K.

Let R be a G-graded ring and M a graded R-module.
A proper graded ideal P of R is said to be a graded prime ideal if whenever

rs 2 P , we have r 2 P or s 2 P, where r, s 2 h(R) (see [18].) It is shown in [6,
Lemma 2.1] that if N is a graded submodule of M , then (N :R M) = {r 2 R :
rN ✓ M} is a graded ideal of R.

A proper graded submodule P of M is said to be a graded prime submodule
if whenever r 2 h(R) and m 2 h(M) with rm 2 P , then either r 2 (P :R M)
or m 2 P (see [6, 17].)

A proper graded ideal I of R is said to be a graded 2-absorbing ideal of R
if whenever r, s, t 2 h(R) with rst 2 I, then rs 2 I or rt 2 I or st 2 I (see
[3, 13].)

A proper graded submodule N of M is called a graded 2-absorbing submod-
ule of M if whenever r, s 2 h(R) and m 2 h(M) with rsm 2 N , then either
rs 2 (N :R M) or rm 2 N or sm 2 N (see [2].)

A proper graded submodule N of M is called a graded classical prime sub-
module if whenever r, s 2 h(R) and m 2 h(M) with rsm 2 N , then either
rm 2 N or sm 2 N (see [4, 9].)

2. Results

Definition 2.1. Let R be a G-graded ring, M a graded R-module, C a graded
submodule of M and let g 2 G.

(i) We say that Cg is a classical g-2-absorbing submodule of Re-module Mg

if Cg 6= Mg; and whenever r, s, t 2 Re and m 2 Mg with rstm 2 Cg, then
either rsm 2 Cg or rtm 2 Cg or stm 2 Cg.

(ii) We say that C is a graded classical 2-absorbing submodule of M if C 6= M ;
and whenever r, s, t 2 h(R) and m 2 h(M) with rsm 2 C, then either
rsm 2 C or rtm 2 C or stm 2 C.

Theorem 2.2. Let R be a G-graded ring, M a graded R-module and C a graded
submodule of M . If C is a graded classical 2-absorbing submodule of M , then
Cg is a classical g-2-absorbing Re-submodule of Mg for every g 2 G.

Proof. Suppose that C is a graded classical 2-absorbing submodule of M. For
g 2 G assume that rstm 2 Cg ✓ C where r, s, t 2 Re and m 2 Mg. Since C
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is a graded classical 2-absorbing submodule of M , we have either rsm 2 C or
rtm 2 C or stm 2 C. Since Mg ✓ M and Cg = C \ Mg, we conclude that
either rsm 2 Cg or rtm 2 Cg or stm 2 Cg. So Cg is classical g-2-absorbing
Re-submodule of Mg.

Theorem 2.3. Let R be a G-graded ring, M a graded R-module and C a proper
graded submodule of M . Then the following statements hold:

(i) If C is a graded 2-absorbing submodule of M , then C is a graded classical
2-absorbing submodule of M .

(ii) C is a graded classical prime submodule of M if and only if C is a graded
2-absorbing submodule of M and (C :R M) is a graded prime ideal of R.

Proof. (i) Assume that C is a graded 2-absorbing submodule of M . Let r, s,
t 2 h(R) and m 2 h(M) such that rstm 2 C, rtm /2 C and stm /2 C. Since C
is a graded 2-absorbing submodule of M, we conclude that rs 2 (C :R M) and
hence rsm 2 C. Thus C is a graded classical 2-absorbing submodule of M.

(ii) Assume that C is a graded classical prime submodule of M. It is clear
that C is a graded 2-absorbing submodule of M . Also by [4, Lemma 3.1.],
(C :R M) is a graded prime ideal of R. Conversely, assume that C is a graded
2-absorbing submodule of M and (C :R M) is a graded prime ideal of R. Let
r, s 2 h(R) and m 2 h(M) such that rsm 2 C, rm /2 C and sm /2 C. Since C
is a graded 2-absorbing submodule of M, rs 2 (C :R M). It follows that either
r 2 (C :R M) or s 2 (C :R M) and hence rm 2 C or sm 2 C, which is a
contradiction. Thus C is a graded classical prime submodule of M .

The following example shows that the converse of theorem 2.3(i) is not true.

Example 2.4: Let G = (Z,+) and R = (Z,+, .). Define

Rg =

⇢
Z if g = 0
0 otherwise

�
. Then R is a G-graded ring. Let M = Z2 ⇥

Z3 ⇥Q. Then M is a G-graded R-module with

Mg =

8
>><

>>:

{0}⇥ Z3 ⇥Q if g = 0
Z2 ⇥ {0}⇥Q if g = 1
Z2 ⇥ Z3 ⇥ {0} if g = 2

{0}⇥ {0}⇥ {0} otherwise

9
>>=

>>;
.

Now consider a graded submodule C = {(0, 0, 0)}. One can easily see that C
is a graded classical 2-absorbing submodule of M. Since 2.3.(1, 1, 0) = (0, 0, 0),
but 3.(1, 1, 0) /2 C, 2.(1, 1, 0) /2 C and 2.3.(1, 1, 1) /2 C, we get C is not a graded
2-absorbing submodule. Also, part (ii) of theorem 2.3(ii) shows that C is note
a graded classical prime submodule. Hence the two concepts of graded classical
prime submodules and of graded classical 2-absorbing submodules are di↵erent
in general.
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Recall that a graded zero-divisor on a graded R-module M is an element
r 2 h(R) for which there exists m 2 h(M) such that m 6= 0 but rm = 0. The
set of all graded zero-divisors on M is denoted by G-ZdvR(M) (see [2].)

The following result studies the behavior of graded 2-absorbing submodules
under localization.

Theorem 2.5. Let R be a G-graded ring, M a graded R-module and S ✓ h(R)
a multiplication closed subset of R. Then the following hold:

(i) If C is a graded classical 2-absorbing submodule of M such that (C :R
M) \ S = �, then S�1C is a graded classical 2-absorbing submodule of
S�1M.

(ii) If S�1C is a graded classical 2-absorbing submodule of S�1M and S\
G-ZdvR(M/C) = �, then C is a graded classical 2-absorbing submodule
of M .

Proof. (i) Let C be a graded classical 2-absorbing submodule of M and (C :R
M)\S = �. Suppose that r1

s1
r2
s2

r3
s3

m
s4

2 S�1C for some r1
s1
, r2
s2
, r3
s3

2 h(S�1R) and

for some m
s4

2 h( S�1M). Hence there exists k 2 S such that r1r2r3(km) 2 C.
Since C is a graded classical 2-absorbing submodule of M , we conclude that
either r1r2(km) 2 C or r1r3(km) 2 C or r2r3(km) 2 C. Thus r1r2(km)

s1s2s4k
=

r1
s1

r2
s2

m
s4

2 S�1C or r1r3(km)
s1s3s4k

= r1
s1

r3
s3

m
s4

2 S�1C or r2r3(km)
s2s3s4k

= r2
s2

r3
s3

m
s4

2 S�1C.

Therefore S�1C is a graded classical 2-absorbing submodule of S�1M.
(ii) Assume that S�1C is a graded classical 2-absorbing submodule of

S�1M and S\ G-ZdvR(M/C) = �. Let r1r2r3m 2 C for some r1, r2, r3 2 h(R)
and for some m 2 h(M). Then r1r2r3m

1 = r1
1

r2
1

r3
1

m
1 2 S�1C. Since S�1C is

a graded classical 2-absorbing submodule of S�1M , we conclude that either
r1
1

r2
1

m
1 = r1r2m

1 2 S�1C or r1
1

r3
1

m
1 = r1r3m

1 2 S�1C or r2
1

r3
1

m
1 = r2r3m

1 2
S�1C. If r1r2m

1 2 S�1C, then there exists s 2 S such that sr1r2m 2 C and
since S\ G-ZdvR(M/C) = �, we have r1r2m 2 C. With a same argument,
we can show that if r1r3m

1 2 S�1C, then r1r3m 2 C and also we can show if
r2r3m

1 2 S�1C, then r2r3m 2 C. Therefore C is a graded classical 2-absorbing
submodule of M .

Lemma 2.6. Let R be a G-graded ring, M a graded R-module and C a graded
classical 2-absorbing submodule of M . Let I =

L
g2G Ig be a graded ideal of

R. Then for every r, s 2 h(R), m 2 h(M) and g 2 G with rsIgm ✓ C, either
rsm 2 C or rIgm ✓ C or sIgm ✓ C.

Proof. Let r, s 2 h(R), m 2 h(M) and g 2 G such that rsIgm ✓ C, rsm /2 C,
rIgm * C and sIgm * C. Then there exist i1g, i2g 2 Ig such that ri1gm /2 C
and si2gm /2 C. Since C is a graded classical 2-absorbing submodule, rsi1gm 2
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C, rsm /2 C and ri1gm /2 C, we have si1gm 2 C. Also rsi2gm 2 C implies
that ri2gm 2 C, since C is a graded classical 2-absorbing submodule. Since
rs(i1g + i2g)m 2 C, we conclude that r(i1g + i2g)m 2 C or s(i1g + i2g)m 2 C
or rsm 2 C and hence either rsm 2 C or ri1gm 2 C or si2gm 2 C, which is a
contradiction.

Theorem 2.7. Let R be a G-graded ring, M a graded R-module and C a graded
classical 2-absorbing submodule of M . Let I =

L
g2G Ig and J =

L
g2G Jg be

a graded ideals of R. Then for every r 2 h(R), m 2 h(M) and g, h 2 G with
rIgJhm ✓ C, either rIgm ✓ C or rJhm ✓ C or IgJhm ✓ C.

Proof. Let r 2 h(R), m 2 h(M) and g, h 2 G such that rIgJhm ✓ C, rIgm * C
and rJhm * C. We have to show that IgJhm ✓ C. Assume that ig 2 Ig and
jh 2 Jh. By assumption there exist i0g 2 Ig and j0h 2 Jh such that ri0gm /2 C
and rj0hm /2 C. Since ri0gJhm ✓ C, ri0gm /2 C and rJhm * C, by Lemma 2.6,
we have i0gJhm ✓ C. Also since rj0hIg m ✓ C, rj0hm /2 C and rIgm * C, by
Lemma 2.6, we have j0hIg m ✓ C. By (ig + i0g) 2 Ig and (jh + j0h) 2 Jh it
follows that r(ig + i0g)(jh + j0h)m 2 C. Since C is a graded classical 2-absorbing
submodule, either r(ig+i0g)m 2 C or r(jh+j0h)m 2 C or (ig+i0g)(jh+j0h)m 2 C.
If r(ig+i0g)m = rigm+ri0gm 2 C, then rigm /2 C which implies that igjhm 2 C
by Lemma 2.6. Similarly, by r(jh + j0h)m 2 C, we conclude that igjhm 2 C.
If (ig + i0g)(jh + j0h)m 2 C, then igjhm + igj0hm + i0gjhm + i0gj

0
hm 2 C and so

igjhm 2 C. Thus IgJhm ✓ C.

Theorem 2.8. Let R be a G-graded ring, M a graded R-module and C a proper
graded submodule of M . Let I =

L
g2G Ig, J =

L
g2G Jg and K =

L
g2G Kg

be a graded ideals of R. Then the following statement are equivalent:

(i) C is a graded classical 2-absorbing submodule of M ;

(ii) For every g, h,� 2 G and m 2 h(M) with IgJhK�m ✓ C, either IgJhm ✓
C or IgK�m ✓ C or JhK�m ✓ C

Proof. (i) ) (ii) Assume that C is a graded classical 2-absorbing submodule of
M. Let g, h,� 2 G and m 2 h(M) such that IgJhK�m ✓ C and IgJhm * C.
Then by Theorem 2.7, for all r� 2 K� either Igr�m ✓ C or Jhr�m ✓ C. If
Igr�m ✓ C, for all r� 2 K� we are done. Similarly if Jhr�m ✓ C, for all
r� 2 K� we are done. Suppose that r�, r0� 2 K� are such that Igr�m * C and
Jhr

0
�m * C. It follows that Igr0�m ✓ C and Jhr�m ✓ C. Since IgJh(r� +

r0�)m ✓ C, by Theorem 2.7, we have either Ig(r�+r0�)m ✓ C or Jh(r�+r0�)m ✓
C. By Ig(r� + r0�)m ✓ C it follows that Igr�m ✓ C which is a contradiction.
Similarly by Jh(r� + r0�)m ✓ C we get a contradiction. Therefore IgK�m ✓ C
or JhK�m ✓ C.

(ii) ) (i)Assume that (ii) holds. Let rg, sh, t� 2 h(R) and m 2 h(M)
such that rgsht�m 2 C. Let I = rgR, J = shR and K = t�R be a graded
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ideals of R generated by rg, sh and t�, respectively. Then IgJhK�m ✓ C. By
our assumption we obtain IgJhm ✓ C or IgK�m ✓ C or JhK�m ✓ C. Hence
rgshm 2 C or rgt�m 2 C or sht�m 2 C. Therefore C is a graded classical
2-absorbing submodule of M.

Let M and M 0 be two graded R-modules. A homomorphism of graded
R-modules ' : M ! M 0 is a homomorphism of R-modules verifying '(Mg) ✓
M 0

g for every g 2 G.

Theorem 2.9. Let R be a G-graded ring and M, M 0 be two graded R-modules
and ' : M ! M 0 be an epimorphism of graded modules.

(i) If C is a graded classical 2-absorbing submodule of M containing Ker',
then '(C) is a graded classical 2-absorbing submodule submodule of M 0.

(ii) If C 0 is a graded classical 2-absorbing submodule of M 0, then '�1(C 0)
is a graded classical 2-absorbing submodule of M .

Proof. (i) Suppose that C is a graded classical 2-absorbing submodule of M
and let r, s, t 2 h(R) and m0 2 h(M 0) such that rstm0 2 '(C), rsm0 /2 '(C)
and rtm0 /2 '(C). Since rstm0 2 '(C), there exists c 2 C \ h(M) such
that '(c) = rstm0. Since m0 2 h(M 0) and ' is an epimorphism, there exists
m 2 h(M) such that '(m) = m0. Then '(c) = rst'(m) and so '(c�rstm) = 0.
Hence c � rstm 2 Ker' ✓ C and so rstm 2 C. Since C is a graded classical
2-absorbing submodule of M , rsm /2 C and rtm /2 C, we have stm 2 C. Hence
stm0 2 '(C). Thus '(C) is a graded classical 2-absorbing submodule of M 0.

(ii) Suppose that C 0 is a graded classical 2-absorbing submodule of M 0 and
let r, s, t 2 h(R) and m 2 h(M) such that rstm 2 '�1(C 0), rsm /2 '�1(C 0) and
rtm /2 '�1(C 0). Since ' is an epimorphism, '(rstm) = rst'(m) 2 C 0. Since C 0

is a graded classical 2-absorbing submodule of M 0, rs'(m) = '(rsm) /2 C 0and
rt'(m) = '(rtm) /2 C 0, we have st'(m) = '(stm) 2 C 0 and hence stm 2
'�1(C 0). Thus '�1(C 0) is a graded classical 2-absorbing submodule of M .

As an immediate consequence of Theorem 2.9 we have the following corol-
lary.

Corollary 2.10. Let R be a G-graded ring, M a graded R-module and K ✓ C
a graded submodules of M. Then C is a graded classical 2-absorbing submodule
of M if and only if C/K is a graded classical 2-absorbing submodule of M/K.

Lemma 2.11. Let R be a G-graded ring, M a graded R-module and C a graded
submodule of M . If C is an intersection of two graded classical prime submod-
ules of M, then C is a graded classical 2-absorbing submodule of M.
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Proof. Suppose that C = C1 \C2 , where C1 and C2 are graded classical prime
submodules of M . Let r, s, t 2 h(R) and m 2 h(M) with rstm 2 C. Since
C1 is a graded classical prime submodules of M, we have either rm 2 C1 or
sm 2 C1 or tm 2 C1 . Since C2 is a graded classical prime submodules of M,
we have either rm 2 C2 or sm 2 C2 or tm 2 C2. It follows that rsm 2 C1 \C2

or rtm 2 C1 \C2 or stm 2 C1 \C2 . Thus C is a a graded classical 2-absorbing
submodule of M.

Let Ri be a graded commutative ring with identity and Mi be a graded
Ri-module, for i = 1, 2. Let R = R1 ⇥ R2. Then M = M1 ⇥ M2 is a graded
R-module and each graded submodule of M is of the form C = C1 ⇥ C2 for
some graded submodules C1 of M1 and C2 of M2.

Theorem 2.12. Let R = R1⇥R2 be a graded ring and M = M1⇥M2 be a graded
R-module where M1 is a graded R1-module and M2 is a graded R2-module. Let
C1 and C2 be a proper graded submodules of M1 and M2, respectively.

(i) C1 is a graded classical 2-absorbing submodule of M1if and only if C =
C1 ⇥ C2 is a graded classical 2-absorbing submodule of M .

(ii) C2 is a graded classical 2-absorbing submodule of M2 if and only if C =
M1 ⇥ C2 is a graded classical 2-absorbing submodule of M .

(iii) C = C1 ⇥ C2 is a graded classical 2-absorbing submodule of M if and
only if C1 and C2 are graded classical prime submodules of M1 and M2,
respectively.

Proof. (i) Suppose that C = C1⇥M2 is a graded classical 2-absorbing submod-
ule of M . From our hypothesis, C1 is proper, So C1 6= M1. Set M 0 = M

{0}⇥M2
.

Hence C 0 = C
{0}⇥M2

is a graded classical 2-absorbing submodule of M by

Corollary 2.10. Also observe that M 0 ⇠= M1 and C 0 ⇠= C1. Thus C1 is a graded
classical 2-absorbing submodule of M1. Conversely, if C1 is a graded classical
2-absorbing submodule of M1, then it is clear that C = C1 ⇥ M2 is a graded
classical 2-absorbing submodule of M.

(ii) It can be easily verified similar to (i).
(iii) Assume that C = C1⇥C2 is a graded classical 2-absorbing submodule

of M. We show that C1 is a graded classical prime submodules of M1. Since
C2 6= M2, there exists m2 2 M2\C2. Let rsm1 2 C1 for r, s 2 h(R1) and
m1 2 h(M1). Then (r, 1)(s, 1)(1, 0)(m1,m2) = (rsm1, 0) 2 C = C1 ⇥ C2. Since
C = C1 ⇥C2 is a graded classical 2-absorbing submodule of M and m2 /2 C2,
either (r, 1)(1, 0)(m1,m2) = (rm1, 0) 2 C = C1 ⇥ C2 or (s, 1)(1, 0)(m1,m2) =
(sm1, 0) 2 C = C1 ⇥ C2. Hence either rm1 2 C1 or sm1 2 C1 which shows
that C1 is a graded classical prime submodule of M1. Similarly, one can show
that C2 is a graded classical prime submodule of M2. Conversely, assume that
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C1and C2 are graded classical prime submodules of M1 and M2, respectively.
One can easily see that (C1 ⇥ M2) and (M1 ⇥ C2) are graded classical prime
submodules of M . Hence (C1 ⇥M2) \ (M1 ⇥ C2) = C1 ⇥ C2 = C is a graded
classical 2-absorbing submodule of M by Lemma 2.11.
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1. Introduction

In this paper we carry on the study of some additive decompositions of matrices,
started in [2] and in [1] with applications to the image of a matrix through a
power series (see for instance also [3]). We work in a fixed algebraic closure K
of a fixed field K of characteristic 0.

In §2 we define a projection, ⌧K : K ! K, whose image is K and which allows
to decompose K as direct sum K�Ker(⌧K) (see Remark 2.1). As a consequence,
we get the K-trace decomposition of a semisimple matrix M 2 Mn(K), i.e. we
write (in a unique way)M = T+F , where T, F 2 Mn(K) are mutually commut-
ing, T diagonalizable over K and F semisimple, with all eigenvalues in Ker(⌧K)
(see Proposition 2.10). Finally, we obtain the fine K-trace decomposition of any
semisimple matrix M 2 Mn(K) (see Proposition 2.11 and Remark 2.13), which
decomposes each summand of the K-trace decomposition in simpler summands.

In §3, starting from the fine K-trace decomposition of a semisimple matrix
M , we get a formula for the image f(M) through a power series under the
further conditions that K is a valued field and that M is K-quadratic, i.e. its
eigenvalues have degree at most 2 over K (see Proposition 3.5 and in particular
Examples 3.6).

In §4, we normalize the fine K-trace decomposition of a semisimple K-
quadratic matrix M , when the field K is ordered quadratically closed and we
write its image through a power series as above (see Proposition 4.10). When
K is real closed too, this formula holds for every semisimple matrix in the
domain of convergence of the series and it can be viewed as a generalization of
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the classical Rodrigues’ formula for the exponential of a real skew symmetric
matrix (see Examples 4.11).

2. Fine K-trace decomposition

In this paper K is a fixed field of characteristic 0 and K one of its algebraic
closures.

Remark 2.1 (K-decomposition): Let L ✓ K be any finite extension of K and
� 2 L be of degree d with minimal polynomial over K:

m�(X) = Xd + ad�1X
d�1 + · · ·+ a1X + a0 .

The multiplication by � is a K-linear mapping from L into L, whose character-
istic polynomial is m�(X)[L:K(�)] and whose trace is:

trL/K(�) = �[L : K(�)]ad�1 = � [L : K]

[K(�) : K]
ad�1 = � [L : K]

d
ad�1

(see for instance [6, Ch. VI, Proposition 5.6]).

Hence the expression:
trL/K(�)

[L : K]
= �ad�1

d
depends only on � and K and

not on the finite extension L ⇢ K of K, containing �.

Therefore, for each � 2 K, we call ⌧K(�) := �ad�1

d
the normalized K-trace

of �.
It is easy to check that ⌧K is a K-linear mapping from K onto K ✓ K with

⌧2K = ⌧K (i.e. ⌧K is a projection as a K-linear endomorphism of K) and therefore
we get a canonical decomposition as K-vector spaces: K = K �Ker(⌧K), (see
for instance [4, p. 211]), i.e. every element � 2 K has a unique decomposition
� = ⌧K(�) + 'K(�) with ⌧K(�) 2 K and 'K(�) 2 Ker(⌧K).

We call this decomposition, ⌧K(�) and 'K(�) respectively, the K-decompo-
sition, the K-part and the K-trace-free part of �. We will write ⌧(�) and '(�)
in absence of ambiguity about the field K.

Remark 2.2 (K-trace-free polynomial): Recall that two elements �,�0 2 K are
said to be conjugate over K, if they have the same minimal polynomial over
K or, equivalently, if they are in the same orbit under Aut(K/K): the group
of all automorphisms of the field K fixing each element of K. Hence �,�0 2 K
are conjugate over K if and only if ⌧(�) = ⌧(�0) and '(�), '(�0) are conjugate
over K.

For every � 2 K we denote ⌫K(�) = ⌫(�) the normalized norm of � over K
as ⌫(�) = (�1)da0 = �1�2 . . .�d, where d = degK(�), a0 is the constant term of
the minimal polynomial of � over K and {� = �1,�2, . . . ,�d} is the conjugacy
class of � over K.
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If m�(X) is the minimal polynomial of � over K, then we call K-trace-free
polynomial of � to be the polynomial em�(X) = m�(X + ⌧(�))�m�(⌧(�)).

Note that m�(X + ⌧(�)) is the minimal polynomial of '(�) over K and so
m�(⌧(�)) = (�1)d⌫('(�)), thus em�(X) = m�(X + ⌧(�)) + (�1)d+1⌫('(�)).
Moreover em�(X) is monic of degree d, its coe�cient of the term of degree d�1
and its constant term are both zero. In particular, if d = 2, then em�(X) = X2

for every �.

Remark 2.3 (K-linear involution): The mapping � 7! � = ⌧(�) + '(�) =
⌧(�) � '(�) is called the K-linear involution of K. The K-linear involution is
an automorphism of K as K-vector space, but in general not as field; K is the
set of fixed points of the K-linear involution.

Lemma 2.4. a) If � = ⌧(�)+'(�) 2 K has degree 2 over K, then '(�)2 2 K
and the unique conjugate of �, distinct from �, is �.

b) If L ✓ K is an extension of K of degree 2, then the K-linear involution
restricted to L is an element of Aut(L/K).

c) If �,�0 2 Ker(⌧) have degree 2 over K, then ��0 2 K if and only if � and
�0 are linearly dependent over K, otherwise ��0 2 Ker(⌧) and its degree
over K is 2.

d) If � 2 K has degree 2 over K, then � 2 Ker(⌧) if and only if �2 2 K.

Proof. a) Since '(�) has degree 2 over K and its normalized K-trace is zero, its
minimal polynomial has the form X2 � '(�)2, hence '(�)2 2 K and '(�) and
�'(�) are conjugate over K and also � and � are conjugate over K (remember
Remark 2.2).

b) Choose an element � 2 L of degree 2 over K, having normalized K-trace
equal to zero. Hence the elements of L are of the form k1+k2� with k1, k2 2 K.
We conclude by standard computations, because �2 2 K by (a).

c) If � and �0 are as in (c), then, from (a), �2,�02 are both in K. Hence
��0 is root of X2 � �2�02 2 K[X] and so the degree of ��0 is at most 2. The

degree of ��0 is 1 if and only if ��0 = t 2 K, i. e. if and only if � =
t

�0 =
t

�02 �
0

and so if and only if �,�0 are linearly dependent over K, because
t

�02 2 K.

Otherwise the degree of ��0 is 2; thus X2 � �2�02 is its minimal polynomial
and so: ⌧(��0) = 0.

Finally, one implication of (d) follows directly from (a), since ⌧(�) = 0.
For the other implication it su�ces to note that, if � has degree 2 over K
and �2 2 K, then the minimal polynomial of � over K is X2 � �2 and so:
⌧(�) = 0.
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Remark 2.5 (minimal polinomial): From now on M is a fixed semisimple ma-
trix in the setMn(K) of the square matrices of order n � 2 with entries in K and
with minimal polynomialm(X) = (X��1) · · · (X��s)m1(X) · · ·mt(X), where
�1, · · · , �s are mutually distinct elements of K and m1(X), · · · ,mt(X) are mu-
tually distinct irreducible monic polynomials in K[X] of degrees d1, · · · , dt � 2
respectively. We denote by �h1, · · · ,�hdh the dh distinct roots of the factor
mh(X) and by F ✓ K the splitting field of m(X). By conciseness we put
�h = �h1 for every h = 1, · · · , t.

Definition 2.6. With the notations of Remark 2.5 we say that the semisimple
matrix M 2 Mn(K) is K-quadratic if every factor mh(X) has degree 2 (or if
m(X) = (X � �1) · · · (X � �s)).

Remark 2.7 (Frobenius decomposition): The semisimple matrix M has a
unique decomposition:

M =
sX

i=1

�iAi +
tX

h=1

dhX

j=1

�hjChj ,

where {�1}[· · · {�s}[t
h=1{�h1, · · · ,�hdh} is the set of all distinct eigenvalues of

M (arranged in conjugacy classes) and the matrices Ai’s, Chj ’s are idempotent
and satisfying the conditions: AiAi0 = 0 (if i 6= i0), AiChj = ChjAi = 0 (for

every i, j, h), ChjCh0j0 = 0 (if (h, j) 6= (h0, j0)),
Ps

i=1 Ai+
Pt

h=1

Pdh

j=1 Chj = In
(the identity matrix of order n).

The above decomposition is called Frobenius decomposition of M and the
matrices Ai’s and Chj ’s, called Frobenius covariants of M , are uniquely deter-
mined by M (and by the previous conditions) and are polynomial expressions
of M of degree strictly less than deg(m(X)); finally the matrices Ai’s have
coe�cients in K and the matrices Chj ’s in F (see [1, § 1]).

Definition 2.8. A K-trace decomposition of M is an additive decomposition:
M = T + F where T, F 2 Mn(K) are mutually commuting, T is diagonalizable
over K and F is semisimple with eigenvalues in Ker(⌧K). We say that T and
F respectively are a K-part and a K-trace-free part of M .

Remark 2.9: If A is a matrix in Mn(K) such that all eigenvalues of A are in
Ker(⌧), then its usual trace is zero.

Indeed if � is an eigenvalue of A of degree d over K, then every conjugate
of � over K is again an eigenvalue of A, moreover the sum of the eigenvalues
of the whole conjugacy class of � over K is d·⌧(�) = 0 and so the trace of A is
zero.

Therefore, if the matrix M 2 Mn(K) has a K-trace decomposition, then the
trace of its K-trace-free part is zero.
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Proposition 2.10. The semisimple matrix M 2 Mn(K) has a unique K-trace
decomposition: M = T (M) + F (M), where, with the notations of Remark 2.5
and Remark 2.7,

T (M) =
sX

i=1

�iAi +
tX

h=1

⌧(�h)
dhX

j=1

Chj and F (M) =
tX

h=1

dhX

j=1

'(�hj)Chj .

In particular T (M), F (M) are polynomial expressions of M .

Proof. By Remark 2.2, ⌧(�hj) = ⌧(�h) for every j and, for every h, the set
{'(�h1), · · · ,'(�hdh)} is a conjugacy class over K.

Now let M =
Ps

i=1 �iAi +
Pt

h=1

Pdh

j=1 �hjChj be the Frobenius decom-
position of M . By decomposing each �hj as ⌧(�h) + '(�hj), we get: M =
T (M) + F (M), with T (M) and F (M) as in the statement and therefore poly-
nomial expressions of M . Arguing as in the proof of [1, Theorem 1.6], T (M)
and F (M) are matrices with coe�cients in K, i.e. in the fixed field of Aut(F/K).
Standard computations show that T (M) and F (M) are respectively diagonal-
izable over K and over F with eigenvalues {�i, ⌧(�h)} and {'(�hj)} (see also
Remark 2.7 and [1, Proposition 1.9]). This allows to conclude about the exis-
tence of a K-trace decomposition in terms of polynomial expressions of M .

Now let M = T 0 + F 0 be any other K-trace decomposition of M . This
implies T (M) � T 0 = F 0 � F (M). Now T 0, F 0 commute with M and so with
T (M), F (M); moreover the four matrices are semisimple, hence, by simultane-
ous diagonalizability, every eigenvalue �0 of F 0 can be written as �0 = ���0+�
with �, �0, � eigenvalues of T (M), T 0, F (M) respectively. From the uniqueness
of the K-decomposition � � �0 = 0 and � = �0. Therefore T 0 = T (M) and
F 0 = F (M).

Proposition 2.11. Let M 2 Mn(K) be semisimple with eigenvalues: �1, · · · , �s
distinct and belonging to K and the remaining (not in K) {�h = �h1, · · · ,�hdh},
h = 1, · · · , t, arranged in distinct conjugacy classes. We have the decomposition

M =
sX

i=1

�iAi +
tX

h=1

(�1)dh+1 ⌧(�h)

⌫('(�h))
emh(Bh) +

tX

h=1

Bh (1)

with Bh = Bh(M) =
Pdh

j=1 '(�hj)Chj (h = 1, · · · , t) matrix in Mn(K) and
emh(X) (h = 1, · · · , t) the K-trace free polynomial of �h.



52 A. DOLCETTI AND D. PERTICI

Proof. By Proposition 2.10, we have:

M =
sX

i=1

�iAi +
tX

h=1

⌧(�h)
dhX

j=1

Chj +
tX

h=1

dhX

j=1

'(�hj)Chj =

=
sX

i=1

�iAi +
tX

h=1

⌧(�h)
dhX

j=1

Chj +
tX

h=1

Bh

As in [1, Proposition 1.5], it is easy to check that �(Bh) = Bh for every
� 2 Aut(F/K), hence Bh 2 Mn(K). Thus it su�ces to prove that, for every

h = 1, · · · , t: emh(Bh) = (�1)dh+1⌫('(�h))
Pdh

j=1 Chj .
Since emh(X) has constant term zero, from the properties of the matrices

Chj ’s, we obtain emh(Bh) =
Pdh

j=1 emh('(�hj))Chj and so, by Remark 2.2, we

can conclude that emh(Bh) = (�1)dh+1⌫('(�h))
Pdh

j=1 Chj .

Remark 2.12: The matrices Ai’s and Bh’s in Proposition 2.11 are polynomial
functions of M satisfying the following properties:

1) AiAi0 = �ii0Ai, for every i, i0;

2) AiBh = BhAi = 0, for every i, h;

3) BhBh0 = 0, provided h 6= h0;

4) Bh emh(Bh) = (�1)dh+1⌫('(�h))Bh, for every h.

Some of the previous properties have been already noted in Remark 2.7 and
the others are easy to get by standard computations.

Remark 2.13 (fine K-trace decomposition): It is easy to note that in Propo-
sition 2.11, formula (1), every Bh is K-trace free, while the K-part and the
K-trace free part of M are respectively:

T (M) =
sX

i=1

�iAi +
tX

h=1

(�1)dh+1 ⌧(�h)

⌫('(�h))
emh(Bh)

with eigenvalues �i and ⌧(�h);

F (M) =
tX

h=1

Bh

with eigenvalues '(�hj) and possibly 0.
Therefore we call the decomposition (1) in Proposition 2.11, the fine K-trace

decomposition of the semisimple matrix M 2 Mn(K).
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Remark 2.14: By Lemma 2.4-(a) and Remark 2.2, if the matrix M 2 Mn(K)
is semisimple and K-quadratic, then the fine K-trace decomposition of M be-
comes:

M =
sX

i=1

�iAi +
tX

h=1

⌧(�h)

'(�h)2
B2
h +

tX

h=1

Bh , (2)

while the property (4) in Remark 2.12 becomes

4’) B3
h = '(�h)2 Bh, for every h.

Moreover, from the properties of the Frobenius covariants of M and from
Lemma 2.4-(a), we get:

In =
sX

i=1

Ai +
tX

h=1

B2
h

'(�h)2
.

3. A formula for power series of matrices over a valued
field.

Remark 3.1: In this section we assume that K (of characteristic 0) is endowed
with an absolute value | · |. We call such a pair (K, | · |) a valued field. We refer
for instance to [5, Ch. 9], to [10, Ch. III], to [6, Ch. XII] and to [7, Ch. 23] for
more information.

Let (K, | · |) be a valued field. The absolute value over K extends in a unique
way to its completion Kc; this one extends in a unique way to an absolute
value over a fixed algebraic closure Kc of Kc and finally the last one extends
in a unique way to the completion (Kc)c (see for instance [7] Theorem 2 p. 48,
Ostrowski’s Theorem p. 55 and Theorem 4’ p. 60). We denote all extensions
always by the same symbol | · |.

Note that the field {↵ 2 Kc / ↵ is algebraic over K} is the unique algebraic
closure of K contained in Kc and therefore it can be identified with K.

By restriction, we get an absolute value over K, extending the absolute
value of K.

Lemma 3.2. Let (K, | · |) be a valued field.

a) If K is algebraically closed, then its completion Kc (with respect to | · |) is
algebraically closed too.

b) (Kc)c is algebraically closed and complete with respect to the unique ex-
tension to it of | · |.



54 A. DOLCETTI AND D. PERTICI

Proof. The proof of (a) follows easily from Ostrowski’s Theorem in archimedean
case (see [7, p. 55]), while for the non-archimedean case we refer to [7, Ap-
pendix 24.15, p. 316]. Part (b) follows directly from (a).

Definition 3.3. Let f(X) =
P+1

m=0 amXm be a series with coe�cients in the
valued field (K, | · |) and Rf 2 R [ {+1} be the radius of convergence of the
associated real series

P+1
m=0 |am|Xm.

We denote by ⇤f,K the subset of the matrices A 2 Mn(K) such that all of
their eigenvalues � = ⌧(�) + '(�) (with their K-decompositions) satisfy:

i) |⌧(�)|+ |'(�)| < Rf , if the absolute value of K is archimedean,

ii) max(|⌧(�)|, |'(�)|) < Rf , if the absolute value of K is non-archimedean.

For every eigenvalue � of a matrix A 2 ⇤f,K with K-decomposition � = ⌧(�) +
'(�), denoted by bxc the integer part of the real number x, we introduce the
formal series:

T f(�) =
+1X

m=0

am

bm/2cX

h=0

✓
m

2h

◆
⌧(�)m�2h'(�)2h,

Ff(�) =
+1X

m=1

am

b(m+1)/2cX

h=1

✓
m

2h� 1

◆
⌧(�)m�2h+1'(�)2h�1.

Remark 3.4: a) If A 2 ⇤f,K, then f(A) 2 Mn(Kc) (see [1, Remark-Defin-
ition 3.1(c)]).

b) If � is an eigenvalue of a matrix in ⇤f,K, then f(�), T f(�),Ff(�) converge
in (K)c ✓ (Kc)c and f(�) = T f(�) + Ff(�).

The previous assertions follow from the definitions, by standard compu-
tations.

c) Assume that � is an eigenvalue of degree 2 over K of a matrix in ⇤f,K.
Then: T f(�) 2 Kc, Ff(�), f(�) 2 Kc(�). Moreover, if � /2 Kc, then
f(�) = T f(�) + Ff(�) is the Kc-decomposition of f(�).

Indeed if � /2 Kc has degree 2 over K and � = ⌧(�) + '(�) is its K-
decomposition, then '(�) /2 Kc and '(�)2 2 K. Hence, looking at the
partial sums and at their limits, we get that T f(�) 2 Kc, while Ff(�) is
a multiple of '(�) with coe�cient in Kc and so it belongs to Ker(⌧Kc).
We can conclude by uniqueness of Kc-decomposition.

Proposition 3.5. Let f(X) =
P+1

m=0 amXm be a series with coe�cients in
the valued field (K, | · |) and M 2 ⇤f,K be a semisimple K-quadratic matrix with
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fine K-trace decomposition:

M =
sX

i=1

�iAi +
tX

h=1

⌧K(�h)

'K(�h)2
B2
h +

tX

h=1

Bh

as in Remark 2.14. Then

a) f(M) =
Ps

i=1 f(�i)Ai +
Pt

h=1


T f(�h)

'K(�h)2
B2
h +

Ff(�h)

'K(�h)
Bh

�
,

with f(�i),
T f(�h)

'K(�h)2
,
Ff(�h)

'K(�h)
2 Kc for every i, h;

b) furthermore, if no eigenvalue �h of degree 2 over K is in Kc,

f(M) =
sX

i=1

f(�i)Ai +
tX

h=1


⌧Kc(f(�h))

'K(�h)2
B2
h +

'Kc(f(�h))

'K(�h)
Bh

�
;

c) in general f(M) is semisimple, Kc-quadratic and its Kc-trace decomposi-
tion is

f(M) = T (f(M)) + F (f(M)) ,

where T (f(M)) =
sX

i=1

f(�i)Ai +
tX

h=1

T f(�h)
B2
h

'K(�h)2
,

whose (possibly repeated) eigenvalues are f(�i) and T f(�h) for every i, h
and

F (f(M)) =
tX

h=1

Ff(�h)

'K(�h)
Bh ,

whose (possibly repeated) eigenvalues are ±Ff(�h) for every h and pos-
sibly 0.

Proof. Parts (b) and (c) follow from part (a) via Remark 3.4 and ordinary
computations.

For (a), we denote ↵j = ⌧K(�j), nj = �'K(�j)2, so that we can write the
K-decomposition of �j as �j = ↵j +

p�nj . From B3
j = �njBj we get:

B2k
j = (�nj)

k�1B2
j and B2k�1

j = (�nj)
k�1Bj for every k � 1 .

Therefore, for every m � 1, standard computations allow to get:
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
⌧K(�j)

'K(�j)2
B2
j + Bj

�m
=

2

4
bm/2cX

h=0

�m
2h

�
↵m�2h
j (

p�nj)2h

(�nj)

3

5B2
j

+

2

4
b(m+1)/2cX

h=1

� m
2h�1

�
↵m�2h+1
j (

p�nj)2h�1

p�nj

3

5Bj .

We have:

f(M) = aoIn +
+1X

m=1

am

2

4
sX

i=1

�iAi +
tX

j=1

(
↵j

(�nj)
B2
j + Bj)

3

5
m

,

thus, remembering the properties of the various matrices on the right:

f(M) = aoIn +
+1X

m=1

am

sX

i=1

�m
i Ai +

+1X

m=1

am

tX

j=1


↵j

(�nj)
B2
j + Bj

�m

= a0

2

4In �
sX

i=1

Ai +
tX

j=1

B2
j

nj

3

5+
sX

i=1

f(�i)Ai

+
tX

j=1

"P+1
m=0 am

Pbm/2c
h=0

�m
2h

�
↵m�2h
j

p�nj
2h

(�nj)

#
B2
j

+
tX

j=1

"P+1
m=1 am

Pb(m+1)/2c
h=1

� m
2h�1

�
↵m�2h+1
j

p�nj
2h�1

p�nj

#
Bj .

Now, remembering Remark 2.14 and the definitions of the various matrices,
we get the expression of f(M) in the statement. Note that the expressions

of
T f(�j)

'K(�j)2
and of

Ff(�j)

'K(�j)
are invariant under exchanging �j with its conju-

gate �j .

Examples 3.6: Assume that (K, | · |) is a valued field. Then the restriction to
fundamental field Q of | · | is equivalent either to the usual euclidean absolute
value (archimedean case), or to the trivial absolute value, or to a p-adic absolute
value for some prime number p (see for instance [7, Ch. 23, Theorem 1, p. 44]).
Hence, if the absolute value is non-archimedean, we say that the valued field
(K, | · |) has trivial fundamental restriction or p-adic fundamental restriction
respectively. In all cases we can define as power series, as in ordinary real
case, the exponential function, the sine, the cosine, the hyperbolic sine and the
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hyperbolic cosine. These series have the same radius of convergence: R = +1
if the absolute value is archimedean, R = 1 if the absolute value has trivial

fundamental restriction, and R =

✓
1

p

◆ 1
p�1

if the absolute value has p-adic

fundamental restriction (see for instance [9, pp. 70–72]).
We put ⇤K = ⇤exp,K (remember Definition 3.3). IfM 2 ⇤K and � = ⌧K(�)+

'K(�) is an eigenvalue of M with its K-decomposition, then, for f(�) = exp(�),
we have:

T f(�) = exp(⌧K(�)) cosh('K(�)) and Ff(�) = exp(⌧K(�)) sinh('K(�)) .

Now if M 2 ⇤K is a semisimple K-quadratic matrix, then from Proposition 3.5
we get:

exp(M) =
sX

i=1

exp(�i)Ai +
tX

j=1

exp(⌧K(�j)) cosh('K(�j))

'K(�j)2
B2
j

+
tX

j=1

exp(⌧K(�j)) sinh('K(�j))

'K(�j)
Bj .

Analogously we can get the formulas for other power series; for instance if
M 2 ⇤K is semisimple and K-quadratic, then

cos(M) =
sX

i=1

cos(�i)Ai +
tX

j=1

cos(⌧K(�j)) cos('K(�j))

'K(�j)2
B2
j

�
tX

j=1

sin(⌧K(�j)) sin('K(�j))

'K(�j)
Bj .

4. Matrices over an ordered quadratically closed field.

Remark 4.1: In this section we assume that K is an ordered quadratically
closed field, i.e. K is an ordered field such that all of its positive elements have
square root in K (for this notion we follow [6, Ch. XI, p. 462] rather than other
definitions of quadratically closed field in literature).

For every a 2 K, a > 0, we denote by
p
a its unique positive square root

in K. Moreover we fix a square root of �1 in K \K, denoted by
p
�1.

Remark 4.2: It is known that an ordered quadratically closed field has char-
acteristic 0 and it has a unique order as field (see for instance [6, Ch. XI,
p. 462]).
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Definition 4.3. The field K is said to be a real closed field, if it can be endowed
with a structure of ordered field such that its positive elements have a square
root in K and every polynomial of odd degree of K[X] has a root in K.

Remark 4.4: It follows directly from the definitions that every real closed
field is an ordered quadratically closed field. It is known that, for every or-
dered field K, there exists an algebraic extension, contained in K, which is
real closed and whose order extends the order of K and, moreover, that any
two such extensions are K-isomorphic (see for instance [5, Theorem 11.4] or [8,
Theorem 15.9]). We call any such extension L a real closure of the ordered
field K in K. Note that K is the algebraic closure of L too.

For more information, further characterizations and properties of real closed
fields we refer for instance to [6, Ch. XI.2] and to [8, Ch. 15]. In particular it
is known that K is a real closed field if and only if

p
�1 /2 K and K(

p
�1) is

algebraically closed (see for instance [8, characterization (1), p. 221]).
In Proposition 4.12 we point out other simple characterizations of real closed

fields.

Proposition 4.5. Assume that K is an ordered quadratically closed field and
choose one of its real closures, L in K.

a) For every z 2 K there exist x, y 2 L such that z = x +
p
�1 y; such

elements are uniquely determined by L and by
p
�1,.

We denote x = Re(z) and y = Im(z): the real and the imaginary part
of z.

b) For every z 2 K of degree 2 over K, Re(z) and Im(z) are both elements
of K and moreover ⌧K(z) = Re(z) and 'K(z) =

p
�1 Im(z); hence, in

this case, Re(z) and Im(z) are independent of L.

Proof. Part (a) follows from Remark 4.4 since K = L(
p
�1).

Let z 2 K as in (b) and write z = ⌧K(z) + 'K(z), where the minimal
polynomial of 'K(z) is g(X) = X2 � 'K(z)2 (remember Lemma 2.4-(d)); thus
�'K(z)2 > 0, being g(X) irreducible; so ±

p
�'K(z)2 are both elements of the

ordered quadratically closed field K. Now 'K(z) =
p
�1 [±

p
�'K(z)2] and we

conclude (b) by uniqueness of the decomposition in (a).

Lemma 4.6. Let (K, |.|) be a valued field and � 2 K ✓ Kc.
Then (K(�))c = Kc(�).

Proof. The element � is algebraic over Kc too. Hence, by [6, Ch. XII, Propo-
sition 2.5], we get that Kc(�) is complete. Since it contains K(�), it contains
also its completion and this gives the first inclusion.

Now let # 2 Kc(�) and denote by l the degree of � over Kc. Therefore

# =
Pl�1

i=0 hi�i with h0, · · · , hl�1 2 Kc. Since K is dense in Kc, there exist



SOME ADDITIVE DECOMPOSITIONS 59

some sequences in K, {k(i)m }m2N, 0  i  l� 1, such that each k(i)m converges to
hi. Since the topology over Kc(�) is the product topology (see the proof of [6,

Ch. XII, Proposition 2.2]), we have that: k(0)m + k(1)m � + · · · + k(l�1)
m �l�1 is a

sequence in K(�), which converges to #. Thus # 2 (K(�))c.

Proposition 4.7. Let (K, |.|) be a real closed valued field and denote by Kc its
completion.

If
p
�1 2 Kc, then Kc is algebraically closed.

If
p
�1 /2 Kc, then Kc is real closed.

Proof. By Lemma 4.6, we have: (K)c = (K(
p
�1))c = Kc(

p
�1). Since the

completion of an algebraically closed field is algebraically closed too (remember
Lemma 3.2-(a)), Kc(

p
�1) is algebraically closed. Hence, if

p
�1 2 Kc, then Kc

is algebraically closed. Otherwise Kc is real closed by the characterization
recalled in Remark 4.4.

Corollary 4.8. If (K, |.|) is a real closed valued field with p-adic fundamental
restriction for some prime p, then its completion Kc is algebraically closed.

Proof. Let us consider the sequence {xn}n�1, xn =
p
pn � 1. Since K is real

closed (hence ordered and quadratically closed), xn 2 K. Now x2
n+1 = pn ! 0

in (K, |.|).
If there exists a subsequence {xnk} such that (xnk +

p
�1) ! 0, then

±
p
�1 2 Kc.
Otherwise there exists a real number � > 0 such that |xn+

p
�1| � � > 0 for

every n. In this case |xn�
p
�1| = |x2

n + 1|
|xn +

p
�1|

 |x2
n + 1|
�

! 0. So xn !
p
�1

and again
p
�1 2 Kc. Hence, by the previous Proposition, Kc is algebraically

closed.

Remark 4.9 (normalized fine K-trace decomposition): Let K be an ordered
quadratically closed field and M 2 Mn(K) be a semisimple K-quadratic matrix.
As remarked in Proposition 4.5 (after choosing

p
�1 2 K), for every eigenvalue

� ofM , the decomposition � = Re(�)+
p
�1 Im(�) is independent of the choice

of a real closure of K into K, being Re(�) = ⌧K(�) and
p
�1 Im(�) = 'K(�).

Remembering Remark 2.12, we choose �1, . . . ,�t, the eigenvalues of M not in
K, so that Im(�j) > 0 for every j, and we define the matrices:

Ai = Ai for every i = 1, · · · , s, ,

and Bj =
Bj

Im(�j)
for every j = 1, · · · , t .
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They are in Mn(K) \ {0} and are polynomial expressions of M . Moreover

AiAj = �ijAi for every i, j ;

AiBj = BjAi = 0 for every i, j ;

BiBj = 0 for every i 6= j and

B3
j = �Bj for every j .

Then by Remark 2.14 we get

M =
sX

i=1

�i Ai �
tX

j=1

Re(�j)B
2
j +

tX

j=1

Im(�j)Bj (with Im(�j) > 0). (3)

We call the above decomposition normalized fine K-trace decomposition of M .

Proposition 4.10. Assume that (K, | · |) is an ordered quadratically closed val-
ued field, that f(X) is a power series with coe�cients in K and that M 2 ⇤f,K
is a semisimple K-quadratic matrix with normalized fine K-trace decomposition:

M =
sX

i=1

�i Ai �
tX

j=1

Re(�j)B
2
j +

tX

j=1

Im(�j)Bj , with Im(�j) > 0.

Then

a) f(M) =
Ps

i=1 f(�i)Ai �
Pt

j=1 T f(�j)B2
j +

Pt
j=1 Gf(�j)Bj ,

where f(�i), T f(�j) and Gf(�j) :=
Ff(�j)p

�1
belong to Kc for every i, j;

b) if Kc is ordered quadratically closed too , then

f(M) =
sX

i=1

f(�i)Ai �
tX

j=1

Re(f(�j))B
2
j +

tX

j=1

Im(f(�j))Bj ,

where f(�i), Re(f(�j)), Im(f(�j)) 2 Kc for every i, j.

Proof. Part (a) follows from Proposition 3.5-(a). Indeed it su�ces to remark
that

Gf(�j)Bj =
Ff(�j)p

�1

Bj

Im(�j)
=

Ff(�j)

'K(�j)
Bj .

From the expression of Ff(�j) it follows that Gf(�j) 2 Kc.
Part (b) follows from part (a), from Remark 3.4-(c) and from Proposi-

tion 4.5-(b), since, for every j, f(�j) has degree at most 2 over Kc and �j /2 Kc

(because 'K(�j)2 < 0 and Kc is an ordered field).
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Examples 4.11: Assume that (K, |·|) is an ordered quadratically closed valued
field. If M 2 ⇤K is semisimple and K-quadratic, then, by Proposition 4.10
and remarking that T exp(�j) = exp(Re(�j)) cos(Im(�j)) and G exp(�j) =
exp(Re(�j)) sin(Im(�j)), we have:

exp(M) =
sX

i=1

exp(�i)Ai �
tX

j=1

exp(Re(�j)) cos(Im(�j))B
2
j

+
tX

j=1

exp(Re(�j)) sin(Im(�j))Bj ,

and, analogously,

cos(M) =
sX

i=1

cos(�i)Ai �
tX

j=1

cos(Re(�j)) cosh(Im(�j))B
2
j

�
tX

j=1

sin(Re(�j)) sinh(Im(�j))Bj ,

where the �j ’s are the eigenvalues of M not in K, having positive imaginary
part.

The previous formulas point out the analogous formulas in Examples 3.6.
Moreover the expression of exp(M) extends the classical Rodrigues’ formula
for the exponential of a real skew symmetric matrix (see for instance [3, The-
orem 2.2]).

Proposition 4.12. If char(K) = 0, the following assertions are equivalent:

a) K is real closed;

b) K is not algebraically closed and the irreducible polynomials of K[X] have
degree at most 2;

c) the K-linear involution of K is an element of Aut(K/K) di↵erent from
the identity;

d) Ker(⌧K) is the K-vector space generated by
p
�1;

e) K is not algebraically closed and every semisimple matrix with entries in
K is K-quadratic.

Proof. The implication (a) ) (b) follows from Remark 4.4. For the converse
it su�ces to prove that K = K(

p
�1), since K is not algebraically closed. Let

t 2 K \ K, thus it has degree 2. We decompose t = ↵ + � as sum of an
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element ↵ 2 K and of an element � 2 Ker(⌧K) \ {0}. By Lemma 2.4-(a) the
conjugate of t is t = ↵ � � and �2 2 K. Now we consider the polynomial of
K[X]: q(X) = X4 � �2 = (X �

p
�)(X +

p
�)(X �

p
��)(X +

p
��) with its

factorization in K[X] (note that its roots are not in K). Since q(X) has degree
4, it is reducible over K, so it is product of two irreducible polynomials of K[X].
Since � /2 K, one of the two factors must have the form (X�

p
�)(X±

p
��) and

therefore
p
��2 2 K \ {0}. Hence � = ±

p
��2

p
�1 2 K(

p
�1). This implies

that t = ↵+ � 2 K(
p
�1), therefore K \K ✓ K(

p
�1) and so K = K(

p
�1).

By Lemma 2.4-(b), (a) implies (c). Now assume (c), so that K is not alge-
braically closed. Let � = ↵ + � 2 K with its K-decomposition. In particular

K(�) = K(�). From (c) we have: �2 = �
2
= (��)2 = �2. Hence, by Re-

mark 2.3, we get that �2 2 K and so both � and � have degree at most 2
over K. This gives (b).

Next we prove the equivalence between (a) and (d). Assume first (d).
By Remark 2.1, K = K � Ker(⌧K) = K � Span(

p
�1), thus

p
�1 /2 K and

K(
p
�1) = K is algebraically closed. For the converse, every element in K \K

is algebraic of order 2 over K. Since K is ordered quadratically closed too, by
Lemma 2.4-(d), � 2 Ker(⌧K) if and only if � = ±

p
t with t 2 K and t  0, i.e.

if and only if � = ±
p
�t

p
�1 with

p
�t 2 K and this allows to conclude.

Now (b) implies (e) by obvious reasons. For the converse, we note that every
monic irreducible polynomial q(X) 2 K[X] with deg(q(X)) � 2 is the minimal
polynomial of its companion matrix, which is therefore semisimple and so K-
quadratic, by (e). Since q(X) is irreducible, we get that deg(q(X)) = 2.

Remark 4.13: Assume that (K, | · |) is a real closed valued field and that f(X)
is a power series with coe�cients in K, then (see Proposition 4.12-(e)) the
formula of Proposition 4.10-(a) (and possibly of Proposition 4.10-(b)) holds
for every semisimple matrix M 2 ⇤f,K. In particular, the same formulas of
Examples 4.11 hold for every semisimple matrix M 2 ⇤K.
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Veronesean almost binomial
almost complete intersections

Thomas Kahle and André Wagner

Abstract. The second Veronese ideal In contains a natural complete
intersection Jn of the same height, generated by the principal 2-minors
of a symmetric (n ⇥ n)-matrix. We determine subintersections of
the primary decomposition of Jn where one intersectand is omitted.
If In is omitted, the result is a direct link in the sense of complete
intersection liaison. These subintersections also yield interesting insights
into binomial ideals and multigraded algebra. For example, if n is even,
In is a Gorenstein ideal and the intersection of the remaining primary
components of Jn equals Jn+hfi for an explicit polynomial f constructed
from the fibers of the Veronese grading map.

Keywords: Veronese, complete intersection, binomial ideal, multigrading.

MS Classification 2010: 05E40, 13A02, 13H10, 14M25, 52B20.

1. Introduction

Ideals generated by minors of matrices are a mainstay of commutative algebra.
Here we are concerned with ideals generated by 2-minors of symmetric matrices.
Ideals generated by arbitrary minors of symmetric matrices have been studied by
Kutz [18] who proved, in the context of invariant theory, that the quotient rings
are Cohen–Macaulay. Results of Goto show that the quotient ring is normal
with divisor class group Z2 and Gorenstein if the format of the symmetric matrix
has the same parity as the size of the minors [11, 12]. Conca extended these
results to more general sets of minors of symmetric matrices [4] and determined
Gröbner bases and multiplicity [5].

Here we are concerned only with the binomial ideal In generated by the
2-minors of a symmetric (n⇥n)-matrix. This ideal cuts out the second Veronese
variety and was studied classically, for example by Gröbner [15]. It contains a
complete intersection Jn, generated by the principal 2-minors (Definition 2.2).
Both ideals are of height

�n
2

�
. Coming from liaison theory one may ask for the

ideal Kn = Jn : In on the other side of the complete intersection link via Jn.
In this paper we determine Kn.
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Example 1.1: Consider the ideal J3 = had�b2, af�c2, df�e2i✓Q[a, b, c, d, e, f ]

generated by the principal 2-minors of the symmetric matrix
⇣

a b c
b d e
c e f

⌘
. The ideal

J3 is a complete intersection because it has an initial ideal with this property.
Using, for example, Macaulay2 [14], one finds the prime decomposition
J3 = I3 \K3 where

I3 = J3 + hae� bc, cd� be, ce� bfi

is the second Veronese ideal, generated by all 2-minors, and

K3 = J3 + hae+ bc, cd+ be, ce+ bfi

is the image of I3 under the automorphism of Q[a, . . . , f ] that maps b, c, and e
to their negatives and the remaining indeterminates to themselves. As predicted
by Theorem 2.11, the generator ae+bc is the sum of monomials whose exponents
are the lattice points of the fiber

8
<

:u 2 N6 :

0

@
2 1 1 0 0 0
0 1 0 2 1 0
0 0 1 0 1 2

1

A · u =

0

@
2
1
1

1

A

9
=

;

of the Z-linear map V3 that defines the fine grading of Q[a, . . . , f ]/I3. We call
this the generating function of the fiber. For n � 4 the extra generators are
not binomials anymore and Kn is an intersection of ideals obtained from In by
twisting automorphisms (Definition 2.7). In Example 2.12, for n = 4, we find
K4 = J4 + hpi for one quartic polynomial p with eight terms.

Results on Gorenstein biliaison of ideals of minors of symmetric matrices
have been obtained by Gorla [9, 10] but here we study direct complete inter-
section links. Our methods rely on the combinatorics of binomial ideals and
since Kn is not binomial and we do not know of a natural binomial complete
intersection contained in Kn, we cannot explore the linkage class more with
the present method. Instead we are motivated by general questions about
binomial ideals and their intersections. For example, [17, Problem 17.1] asks,
when the intersection of binomial ideals is binomial. From the primary (in
fact, prime) decomposition of Jn we remove In and intersect the remaining
binomial prime ideals. The result is not binomial. If n is even, Kn = Jn + hpi
for one additional polynomial p. In the terminology of [1], Kn is thus an almost
complete intersection. It is also almost binomial, as it is principal modulo
its binomial part—the binomial ideal spanned over by all binomials in the
ideal [16, Definition 2.1]. If n is odd, then there are n additional polynomials
(Theorem 2.11). While these numbers can be predicted from general liaison
theory, our explicit formulas reveal interesting structures at the boundary of
binomiality and are thus a first step towards [17, Problem 17.1]
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We determine Kn with methods from combinatorial commutative algebra,
multigradings in particular (see [19, Chapters 7 and 8]). The principal obser-
vation that drives the proofs in Section 2 is that the Veronese-graded Hilbert
function of the quotient [x]/Jn becomes eventually constant (Remark 2.14).
The eventual value of the Hilbert function bounds the number of terms that a
graded polynomial can have. The extra generators of Kn are the lowest degree
polynomials that realize the bound. We envision that this structure could be
explored independently and brought to unification with the theory of toral
modules from [7]. Our results also have possible extensions to higher Veronese
ideals as we outline in Section 3.

Denote by cn :=
�n
2

�
the entries of the second diagonal in Pascal’s triangle.

Throughout, let [n] := {1, . . . , n} be the set of the first n integers. The second
Veronese ideal lives in the polynomial ring [Ncn+1 ] in cn+1 indeterminates over
a field . For polynomial rings and quotients modulo binomial ideals we use
monoid algebra notation (see, for instance, [17, Definition 2.15]). We make
no a-priori assumptions on regarding its characteristic or algebraic closure,
although care is necessary in characteristic two. The variables of [Ncn+1 ] are
denoted xij , for i, j 2 [n] with the implicit convention that xij = xji. For
brevity we avoid a comma between i and j. We usually think about upper
triangular matrices, that is i  j. The Veronese ideal In is the toric ideal of the
Veronese multigrading NVn, defined by the (n⇥ cn+1)-matrix Vn with entries

(Vn)i,jk :=

8
><

>:

2 if i = j = k,

1 if i = j, or i = k, but not both,

0 otherwise.

That is, the columns of Vn are the non-negative integer vectors of length n
and weight two. For b 2 NVn, the fiber is V �1

n [b] = {u 2 Ncn+1 : Vnu = b}.
Computing the Vn-degree of a monomial is easy: just count how often each
row or column index appears in the monomial. For example, deg(x12xnn) =
(1, 1, 0, . . . , 0, 2). We do not distinguish row and column vectors notationally,
in particular we write columns as rows when convenient. Gröbner bases for a
large class of toric ideals including In have been determined by Sturmfels [20,
Theorem 14.2]. The Veronese lattice Ln ✓ Zcn+1 is the kernel of Vn. The rank
of Ln is cn since the rank of Vn is n and cn+1 � n = cn. Lemma 2.1 gives
a lattice basis. With {eij , i  j 2 [n]} a standard basis of Zcn+1 , we use the
following notation

[ij|kl] := eik + ejl � eil � ejk 2 Zcn+1 .

Then [ij|kl] is the exponent vector of the minor xikxjl � xilxjk.

Example 1.2: The Veronese lattice L3 ✓ Z6 is of rank 3 =
�4
2

�
�3 and minimally
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generated by the following elements

[13|13] =

0

@
1 0 �2

0 0
1

1

A , [13|23] =

0

@
0 1 �1

0 �1
1

1

A , [23|23] =

0

@
0 0 0

1 �2
1

1

A .
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2. Decomposing and Recomposing

Lemma 2.1. The set
B = {[in|jn] : i, j 2 [n� 1]}

is a lattice basis of the Veronese lattice Ln.

Proof. Write the elements of B as the columns of a (cn+1 ⇥ cn)-matrix B.
Deleting the rows corresponding to indices (i, n) for i 2 [n] yields the identity
matrix Icn . Thus B spans a lattice of the correct rank and that lattice is
saturated. Indeed, the Smith normal form of B must equal the identity matrix
Icn concatenated with a zero matrix. Thus the quotient by the lattice spanned
by B is free.

The Veronese ideal contains a codimension cn complete intersection Jn
generated by the principal 2-minors.

Definition 2.2. The principal minor ideal Jn is generated by all principal
2-minors xiixjj � x2

ij of a generic symmetric matrix. The principal minor
lattice L0

n is the lattice generated by the corresponding exponent vectors [ij|ij],
i, j 2 [n].

It can be seen that the principal minor lattice is minimally generated by
[ij|ij]. It is an unsaturated lattice meaning that it cannot be written as the
kernel of an integer matrix, or equivalently, that the quotient Zcn+1/L0

n has
torsion. Since there are no non-trivial coe�cients on the binomials in Jn,
Proposition 2.5 below says that it is a lattice ideal with lattice L0

n. Its torsion
subgroup is given in the following proposition.
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Proposition 2.3. The principal minor lattice is minimally generated by

B0 = {2[in|jn] : i 6= j 2 [n� 1]} [ {[in|in] : i 2 [n� 1]}.

Furthermore the group Ln/L0
n is (isomorphic to) (Z/2Z)cn�1 .

Proof. It holds that 2[in|jn] = [in|in] + [jn|jn] � [ij|ij] and the map which
includes the span of the elements [ij|ij] into L0

n is unimodular. A presentation
of the group can be read o↵ the Smith normal form of the matrix whose columns
are a lattice basis. Since B0 is a basis of L0

n, the columns and rows can be
arranged so that the diagonal matrix diag(2, . . . , 2, 1, . . . , 1) with cn�1 entries
2 is the top (cn ⇥ cn)-matrix of the Smith normal form. Any entry below a
two is divisible by two and thus row operations can be used to zero out the the
bottom part of the matrix. This yields the Smith normal form.

Example 2.4: For n = 3, the basis B0 is given in matrix notation as
0

@
0 2 �2

0 �2
2

1

A ,

0

@
1 0 �2

0 0
1

1

A ,

0

@
0 0 0

1 �2
1

1

A .

The advantage of B0 over the basis in Definition 2.2 is that the transition
matrix from B to B0 is diagonal. This makes it easy to understand the quotient
of the Veronese lattice modulo the principal minor lattice.

If char( ) = 2, then Jn is primary over In. In all other characteristics one
can see that the Veronese ideal In is a minimal prime and in fact a primary
component of Jn. These statements follow from [8] and are summarized in
Proposition 2.10 below. Towards this observation, the next proposition says that
Jn is a mesoprime ideal, that is, it equals the kernel of a monomial -algebra
homorphism from [Ncn+1 ] to a twisted group algebra [17, Definition 10.4]. The
adjective twisted implements the general coe�cients on the binomials in [17].
Here all coe�cients are equal to 1 . The ideal Jn is a lattice ideal as a kernel
of a monomial homomorphism onto an ordinary group algebra.

Proposition 2.5. Jn is a mesoprime binomial ideal and its associated lattice
is L0

n.

Proof. We show that Jn = hxu+ � xu�
: u 2 L0

ni, since the quotient by this
ideal is the group algebra [Zcn+1/L0

n]. By the correspondence between non-
negative lattice walks and binomial ideals [6, Theorem 1.1] we prove that for
any u = u+�u� 2 L0

n, the parts u+, u� 2 Ncn+1 can be connected using moves
[ij|ij] without leaving Ncn+1 .

The vectors u+, u� can be represented by upper triangular non-negative
integer matrices. From Definition 2.2 it is obvious that all o↵-diagonal entries
of u+ � u� are divisible by two. Since

hxu+

� xu�
: u 2 L0

ni : xij = hxu+

� xu�
: u 2 L0

ni



70 T. KAHLE AND A. WAGNER

for any variable xij , we can assume that u+ and u� have disjoint supports and
thus individually have o↵-diagonal entries divisible by two. Consequently the
moves [ij|ij] allow to reduce all o↵-diagonal entries to zero, while increasing the
diagonal entries. As visible from its basis, the lattice L0

n contains no nonzero
diagonal matrices and thus u+ and u� have been connected to the same diagonal
matrix.

Remark 2.6: From Proposition 2.3 it follows immediately that the group
algebra [Zcn+1 ]/Jn [Zcn+1 ] is isomorphic to [Zn � (Z/2Z)cn�1 ]. In particular
[Ncn+1 ]/Jn is finely graded by the monoid NVn � (Z/2Z)cn�1 .

Definition 2.7. A Z2-twisting is a ring automorphism of a (Laurent) polyno-
mial ring that maps the indeterminates either to themselves or to their negatives.

A fundamental parallelepiped of the lattice L0
n is the quotient Qcn+1/L0

n,
embedded as a half-open polytope in Qcn+1 . The lattice points in it play
an important role in the following developments. The most succinct way to
encode them is using their generating function, a Laurent polynomial in the
ring [Zcn+1 ]. Its explicit form depends on the chosen coordinates. The next
lemma is immediate from the definition of B0.

Lemma 2.8. Let M = {[in|jn] : i 6= j 2 [n � 1]}. The generating function of
the fundamental parallelepiped of B0 is

pn =
Y

m2M

(xm + 1) =
Y

m2M

(xm+

+ xm�
)

It is useful for the further development to pick the second representation of
pn in Lemma 2.8 as a representative of pn in polynomial ring [Ncn+1 ]. Its image
in the quotient [Ncn+1 ]/Jn also has a natural representation. The terms of pn
can be identified with upper triangular integer matrices which arise as sums of
positive and negative parts of elements of M . A positive part of [in|jn] 2 M
has entries 1 at positions (i, j) and (n, n) while a negative part has two entries
1 in the last column, but not at (n, n). Modulo the moves B0, any exponent
matrix of a monomial of pn can be reduced to have only entries 0 or 1 in its
o↵-diagonal positions.

Remark 2.9: A simple count yields that pn has Vn-degree (n � 2, . . . , n �
2, 2cn�1). In the natural representation of monomials of pn as integer matrices
with entries 0/1 o↵ the diagonal, there is a lower bound for the value of the (n, n)
entry. To achieve the lowest value, one would fill the last column with entries
1 using negative parts of elements of M , and then use positive parts (which
increase (n, n)). For example, if n is even, there is one term of pn whose last
column arises from the negative parts of [1n|2n], [3n|4n], . . . , [(n� 3)n|(n� 2)n]
and then positive parts of the remaining elements of M . If n is odd, then there
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is one term of pn, whose n-th column is (1, . . . , 1,�n�1) for some value �n�1.
In fact, since |M | = cn�1, the lowest possible value of the (n, n) entry is
�n�1 = cn�1 � bn�1

2 c.
The primary decomposition of Jn is given by [8, Theorem 2.1 and Corol-

lary 2.2].

Proposition 2.10. If char( ) = 2, the Jn is primary over In. In all other
characteristics, there exist Z2-twistings �i for i = 1, . . . , 2cn�1 such that the
complete intersection Jn has prime decomposition

Jn =
\

i

�i(In). (1)

Theorem 2.11. If n is odd, intersecting all but one of the components in (1)
yields \

i 6=l

�i(In) = Jn + h�l(p
+
n,i) : i 2 [n]i,

where p+n,i 2 [Ncn+1 ] are homogeneous polynomials of degree (n�1)2

2 that are

given as generating functions of the fibers V �1
n [(n� 2, . . . , n� 2) + ei]. If n is

even, then the same holds for a single polynomial p+n of degree n(n�2)
2 , given as

the generating function of V �1
n [(n� 2, . . . , n� 2)].

The proof of Theorem 2.11 occupies the remainder of the section after the
following example.

Example 2.12: The complete intersection J4 is a lattice ideal for the lattice L0
4.

In the basis B0, it is generated by the six elements

{2[i4|j4] : i < j 2 [3]} [ {[i4|i4] : i 2 [3]}.

Three of the six elements correspond to principal minors

x11x44 � x2
14, x22x44 � x2

24, x33x44 � x2
34.

The other elements give the binomials

x2
12x

2
44 � x2

14x
2
24, x

2
13x

2
44 � x2

14x
2
34, x

2
23x

2
44 � x2

24x
2
34.

These six binomials do not generate J4, but J4 equals the saturation with
respect to the product of the variables [19, Lemma 7.6]. The 23 = 8 minimal
prime components of Jn are obtained by all possible twist combinations of the
monomials ±x14x24, ±x14x34, ±x24x34. Consider the mysterious polynomial

p4 = (x12x44 + x14x24)(x13x44 + x14x34)(x23x44 + x24x34),
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which is the generating function of the fundamental parallelepiped of L0
4 in the

basis B0 and of V4-degree (2, 2, 2, 6). In the Laurent polynomial ring [Z10], the
desired ideal J4 : I4 equals J4 + hp4i. To do the computation in the polynomial
ring, we need to saturate with respect to

Q
ij xij . If n is even, this saturation

generates one polynomial, if n is odd, it generates n polynomials. Here, where
n = 4, the ideal J4 : I4 is generated by J4 and the single polynomial

p+4 = x11x22x33x44 + x11x23x24x34 + x13x14x22x34 + x12x14x24x33

+ x13x14x23x24 + x12x14x23x34 + x12x13x24x34 + x12x13x23x44.

Modulo the binomials in J4, the polynomial p+4 equals p4/x2
44 (Lemma 2.18).

As a first step towards the proof of Theorem 2.11 we compute the monoid
Q under which [Ncn+1 ]/Jn is finely graded, meaning that its Q-graded Hilbert
function takes values only zero or one. That is, we make Remark 2.6 explicit.

Lemma 2.13. Fix b 2 cone(Vn) for some n. The equivalence classes of lattice
points in the fiber V �1

n [b], modulo the moves B0, are in bijection with set of
symmetric 0/1 matrices u 2 {0, 1}n⇥n of the following form

• uii = 0, for all i 2 [n]

• uin = 0, for all i 2 [n]

• b� Vnu 2 Nn.

Proof. Each equivalence class of upper triangular matrices has a representative
whose o↵-diagonal entries are all either zero or one. The bijection maps such
an equivalence class to the cn�1 entries that are o↵-diagonal and o↵ the last
column. To prove that this is a bijection it su�ces to construct the inverse
map. To this end, let u satisfy the properties in the statement. In each row
i = 1, . . . , n, there are two values unspecified: the diagonal entry and the entry
in the last column. Given bi, using the representative modulo B0 whose last
column entries are either 0 or 1 fixes the diagonal entry by linearity. Therefore
the map is a bijection.

Remark 2.14: If bi � (n � 2) for all i 2 [n], then any 0/1 upper triangular
(n� 2)-matrix is a possible choice for the o↵-diagonal o↵-last column entries
of u in Lemma 2.13. An upper triangular (n � 2)-matrix has cn�1 entries.
Thus all those fibers have equivalence classes modulo B0 that are in bijection
with {0, 1}cn�1 . In particular, each of those fibers, has the same number of
equivalence classes.

Remark 2.15: Remark 2.14 implies that in the Vn-grading, [Ncn+1 ]/Jn is
toral as in [7, Definition 4.3]: its Vn-graded Hilbert function is globally bounded
by 2cn�1 .
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If n is odd, then (n � 2, . . . , n � 2) /2 NVn. Therefore the minimal (with
respect to addition in the semigroup cone(Vn)) fibers that satisfy Remark 2.14
are (n� 1, n� 2, . . . , n� 2), . . . , (n� 2, . . . , n� 2, n� 1). If n is even, there is
only one minimal fiber.

For the proof of Theorem 2.11 it is convenient to work in the quotient ring
[Ncn+1 ]/Jn. Since In ◆ Jn and In is finely graded by NVn, each equivalence

class is contained in a single fiber V �1
n [b] and each fiber breaks into equivalence

classes. The following definition sums the monomials corresponding to these
classes for specific fibers.

Definition 2.16. The minimal saturated fibers are the minimal fibers that
satisfy Remark 2.14. The generating function of the equivalence class in a
minimal saturated fiber is denoted by p+n,i. That is

p+n,i =
X

a2V �1
n [bi]/L0

n

xa 2 [Ncn+1 ]/Jn.

where bi := (n� 2, . . . , n� 2) + ei if n is odd and bi = (n� 2, . . . , n� 2) if n
is even.

If n is even, Definition 2.16 postulates only one polynomial which is simply
denoted p+n when convenient. Sometimes, however, it can be convenient to keep
the indices.

Remark 2.17: The construction of a generating function of equivalence classes
of elements of the fiber in Definition 2.16 can be carried out for any fiber of
Vn. For the fiber V �1

n [(n� 2, . . . , n� 2, 2cn�1)] we get the polynomial pn from
Lemma 2.8.

The quantity �n�1 = cn�1 �bn�1
2 c (that is cn�1 � n�2

2 = (n�2)2

2 for even n,

and cn�1 � n�1
2 = (n�1)(n�3)

2 for odd n) appeared in Remark 2.9 and shows up
again in the next lemma: it almost gives the saturation exponent when passing
from the Laurent polynomial ring to the polynomial ring.

Lemma 2.18. As elements of [Ncn+1 ]/Jn, if n is even then, x�n�1
nn p+n,i = pn,

and if n is odd, then, x�n�1+1
nn p+n,i = xinpn.

Proof. If n is even, the product x�n�1
nn p+n,i has Vn-degree (n�2, . . . , n�2, 2cn�1).

If n is odd, the degree of x�n�1+1
nn p+n,i equals (n� 2, . . . , n� 2, 2cn�1 + 1) + ei.

Now these products equal pn if n is even and xinpn if n is odd by Remarks 2.14
and 2.17.

Lemma 2.19. If n is odd, then for any triple of distinct indices i, j, k 2 [n], in
[Ncn+1 ]/Jn we have xijp

+
n,k = xjkp

+
n,i.



74 T. KAHLE AND A. WAGNER

Proof. Since in a group algebra all monomials are invertible, Proposition 2.5
implies in particular that the variables are nonzerodivisors on [Ncn+1 ]/Jn.
The multidegree of p+n,k satisfies the conditions of Remark 2.14, thus there are

bijections between the monomials of xijp
+
n,k and xjkp

+
n,i. Since all relations in

Jn are equalities of monomials, multiplication with a variable does not touch
coe�cients.

The following lemma captures an essential feature of our situation. Since the
Vn-graded Hilbert function of [Ncn+1 ] is globally bounded, there is a notion
of longest homogeneous polynomial as one that uses all monomials in a given
Vn-degree. For any multidegree b that satisfied bi � (n� 2), by Remark 2.14,
if a longest polynomial of multidegree b is multiplied by a term, then it remains
a longest polynomial.

Lemma 2.20. The Vn-graded Hilbert functions of the [Ncn+1 ]/Jn-modules, hpni
and hp+n,ii, i = 1, . . . , n take only zero and one as their values.

Proof. We only prove the statement for hpni since the same argument applies
also to hp+n,ii. The claim is equivalent to the statement that any f 2 hpni is
a term (that is, a monomial times a scalar) times pn. Let f = gpn with a
Vn-homogeneous g. Let t1, . . . , ts be the terms of g. Since pn is the sum of all
monomials of degree deg(pn), and multiplication by a term does not produce
any cancellation, the number of terms of tipn equals that of pn. By Remark 2.14,
the monomials in degree deg(tipn) are in bijection with the monomials in degree
deg(pn), and therefore all tipn are scalar multiples of the generating function
of the fiber for deg(tipn) and this generating function is equal to mpn for any
monomial m of multidegree deg(gpn)� deg(pn).

Lemma 2.21. For any i 2 [n], hp+n,ii :
⇣Q

ij xij

⌘1
= hp+n,k : k 2 [n]i.

Proof. If n is odd, the containment of p+n,k in the left hand side follows immedi-
ately from Lemma 2.19. If n is even, it is trivial. For the other containment,
let f be a Vn-homogeneous polynomial that satisfies mf 2 hp+n,ii for some

monomial m. We want f 2 hp+n,k : k 2 [n]i. By Lemma 2.20, mf = tp+n,i for
some term t. Since mf has the same number of terms as f and also the same
number of terms as tp+n,i, this number must be 2cn�1 . By Remark 2.14, the only
Vn-homogeneous polynomials with 2cn�1 terms are monomial multiples of the
p+n,k for k 2 [n].

Proposition 2.22. (Jn + hpni) :
⇣Q

ij xij

⌘1
= Jn + hp+n,j , j 2 [n]i.
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Proof. Throughout we work in the quotient ring S := [Ncn+1 ]/Jn and want to
show

hpni :

0

@
Y

ij

xij

1

A
1

= hp+n,j , j 2 [n]i.

Lemma 2.18 gives the inclusion ◆, since it shows that, modulo Jn, a monomial
multiple of p+n,i is equal to either pn or xinpn and thus lies in hpni. For the
other containment let

f 2 hpni :

0

@
Y

ij

xij

1

A
1

,

that is mf 2 hpni for some monomial m in S. This implies mf = gpn for
some polynomial g 2 S. By Lemma 2.18, xinmf = g0p+n,i for some g0 2 S.

So, xinmf 2 hp+n,ii and thus f 2 hp+n,ii : xinm. Lemma 2.21 shows that
f 2 hpn,k : k 2 [n]i.

Having identified the minimal saturated fibers, the longest polynomials, and
computed the saturation with respect to the variables xij , we are now ready to
prove Theorem 2.11.

Proof of Theorem 2.11. After a potential renumbering, assume �1 is the identity.
It su�ces to prove the theorem for the omission of the Veronese ideal i = 1
from the intersection. The remaining cases follow by application of �l to the
ambient ring.

Consider the extensions Jn [Zcn+1 ] and In [Zcn+1 ] to the Laurent polyno-
mial ring. By the general Theorem 2.23

\

i 6=1

�i(In [Zcn+1 ]) = Jn [Zcn+1 ] + hpni.

Pulling back to the polynomial ring, we have

\

i 6=1

�i(In) = (Jn + hpni) : (
Y

xij

xij)
1.

Contingent on Theorem 2.23, the result now follows from Proposition 2.22.

We have reduced the proof of Theorem 2.11 to a general result on intersection
in the Laurent polynomial ring. It is a variation of [8, Theorem 2.1]. According
to [8, Section 2], any binomial ideal in the Laurent polynomial ring [Zn] is
defined by its lattice L ✓ Zn of exponents and a partial character ⇢ : L ! ⇤.
Such an ideal is denoted I(⇢) where the lattice L is part of the definition
of ⇢. Let now L be a saturated lattice, ⇢ : L ! ⇤ a partial character, and
1 : L ! ⇤ the trivial character that maps all of L to 1 2 . The ideal I(⇢)
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can be constructed by appropriately twisting the ideal I(1). Specifically, if is
algebraically closed, there exists an automorphism �⇢ of [Zn] that maps each
variable to a scalar multiple of the same variable and such that �⇢(I(1)) = I(⇢).
Suitable coe�cients a1, . . . , an of the variables that define such an automorphism
can be computed by solving the equations a�mi = ⇢(mi) for any lattice basis
m1, . . . ,mr of L. These equations are solvable over an algebraically closed field
and the resulting automorphisms generalize the Z2-twistings from Definition 2.7.

Theorem 2.23. Let be a field such that char( ) is either zero or does not
divide the order of the torsion part of Zn/L and I(⇢) ✓ [Zn] be the binomial
ideal for some partial character ⇢ : L ! ⇤. Let I(⇢) = I(⇢01) \ . . . \ I(⇢0k) be a
primary decomposition of I(⇢) over the algebraic closure of . Omitting one
component I(⇢0i⇤) yields

\

i 6=i⇤

I(⇢0i) = I(⇢) + �⇢0
i⇤
(pL)

where pL is the generating function of a fundamental parallelepiped of the
lattice L.

Proof. A linear change of coordinates in Zn corresponds to a multiplicative
change of coordinates in [Zn]. Since the inclusion of L ✓ Zn can be diagonalized
using the Smith normal form, one can reduce to the case that I(⇢) is generated by
binomials xqi

i �ci for some coe�cients ci 2 . This case follows by multiplication
of the results in the univariate case. In the univariate case, the factors of xn � c
are the n-th roots ⇣1, . . . , ⇣n of c. Then ⇢ is defined by n 7! c and ⇢0i by 1 7! ⇣i.
One has Y

i 6=i⇤

(x� ⇣i) = �i⇤((x
n � 1)/(x� 1)),

where �i⇤ is the automorphism of [Z] defined by x 7! ⇣�1
i⇤ x.

The assumption on char( ) in Theorem 2.23 can be relaxed at the cost of a
case distinction similar to that in [8, Theorem 2.1].

The explicit form of pL depends on a choice of lattice basis. Because the
notions lattice basis ideal and lattice ideal are not the same in the polynomial
ring (they are in the Laurent polynomial ring), one needs to pull back using
colon ideals to get a result in the polynomial ring. Even if in the Laurent
polynomial ring the subintersection in Theorem 2.23 is principal modulo I(⇢),
it need not be principal in the polynomial ring (as visible in Theorem 2.11). It
would be very nice to find more e↵ective methods for binomial subintersections
in the polynomial ring, but at the moment the following remark is all we have.

Remark 2.24: Under the field assumptions in Theorem 2.23, let I ✓ [Nn] be
a lattice ideal in a polynomial ring with indeterminates x1, . . . , xn. There exists
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a partial character ⇢ : L ! ⇤ such that I = I(⇢) \ [Nn]. The intersection of
all but one minimal primary components of I is

(I(⇢) + �⇢(pL)) \ [Nn] = (I + �⇢(p)m) :

 
nY

i=1

xi

!1

.

where pL is the generating function of a fundamental parallelepiped of L, and
m is any monomial such that �⇢(pL)m 2 [Nn].

3. Extensions

The broadest possible generalization of the results in Section 2 may start from
an arbitrary toric ideal I ✓ [Nn], corresponding to a grading matrix V 2 Nd⇥n,
and a subideal J ✓ I, for example a lattice basis ideal. One can then ask when
the quotient [Nn]/J is toral in the grading V . The techniques in Section 2
depend heavily on this property and the very controllable stabilization of the
Hilbert function. One can get the feeling that this happens if J ✓ I is a lattice
ideal for some lattice that is of finite index in the saturated lattice kerZ(V ).
However, such a J cannot always be found: by a result of Cattani, Curran, and
Dickenstein, there exist toric ideals that do not contain a binomial complete
intersection of the same dimension [3].

A more direct generalization of the results of Section 2 was suggested
to us by Aldo Conca. The d-th Veronese grading Vd,n has as its columns
all vectors of length n and weight d. The corresponding toric ideal is the
d-th Veronese ideal Id,n ✓ S = [NN ] and it contains a natural complete
intersection Jd,n defined as follows. The set of columns of Vd,n includes the
multiples of the unit vectors D := {dei, i = 1, . . . , n}. For any column v /2 D,
let fv = xd

v �
Q

i x
vi
dei

. Then J = hfv : v /2 Di ✓ Id,n is a complete intersection
with codim(Jd,n) = codim(Id,n). It is natural to conjecture that a statement
similar to Proposition 2.5 is true. In this case, however, the group L/L0

(cf. Proposition 2.3) has higher torsion. This implies that the binomial primary
decomposition of J exists only if has corresponding roots of unity. By
results of Goto and Watanabe [13, Chapter 3] on the canonical module (cf. [2,
Exercise 3.6.21]) the ring S/I is Gorenstein if and only if d|n, so that J : I is
equal to J + (p) for some polynomial p exactly in this situation.

In Section 2, the notation can be kept in check because there is a nice
representation of monomials as upper triangular matrices (Proposition 2.5,
Lemma 2.13, etc.). To manage the generalization, it will be an important task to
find a similarly nice representation. It is entirely possible that something akin to
the string notation of [20, Section 14] does the job. Additionally, experimentation
with Macaulay2—which has informed the authors of this paper—will be
hard. For example, for d = 3, n = 4, the group L/L0 from Proposition 2.3 is
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isomorphic to (Z/3Z)13 which means that a prime decomposition of J3,4 has
1594323 components. Computing subintersections of it is out of reach. It may
be possible to compute a colon ideal like (J3,4 : I3,4) directly, but o↵-the-shelf
methods failed for us.
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Cones and matrix invariance:
a short survey

Michela Brundu and Marino Zennaro

Abstract. In this survey we collect and revisit some notions and re-
sults regarding the theory of cones and matrices admitting an invariant
cone. The aim is to provide a self-contained treatment to form a con-
venient background to further researches. In doing this, we introduce
some new intermediate concepts and propose several new proofs.
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1. Introduction

In the framework of Linear Algebra, the description of the eigenvalues of an
endomorphism of a vector space is one of the most classical problems.

A sufficient condition for the existence of a leading eigenvalue equal to the
spectral radius was determined in 1907, in the real and finite dimensional case,
by the mile-stone Theorem of Perron [11, 12], giving an affirmative answer as
far as a positive matrix (associated to the endomorphism) is concerned.

In 1912, Frobenius [5] extended this result to irreducible nonnegative matri-
ces. From then, the so called Perron–Frobenius Theory played a very important
role within matrix theory, leading to several applications in Probability, Dy-
namical Systems, Economics, etc.

In the subsequent decades, this theory admitted a wide development, to-
gether with several generalizations which, in turn, have been applied to other
branches of Mathematics and to applied sciences such as Physics, Social Sci-
ences, Biology, etc.

The observation that a real positive d × d matrix corresponds to an endo-
morphism of Rd mapping the positive orthant into itself has naturally led to
investigate endomorphisms admitting an invariant cone (the natural general-
ization of the orthant). In this context we mention, in particular, the general-
ization of the Perron–Frobenius Theorem due to Birkhoff [1] and the work by
Vandergraft [17], where necessary and sufficient conditions on a matrix to have
an invariant cone are given.
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In this survey we collect some known notions and revisit several results
regarding the theory of cones and matrices admitting an invariant cone.

The aim is to provide a convenient background to our papers [3, 2].
In doing this, on the one hand we introduce some new intermediate concepts.

On the other hand, in order to provide a self-contained treatment, we fill in
some gaps and, hence, we propose several new proofs.

2. Notation

We refer to Rd as a real vector space endowed with the Euclidean scalar product,
denoted by xT y for any x, y ∈ Rd. The metric and topological structures of
this Euclidean space are induced by this pairing.

In this framework, if U is a nonempty subset of Rd, we denote by cl(U)
its closure, by conv(U) its convex hull, by int(U) its interior and by ∂U its
boundary as a subset of Rd. We also denote by span(U) the smallest vector
subspace containing U . Finally, we set

R+U :=
{

αx
∣

∣ α ≥ 0 and x ∈ U
}

and
U⊥ :=

{

h ∈ R
d
∣

∣ hTx = 0 for all x ∈ U
}

denotes the orthogonal set of U .
In particular, if H is a (vector) hyperplane of Rd (i.e., a linear subspace of

Rd of dimension d − 1), then H = {h}⊥ for a suitable vector h ∈ Rd \ {0},
unique up to a scalar.

The hyperplane H splits Rd into two parts, say the positive and the negative
semi-space

Sh
+ := {x ∈ R

d
∣

∣ hTx ≥ 0} and Sh
− := {x ∈ R

d
∣

∣ hTx ≤ 0},

respectively. Clearly,

int
(

Sh
+

)

= {x ∈ R
d
∣

∣ hTx > 0} and int
(

Sh
−

)

= {x ∈ R
d
∣

∣ hTx < 0},

R
d = int

(

Sh
+

)

∪H ∪ int
(

Sh
−

)

and ∂Sh
+ = ∂Sh

− = H.

3. Cones and duality

The notion of proper cone is standard enough in the literature (see, e.g.,
Tam [16], Schneider and Tam [14] and Rodman, Seyalioglu and Spitkovsky [13]).
The more general notion of cone is, instead, not universally shared: accordingly
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to the various authors, it involves a variable subset (or even all, see Schneider
and Vidyasagar [15]) of the requirements for proper cones.

In this survey we shall deal with proper cones, as defined in the standard
way, and with cones that verify a particular subset of the possible properties.
We shall also find it useful to consider a weaker instance of our definition of
cone, that we refer to as quasi-cone.

Definition 3.1. Let K be a nonempty closed and convex set of Rd and con-
sider the following conditions:

c1) R+K ⊆ K (i.e., K is positively homogeneous);

c2) K ∩ −K = {0} (i.e., K is pointed or salient);

c3) span(K) = Rd (i.e., K is full or solid).

We say that K is a quasi-cone if it satisfies (c1). If, in addition, it satisfies
(c2), we say that K is a cone. Finally, if it satisfies all the above properties,
we say that K is a proper cone.

If a quasi-cone K is not solid, we also say that it is a degenerate quasi-cone.

The most known example of proper cone is the positive orthant

R
d
+ =

{

x ∈ R
d
∣

∣ xi ≥ 0, i = 1, . . . , d
}

.

In this section we recall some of the basic properties of quasi-cones. Most
is well known and we refer the reader, e.g., to Fenchel [4], Schneider and
Vidyasagar [15] and Tam [16].

The following invariants of a quasi-cone measure, in some sense, how far it
is from being either pointed or full, respectively.

Definition 3.2. For any quasi-cone K, we denote by L(K) the largest vec-
tor subspace included in K, called the lineality space of K, and by l(K) the
dimension of L(K).

Moreover, we denote by d(K) the dimension of span(K), called the (linear)
dimension of K.

Remark 3.3: If K is a quasi-cone, it is clear that:

(i) L(K) = K ∩ −K;

(ii) K is pointed if and only if l(K) = 0;

(iii) K is solid if and only if d(K) = d or, equivalently, if and only if int(K) ̸=
∅.
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If K is degenerate, then it is solid in the linear space span(K) ∼= Rd(K). So
we can give the following definition.

Definition 3.4. If K is a quasi-cone, its interior as a subset of span(K) is
called the relative interior of K and is denoted by intrel(K).

Note that, if K is a quasi-cone, then l(K) ≤ d(K) and the equality holds if
and only if one of the following equivalent conditions is satisfied:

(i) L(K) = K;

(ii) K = span(K);

(iii) K is a linear subspace;

(iv) intrel(K) = K.

The next notion is well known.

Definition 3.5. Given a hyperplane H, we say that a nonempty positively
homogeneous set U ⊂ Rd is supported by H (or, briefly, H-supported ) if

U ⊆ Sh
+ or U ⊆ Sh

−.

Moreover, we say that U is strictly supported by H (or, briefly, strictly H-
supported ) if

U \ {0} ⊆ int
(

Sh
+

)

or U \ {0} ⊆ int
(

Sh
−

)

.

Remark 3.6: Let K be a cone and H be a hyperplane. Then K is strictly
H-supported if and only if K ∩H = {0}.

Proposition 3.7. If K ̸= span(K) is a quasi-cone of Rd, then there exists a
hyperplane H which supports K and

H ∩ intrel(K) = ∅.

Proof. First assume that K is solid. In this case, there exists a hyperplane H
which supports K. (see Fenchel [4] (Corollary 1)).

If there exists v ∈ H ∩ int(K), then we can consider a d-dimensional ball
Uv, centered in v and contained in int(K). Clearly, Uv meets both int(Sh

+) and
int(Sh

−), against the fact that K is H-supported .
Otherwise, if K is degenerate, let S := span(K), s := d(K) its dimension

and let T be a (d − s)-dimensional subspace such that S ⊕ T = Rd. Clearly,
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K is solid in S and, so, from the previous case, we obtain the existence of
a hyperplane V of S which supports K and V ∩ intrel(K) = ∅. Now set
H := V ⊕ T , so that K is clearly H-supported and

H ∩ intrel(K) = H ∩ S ∩ intrel(K) = V ∩ intrel(K) = ∅,

as required.

Definition 3.8. Given a nonempty set U ⊂ Rd, the intersection of all the
quasi-cones containing U (i.e., the smallest quasi-cone containing U) is called
the quasi-cone generated by U and we denote it by qcone(U).

Note that, while qcone(U) is defined for any set U , the smallest cone con-
taining U may well not exist. Anyway, if it does exist, then it coincides with
qcone(U).

Definition 3.9. Consider a nonempty set U ⊂ Rd and assume that qcone(U)
is a cone. Then we denote it by cone(U) and call it the cone generated by U .

The quasi-cone generated by U can be represented explicitly in formula by
the aid of the following properties, whose proofs are straightforward.

Proposition 3.10. Let U ⊂ Rd be a nonempty set. Then

(i) conv (R+U) = R+conv (U);

(ii) cl (R+U) ⊇ R+cl (U) and, consequently, cl (R+U) = R+cl (R+U);

(iii) cl (conv (U)) ⊇ conv (cl (U)) and, consequently,
cl (conv (U)) = conv (cl (conv(U))).

Corollary 3.11. For any nonempty set U ⊂ Rd, we have

qcone(U) = cl (conv (R+U)) = cl (R+conv (U)) . (1)

Proof. The second equality in (1) is obtained just by taking the closure of both
sides of (i) in Proposition 3.10.

Concerning the first equality, note that cl (conv (R+U)) contains U , is con-
vex (by (iii) in Proposition 3.10) and positively homogeneous (by (i) and (ii)
in Proposition 3.10). Thus, by Definitions 3.1 and 3.8, we obtain qcone(U) ⊆
cl (conv (R+U)).

Conversely, since qcone(U) is positively homogeneous, qcone(U) ⊇ R+U .
Moreover, it is convex and, hence, qcone(U) ⊇ conv (R+U). The fact that
qcone(U) is also closed completes the proof.
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Proposition 3.12. A nonempty set U ⊂ Rd is contained in a closed semispace
Sh
+ if and only if qcone(U) ̸= Rd.

Proof. It is clear that U ⊆ Sh
+ if and only if qcone(U) ⊆ Sh

+. On the other
hand, by Proposition 3.7, this condition is equivalent to qcone(U) ̸= Rd.

The notion of duality is essential in the study of cones. Now we summarize
a few basic definitions and properties.

Definition 3.13. Let U be a nonempty set of Rd. Then

U∗ := {h ∈ R
d
∣

∣ hTx ≥ 0 ∀x ∈ U}

is called the dual set of U . By convention, we also define ∅∗ := Rd.

Remark 3.14: If U is a subset of Rd, then it is clear that U ⊆ Sh
+ if and only

if h ∈ U∗ \ {0}.

The proofs of the following relationships are straightforward.

Proposition 3.15. Let U and V be nonempty sets of Rd. Then we have:

(i) U ⊆ U∗∗;

(ii) U ⊆ V implies U∗ ⊇ V ∗;

(iii) (U ∪ V )∗ = U∗ ∩ V ∗;

(iv) (U ∩ V )∗ ⊇ U∗ ∪ V ∗.

Remark 3.16: Note that {0}∗ = Rd, (Rd)∗ = {0} and, if x ∈ Rd \ {0}, then

{x}∗ = {h ∈ R
d
∣

∣ hTx ≥ 0} = Sx
+

is the positive semi-space determined by x. Consequently, if U is a nonempty
subset of Rd, then

U∗ =
⋂

x∈U

Sx
+ .

Hence, U∗ is closed, convex and positively homogeneous, i.e., U∗ is a quasi-
cone.

The above observation shows that the notion of dual of a set is deeply
related to that of quasi-cone, as is evident also from the following fact.

Proposition 3.17. Let U be a subset of Rd and U∗ be its dual set. Then

U∗ = (qcone(U))∗.
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Proof. Since for any V ⊆ Rd we easily have V ∗ = (cl(V ))∗, V ∗ = (conv(V ))∗

and V ∗ = (R+V )∗, the claim follows immediately from (1).

Definition 3.18. If K is a quasi-cone of Rd, the set

K∗ = {h ∈ R
d
∣

∣ hTx ≥ 0 ∀x ∈ K}

is called the dual quasi-cone of K.

As we saw in Proposition 3.15, ∗ is not completely a “geometric duality”
on the subsets of Rd. Namely, even if it is compatible with the union and
contravariant with respect to the inclusion, a generic subset is not reflexive.
Besides the category of vector subspaces of Rd, that of quasi-cones fulfils the
reflexivity, too. To this purpose, we recall that, for any quasi-cone K, we have

K∗∗ = K (2)

(see [4], Corollary to Theorem 3). Consequently, using the general implication
in Proposition 3.15-(ii), we obtain

K(1) ⊆ K(2) ⇐⇒ (K(1))∗ ⊇ (K(2))∗ (3)

for any pair K(1) and K(2) of quasi-cones.

Remark 3.19: Let K ̸= Rd be a quasi-cone. Then, thanks to Proposition 3.7,
it is supported by some hyperplane H . As observed in Remark 3.14, this fact
is equivalent to K∗ ̸= {0}.

The following key-fact can be found in Fenchel [4] (Theorem 5 and its
Corollary).

Proposition 3.20. Let K be a quasi-cone of Rd. Then

d(K) + l(K∗) = d and d(K∗) + l(K) = d. (4)

Remark 3.3 and Proposition 3.20 immediate yield the next consequence.

Corollary 3.21. Let K be a quasi-cone. Then K is pointed if and only if K∗

is solid and, dually, K∗ is pointed if and only if K is solid. In particular, K
is a proper cone if and only if K∗ is a proper cone.

Moreover, K = span(K) if and only if K∗ = span(K∗).

This observation allows us to describe the lineality space of a quasi-cone in
terms of its dual quasi-cone.
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Lemma 3.22. Let K be a quasi-cone. Then

L(K) = (K∗)⊥. (5)

Proof. Let us first show that L(K) ⊆ (K∗)⊥. To this purpose, let h ∈ K∗.
Since L(K) ⊆ K, for each z ∈ L(K) we have hT z ≥ 0. Since L(K) is a vector
space, it also contains −z and, hence, hT (−z) ≥ 0. Therefore, hT z = 0 for
each z ∈ L(K) and, so, L(K) ⊆ {h}⊥.

To prove the equality, it is enough to observe that (K∗)⊥ = (span(K∗))⊥.
Hence, dim((K∗)⊥) = d − d(K∗) = l(K), where the second equality follows
from (4).

Proposition 3.23. If K ̸= span(K) is a quasi-cone, then

L(K) ∩ intrel(K) = ∅.

Proof. On one hand, by Proposition 3.7, there exists a hyperplaneH supporting
K such that H ∩ intrel(K) = ∅. On the other hand, by Lemma 3.22 and
Remark 3.19, we have that L(K) ⊆ H .

Lemma 3.24 ([4], Theorem 12). If K is a quasi-cone and h ∈ K∗ \ {0}, then

h ∈ intrel(K
∗) ⇐⇒ K ∩ {h}⊥ = L(K). (6)

Note that, if K = span(K), then it is clear that K∗ = K⊥ and Lemma 3.24
just says that K ∩ {h}⊥ = K for each h ∈ K∗ \ {0}.

Now we are in a position to prove a stronger version of Proposition 3.7.

Proposition 3.25. Let K be a quasi-cone. Then it is a cone if and only if it
is strictly supported by some hyperplane H.

Proof. Assume that K is a cone. So, by Corollary 3.21, its dual K∗ is solid.
Then just take h ∈ int(K∗) and set H = {h}⊥. By Lemma 3.24, we have
K ∩H = {0} and, hence, by Remark 3.6, K is strictly H-supported .

Conversely, if K is strictly H-supported for some H , then K ∩ H = {0}.
Thus, K ∩ −K = {0} and, by Remark 3.3, K is pointed.

The above discussion allows us to show the inclusions opposite to (ii) and
(iii) of Proposition 3.10 hold in some particular cases.
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Lemma 3.26. Let X be a bounded subset of Rd. Then conv (cl (X)) is closed
and, hence,

cl(conv(X)) = conv(cl(X)). (7)

In addition, if 0 /∈ cl(X), then also R+cl (X) is closed and, hence,

cl (R+X) = R+cl (X) . (8)

Proof. The first claim is well known. Hence, since conv(X) ⊆ conv(cl(X)),
we have that cl(conv(X)) ⊆ conv(cl(X)). Therefore, equality (7) follows from
Proposition 3.10-(iii).

Now let Y := cl(X) and let x ∈ ∂(R+Y )\{0}. Then there exists a sequence
(xn)n ⊂ R+Y converging to x and, so, there exists M > 0 such that definitively

∥ xn ∥≤ M.

On the other hand, we can write

xn = λnan

where λn ∈ R+ and an ∈ Y for all n.
Since Y is compact, the sequence (an)n (or a suitable subsequence) con-

verges to a point, say a, of Y . Necessarily, a ̸= 0 because 0 ̸∈ Y . Thus, there
exists µ > 0 such that definitively

∥ an ∥≥ µ > 0.

Since ∥ xn ∥= |λn| ∥ an ∥, we then obtain definitively

λn ≤ M/µ.

Therefore, the sequence (λn)n (or a suitable subsequence) converges to a certain
λ ∈ R+.

Finally, we obtain that (a suitable subsequence of) (xn)n converges to λa.
This implies that x = λa ∈ R+Y . So R+Y is closed. By using Proposition 3.10-
(ii), similarly as before (8) follows.

Proposition 3.27. Let X ⊂ Rd be positively homogeneous and such that cl(X)
is strictly supported by some hyperplane H. Then

cl(conv(X)) = conv(cl(X)).



90 M. BRUNDU AND M. ZENNARO

Proof. Denote by S the unit d-sphere of Rd and consider the compact set
cl(X) ∩ S. Therefore, by Lemma 3.26, conv(cl(X) ∩ S) is closed.

Moreover, observe that 0 /∈ conv(cl(X) ∩ S) since cl(X) is strictly H-
supported by assumption. Thus, by the second part of Lemma 3.26, we obtain
that R+conv(cl(X) ∩ S) is closed.

On the other hand, cl(X) is positively homogeneous. Therefore, as is easy
to see, R+(cl(X) ∩ S) = cl(X). Hence,

conv(R+(cl(X) ∩ S)) = conv(cl(X))

and, so, Proposition 3.10-(i) yields

R+conv(cl(X) ∩ S) = conv(cl(X)).

Therefore, conv(cl(X)) is closed and, using Proposition 3.10-(iii), like in the
first part of Lemma 3.26 we get the thesis.

Corollary 3.28. Consider a nonempty set U ⊂ Rd and assume that qcone(U)
is a cone. Then

cone(U) = conv (cl (R+U)) = cl (conv (R+U)) = cl (R+conv (U)) . (9)

Proof. Note first that

cl (R+U) ⊆ cl (conv (R+U)) = cone(U),

where the equality follows from Corollary 3.11. Therefore, cl (R+U) is strictly
supported by some hyperplane H by Proposition 3.25.

Consequently, R+U satisfies the assumptions on the set X of Proposi-
tion 3.27 which, in turn, gives the second equality in (9).

Finally, (1) gives the third equality.

A more detailed study of the notion of dual of a quasi-cone leads us to the
forthcoming Proposition 3.30.

Lemma 3.29. If K ̸= span(K) is a quasi-cone and h ∈ Rd \ {0}, then the
following conditions are equivalent:

(i) h ∈ K∗ and K ∩ {h}⊥ = L(K);

(ii) hTx > 0 for all x ∈ K \ L(K).
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Proof. (i) ⇒ (ii) Since h ∈ K∗, then hTx ≥ 0 for all x ∈ K. Now, if x ∈
K \ L(K), then (i) implies that x ̸∈ {h}⊥, i.e., hTx ̸= 0.

(ii) ⇒ (i) By Proposition 3.23 we have that K \ L(K) ⊇ intrel(K) and,
hence, the assumption implies that hTx > 0 for all x ∈ intrel(K). Therefore,
the continuity of the scalar product proves that hTx ≥ 0 for all x ∈ K, i.e.,
h ∈ K∗. In turn, this fact implies that K∩{h}⊥ ⊇ L(K) holds (see (5)). So we
are left to show that K∩{h}⊥ ⊆ L(K). If x ∈ K and hTx = 0, then necessarily
x ̸∈ K \ L(K) by assumption, and this proves the requested inclusion.

Proposition 3.30. Let K be a quasi-cone of Rd. Then we have:

(i) intrel(K∗) = {h ∈ Rd
∣

∣ hTx > 0 ∀x ∈ K \ L(K)}
and, if K is a cone, then

int(K∗) = {h ∈ R
d
∣

∣ hTx > 0 ∀x ∈ K \ {0}}.

(ii) K∗ \ L(K∗) = {h ∈ Rd
∣

∣ hTx > 0 ∀x ∈ intrel(K)}
and, if K is solid, then

K∗ \ {0} = {h ∈ R
d
∣

∣ hTx > 0 ∀x ∈ int(K)}.

Proof. (i) The first equality follows immediately from Lemmas 3.24 and 3.29.
In particular, if K is a cone, then L(K) = 0 and the second equality is also
proved.
(ii) It is clear that (i) implies

K \ L(K) ⊆ {x ∈ R
d
∣

∣ hTx > 0 ∀h ∈ intrel(K
∗)}.

Conversely, let x ∈ Rd be such that hTx > 0 for all h ∈ intrel(K∗). Then
x ̸∈ {h}⊥ and, hence, x ̸∈ L(K) by (5). Moreover, still by the continuity of
the scalar product, we also get hTx ≥ 0 for all h ∈ K∗. This means that
x ∈ K∗∗ = K. In this way we have shown that

K \ L(K) = {x ∈ R
d
∣

∣ hTx > 0 ∀h ∈ intrel(K
∗)}.

Exchanging the role ofK andK∗ and applying the reflexivity of the quasi-cones
(see (2)), we obtain the requested equality.

Finally, if K is solid, then L(K∗) = {0}.

A straightforward consequence of the above proposition follows.

Corollary 3.31. If K(1) and K(2) are quasi-cones, then

K(1) \ L(K(1)) ⊆ intrel(K
(2)) =⇒ intrel((K

(1))∗) ⊇ (K(2))∗ \ L((K(2))∗).
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The last part of this section is devoted to some properties concerning the
quasi-cone generated by a finite union of quasi-cones.

Lemma 3.32. Let K(1), . . . ,K(r) be quasi-cones of Rd and U :=
⋃r

i=1 K
(i).

Then

(qcone (U))∗ = U∗ =
r
⋂

i=1

(

K(i)
)∗

.

Moreover, the above set, which is a quasi-cone, is ̸= {0} if and only if U is
supported by some hyperplane H.

Proof. The first equality follows from Proposition 3.17 and the second from
Proposition 3.15-(iii). Moreover,

(qcone (U))∗ ̸= {0} ⇐⇒ qcone (U) ̸= R
d,

and this is equivalent to U being H-supported (see Proposition 3.12).

Definition 3.33. Let K(1), . . . ,K(r) be quasi-cones. Their sum is defined as

K(1) + · · ·+K(r) := {x1 + · · ·+ xr | xi ∈ K(i), i = 1, . . . , r}.

Lemma 3.34. Let K(1), . . . ,K(r) be quasi-cones. Then

K(1) + · · ·+K(r) = conv(K(1) ∪ · · · ∪K(r)) (10)

and
cl(K(1) + · · ·+K(r)) = qcone(K(1) ∪ . . . ∪K(r)). (11)

Proof. Equality (10) proved in Kusraev and Kutateladze [9], 1.1.8.
Equality (11) immediately follows from (10). In fact, since the quasi-cones

K(i) are positively homogeneous, equality (1) implies that qcone(K(1) ∪ · · · ∪
K(r)) = cl(conv(K(1) ∪ · · · ∪K(r))).

We recall that the notion of separatedness of two closed convex subsets of
Rd has to be slightly modified (e.g., following Klee [7]) to adapt it to the case
of cones.

Definition 3.35. Two cones K(1) and K(2) of Rd are said to be separated if
there exists a hyperplane H = {h}⊥ such that

K(1) \ {0} ⊆ int
(

Sh
+

)

and K(2) \ {0} ⊆ int
(

Sh
−

)

.

Moreover, we say that such an H is a separating hyperplane for K(1) and K(2).
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Let us mention two well know results, the first of which is the “cone version”
of a “separation-type” theorem, obtained directly from Klee [7], Theorem 2.7
(see also Holmes [6]).

Theorem 3.36. Two cones K(1) and K(2) of Rd are separated if and only if
K(1) ∩K(2) = {0}.

In other words, K(1) ∩ −K(2) = {0} if and only if K(1) ∪ K(2) is strictly
supported by some hyperplane H . So the next statement immediately comes
from Klee [7], Proposition 2.1.

Proposition 3.37. Let K(1) and K(2) be two cones of Rd. If K(1) ∪ K(2) is
strictly supported by some hyperplane H, then K(1) +K(2) is closed.

Let U ⊂ Rd. Clearly, if K = qcone(U) is strictly H-supported , then
U \ {0} ⊆ int(Sh

+). The converse is false as long as U is a generic set. For
instance, let U ⊂ R2 be the unit open ball centered in the point (0, 1). Clearly,
U = U \ {0} is contained in int(Sh

+), where h = (0, 1), but, at the same time,
qcone(U) = Sh

+.
Nevertheless, the converse is true whenever U is a finite union of cones.

Proposition 3.38. Let K(1), . . . ,K(r) be cones of Rd, H a hyperplane and

K := qcone(K(1) ∪ . . . ∪K(r)).

Then the following statements are equivalent:

(i) K is strictly H-supported ;

(ii) K(1) + · · ·+K(r) is strictly H-supported and, hence, closed;

(iii) K(1) ∪ . . . ∪K(r) is strictly H-supported .

In this case, K = K(1) + · · ·+K(r) is a cone, too.

Proof. With reference to (ii), we begin by observing that, if K(1) + · · ·+K(r)

is strictly H-supported , then it is closed. In fact, this can be easily proved by
induction on r using Proposition 3.37.
(i) ⇒ (ii) By (11).
(ii) ⇒ (iii) By (10).
(iii) ⇒ (ii) From the assumption, there exists h such that {h}⊥ = H and
hT z > 0 for all z ∈ K(1) ∪ . . . ∪K(r), z ̸= 0. Hence, hT (z1 + · · ·+ zr) > 0 for
all zi ∈ K(i), i = 1, . . . , r, such that z1 + · · ·+ zr ̸= 0.
(ii) ⇒ (i) Since K(1) + · · · +K(r) is closed, then it coincides with K by (11)
and, hence, K is strictly H-supported as well.
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4. Matrices with invariant cones

Let F denote either the real field R or the complex field C. Throughout this
paper we denote by Fd×d the space of the d× d matrices on F.

If A ∈ Fd×d, we identify it with the corresponding endomorphism

fA : Fd → F
d

defined by fA(x) = Ax. Hence, the kernel and the image of fA will be simply
denoted by ker(A) and range(A), respectively, and, if U is a subset of Fd, its
image will be denoted by A(U).

Nevertheless, the preimage of a subset V of Fd will be explicitly denoted by
f−1
A (V ).

Definition 4.1. A subset U of Rd is said to be invariant under the action of
the matrix A on Rd (in short, invariant for A) if A(U) ⊆ U .

Assumption 4.1. In order to avoid trivial cases, from now on we assume that
A is a nonzero matrix.

If λ ∈ F and a nonzero vector v ∈ Fd are such that Av = λv, then they are
called eigenvalue and eigenvector of A, respectively.

The set Vλ(A), or simply Vλ, consisting of such eigenvectors and of the zero
vector, is a linear subspace called the eigenspace corresponding to λ. Obviously,
Vλ is invariant under the action of A.

Denoting by µa(λ) the algebraic multiplicity of λ (as root of the character-
istic polynomial det(A−λI)) and by µg(λ) the geometric multiplicity of λ (i.e.,
dimF(Vλ)), it is also well known that µg(λ) ≤ µa(λ). If the equality holds, then
λ is called nondefective. Otherwise, it is called defective.

Definition 4.2. Let λ be an eigenvalue of A and k = µa(λ). Then the linear
space

Wλ(A) := ker((A− λI)k) ⊆ F
d

is called generalized eigenspace corresponding to λ and each of its nonzero
elements which does not belong to Vλ is called generalized eigenvector.

If no misunderstanding occurs, we shall simply write Wλ instead of Wλ(A).

It is clear that Wλ is a linear subspace invariant for A and it is well known
that dimF(Wλ) = µa(λ) (see, e.g., Lax [10], Theorem 11). Therefore, Vλ = Wλ

if and only if λ is nondefective.
In this paper we shall deal with real matrices only. Clearly, if A is a real

matrix, we can take F = R or F = C.
If λ ∈ R, then Wλ is a linear subspace of Rd and dimR(Wλ) = µa(λ).
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Otherwise, if λ ∈ C \ R, take F = C and consider Wλ ⊆ Cd. Since the
conjugate of λ is an eigenvalue as well, set UC(λ, λ̄) := Wλ ⊕Wλ̄ ⊆ Cd. With
k := µa(λ) = dimC(Wλ), it is clear that dimC(UC(λ, λ̄)) = 2k. Setting also
UR(λ, λ̄) := UC(λ, λ̄)∩Rd, it turns out that dimR(UR(λ, λ̄)) = 2k and that this
linear space is spanned by the real and the imaginary parts of the vectors of
Wλ. Clearly, UR(λ, λ̄) is invariant for A.

Therefore, if λ1, . . . ,λr ∈ R and µ1, µ̄1, . . . , µs, µ̄s ∈ C \ R are the distinct
roots of the characteristic polynomial, then

R
d =

r
⊕

i=1

Wλi
⊕

s
⊕

i=1

UR(µi, µ̄i). (12)

Finally, recall that the set σ(A) of the (real or complex) eigenvalues is called
the spectrum of A and the nonnegative real number

ρ(A) := max
λ∈σ(A)

|λ|

is called the spectral radius of A.
It is well known that either ρ(A) > 0 or Ad = 0.
The eigenvalues whose modulus is ρ(A) are called leading eigenvalues and

the corresponding eigenvectors are called leading eigenvectors. (For the con-
venience of the reader, we recall that, in the literature, these objects are also
known as principal eigenvalues and principal eigenvectors).

The remaining eigenvalues and eigenvectors are called secondary eigenvalues
and secondary eigenvectors, respectively.

Remark 4.3: If the matrix A admits a real leading eigenvalue λ1, we can write

R
d = WA ⊕HA,

where

WA := Wλ1
and HA :=

r
⊕

i=2

Wλi
⊕

s
⊕

i=1

UR(µi, µ̄i). (13)

Observe that both WA and HA are linear subspaces invariant for A.

Proposition 4.4. Let A be a matrix admitting a real leading eigenvalue λ1 > 0
and let x ∈ Rd. Then

Ax ∈ HA =⇒ x ∈ HA.

Proof. Using (13), we can write x = v + u for suitable v ∈ WA and u ∈ HA

and thus Ax = Av + Au. Clearly, Ax ∈ HA by assumption and Au ∈ HA

since HA is invariant for A. Therefore, Av ∈ WA ∩ HA = {0} and, hence,
v ∈ ker(A) = W0. But WA ∩W0 = {0} since λ1 > 0. Therefore, v = 0 and the
proof is complete.
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It is clear that, if λ > 0 is a real eigenvalue and dim(Vλ) = 1, both the two
half-lines which constitute Vλ are invariant for A. Therefore, it makes sense to
extend the search of invariant sets from linear subspaces to cones.

In the case of cones the notion of invariance is the general one (see Defini-
tion 4.1), but it is useful to recall the following refinement.

Definition 4.5. We say that a quasi-cone K is strictly invariant under the
action of the matrix A on Rd (in short, strictly invariant for A) if

A(K \ L(K)) ⊆ intrel(K).

In particular, if K is a cone, the above inclusion reads A(K \ {0}) ⊆ intrel(K).

For example, the positive orthant Rd
+ is invariant for a real matrix with

nonnegative entries, whereas it is strictly invariant for a matrix with all strictly
positive entries.

We recall that A and the transpose matrix AT have the same eigenvalues
with the same multiplicities. More precisely, for any eigenvalue λ ∈ C it holds
that dim(Vλ(A)) = dim(Vλ(AT )) and dim(Wλ(A)) = dim(Wλ(AT )).

The following result is well known in the case of proper cones.

Proposition 4.6. A quasi-cone K is invariant (respectively, strictly invariant)
for a matrix A if and only if the dual quasi-cone K∗ is invariant (respectively,
strictly invariant) for the transpose matrix AT .

We recall the following well-known Perron-Frobenius theorems, which may
be found, for instance, in Vandergraft [17].

Theorem 4.7. Let a proper cone K be invariant for a nonzero matrix A. Then
the following facts hold:

(i) the spectral radius ρ(A) is an eigenvalue of A;

(ii) the cone K contains an eigenvector v corresponding to ρ(A).

Theorem 4.8. Let a proper cone K be strictly invariant for a nonzero matrix
A. Then the following facts hold:

(i) the spectral radius ρ(A) is a simple positive eigenvalue of A and |λ| < ρ(A)
for any other eigenvalue λ of A;

(ii) int(K) contains the unique leading eigenvector v (corresponding to ρ(A));

(iii) the secondary eigenvectors and generalized eigenvectors of A do not belong
to K.
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Under the hypotheses of Theorem 4.7, in the next Theorem 4.10 we prove a
stronger version of the analogous counterpart of Theorem 4.8-(iii). Moreover,
following the same line, in Theorem 4.12 we then easily obtain a stronger version
of Theorem 4.8-(iii) itself.

Lemma 4.9. Let A be a matrix having a real leading eigenvalue ρ(A). Then
WAT = (HA)⊥.

Proof. Set B := (A−ρ(A)I)k and recall that WA = ker(B) (see Definition 4.2).
Moreover, HA is invariant for B since it is invariant for A.

From Remark 4.3 we then obtain that range(B) = B(HA) = HA, where the
second equality holds since the matrix B is nonsingular on HA.

Recalling that range(B) = (ker(BT ))⊥, we get HA = (ker(BT ))⊥ and,
finally, the equality WAT = ker(BT ) concludes the proof.

Note that, if A is a matrix having an invariant proper cone K, then λ1 =
ρ(A) is a real leading eigenvalue by Theorem 4.7. So, keeping the notation of
Remark 4.3, we have the following result.

Theorem 4.10. Let A be a matrix having an invariant proper cone K. Then

int(K) ∩HA = ∅.

Proof. Let us consider y ∈ int(K)∩HA. Then, by Proposition 3.30-(i) applied
to K∗, we have that yTw > 0 for all w ∈ K∗ \ {0}.

Let us observe that ρ(A) = ρ(AT ) and that K∗ is a proper cone invariant
for AT (see Proposition 4.6). Therefore, by Theorem 4.7, there exists a leading
eigenvector w̄ of AT which belongs to K∗, i.e., w̄ ∈ WAT ∩K∗.

Since, by Lemma 4.9, WAT = (HA)⊥, we have yT w̄ = 0, which gives a
contradiction.

Corollary 4.11. If ρ(A) > 0, in the assumptions of the previous theorem, we
have

int(K) ∩ ker(A) = ∅.

Proof. If 0 is not an eigenvalue, the equality trivially holds. Otherwise, 0 is a
secondary eigenvalue and, so, W0 ⊆ HA. On the other hand, ker(A) = V0 ⊆ W0

and, thus, Theorem 4.10 concludes the proof.

Theorem 4.12. If K is a strictly invariant proper cone for a matrix A, then

K ∩HA = {0}.
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Proof. Let us consider y ∈ K ∩HA. Then, by Proposition 3.30-(ii) applied to
K∗, we have that yTw > 0 for all w ∈ int(K∗).

The result is easily obtained by reasoning as in the proof of Theorem 4.10
by using Theorem 4.8 in place of Theorem 4.7.

The previous result may be also found, for example, in Krasnosel’skĭi, Lif-
shits and Sobolev [8] with a different proof.

The analogue of Corollary 4.11 clearly holds.

Corollary 4.13. In the assumptions of the previous theorem we also have

K ∩ ker(A) = {0}.

We conclude this survey by considering a particular class of matrices, which
turns out to be the only one we can meet in the strictly invariant case.

Definition 4.14. A matrix A is said to be asymptotically rank-one if the fol-
lowing conditions hold:

(i) ρ(A) > 0;

(ii) exactly one between ρ(A) and −ρ(A) is an eigenvalue of A and, moreover,
it is a simple eigenvalue;

(iii) |λ| < ρ(A) for any other eigenvalue λ of A.

The unique leading eigenvalue of A will be denoted by λA.

Remark 4.15: A matrix A is asymptotically rank-one if and only if AT is so.

The term “asymptotically rank-one” is inspired by the following known fact.

Proposition 4.16. If A is an asymptotically rank-one matrix, then there exists

Â∞ := lim
k→∞

Ak/λk
A

and such a limit is the rank-one matrix

Â∞ = (vTAhA)
−1vAh

T
A,

where vA and hA are the (unique) leading eigenvectors of A and AT , respec-
tively.
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Proof. We need to observe that the Jordan canonical form Ĵ of the normalized
matrix Â := A/λA may be assumed to be block diagonal. More precisely, the
first block is 1 × 1 and consists in the maximum simple eigenvalue λÂ = 1.
The second one is a (d − 1)× (d− 1)-block, upper bidiagonal, whose diagonal
entries are the secondary eigenvalues of Â, all with modulus < 1, and the upper
diagonal entries are equal to 1 or to 0. Therefore, when we take the kth power
of Ĵ , the first block remains unchanged, while the second clearly goes to zero.
Hence, we obtain the rank-one limit matrix Ĵ∞ with only one nonzero entry
equal to 1 in the left upper corner.

Finally, the form of the limit Â∞ is easily determined by taking into account
that it has the leading eigenvector vA related to the eigenvalue 1 and that,
analogously, its transpose (Â∞)T has the leading eigenvector hA.

The following characterization rephrases Theorem 4.4 in Vandergraft [17].

Theorem 4.17. A matrix A is asymptotically rank-one if and only if A or −A
admits a strictly invariant proper cone.

Acknowledgements

The research was supported by funds from the University of Trieste (Grant
FRA 2015) and from INdAM-GNCS.

The second author is a member of the INdAM Research group GNCS.

References

[1] G. Birkhoff, Linear transformations with invariant cones, Amer. Math.
Month. 74 (1967), 274–276.

[2] M. Brundu and M. Zennaro, Invariant multicones for families of matrices,
Ann. Mat. Pur. Appl. (2018), https://doi.org/10.1007/s10231–018–0790–4.

[3] M. Brundu and M. Zennaro, Multicones, duality and matrix invariance, J.
Convex Anal. 26 (2019).

[4] W. Fenchel, Convex Cones, Sets and Functions, Princeton University Notes,
Princeton, 1953.
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Chevalley-Weil formula
for hypersurfaces in Pn-bundles

over curves and Mordell–Weil ranks
in function field towers

Remke Kloosterman

Abstract. Let X be a complex hypersurface in a P
n
-bundle over a

curve C. Let C
0
! C be a Galois cover with group G. In this paper we

describe the C[G]-structure of H
p,q(X⇥C C

0) provided that X⇥C C
0
is

either smooth or n = 3 and X⇥CC
0
has at most ADE singularities. As

an application we obtain a geometric proof for an upper bound by Pál

for the Mordell–Weil rank of an elliptic surface obtained by a Galois

base change of another elliptic surface.

Keywords: Elliptic surfaces, Mordell-Weil rank under base change.
MS Classification 2010: 14J27.

1. Introduction

Let k be a field of characteristic zero, C/k a smooth, geometrically integral
curve, and let f : C 0

! C be a (ramified) Galois cover with Galois group G.
Let E/k(C) be a non-isotrivial elliptic curve, i.e., with j(E) 2 k(C) \ k and let
⇡ : X ! C be the associated relatively minimal elliptic surface with section.
Let R ⇢ C be the set of points over which f is ramified and let s be the number
of points in R. Let e be the Euler characteristic of C \R, i.e., e = 2�2g(C)�s.

Assume that the discriminant of ⇡ does not vanish at any point in R. Let
cE and dE be the degree of the conductor of E/k(C) and the degree of the
minimal discriminant of E, respectively. Pál showed in [12] using equivariant
Grothendieck–Ogg–Shafarevich theory that

rankE(k(C 0))  ✏(G, k)

✓
cE �

dE

6
� e

◆
(1)

where ✏(G, k) is the Ellenberg constant of (G, k), for a definition see [3]. This
constant depends only on the group G and the field k, but not on E. In this
paper we will give an alternative proof for this bound.
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As noted in [12] it su�ces to prove that E(k(C 0)) ⌦Z C is a quotient of
a free k[G]-module of rank cE � dE/6 � e, and by the Lefschetz principle it
su�ces to prove this slightly stronger statement only in the case k = C.

Let X
0 = gX ⇥C C 0 be the elliptic surface associated with E/C(C 0). Our

starting point is that the following ingredients would lead to a proof for the
fact that E(C(C 0)) is a quotient of C[G]�cE+dE/6�e.

1. E(C(C 0))⌦C is a quotient of H1,1(X 0
,C).

2. Let µ be the total Milnor number of X. Then the kernel of the natural
map H

1,1(X 0
,C) ! E(C(C 0))⌦C contains C2

�C[G]µ.

3. H
0(KC0)�2 is a quotient of C[G]�e.

4. µ = dE � cE .

5. The C[G]-structure of H1,1(X 0
,C) is C[G]�

5
6dE �H

0(KC0)�2.

The first point is part of the standard proofs for the Shioda–Tate formula for
the Mordell–Weil rank of an elliptic surface and the Lefschetz (1, 1)-theorem.
The second point follows similarly, but here we need to use our assumptions
on the ramification of f . The third point is straightforward (Lemma 3.3), the
fourth point is not di�cult (Corollary 4.15). Hence the crucial point is to
determine the C[G]-structure of H1,1(X 0

,C).
If C 0 is rational and all singular fibers of X 0 are irreducible then the C[G]-

structure ofH1,1(X 0) can be determined as follows: Since C 0 is rational we have
that X 0 is birational to a surface W

0
⇢ P(2k, 3k, 1, 1) of degree 6k, for some k.

The surface W
0 is not unique, but if we take k minimal then is it unique. The

surface W
0 is called the Weierstrass model of X 0. From our assumptions that

all fibers of X 0 are irreducible it follows that all singularities of W 0 along the
singular locus of P(2k, 3k, 1, 1). Moreover, in this case W

0 is quasismooth: its
a�ne quasi-cone is smooth away from the vertex.

From the fact that W
0 is quasismooth it follows that the co-kernel of the

injective map H
1,1(W 0)prim ! H

1,1(X 0) is two-dimensional, and G acts triv-
ially on this co-kernel. Steenbrink [15] presented a method to find an explicit
basis for H1,1(W 0)prim in terms of the Jacobian ideal of W 0, extending Gri�ths’
method for hypersurfaces in P

n. A straightforward calculation then yields the
C[G]-structure of H1,1(W 0).

If C 0 is rational, but X
0 has reducible fibers then there are two possible

ways to generalize this result. The first approach uses a deformation argu-
ment to show that X

0 is the limit for t = 0 of a family X
0
t of elliptic surfaces

admitting a G-action, such that all for t 6= 0 the elliptic fibration on X
0
t has

only irreducible fibers. The second approach uses a result of Steenbrink [16]
where he extends his method to describe H

p,q(W 0)prim to the case where, very
roughly, the sheaves of Du Bois di↵erentials and of Barlet di↵erentials on W

0
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coincide (this condition holds for Weierstrass models of elliptic surfaces, the
precise condition on W

0 is formulated in [16]).
This paper grew out of an attempt to generalize the latter approach to

the case where g(C 0) > 0. However, in this case some additional technical
complications occur. Let ⇡ : X ! C be an elliptic surface, and let S ⇢ X be
the image of the zero section. Let NS/X be the normal bundle of S. Then one
can find a Weierstrass model W of X in P(E) where E = O�L

�2
�L

�3, with
L = (⇡⇤NS/X)⇤. Similarly the Weierstrass model of the base changed elliptic
surface is a surface W

0 in P(f⇤
E) =: P. The Gri�ths–Steenbrink approach

yields two injective maps

H
0(KP(2W 0))

H0(KP(W 0)� dH0(⌦2(2W 0))
,! H

1,1(W 0) ,! H
1,1(X 0).

Using our assumptions on f we can easily describe the C[G]-action on the
left hand side. The cokernel of the second map is isomorphic to C[G]µ. The
dimension of the cokernel of the first map is 2+h

1(f⇤
L). The 2 corresponds to

two copies of the trivial representation, however, it is not that easy to describe
the C[G]-action on the vector space of dimension h

1(f⇤
L). From this it follows

that the Gri�ths–Steenbrink approach works as long as h1(f⇤
L) vanishes. This

happens only if the degree of the ramification divisor C 0
! C is small compared

to deg(f) and deg(L).
To avoid this restriction on h

1(L) we work with equivariant Euler char-
acteristic: Let K(C[G]) be the Grothendieck group of all finitely generated
C[G]-modules. For a coherent sheaf F on a scheme with a G-action one defines

�G(F) =
X

i

(�1)i[Hi(X,F)].

We use the ideas behind the Gri�ths–Steenbrink approach to prove that the
class of H1,1(W 0) in K(C[G]) equals

2[C]� �G(⌦
2
P(W

0)) + �G(KP(2W
0))� �G(H

0(T ))� �G(KP(W
0)).

Here T is a skyscraper sheaf supported on the singular locus of W 0, such that
its stalk is isomorphic to the Tjurina algebra of the singularity, and ⌦2,cl

P is the
sheaf of closed 2-forms. The remaining Euler characteristics can be calculated
by fairly standard techniques and thereby yielding a proof of the point (5)
mentioned above.

One can easily describe H
1,1(X 0) (as C[G]-module) in terms of the regular

representation C[G] and H
1,1(W 0). The C[G]-structure on the other Hp,q(X 0)

can be determined by standard techniques. In the sequel we show:

Proposition 1.1. Let ⇡ : X ! C be an elliptic surface and set L = (⇡⇤NS/X)⇤.
Let f : C 0

! C be a ramified Galois cover with group G and let X
0
! C

0
be
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the smooth minimal elliptic surface birational to X ⇥C C
0
. Suppose that over

each branch point of f the fiber of ⇡ is smooth or semistable. Then we have

the following identities in K(C[G]):

[H0,1(X 0
,C)] = [H1,0(X 0

,C)] = [H0(C 0
,KC0)];

[H2,0(X 0
,C)] = [H0(C 0

,KC0)]� [C] + deg(L)[C[G]];

[H1,1(X 0
,C)] = 2[H0(C 0

,KC0)] + 10 deg(L)[C[G]].

Since X
0 is smooth we can use Poincaré duality to describe the C[G]-

structure of H
p,q(X 0) for all other p, q. As argued above, this Proposition

is su�cient to prove the bound (1), see Corollary 4.15.
We would like to make one remark concerning this bound of Pál: From the

Shioda–Tate formula it follows that

rankE(k(C 0))  #G

✓
cE �

dE

6
dE

◆
+ 2g(C 0)� 2.

If each of the elements of G is defined over k, then the Ellenberg constant
equals the number of elements of G. Hence Pál’s bound reads

E(k(C 0))  #G

✓
cE �

dE

6

◆
+#G (2g(C)� 2 + s)

in this case. From Riemman-Hurwitz it follows that 2g(C 0) � 2 is at most
#G(2g(C) � 2 + s) (and equality holds if and only if s = 0). Hence the
bound (1) is weaker than the bound from the Shioda-Tate formula in this case.
However, if the absolute Galois group of k acts highly non-trivially on G then
the Ellenberg constant is small and therefore this bound is very useful.

Our approach to determine the C[G]-structure of Hp,q works for a larger
class of varieties. To formulate this result we need to introduce a skyscraper
sheaf T , which can be defined for a hypersurface X

0 with isolated singularities
in a smooth ambient space, its support is the singular locus of X 0 and the stalk
at a point x 2 X

0 is the Tjurina algebra of X 0 at x.

Theorem 1.2. Let C be a smooth projective curve and E a rank r vector bundle

over C, which is a direct sum of line bundles. Let X ⇢ P(E) be a hypersurface.

Let f : C 0
! C be a Galois cover and let X

0 = X ⇥C C
0
. Assume that either

X
0
is smooth or r = 3 and X

0
is a surface with at most ADE singularities.

Moreover, assume H
i(X 0) ⇠= H

i(P(f⇤
E)) for i  r � 2.

Then we have the following identity in K(C[G])

[Hp,q(X 0)] = a[C[G]] + b�G(OC) + c[C] + d[H0(T )]

for some integers a, b, c, d, which can be determined explicitly and depend on p,

q, the degrees of the direct summands of E and the fiber degree of X.
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There are many other results on the behaviour of the Mordell–Weil rank
under base change. Most of these results assume that the fibers over the critical
values are very singular, e.g., the results by Fastenberg [4, 5, 6] and by Heijne
[8]. Bounds in the case where the fibers over the critical values are smooth and
where the base change map is étale, are obtained by Silverman [14]. Ellenberg
proved a slightly weaker bound in a much more general setting, namely he
showed that

rankE(k(C 0))  ✏(G, k)(cE � 2e)

without imposing any condition on G, and assuming only that 6 is invertible
in k.

The C[G]-structure of the cohomology of a ramified cover X ! Y has been
studied in general, but we could not find any result that was su�ciently precise
to prove (1). The first result in this direction was by Chevalley–Weil [1] in the
curve case. There are several results by Nakajima in the higher-dimensional
case [10].

In Section 2 we discuss the construction of Weierstrass models associated
with elliptic surfaces. In Section 3 we prove Theorem 1.2. In Section 4 we
determine the constants a, b, c, d for the case of Weierstrass models of elliptic
surfaces and give a proof for (1).

2. Weierstrass models and Projective bundles

In this section let C be a smooth projective curve and L a line bundle on a
curve C, of positive degree. We recall the construction of Weierstrass models
of elliptic surfaces with fundamental line bundle L. Most of the results of this
section are also present in [9, Chapter II and III], but we included them for the
reader’s convenience.

Let E = O � L
�2

� L
�3, let P(E) be the associated projective bundle,

parametrizing one-dimensional quotients of E . Let ' : P ! C
0 be the projec-

tion map. Then '⇤(OP(1)) = E . Let

X = (0, 1, 0) 2 H
0('⇤

L
2(1)) = H

0(L2)�H
0(OC)�H

0(L�1),

Y = (0, 0, 1) 2 H
0('⇤

L
3(1)) = H

0(L3)�H
0(L)�H

0(OC),

Z = (1, 0, 0) 2 H
0(OP(1)) = H

0(O)�H
0(L�2)�H

0(L�3)

be the standard coordinates.

Definition 2.1. A (minimal) Weierstrass model W is an element

F := �Y
2
Z � a1XY Z � a3Y Z

2 +X
3 + a2X

2
Z + a4XZ

2 + a6Z
3

in |L
6
⌦OP(E)(3)|, such that V (F ) ⇢ P(E) has at most isolated ADE singular-

ities.
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Remark 2.2: The restriction of ' to a Weierstrass model W is a morphism
with only irreducible fibers, and the generic fiber is a genus one curve. For a
fixed Weierstrass modelW denote withX its minimal resolution of singularities
and with ⇡ : X ! C the induced fibration.

Lemma 2.3. The minimal resolution of singularities of a Weierstrass model is

an elliptic surface ⇡ : X ! C. The section �0 : C ! W , which maps a point p

to the point [0 : 1 : 0] in the fiber over p, extends to a section C ! X.

Proof. The first statement is straightforward. From the shape of the polyno-
mial F it follows thatWsing is contained in V (Y ). Recall that �0(C) = V (X,Z).
Hence �0(C) does not intersect Wsing and we can extend �0 : C ! X.

Remark 2.4: Conversely, every elliptic surface over C admits a minimal Weier-
strass model for a proper choice of line bundle L, namely L is the inverse of
the push forward of the normal bundle of the zero section. The line bundle
L is of non-negative degree. If the degree of L is zero then the fibration has
no singular fibers and after a finite étale base change the elliptic surface is a
product. See [9, Section III.3].

Remark 2.5: Since we work in characteristic zero we may, after applying an
automorphism of P(E)/C if necessary, assume that a1, a2 and a3 vanish. In
the sequel we work with a short Weierstrass equation

�Y
2
Z +X

3 +AXZ
2 +BZ

3

with A 2 H
0(L4) and B 2 H

0(L6).
This is the equation of a minimal Weierstrass model if and only if for each

point p 2 C we have either vp(A)  3 or vp(B)  5.

Lemma 2.6. The Weierstrass model W is smooth if and only if all singular

fibers of ⇡ are of type I1 and II.

Proof. The Weierstrass model W is smooth if and only if X ⇠= W . Since all
fibers of W ! C are irreducible, this is equivalent to the fact that all singular
fibers of ⇡ are irreducible. Hence these fibers are of type I1 or II.

Lemma 2.7. Let W be a Weierstrass model with associated line bundle L. Let

f : C 0
! C be a finite morphism of curves. Suppose that over the branch points

of f the fiber of ⇡ is either smooth or semi-stable.

Then W
0 := W ⇥C C

0
is a Weierstrass model (with associated line bundle

f
⇤(L)).

Proof. Consider the induced map P(f⇤(E)) ! P. Then W
0 is the zero set of

�Y
2
Z +X

3 + f
⇤(A)XZ

2 + f
⇤(B)Z3

.
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If W
0 is not a Weierstrass model then there is a point p 2 C

0 such that
vp(f⇤(A)) � 4 and vp(f⇤(B)) � 6.

Since W is Weierstrass model we have vq(A)  3 or vq(B)  5 for all
q 2 C. Let ep be the ramification index of p then vp(f⇤

A) = epvq(A) and
vp(f⇤

B) = epvp(B) for q = f(p). Hence if vp(f⇤
A) � 4 and vp(f⇤

B) � 6 then
ep > 1, i.e. f is ramified at p. However, in this case the fiber of f(p) is either
smooth or multiplicative. This implies that at least one of A(q) or B(q) is
nonzero. Hence at least one vp(f⇤

A) or vp(f⇤
B) vanishes and therefore W

0 is
a minimal Weierstrass model.

Since W has only ADE singularities we have that the cohomology of W and
X are closely related:

Proposition 2.8. Let W be a Weierstrass model and ⇡ : X ! C the elliptic

fibration on the minimal resolution of singularities of W . Let µ be the total

number of fiber-components of ⇡ which do not intersect the image of the zero-

section. Then µ equals the total Milnor number of the singularities of X.

Moreover, the natural mixed Hodge structure on H
i(W ) is pure for all i and

we have h
p,q(X) = h

p,q(W ) for (p, q) 6= (1, 1) and h
1,1(X) = h

1,1(W ) + µ.

Proof. All fibers of W ! C are irreducible by construction. Hence the number
of fiber components not intersecting the image of the zerosection equals the
number of irreducible components of the exceptional divisor X ! W .

The resolutions of ADE surfaces singularities are well-known, and the num-
ber of irreducible components of the exceptional divisor equals the Milnor num-
ber, proving the first claim.

The intersection graph of the exceptional divisor of a resolution of an ADE
singularity is also well-known and from this it follows that the exceptional
divisors are simply connected complex curves. Hence if we have s singular
points with total Milnor number µ and E is the total exceptional divisor then
H

0(E) = C
s and H

2(E) = C(�1)µ and all other cohomology groups vanish.
Let ⌃ = Wsing. From [13, Corollary-Definition 5.37] it follows that we have

a long exact sequence of MHS

· · · ! H
i(W ) ! H

i(X)�H
i(⌃) ! H

i(E) ! H
i+1(W ) ! . . . (2)

Note that hi(⌃) = 0 for i 6= 0. Moreover, the map H
0(⌃) ! H

0(E) is clearly
an isomorphism, combining this with the fact that H

i(E) = 0 for i 6= 0, 2 we
obtain that Hi(X) ⇠= H

i(W ) for i 6= 2, 3.
To prove the proposition it su�ces to show that the map H

2(E) ! H
3(W )

is zero. As H2(E) = C(�1)µ has a pure Hodge structure of weight 2 it su�ces
to show that all the nontrival Hodge weights of H3(W ) are at least 3. If W is
smooth then this is trivially true, so suppose that W is singular.

Consider the long exact sequence of the pair (W,Wsmooth). SinceW has only
ADE singularities and the dimension of W is even it follows that H

i
⌃(W ) =



108 REMKE KLOOSTERMAN

0 for i 6= 4, and H
4
⌃(W ) = C(�2)s. The long exact sequence of the pair

(W 0
,W

0
smooth) now yields isomorphisms Hi(W ) ⇠= H

i(Wsmooth) for i 6= 3, 4 and
an exact sequence

0 ! H
3(W ) ! H

3(Wsmooth) ! C(�2)#⌃
! H

4(W 0) ! 0 = H
4(Wsmooth).

Since Wsmooth is smooth we have that the Hodge weights of H3(Wsmooth) are
at least 3, and hence the same statement holds true for H3(W ).

Lemma 2.9. Consider the inclusion i : W ! P. Then i
⇤ : Hk(P) ! H

k(W )
is an isomorphism for k = 0, 1, 3, is injective for k = 2 and is surjective for

k = 4.

Proof. For k = 0 the statement is trivial. The case k = 1 can be shown as
follows: Consider �0 : C ! W and i��0 : C ! P. Combining these morphisms
with ⇡ : W ! C, respectively ' : P ! C, yield the identity on C. This implies
that ⇡⇤

��
⇤
0 and '

⇤
� (i��0)⇤ are isomorphisms and that �⇤

0 : Hk(C) ! H
k(W )

is injective.
From [9, Lemma IV.1.1] it follows that h

1(C) = h
1(X) and by the pre-

vious proposition we have h
1(W ) = h

1(X). In particular �
⇤
0 and (i�0)⇤ are

isomorphisms and therefore i
⇤ is an isomorphism.

For k = 2 note that H2(P) is generated by the first Chern classes of a fiber
of ' and OP(1). Their images in H

2(X) are clearly independent, hence the
composition H

2(P) ! H
2(W ) ! H

2(X) is injective. For k = 4 note that the
selfintersection of c1(OP(1)) 2 H

4(P) is mapped to a nonzero element in the
one-dimensional vector space H

4(X). Hence H
4(P) ! H

4(W ) ! H
4(X) is

surjective. Since H
4(W ) ⇠= H

4(X) this case follows also.
The case k = 3 is slightly more complicated. By successively blowing up

points in P we find a variety P̃ such that the strict transform ofW is isomorphic
with X. Now let H be an ample class of P̃ and HX its restriction to X. From
the hard Lefschtez theorem it follows that the cupproduct with the class of
H|X induces an isomorphism H

1(X) ! H
3(X). Since i⇤ : H1(P) ! H

1(W ) is
an isomorphism it follows that H1(P̃) ! H

1(X) is an isomorphism. Therefore
we find a morphsim H

1(P̃) ! H
3(X). We can factor this morphism also as

first taking the cupproduct with H, and then applying i. Hence i
⇤ : H3(P̃) !

H
3(X) is surjective. Since we blow up only smooth points inP we findH

3(P̃) =
H

3(P) and we showed before that H3(X) = H
3(W ). Hence H

3(P) ! H
3(X)

is surjective, and is an isomorphism because both vector spaces are of the same
dimension.

3. The C[G]-structure of Hp,q(X 0)

Let E be a rank n + 1 vector bundle on a smooth curve C. Let X ⇢ P(E)
be a hypersurface such that either X is smooth or X is a surface with ADE
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singularities.
Let f : C 0

! C be a Galois cover with group G, such that X 0 := X ⇥C C
0

is smooth or X 0 is a surface with ADE singularities.
We now want to describe the C[G]-module structure of Hp,q(X 0). For this

we prove first four easy lemmas concerning identities between representations.

Definition 3.1. For a scheme Z with a G-action and a sheaf F , denote with

�G(F) the equivariant Euler characteristic

X

i

(�1)i[Hi(Z,F)]

in K(C[G]), the Grothendieck group of all finitely generated C[G]-modules.

In the sequel we use the following lemma, which can be proven by “the
usual devissage argument” and Serre duality:

Lemma 3.2 ([11, Lemma 5.6]). Let f : C 0
! C be a ramified Galois cover with

group G. If M is a line bundle on C, then

�G(f
⇤
M) = deg(M)C[G] + �G(OC0)

and

�G(f
⇤
M⌦KC0) = deg(M)C[G]� �G(OC0).

Let R be the set over which f is ramified. If R is non-empty then let Z be
the zero-dimensional scheme on C

0 such that

0 ! KC0 ! f
⇤
KC(R) ! OZ ! 0 (3)

is exact. Let s be the number of points in R.

Lemma 3.3. Let f : C 0
! C be a Galois cover of curves, with group G. If f is

unramified then

[H0(KC0)] = [H0(f⇤
KC)] = [C] + (g(C)� 1)[C[G]].

If f is ramified then

2[H0(KC0)] + [H0(OZ)] = 2[C] + (2g(C)� 2 + s)[C[G]].

Proof. If f is ramified then the degree of f
⇤
KC(R) is strictly larger than

2g(C 0) � 2, hence its first cohomology group vanishes and we obtain from
Lemma 3.2 that

[H0(f⇤
KC(R))] = [C]� [H0(KC0)] + (2g(C)� 2 + s)[C[G]].
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From the exact sequence (3) we obtain that

[H0(KC0)]�C = [H0(KC0)]� [H1(KC0)] = [H0(f⇤
KC(R))]� [H0(OZ)].

Combining this yields

2[H0(KC0)] + [H0(OZ)] = 2[C] + (2g(C)� 2 + s)[C[G]].

If f is unramified then f
⇤
KC = K

0
C . Lemma 3.2 implies now

�G(KC0) = deg(KC)[C[G]] + �G(OC0).

From �G(OC0) = ��G(KC0) we obtain

2�G(KC0) = (2g(C)� 2)[C[G]].

The result now follows from �G(KC0) = [H0(KC0)]� [C].

Lemma 3.4. Let f : C 0
! C be a Galois cover of curves, with group G. Then

H
0(KC0)�2

is a quotient of C
�2

�C[G]�2g(C)�2+s
.

Proof. This follows directly from the previous lemma.

Remark 3.5: The Chevalley–Weil formula gives a precise description of the
C[G]-structure of H0(KC0), see [1].

We will now go back to our hypersurface X
0
⇢ P(f⇤(E)). Denote with

' : P(f⇤
E) ! C

0 and '0 : P(E) ! C the natural projection maps.
We will now prove a structure theorem for the C[G]-module H

p,q(X 0).

Proposition 3.6. Suppose that E is a direct sum of line bundles. Let X ⇢ P(E)
be a hypersurface, and X

0 = X ⇥C C
0
. Then for i > 0, k � 0 we have that

�G(⌦i
P(f⇤E)(kX

0)) is a direct sum of copies of C[G] and �G(OC0).

Proof. Let ' : P(f⇤(E)) ! C
0 be the natural projection map. Consider the

short exact sequence

0 ! '
⇤
KC0 ! ⌦1

P(f⇤E) ! ⌦1
' ! 0.

On ⌦t
P(f⇤E) there is a filtration such that Grp = ^

p
'
⇤(KC0) ⌦ ⌦t�p

' [7, Exer.

II.5.16]. From ^
p
'
⇤
KC0 = 0 for p > 1 it follows that at most two of the Grps

are nonzero and they fit in the exact sequence

0 ! '
⇤(KC0)⌦ ⌦t�1

' ! ⌦t
P(f⇤(E)) ! ⌦t

' ! 0. (4)

Similarly, consider the Euler sequence

0 ! ⌦1
' ! ('⇤

f
⇤
E)(�1) ! OP(f⇤E) ! 0.
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By using the filtration constructed in [7, Exer. II.5.16] again we obtain the
following exact sequence

0 ! ⌦t
' ! ^

t('⇤
f
⇤
E)(�1) ! ⌦t�1

' ! 0. (5)

Let L 2 Pic(C) and d > 0 be such that OP(f⇤(E))(kX
0) = ('⇤

f
⇤(L))(d). A

straightforward exercise using the exact sequence (4) tensored withO(kX 0), the
exact sequence (5) tensored with O(kX 0) respectively with O(kX 0)⌦'

⇤(KC0)
and induction on t yields that �G(⌦i

P(f⇤E)('
⇤
f
⇤
L)(d)) equals

tX

i=0

(�1)t�i
�G((⇤i ⌦ '

⇤
f
⇤
L)(d)) +

t�1X

i=0

(�1)t�i
�G((⇤i ⌦ '

⇤(f⇤
L⌦KC0))(d))

with

⇤t := ^
t('⇤

f
⇤
E)(�1).

Using that Ri
'⇤(O(k)) = 0 for i > 0, k � �1 (see [17]) and the projection

formula again we obtain that �G(F) = �G('⇤F) where F is one of

(^t('⇤
f
⇤
E)(d� 1))⌦ '

⇤(f⇤(L)), (^t('⇤
f
⇤
E)(d� 1))⌦ '

⇤(KC0 ⌦ f
⇤(L)). (6)

Since E is a sum of line bundles, we obtain that

(^t
f
⇤
E)

is a direct sum of line bundles pulled back from C. Similarly we obtain that

R
i
'⇤O(k) = Symk(f⇤

E)

is a direct sum of line bundles pulled back from C and by using the projection
formula we have that '⇤F is the direct sum of line bundles pulled back from C,
for F as in (6).

We can therefore calculate the relevant equivariant Euler characteristic by
Lemma 3.2, and we obtain that �G('⇤(F)) is a sum of copies �G(KC0) and
C[G] for F as in (6). The multiplicity of C[G] depends on the sum of degrees of
the direct summands and the multiplicity of �G(KC0) on the rank of F . Hence
the multiplicity of �G(KC0) and C[G] in �G(⌦i(kX 0)) depend only on i, k, the
fiberdegree of X 0 and the degrees of the direct summand of E .

Remark 3.7: Note that the proof of the theorem also yields a method to
determine the number of copies of C[G], respectively, �G(O) which occur.
In the next section we make this precise for the case E = O � L

�2
� L

�3,
X 2 |('⇤

f
⇤
L
6)(3)| and (i, k) = (2, 1), (3, 1), (3, 2).
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Proposition 3.8. Let n � 2. Let X ⇢ P be a n-dimensional smooth hyper-

surface. Assume that for i : X ⇢ P we have that i
⇤ : Hk(P,C) ! H

k(X,C)
is an isomorphism for k < n and that for k = n this map is injective. Let

U = P \ X. Then H
i(U) = 0 for i 6= 0, 1, 2, n + 1 Moreover, we have iso-

morphisms H
0(U) ⇠= C, H

1(U) ⇠= H
1(C), H2(X) ⇠= C(�1) and H

n(U)(1) ⇠=
cokerHn�1(P) ! H

n�1(X).

Proof. Consider the Gysin exact sequence for cohomology with compact sup-
port

· · · ! H
k
c (U) ! H

k
c (P) ! H

k
c (X) ! H

k+1
c (U) ! . . .

Our assumption on i
⇤ now yields Hk

c (U) = 0 for k  n.
Let M be an ample line bundle on P, and M

0 be its restriction to X. Then
by the hard Lefschetz theorem we get that the k-fold cupproduct with c1(M0)
yields an isomorphism H

k(X,C) ! H
n�k(X,C). For 0 < k  n we obtain an

isomorphism

H
k(P, C) ! H

k(X,C) ! H
n�k(X,C).

We can factor this isomorphism as first taking the k-fold cupproduct with
c1(M) and then applying i

⇤. In particular the map H
n�k(P) ! H

n�k(X)
is surjective. The Betti numbers of P are well-known, namely h

0(P) and
h
2n+2(P) equal 1,

h
2k(P) = 2 for k = 1, . . . , n and h

2k+1 = h
1(C) for k = 0, . . . , n.

These facts yield that H
i(P) ⇠= H

i(X) for i = 0, . . . , n � 1 and i = n +
1, . . . , 2n� 1. Hence H

i
c(U) = 0 for i 6= n+ 1, 2n, 2n+ 1, 2n+ 2. Moreover we

have two exact sequences

0 ! H
n(P) ! H

n(X) ! H
n+1
c (U) ! 0

and

0 ! H
2n
c (U) ! H

2n(P) ! H
2n(X) ! 0

and isomoprhisms Hi
c(U) ⇠= H

i
c(P) for i = 2n+ 1, 2n+ 2.

Applying Poincaré duality now gives the result.

Denote with ⌦p,cl
P or ⌦p,cl the sheaf of closed p-forms on P. Recall that for

a hypersurface X ⇢ P we have ⌦p,cl(X) = ⌦p,cl(logX).

Proposition 3.9. Let X ⇢ P be a n-dimensional smooth hypersurface. Sup-

pose n � 2. Let G ⇢ Aut(P, X) be a subgroup. Assume that for i : X ⇢ P we

have that i
⇤ : Hk(P,C) ! H

k(X,C) is an isomorphism for k < n and that for

k = n this map is injective.
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Then for p � 1 we have (�1)n�p([Hp,n�p(X)]� [Hp,n�p(P)]) equals

n�p+1X

k=1

(�1)k�G(⌦
p+k(kX)) +

n�pX

k=1

(�1)k�G(⌦
p+1+k(kX)).

and for p = 0 we find that

[H0(KC0)]� [C] + (�1)n[H0,n(X)]

equals
n+1X

k=1

(�1)k�G(⌦
k(kX)) +

nX

k=1

(�1)k�G(⌦
k+1(kX)).

Proof. Let U be the complement of X in P. From the previous proposition it
follows that

[Hp,n�p(X)]� [Hp,n�p(P)] = [Grp+1
F H

n+1(U)].

Hence we will focus on determining the C[G] structure of Grp+1
F H

n+1(U).
From Deligne’s construction of the Hodge filtration on the cohomology of U

we get

F
p
H

k(U,C) = Im(Hk(⌦�p
P(E)(logX)) ! H

k(⌦•
P(E)(logX))).

The map is injective by the degeneracy of the Fröhlicher spectral sequence
at E1. Recall that ⌦p,cl(X) is the kernel of d : ⌦p(X) ! ⌦p+1(2X). For
p � 1 we have that the filtered de Rham complex is a resolution of ⌦p,cl(X).
Combining these fact we obtain for p � 1 that

F
p
H

p+q(U,C) = H
q(X,⌦p,cl(X)).

For p > 1 we have GrpF H
p+q(U,C) = 0 except possibly for q = n + 1 � p.

In particular, Hq(⌦p,cl(X)) = 0 for q 6= n + 1 � p, p � 2. Hence for p � 2 we
obtain that �G(⌦p,cl(X)) equals

(�1)n+1�p[Hn+1�p(X,⌦p,c(X))] = (�1)n+1�p
F

p
H

n+1(U,C).

The exact sequence

0 ! ⌦p,cl(tX) ! ⌦p(tX) ! ⌦p+1,cl((t+ 1)(X)) ! 0

then yields

�G(⌦
p,cl(tX)) =

n+1�pX

k=0

(�1)k�G(⌦
p+k((t+ k)X)).
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From this we obtain that for p � 1 we have that

GrpF coker(Hn(P) ! H
n(X)) = Grp+1

F H
n+1(U)

equals (�1)n�p times

n�p+1X

k=1

(�1)k�G(⌦
p+k(kX)) +

n�pX

k=1

(�1)k�G(⌦
p+1+k(kX))).

For p = 0 we find

�G(⌦
1,cl(X)) = [F 1

H
1(U,C)]� [F 1

H
2(U,C)] + (�1)n[F 1

H
n+1(U,C)]

= [H0(⌦1,cl(X))]� [H1(⌦1,cl)] + (�1)n[Hn(⌦1,cl(X))].

From Proposition 3.8 it follows that

[F 1
H

1(U,C)] = [H0(KC0))] and [F 1
H

2(U,C)] = [C]

holds. As above we find that

[H0(KC0)]� [C] + (�1)n[Gr0F coker(Hn(P) ! H
n(X)]

equals
n+1X

k=1

(�1)k�G(⌦
k(kX)) +

nX

k=1

(�1)k�G(⌦
k+1(kX))).

Let P be a smooth compact Kähler manifold. Steenbrink [16] extended
Deligne’s approach to the class of hypersurfaces X ⇢ P , such that the sheaf of
Du Bois di↵erentials of X and the sheaf of Barlet di↵erentials of X coincide.
This happens only for few classes of singularities. The only known singular
varieties for which this property holds are surfaces. Streenbrink [16] gave three
classes of examples, one of which are surfaces with ADE singularities [16, Sec-
tion 3].

To explain Steenbrink’s results, let X ⇢ P be a hypersurface, with at most
isolated singularities. Let T be the skyscraper sheaf supported on the singular
locus, such that at each point p the stalk Tp is the Tjurina algebra of the
singularity (X, p).

The following proposition summarizes Steenbrink’s method in the case of a
three-dimensional ambient space P : Note that if X is a surface with at most
ADE singularities then the mixed Hodge structure onH

i(X) is pure of weight i.
Hence it makes sense to define H

p,q(X) := GrpF H
p+q(X).
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Proposition 3.10. Let P be a smooth compact three-dimensional Kähler man-

ifold, and let X ⇢ P be a surface with at most ADE singularities. For all

G ⇢ Aut(P,X) we have [H0,2(X)] = [H0(KP (X))] and that [H1,1(X)] equals

[H2,0(P )] + [H2,2(P )] + [H1,0(X)] + [H1,2(X)]� [H2,1(P )]� [H2,3(P )]

� �G(⌦
2
P (X)) + �G(KP (2X))� �G(KP (X))� �G(T )

in K(C[G]).

Proof. Since ADE singularities are rational we get that

H
0,2(X) = H

0(KP (X))

(see, e.g., [16, Introduction]).
The second equality follows from [16]:

Let ⌦2
X(logX) be the kernel of ⌦2(X)

d
! KP (2X)/KP (X). Since X has

ADE singularities we have that the cokernel of d is T [16, Section 2]. Define
!
1
X = ⌦2

P (logX)/⌦2
P to be the sheaf of Barlet 1-forms on X.

Consider now the filtered de Rham complex ⌦̃•
X on X, as introduced by Du

Bois [2].
Since X has ADE singularities it follows from [16, Section 4] that Gr1F ⌦̃•

X is
concentrated in degree one, and in this degree it is isomorphic to ⌦̃1

X . Moreover,
in the same section Steenbrink shows that for a surface with ADE singularities
we have ⌦̃1

X
⇠= !

1
X . This implies Hi(!1

X) = Gr1F H
1+i(X) and hence

�G(!
1
X) = [H1,0(X)]� [H1,1(X)] + [H1,2(X)].

The definition of !1
X yields the equality

�G(!
1
X) = �G(⌦

2
P (logX))� �G(⌦

2
P ).

Since P is a smooth threefold we find that

�G(⌦
2
P ) = [H2,0(P )]� [H2,1(P )] + [H2,2(P )]� [H2,3(P )].

Using the definition of ⌦2
P (logX) we find

�G(⌦
2
P (logX)) = �G(⌦

2
P (X))� �G(KP (2X)) + �G(KP (X)) + �G(T ).

Remark 3.11: If Hi(X) ⇠= H
i(P ) holds for i = 1 and i = 3 then

[H1,0(X)] + [H1,2(X)] = [H2,1(P )] + [H2,3(P )].

If, moreover, H2,0(P ) = 0 we have further simplifications in the formula from
Proposition 3.10.

In case P = P(O � f
⇤
L
�2

� f
⇤
L
�3) and X a Weierstrass model all these

cancellations happen, and, moreover, [H2,2(P )] = 2[C] in K(C[G]).
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Corollary 3.12. Let E be a direct sum of at least three line bundles on a

smooth projective curve C. Let X ⇢ P(E) be a hypersurface. Let f : C 0
! C be

a Galois cover. Let X
0 = X⇥C C

0
⇢ P(f⇤

E) be the base-changed hypersurface.

Assume that the natural map H
i(P(f⇤(E))) ! H

i(X 0) is an isomorphism for

0  i < dimX
0
and for i = dimX

0
this map is injective.

If X
0
is smooth then for each p, q 2 Z there exist integers a, b, c, depending

on p, q, the degrees of the direct summands of E and the fiber degree of X, such

that [Hp,q(X 0)] = a[C] + b�G(O) + c[C[G]].
If X

0
is surface with at most ADE singularities for each p, q 2 Z there exist

integers a, b, c, depending on p, q, the degrees of the direct summand of E and

the fiber degree of X, such that [Hp,q(X 0)] = aC+b�G(O)+c[C[G]]+�[H0(T )],
where � = 0 for (p, q) 6= (1, 1) and � = 1 for (p, q) = (1, 1).

Corollary 3.13. Let E be a direct sum of three line bundles. Let W ⇢ P(E)
be a surface. Let C

0
! C be a Galois base change such that W

0 := W ⇥C C
0

is a surface with at most ADE singularities and such that H
1(W 0) ⇠= H

1(P).
Let X

0
be the desingularization of W

0
. Then [H1,1(W 0)] equals

2[C]� �G(⌦
2(W 0)) + �G(KP(f⇤E)(2W

0))� �G(KP(f⇤E)(W
0))� �G(T )

and

[H1,1(X 0)] = 2[C]� �G(⌦
2(W 0)) + �G(KP(f⇤E)(2W

0))� �G(KP(f⇤E)(W
0)).

Proof. The formula for [H1,1(W 0)] follows directly from Proposition 3.10. The
quotient H1.1(X 0)/H1,1(W 0) is generated by the irreducible components of the
resolution X

0
! W

0 and one easily checks that the representation induced by
G-action on these irreducible components equlas T .

Remark 3.14: Note that [H1,1(X 0)] depends only on the linear equivalence
class of W 0, and not on the singularities of W 0. If |W | is base point free then
there is a di↵erent approach to obtain this statement. In this case W

0 is the
limit of a family of smooth surfaces, all of which are pulled back from P(E),
and W

0 has at most ADE singularities. In particular there is a simultaneous
resolution of singularities of this family. The central fiber of this resolution is
X

0, and this implies the C[G]-structure of Hp,q(X 0) is the same as the one on
the general member of this family.

4. The C[G]-structure of the cohomology of Weierstrass
models

We want to apply the results of the previous section to the special case of
Weierstrass models. In the first part of the section we only assume that E is
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a direct sum of three line bundles. Let C,C
0
, X,X

0
,P0,P,','0 be as in the

previous section. Assume that dimX = 2.
We want to determine the C[G]-structure of H1,1(X) and of H2,0(X). By

Corollary 3.13 it su�ces to determine the C[G]-structure of

�G(⌦
2
P(X)),�G(KP(X)) and �G(KP(2X))

and the C[G]-structure on H
0(T ).

We will determine the structure on H
0(T ) below. A strategy to calculate

the three equivariant Euler characteristics is given in the proof of Proposi-
tion 3.6. The main ingredients are

1. ⌦3
P
⇠= '

⇤ det(f⇤
E ⌦KC0)(�3) (adjunction).

2. ⌦2
'
⇠= '

⇤(det(f⇤
E))(�3).

3. 0 ! ⌦1
' ! '

⇤
f
⇤
E(�1) ! OP ! 0 (Euler sequence).

4. 0 ! ⌦1
' ⌦ '

⇤
KC0 ! ⌦2

P ! ⌦2
' ! 0.

The points (2)-(4) easily yield

Lemma 4.1. Let X ⇢ P(E) be a hypersurface in |('⇤
f
⇤
L)(d)|, fixed under G.

Then �G(⌦2(X)) equals

�G('
⇤
f
⇤(L⌦det E)(d�3))+�G('

⇤
f
⇤(L⌦E)(d�1))��G('

⇤(f⇤
L⌦KC0)(d)).

It turns out that if E is a direct sum of line bundles then we can express
all of the above equivariant Euler characteristics in terms of equivariant Euler
characteristics of sheaves of the form ('⇤

f
⇤
F)(k) and '

⇤(f⇤
F⌦KC0)(k), where

F is a direct sum of line bundles on C. The following lemmas are helpful in
calculating �G of such sheaves.

Lemma 4.2. Suppose E = OC0 � L � M, with deg(L), deg(M)  0. Then

'⇤OP(E)(t) is the pullback under f
⇤
of a direct sum of

�k+2
2

�
line bundles, such

that the sum of the degrees equals

1

6
t(t+ 1)(t+ 2)(deg(L) + deg(M)).

Proof. Since E = OC � L � M we can pick canonical sections X,Y, Z in
H

0('⇤
L
�1(1)), H0('⇤

M
�1(1)) and H

0(OP(1)) (cf. Section 2). Note that

'⇤O(t) = �0i+jt(f
⇤
L
i
⌦ f

⇤
M

j)Xi
Y

j
Z

t�i�j
.

Hence the sum of the degrees equals

X

0i+jt

(deg(L)i+ deg(M)j) =
1

6
t(t+ 1)(t+ 2)(deg(L) + deg(M)).
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Lemma 4.3. Suppose E = OC0 � f
⇤
L � f

⇤
M, with deg(L), deg(M)  0. Let

N be a line bundle on C. Let t � 0 be an integer. Set

d =

✓
t+ 2

3

◆
(deg(L) + deg(M)) +

✓
t+ 2

2

◆
deg(N ).

Then

�G(('
⇤
f
⇤
N )(t)) = dC[G] +

t+ 2

2
�G(OC0)

and

�G('
⇤(KC0 ⌦ f

⇤
N )(t)) = dC[G]�

t+ 2

2
�G(OC0).

Proof. Since R
i
'⇤O(t) = 0 for i > 0 we find that

H
k(X, ('⇤

f
⇤
N )(t)) = H

k(X,'⇤(('
⇤
f
⇤
N )(t))).

Combining this with the projection formula yields

�G(('
⇤
f
⇤
N )(t)) = �G((f

⇤
N )⌦ '⇤O(t)).

Since '⇤O(t) is a direct sum of line bundles pulled back from C, the same holds
for f

⇤
N ⌦ '⇤O(t). The sum of the degree of the line bundles on C equals d.

It follows now from Lemma 3.2 that

�G((f
⇤
N )⌦ '⇤O(t)) = dC[G] +

t+ 2

2
�G(OC0).

The Euler characteristic �G('⇤(KC0 ⌦f
⇤
N )(t)) can be calculated similarly, by

using Serre duality on C
0.

From here on we assume that E = O � f
⇤
L
�2

� f
⇤
L
�3 and that W 2

|'
⇤
0L

6(3)| and hence that X = W
0
2 |'

⇤
f
⇤
L
6(3)|.

We will now repeatedly apply Lemma 4.3 to determine all the relevant Euler
characteristics:

Lemma 4.4. In K(C[G]) we have

�G(KP(W
0)) = deg(L)[C[G]]� �G(OC0)

and

�G(KP(2W
0)) = 20 deg(L)[C[G]]� 10�G(OC0).

Proof. Note that

KP = '
⇤(det(E)⌦KC0(�3)) = '

⇤(f⇤
L
�5

⌦KC0)(�3).

Hence KP(W 0) = '
⇤
f
⇤(L ⌦ KC0). From Lemma 4.3 it now follows that

�G(KP(W 0)) = deg(L)[C[G]]� �G(OC0).
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Similarly KP(W 0) = '
⇤
f
⇤(L7

⌦KC0)(3). From Lemma 4.3 it follows now
that

�G(KP(2W
0)) = 20 deg(L)[C[G]]� 10�G(OC0).

Lemma 4.5. In K(C[G]) we have

�G(⌦
2
'(W

0)) = deg(L)[C[G]] + �G(OC0).

Proof. Note that ⌦2
'(W

0) = ('⇤
f
⇤
L
�5)(�3) ⌦ L

6(3) = '
⇤
f
⇤(L). Lemma 4.3

now yields

�G(⌦
2
'(W

0)) = deg(L)[C[G]] + �G(OC0).

Lemma 4.6. In K(C[G]) we have

�G('
⇤(KC0(W 0))) = 10 deg(L)[C[G]]� 10�G(OC0).

Proof. Using '
⇤(KC0)(W 0) = '

⇤(KC0 ⌦ f
⇤
L
6)(3) we obtain from Lemma 4.3

�G('
⇤(KC0(W 0))) = 10 deg(L)[C[G]]� 10�G(OC0).

Lemma 4.7. In K(C[G]) we have

�G('
⇤(E ⌦KC0)(W 0)(�1)) = 18 deg(L)[C[G]]� 18�G(OC0).

Proof. Note that '⇤(E ⌦KC0)(W 0)(�1) = '
⇤(E ⌦KC0 ⌦ f

⇤
L
6)(2). Hence

'
⇤(E ⌦KC0 ⌦ f

⇤
L
6)(2) = '

⇤((f⇤
L
6
� f

⇤
L
4
� f

⇤
L
3)⌦KC0)(2).

From Lemma 4.3 it follows that its Euler characteristic equals

18 deg(L)[C[G]]� 18�G(OC0).

Lemma 4.8. In K(C[G]) we have

�G(⌦
2(W 0)) = 9 deg(L)[C[G]]� 7�G(OC0).
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Proof. From

0 ! ⌦1
' ⌦ '

⇤
KC0(W 0) ! ⌦2(W 0) ! ⌦2

'(W
0) ! 0

and

0 ! ⌦1
' ⌦ '

⇤
KC0(W 0) ! E ⌦ '

⇤
KC(W

0)(�1) ! '
⇤
KC(W

0) ! 0.

It follows that �G(⌦2(W 0)) equals

�G(⌦
2
'(W

0)) + �G(E ⌦ '
⇤
KC(W

0)(�1))� �G('
⇤
KC(W

0))

= 9 deg(L)[C[G]]� 7�G(OC0).

Collecting everything we find:

Proposition 4.9. We have the following identities in K(C[G]):

[H2,0(W 0)] = [H2,0(X 0)] = deg(L)C[G] + [H0(KC0)]� [C],

[H1,1(W 0)] = 10 deg(L)[C[G]] + 2[H0(KC0)]� [H0(T )]

and

[H1,1(X 0)] = 10 deg(L)[C[G]] + 2[H0(KC0)]

Remark 4.10: A di↵erent proof for the formula for H2,0(X 0) can be found in
[12, Theorem 2.5].

The C[G] action on H
0(T ) is hard to describe in general. However, if we

make some assumption on the ramification locus then it simplifies a lot:

Lemma 4.11. Suppose the ramification locus of W
0
! W does not intersect

W
0
sing. Then

[H0(T )] = µ[C[G]]

where µ is the total Milnor number of W .

Proof. Let TW and TW 0 be the sheaves on W , resp. on W
0, such that at each

point p the stalk is isomorphic to the Tjurina algebra at p. The length of TW
is the total Tjurina number of W , which equals the total Milnor number of W .

Since TW 0 is supported outside the ramification locus, we find that TW 0 is
the pull back of TW and it consists of #G copies of TW . In particular the G

action on H
0(TW 0) consists of µ copies of the regular representation.

To obtain Pál’s upper bound for the Mordell–Weil rank we need the follow-
ing result, which directly implies the Shioda–Tate formula for the Mordell–Weil
rank of an elliptic surface.
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Proposition 4.12. We have a short exact sequence of C[G]-modules

0 ! C
2
�H

0(T ) ! NS(X 0) ! E(C(C 0)) ! 0.

Proof. Let T ⇢ NS(X 0) be the trivial sub-lattice, the lattice generated by the
class of a fiber, the image of the zero-section and the classes of irreducible
components of reducible fibers. Shioda and Tate both showed that E(C(C 0))
is isomorphic to NS(X 0)/T as abelian groups.

The group G acts on T , NS(X 0) and E(C0), and from the construction of
this map it follows directly that this isomorphism is G-equivariant. Moreover
the fiber components which do not intersect the zero-section are precisely the
exceptional divisors of X

0
! W

0, i.e., they span a subspace isomorphic to
H

0(T ). Since G maps a fiber to a fiber, and fixes the zero section, we find

0 ! C
2
�H

0(T ) ! NS(X 0) ! E(C(C 0)) ! 0

is exact.

Theorem 4.13. Let X ! C be an elliptic surface and let f : C 0
! C be a

Galois cover such that the fibers of ⇡ over the branch points of f are smooth.

Let E be the general fiber of ⇡. Let µ be the number of fiber-components not

intersecting the zero-section, which equals the total Milnor number of W .

Then E(C(C 0))⌦Z C is a quotient of a C[G]-module M such that

[M ] = (10 deg(L)� µ)[C[G]] + 2[H0(KC0)]� 2[C].

Proof. From Proposition 4.12 it follows E(C(C 0)) equals NS(X 0)/T (X 0). Now
NS(X 0)⌦ZC (as C[G]-module) is a quotient of H1,1(X 0). Hence E(k(C 0))⌦ZC

is a quotient of H1,1(X 0)/T (X 0).
Note that the Weierstrass model of W 0 is the pullback of the Weierstrass

model of W . In particular the minimal discriminant of X 0
! C

0 is the pullback
of the minimal discriminant of X ! C. Our assumption on the singular fibers
of X ! C imply that the singular fibers are outside the ramification locus of
X

0
! X. If q 2 W

0
sing then q is a point on a singular fiber, hence q is outside

the ramification locus of W 0
! W . Hence we may apply Lemma 4.11 and

obtain that [T (X 0)] = µ[C[G]] + 2[C].
From the previous section it follows that [H1,1(X 0)] = 10 degL[C[G]] +

2[H0(KC0)], which yields the theorem.

Remark 4.14: If we allow the fibers over the branch points of f to be semi-
stable then the C[G]-structure of T is harder to describe. E.g., suppose we
have a I1 fiber over a branch point, with ramification index 2 and G = Z/2Z.
Then X

0
! C

0 has a I2 fiber and this contributes a one dimensional vector
space to T , on which G acts via a non-trivial character.
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Corollary 4.15. Let X ! C be an elliptic surface over a field k of charac-

teristic zero. Let C
0
! C be a Galois cover such that the fibers of ⇡ over the

branch points of f are smooth. Let E be the general fiber of ⇡. Then

rankE(k(C 0))  ✏(G, k)

✓
cE +

dE

6
+ 2g � 2 + s

◆
.

Proof. As explained in [12, Section 1] we may assume that k = C. Moreover,
in the same section it is shown that it su�ces to prove that E(C(C 0))⌦Z C is

a quotient of C[G]cE+
dE
6 +2g�2+s.

From the Tate algorithm it follows that the number of fiber components in
a singular fiber equals vp(�)�1 if the reduction is multiplicative and vp(�)�2
if the reduction is additive. Denote with a the number of additive fibers and
with m the number of multiplicative fibers. Hence µ = dE � m � 2a. Now
cE = m + 2a and dE = 12deg(L). It follows from the previous theorem that
E(k(C 0))⌦Z C is a quotient of the C[G]-module M , with

[M ] =

✓
cE +

dE

6

◆
[C[G]] + 2[H0(K 0

C)]� 2[C].

If C 0
! C is unramified that H

0(K 0
C) = C[G]g(C). If C 0

! C is ramified
then H

0(OZ) is a quotient of C[G]s, where s is the number of critical values
and we find 2H0(K 0

C) is a quotient of C�2
�C[G]�2g�2+s

In both cases E(C(C 0))⌦Z C is a quotient of C[G]�cE+
dE
6 +2g�2+s.
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A note on finite group-actions on

surfaces containing a hyperelliptic

involution

Bruno P. Zimmermann

Abstract. By topological methods using the language of orbifolds,
we give a short and e�cient classification of the finite di↵eomorphism
groups of closed orientable surfaces of genus g � 2 which contain a
hyperelliptic involution; in particular, for each g � 2 we determine the
maximal possible order of such a group.

Keywords: hyperelliptic Riemann surface, hyperelliptic involution, finite di↵eomorphism
group.
MS Classification 2010: 57M60, 57S17, 30F10.

1. Introduction

Every finite group occurs as the isometry group of a closed hyperbolic 3-
manifold [7]; on the other hand, the class of isometry groups ofhyperbolic, hy-
perelliptic 3-manifolds (i.e., hyperbolic 3-manifolds which are 2-fold branched
coverings of S3, branched along a knot or link) is quite restricted but a com-
plete classification turns out to be di�cult (see [9]). More generally one can
ask: what are the finite groups which act on a closed 3-manifold and contain
a hyperelliptic involution, i.e. an involution with quotient space S3? Due to
classical results for hyperelliptic Riemann surfaces, the situation is much better
understood in dimension 2; motivated by the 3-dimensional case, in the present
note we discuss the situation for surfaces. All surfaces in the present paper will
be orientable, and all finite group-actions orientation-preserving.

Let Fg be a closed orientable surface of genus g � 2; we call a finite group
G of di↵eomorphisms of Fg hyperelliptic if G contains a hyperelliptic invo-
lution, i.e. an involution with quotient space S2. The quotient Fg/G is a
2-orbifold (a closed surface with a finite number of branch points), and such a
2-orbifold can be given the structure of a hyperbolic 2-orbifold by uniformizing
it by a Fuchsian group (see [12, Chapter 6]). Lifting the hyperbolic struc-
ture to Fg, this becomes a hyperbolic surface such that the group G acts by
isometries. In particular, G acts as a group of conformal automorphisms of
the underlying Riemann surface Fg; if G contains a hyperelliptic involution,
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Fg is a hyperelliptic Riemann surface. A hyperelliptic Riemann surface has a
unique hyperelliptic involution, with 2g+2 fixed points, which is central in its
automorphism group (see [4, Section III.7] for basic facts about hyperelliptic
Riemann surfaces, and [10, Chapter 13] for the language of orbifolds). In par-
ticular, a hyperelliptic involution h in a finite group of di↵eomorphisms G of
Fg is unique and central, and the factor group Ḡ = G/hhi acts on the quotient-
orbifold Fg/hhi ⇠= S

2(22g+2), which denotes the 2-sphere with 2g+2 hyperellip-
tic branch points of order 2, and G permutes the set B of the 2g+2 hyperelliptic
branch points. Note that any two hyperelliptic involutions of a surface Fg are
conjugate by a di↵eomorphism (since they have the same quotient S2(22g+2))
and, if distinct, generate an infinite dihedral group of di↵eomorphisms.

Conversely, if Ḡ is a finite group acting on the orbifold S
2(22g+2) (in partic-

ular, mapping the set B of hyperelliptic branch points to itself), then the set of
all lifts of elements of Ḡ to Fg defines a group G with G/hhi ⇠= Ḡ and Fg/G =
S
2(22g+2)/Ḡ. The finite groups Ḡ which admit an orientation-preserving action

on the 2-sphere S2 are cyclic Zn with quotient-orbifold S
2(n, n), dihedral D2n

of order 2n with quotient S2(2, 2, n), tetrahedral A4 of order 12 with quotient
S
2(2, 3, 3), octahedral S4 of order 24 with quotient S2(2, 3, 4), or dodecahedral

A5 of order 60 with quotient S2(2, 3, 5).

In the following theorem we classify large hyperelliptic group-actions; how-
ever, the methods apply easily also to arbitrary actions, see Remark 2.3.

Theorem 1.1. Let G be a finite group of di↵eomorphisms of a closed orientable
surface Fg of genus g � 2 containing a hyperelliptic involution; suppose that
|G| � 4g and that G is maximal, i.e. not contained in a strictly larger finite
group of di↵eomorphisms of Fg. Then G belongs to one of the following cases
(see 2.1 for the definitions of the groups A8(g+1) and B8g):

G = A8(g+1), Ḡ ⇠= D4(g+1), Fg/G = S
2(2, 4, 2g + 2);

G = B8g, Ḡ ⇠= D4g, Fg/G = S
2(2, 4, 4g);

G ⇠= Z4g+2, Ḡ ⇠= Z2g+1, Fg/G = S
2(2, 2g + 1, 4g + 2);

|G| = 120, Ḡ ⇠= A5, g = 5, 9, 14, 15, 20, 24, 29, 30;

|G| = 48, Ḡ ⇠= S4, g = 2, 3, 5, 6, 8, 9, 11, 12;

|G| = 24, Ḡ ⇠= A4, g = 4.

In each of the cases, up to conjugation by di↵eomorphisms of Fg there is
a unique group G for each genus g (see Sections 2.3 and 2.4 for the quotient
orbifolds in the last three cases).

Corollary 1.2. Let mh(g) denote the maximal order of a hyperelliptic group
of di↵eomorphisms of a closed orientable surface of genus g � 2; then mh(g) =
8(g + 1), with the exceptions mh(2) = mh(3) = 48 and mh(5) = mh(9) = 120.
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The maximal order m(g) of a finite group of di↵eomorphisms of closed
surface of genus g � 2 is not known in general; there is the classical Hurwitz
bound m(g)  84(g�1) [6] which is both optimal and non-optimal for infinitely
many values of g. Considering hyperelliptic groups as in Theorem 1.1 one has
m(g) � 8(g + 1), and Accola and Maclachlan proved that m(g) = 8(g + 1) for
infinitely many values of g, see Remark 2.2 in Section 2.

The group G ⇠= Z4g+2 in Theorem 1.1 realizes the unique action of a cyclic
group of maximal possible order 4g + 2 on a surface of genus g � 2, see Re-
mark 2.1.

2. Proof of Theorem 1.1

2.1. Dihedral groups

Let Ḡ = D2n be a dihedral group of order 2n acting on the orbifold S
2(22g+2).

The action of D2n on the 2-sphere has one orbit O2 consisting of the two fixed
points of the cyclic subgroup Zn of D2n, two orbits On and O

0
n each of n

elements whose union is the set of 2n fixed point of the n reflections in the
dihedral group D2n, and regular orbits O2n with 2n elements. We consider
various choices for the set B of 2g+2 hyperelliptic branch points in S

2(22g+2).

i) B = On, n = 2g + 2, S
2(22g+2)/Ḡ = S

2(2, 4, 2g + 2).

We define A8(g+1) as the group G of order 8(g + 1) of all lifts of elements
of Ḡ to the 2-fold branched covering Fg of S

2(22g+2). It is easy to find a
presentation of A8(g+1): considering the central extension 1 ! Z2 = hhi !

A8(g+1) ! D4(g+1) ! 1 and the presentation D4(g+1) = < x̄, ȳ | x̄2 = ȳ2 =

(x̄ȳ)2(g+1) = 1 >, one obtains the presentation A8(g+1) = < x, y, h | h2 =

1, [x, h] = [y, h] = 1, y2 = h, x2 = y4 = (xy)2(g+1) = 1 >.

ii) B = On [O2, n = 2g even, S
2(22g+2)/Ḡ = S

2(2, 4, 4g).

The lift G of Ḡ to Fg defines a group B8g of order 8g, with presentation
B8g = < x, y, h | h2 = 1, [x, h] = [y, h] = 1, y2 = (xy)2g = h, x2 = y4 =
(xy)4g = 1 >.

iii) B = On [O
0
n, n = g + 1, S

2(22g+2)/Ḡ = S
2(4, 4, g + 1).

This orbifold has an involution with quotient S
2(2, 4, 2(g + 1)) which lifts

to S
2(22g+2), hence G is a subgroup of index 2 in A8(g+1).

iv) B = O2n, n = g + 1, S
2(22g+2)/Ḡ = S

2(2, 2, 2, g + 1).
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This orbifold has an involution with quotient S
2(4, 2, 2(g + 1)) which lifts

to S
2(22g+2), and G is a subgroup of index 2 in A8(g+1).

v) B = On [O
0
n [O2, n = g, S

2(22g+2)/Ḡ = S
2(4, 4, 2g).

Again there is an involution, with quotient S
2(2, 4, 4g), hence G is a sub-

group of index 2 of B8g.

vi) B = O2n [O2, n = g, S
2(22g+2)/Ḡ = S

2(2, 2, 2, 2g).

Dividing out a further involution one obtains S
2(4, 2, 4g), and G is a sub-

group of index 2 in B8g.

Note that for any other choice of B one obtains groups G of order less
than 4g.

Remark 2.1: Incidentally, by results of Accola [1] and Maclachlan [8], for
infinitely many values of g the groups A8(g+1) in i) realize the maximal possible
order of a group acting on a surface of genus g � 2. Moreover, the group A8(g+1)

has an abelian subgroup Z2g+2 ⇥ Z2 of index two which realizes the maximal
possible order of an abelian group acting on a surface of genus g � 2 (see [12,
4.14.27]).

2.2. Cyclic groups

Next we consider the case of a cyclic group Ḡ = Zn. There are two orbits with
exactly one point, the fixed points of Zn, all other orbits have n points (regular
orbits).

If B consists of a regular orbit and exactly one of the two fixed points of Zn,
with n+1 = 2g+2, n = 2g+1 odd and S

2(22g+2)/Ḡ = S
2(2, 2g+1, 2(2g+1)),

then the 2-fold branched covering of S2(22g+2) is a surface of genus g on which
a cyclic group G ⇠= Z4g+2 acts.

If B consists of one regular orbit, then n = 2g+2, S2(22g+2)/Ḡ = S
2(2, 2g+

2, 2g + 2) which is a 2-fold branched covering of S2(2, 4, 2g + 2), hence G ⇠=
Z2g+2 ⇥ Z2 is a subgroup of index 2 in A8(g+1).

If B consists of a regular orbit and the two fixed points of Zn, then n +
2 = 2g + 2, n = 2g, S2(22g+2)/Ḡ = S

2(2, 4g, 4g) which is a 2-fold cover of
S
2(2, 4, 4g), and G ⇠= Z4g is a subgroup of index 2 in B8g.

Remark 2.2: By a result of Wiman [11], 4g+2 is the maximal possible order of
a cyclic group-action on a surface of genus g � 2, and the action of G ⇠= Z4g+2

above is the unique action of a cyclic group realizing this maximal order (see [5],
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[12, 4.14.27]). The group G ⇠= Z2g+2 ⇥ Z2 instead realizes the maximum order
of an abelian group-action on a surface of genus g � 2, see Remark 2.1.

2.3. Dodecahedral groups

Now let Ḡ = A5 be the dodecahedral group acting on S2. The orbits of the
action are O12 consisting of the 12 fixed points of the 6 subgroups Z5 of A5 (the
centers of the 12 faces of a regular dodecahedron), O20 consisting of the twenty
fixed points of the 10 subgroups Z3 (the 20 vertices of a regular dodecahedron),
O30 consisting of the 30 fixed points of the 15 involutions (the centers of the
30 edges of a regular dodecahedron), and regular orbits O60. The list of the
di↵erent choices of B, the genera g and the corresponding quotient-orbifolds
are as follows:

B = O12 : g = 5, S
2(212)/Ḡ ⇠= S

2(2, 3, 10);

B = O20 : g = 9, S
2(220)/Ḡ ⇠= S

2(2, 6, 5);

B = O30 : g = 14, S
2(230)/Ḡ ⇠= S

2(4, 3, 5);

B = O60 : g = 29, S
2(260)/Ḡ ⇠= S

2(2, 2, 3, 5);

B = O12 [O20 : g = 15, S
2(232)/Ḡ ⇠= S

2(2, 6, 10);

B = O12 [O30 : g = 20, S
2(242)/Ḡ ⇠= S

2(4, 3, 10);

B = O20 [O30 : g = 24, S
2(250)/Ḡ ⇠= S

2(4, 6, 5);

B = O12 [O20 [O30 : g = 30, S
2(262)/Ḡ ⇠= S

2(4, 6, 10).

These are exactly the genera in the Theorem for the case Ḡ ⇠= A5. For
g = 5, 9, 15 and 29, the group G is isomorphic to A5 ⇥ Z2, for g = 14, 20,
24 and 30 to the binary dodecahedral group A⇤

5 (these are the two central
extensions of A5).

Remark 2.3: For each of the finite groups Ḡ acting on S2 one can easily
produce a complete list of the possible quotient orbifolds Fg/G = S

2(22g+2)/Ḡ
(i.e., without the restriction |G| � 4g in the Theorem). For the case of Ḡ = A5,
the possible quotient-orbifolds are as follows (where m � 0 denotes the number
of regular orbits O60 in the set B of hyperelliptic branch points).

S
2(2m, 2, 3, 5), S

2(2m, 2, 3, 10), S
2(2m, 2, 6, 5), S

2(2m, 4, 3, 5),

S
2(2m, 2, 6, 10), S

2(2m, 4, 3, 10), S
2(2m, 4, 6, 5), S

2(2m, 4, 6, 10).

Each of these orbifolds defines a unique action of Ḡ ⇠= A5 on an orbifold
S
2(22g+2) and of G ⇠= A5⇥Z2 or A⇤

5 on a surface Fg, and this gives the complete
classification of the actions of the groups G of type Ḡ ⇠= A5, up to conjugation.
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2.4. Octahedral and tetrahedral groups

Finally, playing the same game for the groups S4 and A4, one produces similar
lists also for these cases. This gives the list of genera for the groups G of type
S4 in the Theorem; the groups G of type A4 are all subgroups of index 2 in
groups G of type S4 except for g = 4 (with B = O4 [O6 and quotient-orbifold
S
2(3, 4, 6)). The groups G are isomorphic to one of the two central extensions

A4 ⇥ Z2 and A⇤
4 of A4, or to one of four central extensions of S4.

Note added for the revised version. The referee provided the two addi-
tional references [2] and [3] in which similar results are obtained, in an algebraic
language and by di↵erent algebraic methods. The main point of the present
note is a short, topological approach to the classification: After the preliminary
fact from complex analysis that a hyperelliptic involution of a Riemann surface
is unique and central in its automorphism group, the methods in the present
note are purely topological, o↵ering a short and e�cient topological approach
to the classification.
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A bijection between phylogenetic trees
and plane oriented recursive trees

Helmut Prodinger

Abstract. Phylogenetic trees are binary non-plane trees with labelled
leaves, and plane oriented recursive trees are planar trees with an in-
creasing labelling. Both families are enumerated by double factorials.
A bijection is constructed, using the respective representations as 2-
partitions and trapezoidal words.

Keywords: Phylogenetic tree, plane oriented recursive tree, trapezoidal word, bijection.
MS Classification 2010: 05A19, 05A10.

1. Introduction

There are many occurrences of the double factorials

(2n� 1)!! = 1 · 3 · · · (2n� 1)

in the combinatorial literature. A nice survey is by Callan [2].
Two manifestations of them deal with trees, and it is our objective to es-

tablish a bijection between them.
The phylogenetic trees are binary non-plane trees with the leaves labelled

by the numbers 1, 2, . . . , n + 1. Their number is given by (2n � 1)!!. Stanley
describes (codes) them by set partitions of {1, 2, . . . , 2n} into n sets of 2 ele-
ments each. These are easily enumerated by the double factorials: Just note
that they are counted by (2n)!

2nn! , where we start with all permutations of 2n
elements, but divide by n!, since the order of the blocks does not count, and by
2n, since in each block the order of the 2 elements is immaterial. We call these
set partitions 2-partitions. Stanley’s coding will be reviewed in a later section.

Plane oriented recursive trees (PORTs) [3], also known as heap ordered
trees, are planar trees, where the nodes are labelled by the integers 1, . . . , n+1,
and the labels are increasing towards the leaves. They are also enumerated by
(2n � 1)!!. They are also coded by simple objects called trapezoidal words,
which are reviewed in the next section.

Our bijection will in fact be between the two codings, i.e., between 2-
partitions and trapezoidal words.
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2. Trapezoidal words and Plane oriented recursive trees

One of the easiest manifestations of double factorials is by words x1x2 . . . xn,
where 1  xi  2i � 1; they were called trapezoidal words by Riordan [4]; see
also [2].

Plane oriented recursive trees (PORTs) are rooted planar trees, where the
n nodes are labelled by the numbers 1, . . . , n in an increasing way from the
root to the leaves.

If one has already such a PORT with n nodes, there are 2n � 1 positions
where a new node labelled n+ 1 can be attached, whence the enumeration by
double factorials: The number of PORTs with n+1 nodes is given by (2n�1)!!,
and the trees are in obvious bijection with trapezoidal words of length n, simply
by recording the position where one node after the other was inserted. PORTs
were also called heap ordered trees, but we adopted the notation from [3].

1

1

3

2

4

3

4

5

2

6

5

7

8

9

Figure 1: A PORT with 5 nodes and the 9 positions where node labelled 6
could be inserted.

3. 2-partitions and Phylogenetic trees

Phylogenetic trees are non-plane binary trees, with the leaves labelled by the
numbers 1, . . . , n + 1 in an arbitrary way. Stanley [5] describes the procedure
in Figure 2 to label the remaining nodes as well (except for the root): The
numbers n + 2, . . . , 2n are used as labels in this order as follows: among the
pairs of children that are both labelled, but the parent isn’t, find the smallest
label of a child; it is the parent who gets the current label. The procedure can
be seen from Figure 2. At the end, the labels of each pair of 2 children form
a subset of 2 elements, leading to n such pairs and thus to a 2-partition. See
also [1] for more results and references about phylogenetic trees.

Although Stanley leaves it to the reader to figure out why this works, we
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1 4

6

2

5 7

3

12

8

1 4

6

11

10

2 9

5 7

3

Figure 2: Left: A non-plane binary tree with leaves labelled by 1, . . . , 7.
Right: The remaining nodes (except for the root) are now labelled
by 8, . . . , 12. The two children of each node form the 2-partition:
{1, 4}, {2, 9}, {5, 7}, {6, 8}, {3, 10}, {11, 12}.

sketch a possible answer by showing how a phylogenetic tree can be recon-
structed from a 2-partition:

We use the consecutive labels n+ 1, . . . , 2n to work as a parent. For that,
we look at the block, such that both entries are smaller than the current new
label, and among them at the one in which the smallest number occurs. After
that, the pair is discarded, and the process continues until all pairs have been
processed. The final root may be thought of having the label 1.

Thus, in the running example, the number 8 is the current new parent, and
{1, 4}, {5, 7} are such that both members are smaller than 8. The block {1, 4}
is chosen. Then we move to number 9. Candidates are {5, 7}, {6, 8}; the block
containing the number 5 is used, then discarded, and so on.

4. The bijection between 2-partitions and trapezoidal
words

Our strategy of proof is to grow a 2-partition of 2n � 2 elements to one of 2n
elements (hereby establishing once again the (2n�1)!! formula), and describing
how the corresponding trapezoidal word of length n� 1 grows to one of length
n. The correspondence is bijective at each step. Our argument is essentially
by induction. It should be noted that the way a 2-partition (and a trazoidal
word) grows towards a final partition/word is unique.

Two new elements 2n � 1, 2n can form a class of their own, and this can
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happen in (2n � 3)!! ways. Otherwise, 2n matches with an element 1  b 
2n�2 (in 2n�2 ways), and 2n�1 matches with the former partner a of b. So, the
set {a, b} is replaced by the sets {a, 2n�1}, {b, 2n}. Such an operation is often
called a rotation. Thus, we get altogether (1+ (2n� 2)) · (2n� 3)!! = (2n� 1)!!
2-partitions, as to be expected.

Then we augment the corresponding trapezoidal word x1 . . . xn�1, by xn,
defined a follows: if the second case happened and 2n matches with an element
1  b  2n � 2, then we set xn := b, otherwise, if 2n � 1, 2n form a class of
their own we set xn := 2n�1. It is easy to see that this operation is reversible.

As an example, let us see how the trapezoidal word 1, 2, 5, 5, 2, 4 lets the
2-partition grow. The first 1 translates into the starting partition {1, 2}.

{1, 2} 2�! {1, 3}{2, 4} 5�! {1, 3}{2, 4}{5, 6} 5�! {1, 3}{2, 4}{6, 7}{5, 8}
2�! {1, 3}{2, 10}{4, 9}{6, 7}{5, 8}

4�! {1, 3}{2, 10}{4, 12}{9, 11}{6, 7}{5, 8}.

And here is how the PORT develops:

1 1

2

1

2

3

1

2

3

4

1

2

3

5 4

1

2

6 3

5 4

1

2

6 7 3

5 4
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On Fröberg-Macaulay conjectures for

algebras

Mats Boij and Aldo Conca

Abstract. Macaulay’s theorem and Fröberg’s conjecture deal with
the Hilbert function of homogeneous ideals in polynomial rings over a
field K. In this short note we present some questions related to variants
of Macaulay’s theorem and Fröberg’s conjecture for K-subalgebras of
polynomial rings.

Keywords: Hilbert functions, Macaulay theorem.
MS Classification 2010: 13D40, 14M25.

1. Introduction

Macaulay’s theorem and Fröberg’s conjecture deal with the Hilbert function of
homogeneous ideals in polynomial rings S over a field K. In this short note we
present some questions related to variants of Macaulay’s theorem and Fröberg’s
conjecture forK-subalgebras of polynomial rings. In details, given a subspace V
of forms of degree d we consider the K-subalgebra K[V ] of S generated by V .
What can be said about Hilbert function of K[V ]? The analogy with the ideal
case suggests several questions. To state them we start by recalling Macaulay’s
theorem, Fröberg’s conjecture and Gotzmann’s persistence theorem for ideals.
Then we presents the variants forK-subalgebras along with some partial results
and examples.

2. Macaulay’s theorem and Fröberg’s conjecture for ideals

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring equipped
with its standard grading, i.e., with deg xi = 1 for i = 1, . . . , n. Then S =L1

j=0 Sj where Sj denotes the K-vector space of homogeneous polynomials
of degree j. Given positive integers d, u such that u  dimSd let G(u, Sd)
be the Grassmannian of all u-dimensional K-subspaces of Sd. For a given
subspace V 2 G(u, Sd), the homogeneous components of the ideal I = (V ) of
S generated by V are the vector spaces SjV , i.e., the vector spaces generated
by the elements fg with f 2 Sj and g 2 V .
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Question 2.1. What can be said about the dimension of SjV in terms of u =
dimV ?

2.1. Lower bound

Macaulay’s theorem on Hilbert functions, see [10], provides a lower bound for
dimSjV given dimV . It asserts that there exists a subspace L 2 G(u, Sd) such
that

dimSjL  dimSjV

for every j and every V 2 G(u, Sd). Furthermore dimSjL can be expressed
combinatorially in terms of d and u by means of the so-called Macaulay expan-
sion, see [2, 13] for details. The vector space L can be taken to be generated
by the largest u monomials of degree d with respect to the lexicographic order.
Such an L is called the lex-segment (vector space) associated to the pair d and
u and it is denoted by Lex(u, Sd).

2.2. Persistence

A vector space L 2 G(u, Sd) is called Gotzmann if it satisfies

dimS1L = dimS1 Lex(u, Sd),

i.e., if

dimS1L  dimS1V,

for all V 2 G(u, Sd). Gotzmann’s persistence theorem [8] asserts that if L 2
G(u, Sd) is Gotzmann then S1L is Gotzmann as well. In particular if L is
Gotzmann one has

dimSjL  dimSjV,

for all j and all V 2 G(u, Sd).

2.3. Upper bound

Clearly, the upper bound for dimSjV is given by the dimSjW for a “general”
W in G(u, Sd). More precisely, there exists a non-empty Zariski open subset U
of G(u, Sd) such that for every V 2 G(u, Sd), for every j 2 N and every W 2 U
one has

dimSjV  dimSjW.

Fröberg’s conjecture predicts the values of the upper bound dimSjW . For
a formal power series f(z) =

P1
i=0 fiz

i 2 Z[[z]] one denotes [f(z)]+ the series
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P1
i=0 giz

i, where gi = fi if fj � 0 for all j  i and gi = 0 otherwise. Given
n, u and d one considers the formal power series:

X
ciz

i =


(1� zd)u

(1� z)n

�

+

and then Fröberg’s conjecture asserts that dimSjW = dimSj+d � cd+j for all
j. It is known to be true in these cases:

(1) n  3 and any u, d, j, [1, 7],

(2) u  n+ 1 and any d, j, [12],

(3) j = 1 and any n, u, d, [9]

and it remains open in general. See [11] for some recent contributions.

3. Macaulay’s theorem and Fröberg’s conjecture for

subalgebras

For any subspace V 2 G(u, Sd) we can consider the K-subalgebra K[V ] ✓ S
generated by V . Indeed, K[V ] is the coordinate ring of the closure of the image
of the rational map Pn�1 99K Pu�1 associated to V .

The homogeneous component of degree j of K[V ] is the vector space V j ,
i.e., the K-subspace of Sjd generated by the elements of the form f1 · · · fj with
f1, . . . , fj 2 V .

Question 3.1. What can be said about the dimension of V j? In other words,
what can be said about the Hilbert function of the K-algebra K[V ]?

Definition 3.2. For positive integers, n, d, u and j, define

L(n, d, u, j) = min{dimV j : V 2 G(u, Sd)}

and
M(n, d, u, j) = max{dimV j : V 2 G(u, Sd)}.

3.1. Lower bound

Recall that a monomial vector space W is said to be strongly stable if mxi/xj 2
W for every monomial m 2 W and i < j such that xj |m. Intersections,
sums and products of strongly stable vector spaces are strongly stable. Given
monomialsm1, . . . ,mc 2 Sd the smallest strongly stable vector space containing
them is denoted by St(m1, . . . ,mc) and it is called the strongly stable vector
space generated by m1, . . . ,mc.
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Proposition 3.3. Given n, d, u and j there exists a strongly stable vector space
W 2 G(u, Sd) such that

L(n, d, u, j) = dimW j

independently of the field K.

Proof. Given a term order < on S for every V 2 G(u, Sd) one has in(V )j ✓
in(V j) for every j. Hence one has dimV j

0  dimV j where V0 = in(V ). There-
fore the lower bound L(n, d, u, j) is achieved by a monomial vector space. Com-
paring the vector space dimension of monomial algebras is a combinatorial
problem and hence we may assume the base field has characteristic 0. Apply-
ing a general change of coordinates, we may put V in “generic coordinates”
and hence in(V ) is the generic initial vector space of V with respect to some
term order. Being such it is Borel fixed. Since the base field has characteristic
0, we have that in(V ) is strongly stable. Therefore the lower bound L(n, d, u, j)
is achieved by a strongly stable vector space.

Example 3.4: For n = 3, d = 4, u = 7 there are 3 strongly stable vector spaces:

1) St{xy3, x2z2} = hxy3, x2z2, x2yz, x2y2, x3z, x3y, x4i
– the Lex Segment

2) St{xy2z} = hxy2z, xy3, x2yz, x2y2, x3z, x3y, x4i

3) St{y4, x2yz} = hy4, xy3, x2yz, x2y2, x3z, x3y, x4i
– the RevLex Segment

In this case 2) and 3) turns out to give rational normal scrolls of type (3, 2)
and (4, 1) respectively and they give the minimal possible Hilbert function in
all values.

Example 3.5: For n = 3, d = 5 and u = 12, there are five strongly stable
subspaces of Sd:

W1 = St{x2z2, xy3z} = hx5, x4y, x4z, x3y2, x3yz, x3z2, x2y3, x2y2z,

x2yz2, x2z3, xy4, xy3zi,

W2 = St{xy2z2} = hx5, x4y, x4z, x3y2, x3yz, x3z2, x2y3, x2y2z,

x2yz2, xy4, xy3z, xy2z2i,

W3 = St{x2z3, y5} = hx5, x4y, x4z, x3y2, x3yz, x3z2, x2y3, x2y2z,

x2yz2, x2z3, xy4, y5i,
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W4 = St{x2z2y, xy3z, y5} = hx5, x4y, x4z, x3y2, x3yz, x3z2, x2y3, x2y2z,

x2yz2, xy4, xy3z, y5i,

W5 = St{x3z2, y4z} = hx5, x4y, x4z, x3y2, x3yz, x3z2, x2y3, x2y2z,

xy4, xy3z, y5, y4zi.

In this case, neither the Lex segment, W1, nor the RevLex segment, W5, achieve
the minimum Hilbert function. The Hilbert series are given by

HSK[W1](z) = HSK[W5](z) =
1 + 9z + 3z2

(1� z)3
,

HSK[W2](z) = HSK[W4](z) =
1 + 9z + 2z2

(1� z)3
,

HSK[W3](z) =
1 + 9z + 5z2

(1� z)3
.

and the minimum turns out to be L(3, 5, 12, j) = dimW j
2 = dimW j

4 = 6j2 +
5j + 1, for j � 1.

Questions 3.6. (1) Does there exist a (strongly stable) subspace W2G(u, Sd)
such that L(n, d, u, j) = dimW j for every j?

(2) Given n, d, u, j can one characterize combinatorially the strongly stable
subspace(s) W with the property L(n, d, u, j) = dimW j?

(3) Persistence: Assume W 2 G(u, Sd) satisfies L(n, d, u, 2) = dimW 2. Does
it satisfy also L(n, d, u, j) = dimW j for all j?

Remark 3.7: For n = 2 there exists only one strongly stable vector space in
G(u, Sd), i.e. hxd, xd�1y, . . . , xd�u+1yu�1i (which is both the Lex and RevLev
segment) and the questions in 3.6 have all straightforward answers.

Remark 3.8: It is proved in [5] that Lex-segments, RevLex-segments and prin-
cipal strongly stable vector spaces define normal and Koszul toric rings (in
particular Cohen-Macaulay). Furthermore in [6] it is proved that a strongly
stable vector space with two strongly stable generators define a Koszul toric
ring. On the other hand, there are examples of strongly stable vector spaces
with a non-Cohen-Macaulay and non-quadratic toric ring, see [3, Example 1.3].

3.2. Upper bound

As in the ideal case, the upper bound is achieved by a general subspace W ,
i.e., for W in a non-empty Zariski open subset of G(u, Sd).

Question 3.9. What can be said about the value M(n, d, u, j)?
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Obviously,

M(n, d, u, j)  min

⇢
dimSjd,

✓
u� 1 + j

u� 1

◆�
(1)

and the naive expectation is that equality holds in (1), i.e., if f1, . . . , fu are
general forms of degree d, then the monomials of degree j in the fi’s are either
linearly independent or they span Sjd. It turns out that in nature things are
more complex than expected at first. First of all, if u > n then equality in
(1) would imply that for a generic W one would have W j = Sjd for large j.
This fact can be stated in terms of projections of the d-th Veronese variety:
the projection associated to W is an isomorphism. Recall that a generic linear
projection of a smooth projective variety of dimension m from some projective
space where its embedded, into a projective space of dimension c is an isomor-
phism if c � 2m+ 1. Hence we have that if u � 2n then equality in (1) holds
at least for large j. On the other hand, for n + 1  u < 2n equality in (1)
should not be expected unless one knows that the corresponding projection of
the Veronese variety behaves in an unexpected way.

Summing up, the most natural question turns out to be:

Question 3.10. Assume that u � 2n. Is it true that

M(n, d, u, j) = min

⇢
dimSjd,

✓
u� 1 + j

u� 1

◆�

holds for all j?

The answer turns out to be negative as the following example shows:

Proposition 3.11. For any space W generated by eight quadrics in four vari-
ables the dimension of W 2 is at most 34 independently of the base field K.
That is:

M(4, 2, 8, 2)  34 < min

⇢
dimS4,

✓
7 + 2

7

◆�
= 35.

Remark 3.12: This assertion was proven in [4, Theorem 2.4] using a computer
algebra calculation. Here we present a more conceptual argument.

Proof. Firstly we may assume that K has characteristic 0 and is algebraically
closed. Secondly we may assume that W is generic. The 8-dimension space
of quadrics W is apolar to a 2-dimension space of quadrics, call it V . A pair
of generic quadrics can be put simultaneously in diagonal form, i.e., that V
is generated by x2

1 + x2
2 + x2

3 + x2
4 and a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4. See for

example [14]. Indeed, it is su�cient that V contains a quadric of rank 4 since
that can be put into the form x2

1+x2
2+x2

3+x2
4 and the other form can then be



ON FRÖBERG-MACAULAY CONJECTURES FOR ALGEBRAS 145

diagonalized preserving the first. As a consequence, after a change of coordi-
nates W contains xixj with 1  i < j  4. Since (x1x4)(x2x3) = (x1x2)(x3x4)
and (x1x3)(x2x4) = (x1x2)(x3x4) we have at least two independent relations
among the 36 generators of W 2. Therefore dimW 2  34.

More precisely one has:

Proposition 3.13. One has M(4, 2, 8, 2)=34 independently of the base field K.

Proof. We have already argued that M(4, 2, 8, 2)  34.
Therefore it is enough to describe an 8-dimension space of quadrics W in 4

variables such that dimW 2 = 34. We set

W0 = hxixj : 1  i < j  4i

and

F = a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 and G = b1x

2
1 + b2x

2
2 + b3x

2
3 + b4x

2
4 .

Then we set W1 = hF,Gi and then

W = W0 +W1.

We consider two conditions on the coe�cients a1, a2, . . . , b4:

Conditions 3.14. (1) All the 2-minors of

✓
a1 a2 a3 a4
b1 b2 b3 b4

◆

are non-zero.
(2) The matrix 0

@
a21 a22 a23 a24
b21 b22 b23 b24
a1b1 a2b2 a3b3 a4b4

1

A

has rank 3.

We observe that W 2
0 is generated by the 19 monomials of degree 4 and

largest exponent  2. Then we note that if W1 contains a quadric q sup-
ported on x2

i , x
2
j and x2

h with i, j, h distinct and k 62 {i, j, h} then xkxiq = xkx3
i

mod (W 2
0 ) and similarly for j and h. This implies that if Condition (1) holds

then W 2
0 +W0W1 is generated by the 31 monomials di↵erent from x4

1, . . . , x
4
4.

Assuming that Condition (1) holds, we have that the matrix representing
F 2, G2, FG in S4/W 2

0 +W0W1 is exactly the one appearing in Condition (2).
Then F 2, G2, FG are linearly independent mod W 2

0 +W0W1 if and only if Con-
dition (2) holds. Summing up, if Conditions (1) and (2) hold then dimW 2 = 34.
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Finally we observe that for F = x2
1+x2

3+x2
4 andG = x2

2+↵x2
3+x2

4 the conditions
(1) and (2) are satisfied provided ↵ 6= 0 and ↵ 6= 1. Hence this (conceptual)
argument works for any field but Z/2Z. Over Z/2Z one can consider the space
W generated by x2

1, x
2
2, x

2
3, x1x3, x2x4, x3x4, x2x3 + x1x4, x1x2 + x2

4 and check
with the help of a computer algebra system that dimW 2 = 34.

As far as we know the case discussed in Proposition 3.11 is the only known
case where u � 2n and the actual value of M(n, d, u, j) is smaller than

min

⇢
dimSjd,

✓
u� 1 + j

u� 1

◆�
.
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Tannakian categories, fundamental

groups and Higgs bundles

Ugo Bruzzo

Abstract. After recalling the basic notions concerning profinite and

proalgebraic group completions and Tannakian categories, we review

how the latter can be used to define generalizations of the notion of

fundamental group of a space, such as the Nori and Langer fundamental

groups, and the algebraic fundamental group introduced by Simpson.

Then we discuss how one can define a Tannakian category whose objects

are Higgs bundles on a complex projective variety that are “numerically

flat” in a suitable sense, and show how the Higgs fundamental group is

related to a conjecture about semistable Higgs bundles.

Keywords: Fundamental groups, Tannakian categories, Higgs bundles, curve semista-

bility.

MS Classification 2010: 14F05, 14F35, 14H60, 14J60, 18D35.

1. Introduction

Tannakian categories are abelian tensor categories that satisfy some additional
properties and are equipped with a functor to the category of vector spaces.
They all turn out to be equivalent to categories of representations of proalge-
braic a�ne group schemes, so that there is natural duality between Tannakian
categories and such group schemes. This “Tannaka duality” has been used to
devise generalizations of the notion of fundamental group, with the purpose
of better capturing the geometry of such geometric structures as schemes and
algebraic varieties. A classical example is the Nori fundamental group [21, 22],
and more recently, the S-fundamental group introduced by Langer [16, 17].
The latter is the Tannaka dual of the category of numerically flat vector bun-
dles, i.e., vector bundles that are numerically e↵ective together with their duals
(this group was introduced in the case of curves also in [5]). C. Simpson con-
sidered the category of semi-harmonic bundles on a smooth projective variety
over C, i.e., semistable Higgs vector bundles with vanishing rational Chern
classes [24, 25]. The resulting fundamental group scheme is a proalgebraic
completion of the topological fundamental group. Since flat (Higgs) bundles
are essentially finite, numerically flat, and semi-harmonic, and the topological
fundamental group represents the category of flat bundles, there is a natural
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morphism from the usual fundamental group to each of these groups.
Notions of numerical e↵ectiveness and numerical flatness for Higgs bundles

were introduced in [6, 7] , motivated by the remark that the universal quotient
bundles over the Grassmann bundles Grk(E) of a numerically e↵ective vector
bundle are numerically e↵ective. Given a Higgs vector bundle E = (E,�),
we consider closed subschemes Grk(E) ⇢ Grk(E) that parameterize locally
free Higgs quotients on E. Then E is said to be H-numerically e↵ective if the
universal Higgs quotients on Grk(E) are H-numerically e↵ective, according to
a definition which is recursive on the rank. Finally, a Higgs bundle is said
to be H-numerically flat if E and its dual Higgs bundle E⇤ are H-numerically
e↵ective. H-numerically flat Higgs bundles make up again a neutral Tannakian
category; the corresponding group scheme is denoted ⇡H

1 (X, x) [4].
Numerically flat vector bundles equipped with the zero Higgs field are

H-numerically flat, hence there is a faitfhfully flat morphism ⇡
H

1 (X, x) !
⇡

S

1 (X, x). The relation of ⇡H

1 (X, x) with Simpson’s proalgebraic fundamen-
tal group ⇡

alg
1 (X, x) is more subtle: semi-harmonic bundles are H-numerically

flat, so that there is faitfhfully flat morphism ⇡
H

1 (X, x)! ⇡
alg
1 (X, x). The fact

that the groups may be isomorphic is related with a conjecture about the so-
called curve semistable Higgs bundles — i.e., Higgs bundles that are semistable
after pullback to any smooth projective curve [7, 11, 18] (Conjecture 4.7 in
the text). This conjecture states that if a Higgs bundle (E,�) on a projective
variety is semistable after pullback to any projective curve, then its rational
characteristic class

�(E) = c2(E)� r � 1
2r

c1(E)2

vanishes (here r = rk E).

2. Completions

Generalized fundamental groups are defined in terms of, or are related to,
completions of discrete groups. In this section we briefly review the definitions
of profinite and proalgebraic completion of a discrete group.

Definition 2.1. A profinite group is a topological group which is the inverse

limit of an inverse system of discrete finite groups. The profinite completion Ĝ

of a group G is the inverse limit of the system formed by the quotients groups

G/N of G, where N are normal subgroups of G of finite index, ordered by

inclusion.

For instance, the profinite completion of Z is

Ẑ =
Y

p

Z(p) ,
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where p runs over the prime numbers, and Z(p) is the ring of p-adic integers [19].
An interesting geometric example of a profinite completion is Grothendieck’s

fundamental group [14]. The idea for its introduction may be regarded as a
generalization of the usual fundamental group, recalling that for X a topological
space, ⇡1(X) is the group of deck transformations of the universal covering of
X. To get a suitable replacement for schemes, one substitutes covering spaces
with étale covers. So, if X a connected and locally noetherian scheme over a
field k, let x be a geometric point in X, i.e., a morphism Spec k̄! X, where k̄
is a separable closure of k. Let I be the set of pairs (p, y), where p : Y ! X is a
finite étale cover, and y 2 Y is a geometric point such that p(y) = x, partially
ordered by the relation (p, y) � (p0, y0) if there is a commutative diagram

Y
f //

p

  A
AA

AA
AA

A Y
0

p
0

✏✏
X

with with y
0 = f(y). Then one sets

⇡
ét
1 (X, x) = lim �

i2I

AutX(pi, yi).

If X is a scheme of finite type over C, the étale fundamental group ⇡
ét
1 (X, x) is

a profinite completion of the topological fundamental group ⇡1(X, x) [14].
In spite of the naturalness of its definition, the étale fundamental group, for

a field of positive characteristic, fails to enjoy some quite reasonable properties;
for instance, it is not a birational invariant, and is not necessarily zero for ratio-
nal varieties [21, 22]. Nori’s fundamental group solves some of these problems.
It is defined in terms of Tannaka duality (see next Section) and involves the
notion of proalgebraic completion of a discrete group [3].

A proalgebraic group over k is the inverse limite of a system of algebraic
groups over k.

Definition 2.2. Let � be a discrete group. A proalgebraic completion of � over

k is a proalgebraic group A(�) over k with a homomorphism ⇢ : �! A(�) such

that every morphism �! H, where H is a proalgebraic group over k, uniquely

filters through A(�) via ⇢

�

✏✏

⇢

}}zz
zz

zz
zz

A(�) //
H

A proalgebraic completion for � is unique up to unique isomorphism. The
image of ⇢ is Zariski dense in A(�). A proalgebraic completion can be built via
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Tannaka duality, as the group of tensor product preserving automorphisms of
the forgetful functor from the category of finite dimensional �-modules to the
category of finite dimensional k-vector spaces.

3. Tannakian categories

In this section we recall the main notions and establish the basic notation about
Tannakian categories. For a detailed introduction the reader may refer to [12].

A category C is additive if

• the Hom classes are abelian groups and the composition of morphisms is
bilinear;

• C has finite direct sums and direct products;

• it has a zero object.

An additive category is abelian if

• every morphism has both a kernel and a cokernel (the notion of kernel
and cokernel are defined in terms of suitable universal properties);

• every monomorphism is a kernel of some morphism, and every epimor-
phism is a cokernel of some morphism.

An additive category is k-linear over a field k if the Hom groups are k-vector
spaces, and the composition of morphisms is k-linear. A tensor category is an
abelian category with a biproduct satisfying the usual properties of the tensor
product (including the existence of a unit object 1 for the tensor product).

A tensor category is rigid if

• Hom and ⌦ satisfy the natural distributive property over finite families;

• all objects are reflexive, i.e., the natural maps to their double duals are
isomorphisms (the dual A

_ of an object A of C is the object Hom(A, 1)).

Definition 3.1. A neutral Tannakian category over a field k is a rigid Abelian

k-linear tensor category T together with an exact faithful k-linear tensor functor

! : T �! Vectk, called the fiber functor.

The archetypical Tannakian category is the category Rep(G) of representa-
tions (on vector spaces over k) of an a�ne group scheme G over k. The fiber
functor is defined as the forgetful functor

!(⇢, V ) = V if ⇢ : G! Aut(V ).

Categories of representations of a�ne group schemes are much more than
just examples: it turns out that every neutral Tannakian category is equivalent
to one of them [12].
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Theorem 3.2 (Tannaka duality). For every neutral Tannakian category (T,!)
there is a proalgebraic a�ne group scheme G such that T ' Rep(G).

The group G is recovered as the group of automorphisms of the fiber functor
that are compatible with the tensor product, G = Aut⌦(!). If T ' Rep(G),
one also writes G = ⇡1(T).
Examples 3.3: • The category Vectk of vector spaces over k with the

identity as fiber functor is a neutral Tannakian category. Its correspond-
ing a�ne group scheme is the trivial group G = {e}, i.e., ⇡1(Vectk) =
{e}.

• The category of modules over a commutative ring with unit R is an
abelian tensor category. It may fail to be rigid as there are R-modules
that are not reflexive.

• If g is a semisimple Lie algebra over a field k, the category Rep(g) of
representations of g, with the fiber functor given by the forgetful functor
that only keeps the vector space structure of g, is a neutral Tannakian
category, and ⇡1(Rep(g)) = G, where G is the unique connected simply
connected Lie group whose Lie algebra is g.

• If X is a smooth projective variety over C, the category of vector bundles
on X with a flat connection (a.k.a. local systems), with a functor which
to a bundle E associates its fiber at x 2 X, is Tannakian, and is equiv-
alent to the category Rep(⇡1(X, x)) of representations of the topological
fundamental group of X. The dual group via Tannaka duality, i.e. the
group ⇡1(Rep(⇡1(X, x))), is the proalgebraic completion of ⇡1(X, x).

4. Tannakian categories and fundamental groups

The basic idea for using Tannaka duality to define fundamental groups is to
single out a class of geometric objects on a scheme X that make up a neutral
Tannakian category, and take the associated group scheme. We briefly review
two examples, Nori’s and Langer’s fundamental groups. Next we shall introduce
the Higgs fundamental group and discuss its relation with Simpson’s proalge-
braic fundamental group; this will be related to a conjecture about semistable
Higgs bundles on projective varieties.

Nori’s fundamental group

The first example of such a fundamental group was provided by Nori [21, 22].
A vector bundle E over a scheme X is essentialy finite if there exists a principal
bundle ⇡ : P ! X, with a finite structure group, such that ⇡⇤E is trivial. Es-
sentially finite vector bundles make up a neutral Tannakian category, where the
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fiber functor maps E to the fiber over a fixed point x 2 X (some assumptions
on the scheme X have to be made). The a�ne group scheme representing this
Tannakian category is the Nori fundamental group scheme ⇡

N

1 (X, x). It turns
out that there is a faithfully flat (i.e., flat and surjective) morphism

⇡
N

1 (X, x) ⇣ ⇡
ét
1 (X, x)

which is an isomorphism when char k = 0.
A related notion, that of F-fundamental group, was introduced in [2], and

some properties of it were studied in [1]. Another generalization was proposed
in [23].

Langer’s fundamental group

Let X be a smooth projective variety over an algebraically closed field. We can
define intersections between divisors D and curves C in X by letting

C · D = deg f
⇤
OX(D)

where f : C̃ ! C is a normalization of C. In the same way, we can define
the intersection product between a line bundle and a curve. Then we have the
usual notion of numerical e↵ectiveness.

Definition 4.1. L is numerically e↵ective (nef) if L ·C � 0 for all irreducible

curves C in X. A vector bundle E on X is numerically e↵ective if its hyper-

plane line bundle OP(E)(1) on the projectivization P(E) is. E is numerically

flat if both E and its dual bundle E
_

are nef.

As proved by Langer [16, 17], numerically flat vector bundles make up a
neutral Tannakian category, so that one can define a “fundamental group”
⇡

S

1 (X, x) as its dual (this group was introduced in the case of curves also
in [5]). Essentially finite vector bundles are numerically flat, so that there is a
morphism

⇡
S

1 (X, x) ⇣ ⇡
N

1 (X, x)

which is again faithfully flat, and is an isomorphism when char k = 0. Some
properties of this fundamental group, e.g. its birational invariance, were proved
in [15].

Higgs fundamental group

We follow this pattern to introduce a fundamental group which “feels” the
behavior of Higgs bundles on a projective variety. To do that we restrict to
varieties over the complex numbers, and start by considering ordinary bundles.
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So, let X be a smooth projective variety over C, and E a vector bundle on X

of rank r. We shall consider the characteristic class (the discriminant of E)

�(E) = c2(E)� r � 1
2r

c1(E)2 2 H
4(X, R) .

Moreover, after equipping X with an ample line bundle L, and denoting by H

it first Chern class (a polarization on X), we define the degree of E as

deg E = c1(E) · Hn�1

where n = dim X. If X is a smooth irreducible projective curve, it has a
canonical polarization, given by the class of a closed point of X. Whenever X

is such a curve, one implicitly assumes this choice of a polarization.

Definition 4.2. E is semistable (with respect to the chosen polarization) if for

every coherent subsheaf F ⇢ E, with 0 < rkF < r, one has

deg F

rkF
 deg E

r
.

E is curve semistable if for all morphisms f : C ! X, where C is a smooth

projective irreducible curve, the pullback bundle f
⇤(E) is semistable.

The following theorem was proved in a slightly weaker form by Nakayama
[20] and strengthened into its present form by Hernández Ruipérez and the
author [9].

Theorem 4.3. The following conditions are equivalent:

• E is curve semistable;

• E is semistable with respect to a polarization, and �(E) = 0.

The following corollary is not hard to prove [9].

Corollary 4.4. E is numerically flat if and only if it is curve semistable and

c1(E) = 0.

It is quite natural to ask if a result such as Theorem 4.3 also works for Higgs
bundles. A Higgs sheaf is a pair (E,�) where E is a coherent sheaf and

� : E ! E ⌦ ⌦1
X

, � ^ � = 0.

A Higgs bundle is a locally free Higgs sheaf. A notion of semistability is given
as for ordinary vector bundles, but the inequality is required to hold only for �-
invariant subsheaves. There is a notion of nefness/numerical flatness for Higgs
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bundles [9, 7], which we briefly review here. If E is a vector bundle of rank r

on X, and s < r is a positive integer, we can consider the Grassmann bundle
Grs(E) on X. Denote by ps : Grs(E) �! X the natural projection. There is
a universal short exact sequence

0 �! Sr�s,E

 �! p
⇤
s
E

⌘�! Qs,E �! 0 (1)

of vector bundles on Grs(E), with Sr�s,E the universal subbundle of rank r�s

and Qs,E the universal quotient of rank s [13]. The Grassmannian Grs(E)
parameterizes locally free rank s quotients of E, in the sense that if f : Y ! X

is a morphism, and G is a quotient bundle of f
⇤(E), there is a morphism

g : Y ! Grs(E) such that G ' g
⇤
Qs,E , and the diagram

Grs(E)

ps

✏✏
Y

g

;;xxxxxxxxx

f

//
X

commutes [13].
Given a Higgs bundle E = (E,�), we define closed subschemes Grs(E) ⇢

Grs(E) parameterizing rank s locally free Higgs quotients, i.e., locally free quo-
tients of E whose corresponding kernels are �-invariant. The Grassmannian of
locally free rank s Higgs quotients of E, denoted Grs(E), is the closed subscheme
of Grs(E) defined by the vanishing of the composition of morphisms

(⌘ ⌦ Id) � p
⇤
s
(�) �  : Sr�s,E �! Qs,E ⌦ p

⇤
s
⌦1

X
. (2)

Let ⇢s := ps|Grs(E) : Grs(E) �! X be the induced projection. The restriction
of (1) to Grs(E) yields a universal exact sequence

0 �! Sr�s,E
 �! ⇢

⇤
s
E

⌘�! Qs,E �! 0, (3)

where Qs,E := Qs|Grs(E) is endowed with the quotient Higgs field induced by
the Higgs field ⇢

⇤
s
�. A morphism of k-varieties f : T ! X factors through

Grs(E) if and only if the pullback f
⇤(E) admits a Higgs quotient of rank s.

The pullback of the above universal sequence on Grs(E) gives a quotient of
f
⇤(E).

Definition 4.5. A Higgs bundle E of rank one is said to be Higgs-numerically

e↵ective (H-nef for short) if it is numerically e↵ective in the usual sense. If

rkE � 2, we inductively define H-nefness by requiring that

1. all Higgs bundles Qs,E are Higgs-nef, and
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2. the determinant line bundle det(E) is nef.

If both E and E⇤ are Higgs-numerically e↵ective, E is said to be Higgs-nume-

rically flat (H-nflat).

Definition 4.5 immediately implies that the first Chern class of an H-nume-
rically flat Higgs bundle is numerically equivalent to zero.

It was proved in [4] that numerically flat Higgs bundles make up a neutral
Tannakian category. Therefore, after fixing a point x 2 X, we can define the
Higgs fundamental group ⇡

H

1 (X, x) as the group which is Tannaka dual to that
category. A numerically flat vector bundle, equipped with the zero Higgs field,
is a numerically flat Higgs vector bundle, so that there is a morphism

⇡
H

1 (X, x) ⇣ ⇡
S

1 (X, x)

which is again faithfully flat.
The nature of this fundamental group is related to the validity of Theo-

rem 4.3 for Higgs bundles. The following theorem was proved in [7].

Theorem 4.6. If E = (E,�) is semistable, and �(E) = 0, then E is curve

semistable.

The question whether the opposite result holds true is an open problem.

Conjecture 4.7. If the Higgs bundle E is curve semistable, then �(E) = 0.

Conjecture 4.7 is known to hold for certain classes of varieties (varieties
whose tangent bundle is numerically e↵ective [11] and K3 surfaces [10], and
varieties obtained from these two classes by some simple geometric construc-
tions [11]).

The category of semistable Higgs bundles on X having vanishing Chern
classes (semi-harmonic Higgs bundles) is Tannakian (the definition of this cat-
egory does not require the specification of a polarization since such bundles
are semistable with respect to all polarizations). Its Tannaka dual is iso-
morphic to the proalgebraic completion of the topological fundamental group
⇡

alg
1 (X, x) [24]. Since such semi-harmonic Higgs bundles are Higgs numerically

e↵ective, there is a morphism (again, a faithfully flat morphism)

⇡
H

1 (X, x)! ⇡
alg
1 (X, x). (4)

Theorem 4.8. The morphism (4) is an isomorphism if and only the Conjec-

ture 4.7 holds.

Proof. If the morphism (4) is an isomorphism, the categories of numerically flat
Higgs bundles and semi-harmonic bundles are equivalent. Then a numerically
flat Higgs bundle has vanishing Chern classes, which implies the conjecture.
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Vice versa, if the conjecture holds, and E = (E,�) is a numerically flat Higgs
bundle, then E is curve semistable, and since the Conjecture is assumed to hold,
�(E) = 0; moreover, E is semistable and c1(E) = 0 [7], so that by Theorem 2
in [24], all Chern classes of E vanish, and E is semi-harmonic. Thus the two
above mentioned categories are isomorphic, and (4) is an isomorphism.
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