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was founded in 1969 by Arno Predonzan, with the aim of publishing original

research articles in all fields of mathematics.

Rendiconti dell’Istituto di Matematica dell’Università di Trieste has been the
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di Trieste are reviewed/indexed by MathSciNet, Zentralblatt Math, Scopus,

OpenStarTs.

Editors-in-chief

Alessandro Fonda

Emilia Mezzetti

Pierpaolo Omari

Editorial Assistant

Andrea Sfecci

Editorial Board

Giovanni Alessandrini (Trieste)
Thomas Bartsch (Giessen, Germany)
Ugo Bruzzo (SISSA, Trieste)
Aldo Conca (Genova)
Pietro Corvaja (Udine)
Gianni Dal Maso (SISSA, Trieste)
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An e↵ective criterion for the additive
decompositions of forms

Edoardo Ballico

Abstract. We give an e↵ective criterion for the identifiability of

additive decompositions of homogeneous forms of degree d in a fixed

number of variables. Asymptotically for large d it has the same order

of the Kruskal’s criterion adapted to symmetric tensors given by L.

Chiantini, G. Ottaviani and N. Vannieuwenhoven. We give a new case

of identifiability for d = 4.

Keywords: symmetric tensor rank, additive decomposition of polynomials, Waring de-
composition, identifiability.
MS Classification 2010: 14N05, 15A69, 15A72, 14N20.

1. Introduction

Let C[z0, . . . , zn]d denote the complex vector space of all homogeneous degree d

polynomials in the variables z0, . . . , zn. An additive decomposition (or a Waring
decomposition) of a form f 2 C[z0, . . . , zn]d \ {0} is a finite sum

f =
X

`
d

i
(1)

with each `i 2 C[z0, . . . , zn]1. The minimal number R(f) of summands in an
additive decomposition of f is called the rank of f . The form f is said to be
identifiable if it has a unique decomposition (1), up to a permutation of the
summands. Often it is called an additive decomposition of f a finite sum

f =
X

ciµ
d

i
(2)

with ci 2 C and µi 2 C[z0, . . . , zn]1. Taking bi 2 C such that b
d

i
= ci and

setting `i := biµi we see that the two definitions coincide and that (1) and (2)
have the same number of non-zero summands. Degree d forms in the variables
z0, . . . , zn correspond to symmetric tensors of format (n + 1)⇥ · · ·⇥ (n + 1) (d
times), i.e. to symmetric elements of (Cn+1)⌦d. An additive decomposition (2)
of f is said to be non redundant or irredundant if there are no index i such that
ci`

d

i
is a linear combination of the other cj`

d

j
’s, j 6= i. See [23] for a long list

of possible applications and the language needed. Obviously it is interesting



2 EDOARDO BALLICO

to know when a non redundant decomposition of f has only R(f) summands,
because just from knowing the non redundant decomposition we would know
that f has no shorter additive decompositions. More important (as stressed in
[17, 18]) is to know if f is identifiable.

In [18] L. Chiantini, G. Ottaviani and N. Vannieuwenhoven stressed the
importance (even for arbitrary tensors) of e↵ective criteria for the identifiability
and gave a long list of practical applications (with explicit examples even in
Chemistry). We add to the list of potential applications the tensor networks
([13, 14, 25], at least for tensors without symmetries. For the case of bivariate
forms, see [11]; for bivariate forms the identifiability of a form only depends
on its rank and, for generic bivariate forms, on the parity of d by a theorem of
Sylvester ([21, Theorem 1.5.3 (ii)]).

L. Chiantini, G. Ottaviani and N. Vannieuwenhoven stressed the importance
of the true e↵ectivity of the criterion to be tested as it happens in the case
of the famous Kruskal’s criterion for the tensor decomposition ([22]). They
reshaped the Kruskal’s criterion to the case of additive decompositions ([18,
Theorem 4.6 and Proposition 4.8]) and proved that it is e↵ective (for d �

5) for ranks at most ⇠ n
b(d�1)/2c. The upper bound to which our criterion

applies has the same asymptotic order when d � 0, but we hope that it is easy
and e�cient. Then in [3] E. Angelini, L. Chiantini and N. Vannieuwenhoven
considered the case d = 4 and added the analysis of one more rank. Among
the huge number of papers considering mostly “generic” identifiability we also
mention [1, 2, 4, 15, 16, 17, 19]. An e↵ective criterion should be something
machine-testable in a reasonable time and that to be applied to the form f

only requires data from the additive decomposition (1). In our case we need
the forms `i’s in the right hand side of (1) (we only need them up to a scalar
multiple, but we need them exactly, not approximately) and the computation
of the rank of a matrix with ⇢ rows and

�
n+t

n

�
columns, where ⇢ is the number of

summands in (1) and t  bd/2c (but t may be lower for lower ⇢); see Remark 2.1
for more details.

To state our results we need the following geometric language for instance
fully explained in [18, 23].

Set Pn := PC[z0, . . . , zn]1. Thus points of the n-dimensional complex space
p correspond to non-zero linear forms, up to a non-zero multiplicative constant.
Set r :=

�
n+d

n

�
� 1. Thus Pr := PC[z0, . . . , zn]d is an r-dimensional projective

space. Let ⌫d : Pn
! Pr denote the order d Veronese embedding, i.e. the map

defined by the formula [`] 7! [`d]. An additive decomposition (1) or (2) with
k non-proportional non-zero terms corresponds to a subset S ⇢ Pn such that
|S| = k and [f ] 2 h⌫d(S)i, where h i denote the linear span. This decomposition
is called non redundant and we say that the set ⌫d(S) irredundantly spans [f ]
if [f ] 2 h⌫d(S)i and [f ] /2 h⌫d(S0)i for each S

0 ( S. For any integer t � 0
each p 2 Pn gives a linear condition to the vector space C[z0, . . . , zn]t by taking
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p1 = (a0, . . . , an) 2 Cn+1 with [p1] = p and evaluating each f 2 C[z0, . . . , zn]t
at p1. When we perform this evaluation for all points of a finite set S ⇢ Pn

we get |S| linear equations and the rank of the corresponding matrix does not
depend on the choice of the representatives of the points of S.

We prove the following result.

Theorem 1.1. Fix q 2 Pr
and take a finite set S ⇢ Pn

such that ⌫d(S) irre-

dundantly spans q.

(a) If |S| 
�
n+bd/2c

n

�
and S gives |S| independent conditions to the com-

plex vector space C[z0, . . . , zn]bd/2c, then q has rank |S|.

(b) If |S| 
�
n+bd/2c�1

n

�
and S gives |S| independent conditions to the

complex vector space C[z0, . . . , zn]bd/2c�1, then S is the unique set evincing the

rank of q.

In Remark 2.1 we explain why Theorem 1.1 e↵ectively determines the rank
of q (and in the set-up of (b) the identifability of f , i.e. the uniqueness state-
ment often called “uniqueness of additive decomposition ” for homogeneous
polynomials or for symmetric tensors). Indeed, to check that S satisfies the
assumptions of part (a) (resp. part (b)) of Theorem 1.1 it is su�cient to check
that a certain matrix with |S| rows and

�
n+bd/2c

n

�
(resp

�
n+bd/2c�1

n

�
) columns

has rank |S|. This matrix has rank |S| if S is su�ciently general, but the test
is e↵ective for a specific set S.

See [7] and [8] for results similar to Theorem 1.1 for tensors; roughly speak-
ing [8, Corollary 3.10, Remark 3.11 and their proof] is equivalent to part (a) of
Theorem 1.1. Part (a) of Theorem 1.1 is good, but one could hope to get part
(b) when |S| <

�
n+bd/2c

n

�
, adding some other easily testable assumptions on S.

We prove the following strong result (an essential step for the proof of part (b)
of Theorem 1.1). To state it we recall the following notation: for any finite set
E ⇢ Pn and any t 2 N let H

0(IE(t)) denote the set of all f 2 C[z0, . . . , zn]t
such that f(p) = 0 for all p 2 E. The set H

0(IE(t)) is a vector space of
dimension at least

�
n+t

n

�
� |E|. Set |IE(t)| := PH

0(IE(t)).

Theorem 1.2. Fix q 2 Pr
and take a finite set S ⇢ Pn

such that ⌫d(S) irredun-

dantly spans q. Assume |S| <
�
n+bd/2c

n

�
and that S gives |S| gives independent

conditions to C[z0, . . . , zn]bd/2c. Take any A ⇢ Pn
such that |A| = |S| and A in-

duces an additive decomposition of f . Then H
0(IA(bd/2c)) = H

0(IS(bd/2c)).

Theorem 1.2 does not assure that S is the only set evincing the rank of
q, i.e. the uniqueness of the summands in an additive decomposition of f

with R(f) terms, but it shows where the other sets A giving potential additive
decomposition with R(f) summands may be located: they are contained in
the base locus of |IS(bd/2c)|. The results in [3] (in particular [3, Theorem 6.2
and 6.3, Proposition 6.4]) for d = 4 show that non-uniqueness occurs if and
only if the base locus of |IS(2)| allows the existence of A.
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In the last section we take d = 4. E. Angelini, L. Chiantini and N. Van-
nieuwenhoven consider the case d = 4 and |S| = 2n + 1 with an additional
geometric property (linear general position or LGP for short; section 3 for its
definition). For d = 4 and |S| = 2n + 1 they classified the set S in LGP for
which identifiability holds (see Theorem 3.1 for a summary of [3, Theorems 6.2
and 6.3]). In section 3 using Theorem 1.2 we classify another family of sets S

with |S| = 2n + 1 and for which identifiability holds (Theorem 3.2).

Remark 1.3: The results used to prove Theorem 1.1 (and summarized in
Lemma 2.3 and Remark 2.4) work verbatim for a zero-dimensional scheme
A ⇢ Pn. The key is that in Lemma 2.3 and Remark 2.4 or in [6, Lemma 5.1]
(or equivalently [9, Lemmas 2.4 and 2.5]) we may allow that one of the two
schemes is not reduced. Under the assumption of part (a) of Theorem 1.1 the
cactus rank of q (see [10, 12, 26] for its definition and its uses) is |S|. Under
the assumptions of part (b) of Theorem 1.1 S is the only zero-dimensional
subscheme of Pn evincing the cactus rank of q. However for our proofs it is
important that S (i.e. the scheme to be tested) is a finite set, not a zero-
dimensional scheme. Now assume that W is a zero-dimensional scheme and
take q 2 h⌫d(W )i such that q /2 h⌫d(W 0)i for any W

0 ( W . Assume that W is
not reduced, that deg(W ) 

�
n+bd/2�1c

n

�
and that W gives deg(W ) indepen-

dent conditions to C[z0, . . . , zn]bd/2�1c. Quoting either [6, Lemma 5.1] or [9,
Lemmas 2.4 and 2.5] we get that q has rank > deg(W ).

Remark 1.4: The interested reader may check that the proof works with no
modification if instead of C we take any algebraically closed field containing
Q. Since it uses only linear systems, it works over any field K ◆ Q if as an
additive decomposition of f 2 K[z0, . . . , zn]d we take an expression (2) with
ci 2 K and `i 2 K[z0, . . . , zn]1. Thus for the real field R when d is odd we may
take the usual definition (1) of additive decomposition, while if d is even we
allow ci 2 {�1, 1}. Theorem 1.1 applied to C says that |S| is the complex rank
of q, too, and in set-up of part (b) uniqueness holds even if we allow complex
decompositions.

Remark 1.5: In the proofs of our results we use nothing about the form f or
the point q = [f ] 2 Pr. All our assumptions are on the set S and they apply
to all q 2 h⌫d(S)i irredundantly spanned by ⌫d(S). In all our results the set
⌫d(S) is linearly independent (i.e. its elements are linearly independent) and
hence the set of all q 2 Pr irredundantly spanned by ⌫d(S) is the complement
in the (|S| � 1)-dimensional linear space h⌫d(S)i of |S| codimension 1 linear
subspaces. To test that ⌫d(S) irredundantly spans q it is su�cient to check
the rank of a matrix with |S| rows and

�
n+d

n

�
columns. To the best of our

knowledge this check (or a very similar one) must be done for all criteria of
e↵ectivity for forms ([3]).
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2. The proofs of Theorems 1.1 and 1.2

Fix q 2 Pr = PC[z0, . . . , zn]d. The rank rX(q) of q is the minimal cardinality
of a finite set S ⇢ Pn such that q 2 h⌫d(S)i. By the definition of Veronese
embedding we have rX(q) = R(f) for any f 2 C[z0, . . . , zn]d such that [f ] = q.
Let S(X, q) denote the set of all S ⇢ Pn such that q 2 h⌫d(S)i and |S| = rX(q).
We say that q is identifiable with respect to X or that q is X-identifiable if
|S(X, q)| = 1. By the construction of the order d Veronese embedding of
X, |S(X, q)| = 1 if and only if any form f 2 C[z0, . . . , zn]d with [f ] = q

is identifiable. Recall that a finite subset E ⇢ ⌫d(Pn) irredundantly spans
q if q 2 hEi and q /2 hE

0
i for any E

0 ( E. Note that if E irredundantly
spans a point of Pr, then it is linearly independent, i.e. dimhEi = |E| � 1.
If E = ⌫d(A) for some A ⇢ Pn, E is linearly independent if and only if A

induces |A| independent conditions to C[z0, . . . , zn]d. For each S 2 S(X, q)
the set ⌫d(S) irredundantly spans q. For any Z ⇢ Pn and any t 2 Z set
h

0(IZ(t)) := dim H
0(IZ(t)).

Remark 2.1: Fix an integer t � 0 and a finite subset A of Pn. We write
h

1(IA(t)) for the di↵erence between |A| and the number of independent con-
ditions that A imposes to the

�
n+t

n

�
-dimensional vector space C[z0, . . . , zn]t.

For any multiindex ↵ = (a0, . . . , an) 2 Nn+1 set z
↵ := z

a0
0 · · · z

an
n

and k↵k =
a0 + · · · + an. The integer k↵k is the degree of the monomial z

↵. The vector
space C[z0, . . . , zn]t of all degree t homogeneous polynomials in z0, . . . , zn has
the monomials z

↵ with k↵k = t as a basis. We explain why to compute the
non-negative integer h

1(IA(t)) we only need to compute the rank of the matrix
with |A| rows and

�
n+t

n

�
columns. Since h

1(IA(t)) = |A|�
�
n+t

n

�
+h

0(IA(t)), it
is su�cient to compute the integer h

0(IA(t)). Set a := |A| and b :=
�
n+t

n

�
. We

order the points p1, . . . , pa of A and the monomials z
↵ with k↵k = t. We call

w1, . . . , wb these monomials with the chosen ordering. The integer a�h
1(IA(t))

is the rank of the a ⇥ b matrix M = (aij) with as entry aij the value of wj

at pi.

Remark 2.2: Fix q 2 Pr = PC[z0, . . . , zn]d \ ⌫d(Pn) and take A ⇢ Pn such
that ⌫d(A) irredundanly spans q. The condition “ q /2 ⌫d(Pn) ” is equivalent
to “rX(q) > 1 ”. Since ⌫d(A) spans irredundantly at least one point of Pr,
it is linearly independent, i.e. h

1(Pr
, I⌫d(A)(1)) = 0. Since q 2 h⌫d(A)i and

q /2 ⌫d(A), we have h
1(Pr

, I⌫d(A)[{q}(1)) > 0. Since h
1(Pr

, I⌫d(A)(1)) = 0 and
|⌫d(A) [ {q}| = |⌫d(A)| + 1, we have h

1(Pr
, I⌫d(A)[{q}(1)) = 1.

Fix f 2 C[z0, . . . , zn]d \ {0} and let q = [f ] 2 Pr = PC[z0, . . . , zn]d,
r =

�
n+d

n

�
� 1, be the point associated to f . Take S ⇢ Pn such that ⌫d(S)

irredundantly spans q. Fix any A ⇢ Pn evincing the rank of f . We have
|A|  |S|. Set Z := A [ B. Z is a finite subset of Pn and |Z|  |A| + |S|. To
prove part (a) of Theorem 1.1 we need to prove that |A| = |S|. To prove part



6 EDOARDO BALLICO

(b) we need to prove that A = S. In the proof of part (a) we have A 6= S,
because |A| < |S|. To prove part (b) of the theorem it is su�cient to get a
contradiction from the assumption A 6= S.

We recall (with the same proof) [5, Lemma 1].

Lemma 2.3. Fix q 2 Pr = PC[z0, . . . , zn]d and assume the existence of A,B ⇢

Pn
such that ⌫d(A) and ⌫d(B) irredundantly span q and A 6= B.

Then A[B does not impose |A[B| independent conditions to C[z0, . . . , zn]d,
i.e. h

1(IA[B(d)) 6= 0.

Proof. For all linear subspaces U,W ✓ Pr the Grassmann’s formula says that

dim(U \W ) + dim(U + W ) = dim U + dim W

with the convention dim ; = �1. Since ⌫d(A) (resp. ⌫d(B)) irredundantly
spans q, we have dimh⌫d(A)i = |A| � 1 (resp. dimh⌫d(B)i = |B| � 1). Since
A 6= B, we have A \ B ( A and A \ B ( B. Since q 2 h⌫d(A)i \ h⌫d(B)i
and q /2 h⌫d(A \ B)i, we have h⌫d(A) \ h⌫d(B)i ) h⌫d(A \ B)i. Since ⌫d(A)
and ⌫d(B) are linearly independent and h⌫d(A)i \ h⌫d(B)i ) h⌫d(A \ B)i, the
Grassmann’s formula gives that ⌫d(A[B) is not linearly independent, i.e. A[B

does not impose |A [B| independent conditions to C[z0, . . . , zn]d.

Remark 2.4: We explain the particular case of [6, Lemma 5.1] or [9, Lemmas
2.4 and 2.5] we need. Fix q 2 Pr = PC[z0, . . . , zn]d and take finite sets A,B ⇢

Pn such that ⌫d(A) and ⌫d(B) irredundantly span q. In particular both A

and B are linearly independent. Set Z := A [ B. We fix G 2 C[z0, . . . , zn]t,
1  t  d. We assume that Z \Z \G gives |Z \Z \G| independent conditions
to C[z0, . . . , zn]d�t, i.e. we assume h

1(Pn
, IZ\Z\G(d � t)) = 0. By either [6,

Lemma 5.1] or [9, Lemmas 2.4 and 2.5] we have A \ A \ G = B \ B \ G. In
particular if A ⇢ G, then B ⇢ G.

Proof of part (a) of Theorem 1.1: Recall that we have dim C[z0, . . . , zn]bd/2c =�
n+bd/2c

n

�
. Since |A| < |S| 

�
n+bd/2c

n

�
, there is g 2 C[z0, . . . , zn]bd/2c such that

g(p) = 0 for all p 2 A. Let G ⇢ Pn be the degree bd/2c hypersurface {g = 0}
of Pn. Since A ⇢ G, we have Z \ Z \ G = S \ S \ G. Thus Z \ Z \ G gives
independent conditions to forms of degree bd/2c. Thus it gives independent
conditions to forms of degree dd/2e = d � bd/2c. Since A ⇢ G, Remark 2.4
gives S ⇢ G. Since this is true for all g 2 C[z0, . . . , zn]bd/2c such that g(p) = 0
for all p 2 A, we get that if g|A = 0 and g has degree bd/2c, then g|S = 0.
Since S gives |S| independent linear conditions to C[z0, . . . , zn]bd/2c, A gives at
least |S| linear independent conditions to C[z0, . . . , zn]bd/2c, contradicting the
inequality |A| < |S|.
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Proof of Theorem 1.2. To prove Theorem 1.2 we may assume A 6= S. Since
|A| = |S| <

�
n+bd/2c

n

�
, there is g 2 C[z0, . . . , zn]bd/2c such that g|A ⌘ 0.

The proof of part (a) of Theorem 1.1 gives g|S ⌘ 0. Thus H
0(IA(bd/2c)) ✓

H
0(IS(bd/2c)). Since H

0(IS(bd/2c)) has codimension |A| in C[z0, . . . , zn]bd/2c,
we get H

0(IA(bd/2c)) = H
0(IS(bd/2c)).

Proof of part (b) of Theorem 1.1: We have H
0(IA(bd/2c)) = H

0(IS(bd/2c))
by Theorem 1.2. To get A = S it is su�cient to prove that for each p 2 Pn

\A

there is g 2 H
0(IS(bd/2c)) such that g(p) 6= 0. Thus it is su�cient to prove

that the sheaf IS(bd/2c) is generated by its global sections. The assumption
that S gives |S| independent conditions to C[z0, . . . , zn]bd/2c�1 is translated
in cohomological terms as h

1(Pn
, IS(bd/2c � 1)) = 0. The sheaf IS(bd/2c) is

generated by its global sections (and in particular for each p 2 Pn
\ S there is

f 2 H
0(IS(bd/2c)) such that f(p) 6= 0) by the Castelnuovo-Mumford’s lemma

([20, Corollary 4.18], [24, Theorem 1.8.3]).

3. The case d = 4

Set X := ⌫d(Pn) ⇢ Pr.
A finite set S ⇢ Pn is said to be in linearly general position (or in LGP, for

short) if dimhAi = min{n, |A|� 1} for each A ✓ S. If |S| � n + 1 the set S is
in LGP if and only if each A ✓ S with |A| = n + 1 spans Pn.

In this section we take d = 4 and hence r =
�
n+4

n

�
� 1.

We recall a summary of [3, Theorems 6.2 and 6.3].

Theorem 3.1. ([3, Theorems 6.2 and 6.3]). Fix a finite set S ⇢ Pn
in LGP

such that |S| = 2n + 1 and take q 2 Pr
, r =

�
n+4

n

�
� 1, such that ⌫4(S)

irredundantly spans q.

1. q has rank 2n + 1.

2. Assume the existence of B ⇢ Pn
such that |B| = 2n+1 and B 6= S. Then

B [ S is contained in a rational normal curve of Pn
.

We prove the following result.

Theorem 3.2. Fix a finite set S ⇢ Pn
such that |S| = 2n + 1 and take q 2 Pr

,

r =
�
n+4

n

�
� 1, such that ⌫4(S) irredundantly spans q. Assume that S is not in

LGP, but there is S
0
⇢ S such that |S

0
| = 2n and S

0
is in LGP. The point q

has rank 2n + 1. Let e be the dimension of a minimal subspace N ⇢ Pn
such

that |N \ S| � e + 2. The point q 2 Pr
is identifiable if and only if e � 2. If

e = 1, then dimS(X, q) = 1.

To prove Theorem 3.2 we need some elementary observations.
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Remark 3.3: Take A ⇢ Pm, m � 1, such that |A| = m+2 and A is in LGP. It is
classically known that any two such sets are projectively equivalent; we provide
a linear algebra proof of this fact. We order the points p0, . . . , pm+1 of |A|. Since
p0, . . . , pm are m+1 linearly independent points, up to a change of homogeneous
coordinates we may assume that p0, . . . , pm are the m + 1 coordinate points
(1 : 0 : · · · : 0), . . . , (0 : · · · : 0 : 1). Write pm+1 = (w0 : · · · : wm) for some
wi 2 C. The assumption that A is in LGP is equivalent to wi 6= 0 for all i. We
make the invertible projective transformation zi 7! wi

�1
zi, which leave fixed

each pi, 0  i  m, and maps pm+1 to the point (1 : 1 : · · · : 1). Thus each
B ⇢ Pm in LGP such that |B| = m + 2 is projectively equivalent to the set
consisting of the coordinate points, plus the point (a0 : · · · : am) with ai = 1
for all i. In particular A is projectively equivalent to a general subset of Pm

with cardinality m + 2. Thus h
1(IA(2)) = 0.

Claim 1: The set A is the set-theoretic base locus of |IA(2)| if and only
if m � 2.

Proof of Claim 1: First assume m = 1. In this case we have OP1(2)(�A)⇠=
OP1(�1) and hence h

0(OP1(2)(�A)) = 0. Now assume m = 2. In this case
Claim 1 is equivalent to say that 4 points of a plane, no 3 of them collinear, are
the complete intersection of 2 conics; not only this is easy, but (since we proved
that we may assume that A is general in P2), it is true because 2 general plane
conics intersects transversally. Now assume m > 2. Fix o 2 Pm

\A. Let A
0
⇢ A

be a subset of A such that o 2 hA
0
i and with |A

0
| minimal (it exists, because

A spans Pm). Since o /2 A, we have m + 1 � |A
0
| > 1. Take a 2 A

0. Since A is
in LGP, there is a hyperplane H ⇢ Pm such that |A\H| = m (and hence H is
spanned by A \H), A

0
\ {a} ⇢ H and a /2 H. Set {a, b} := A \ A \H. Since

A
0
\H = A

0
\ {a} and the set A

0 is linearly independent, we have H \ hA
0
i =

hA
0
\ {a}i. Thus o /2 H. Assume for the moment o /2 h{a, b}i. Thus o /2 M for

a general hyperplane M ◆ h{a, b}i. The hyperquadric H [M contains A, but
o /2 H \M . Hence o /2 B. Now assume o 2 h{a, b}i. Since |A

0
| is minimal and

|A
0
| > 1, we have |A

0
| = 2. Write A

0 = {a, c}. Since o 2 h{a, c}i \ h{a, b}i and
o 6= a, the 3 points a, b, c are collinear, a contradiction.
Remark 3.4: Take A ⇢ Pm, m � 1, such that |A| = m + 1 and A spans Pm.
Up to a projective transformation we may assume that A is the union of the
coordinates points of Pn. As in Remark 3.3 by induction on m we see that
h

1(IA(2)) = 0 and that A is the base locus of the linear system |IA(2)|.
Remark 3.5: Take A 2 S(X, q) and any A

0 ( A, A
0
6= ;. Set A

00 := A \ A
0.

In particular |A| � 2 and hence q /2 X. Since A evinces the X-rank of q, it is
linearly independent and h

1(Pr
, IA[{q}(1)) = 1 (Remark 2.2). Since A

00 ( A,
we have q /2 hA

00
i. Thus hA0

i\hA
00
[{q}i is a single point, q

0, and q
0 is the only

element of hA0
i such that q 2 h{q

0
}[A

00
i. In the same way we see the existence

of a single point q
00
2 hA

00
i such that q 2 hA

0
[ {q

00
}i. We have q 2 h{q

0
, q
00
}i.

Since A 2 S(X, q), we have A
0
2 S(X, q

0) and A
00
2 S(X, q

00). If we only assume



ADDITIVE DECOMPOSITION 9

that A irredundantly spans q the same proof gives the existence and uniqueness
of q

0 and q
00 such that A

0 irredundantly spans q
0 and A

00 irredundantly spans q
00.

Lemma 3.6. Let H ⇢ Pm
, m � 2, be a hyperplane. Take a finite set S ⇢ Pm

such that |S \S\H| = 1. Take homogeneous coordinates z0, . . . , zm of Pm
such

that H = {zm = 0}.
(i) If S \H imposes independent conditions to C[z0, . . . , zm�1]2, then S

imposes independent conditions to C[z0, . . . , zm]2.
(ii) If S \ H is the base locus of |IS\H(2)|, then S is the base locus of

|IS(2)|.

Proof. Set {p} := S \ S \H and call B the base locus of |IS(2)|. We have the
residual exact sequence of H:

0 ! Ip(1) ! IS(2) ! IS\H,H(2) ! 0 (3)

Since {p} imposes independent conditions to C[z0, . . . , zm]1, we get part (i)
and that the restriction map ⇢ : H

0(IS(2)) ! H
0(H, IS\H,H(2)) is surjective.

Assume that S \ H is the base locus of |IS\H(2)|. Since ⇢ is surjective, we
get B \ H = S \ H. Fix o 2 Pn

\ H such that o 6= p. Take a hyperplane
M ⇢ Pm such that p 2 M and o /2 M . The reducible quadric H [ M shows
that o /2 B.

Proof of Theorem 3.2: Let H ⇢ Pn be a hyperplane containing N and spanned
by points of S

0. Since S
0 is in LGP and |S| = |S

0
|+1, we have |S \H| = n+1,

|S
0
\ H| = n, S \ S \ H = S

0
\ S

0
\ H, and |S

0
\ S

0
\ H| = n. Since S

0

is in LGP, S
0
\ S

0
\ H spans a hyperplane, M , and S

0
\ H \ M = ;. Set

A := S
0
\H and B := S

0
\M . Note that S ⇢ H [M , n  |M \S|  n+1 and

|S \M | = n + 1 if and only if S \ S
0
⇢ H \M , i.e. if and only if N ✓ H \M .

Set B := {p 2 Pn
| h

0(IS[{p}(2)) = h
0(IS(2))}. Since S ⇢ H [M and H [M

is a quadric hypersurface, we have S ✓ B ✓ H [ M . Consider the residual
exact sequences of H and M :

0 ! IS\S\H(1) ! IS(2) ! IS\H,H(2) ! 0 (4)

0 ! IS\S\M (1) ! IS(2) ! IS\M,M (2) ! 0 (5)

Note that B contains the base locus B1 of IS\H,H(2) and the base locus B2

of IS\M,M (2).
By Remark 3.4 we have h

1(H, IS\H,H(2)) = h
1(M, IS\M (2)) = 0. By

the long cohomology exact sequence of (4) we get h
1(IS(2)) = 0. Theorem

1.1 gives that q has rank 2n + 1. By the long cohomology exact sequences
of (4) and (5) the restriction maps ⇢ : H

0(IS(2)) ! H
0(H, IS\H,H(2)) and

⇢
0 : H

0(IS(2)) ! H
0(M, IS\M,M (2)) are surjective. Thus B = B1 [ B2. Since

S \M is linearly independent, we have B2 = S \M . Take F 2 S(X, q) such
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that F 6= S (if any). In the case e � 2 we need to find a contradiction. In
the case e = 1 we need a description of all F ’s su�ciently explicit to prove
that dimS(X, q) = 1. More precisely, in the case e = 1 we will prove the
existence of a subset F2 ⇢ F such that all E 2 S(X, q) are of the form F2 [E1

with E1 depending on E, F2 the same for all E 2 S(X, q) (and in particular
F2 ⇢ S) and E1 coming from a bivariate form q

0 associated to q. Since q has
rank  2n + 1, we have |F |  2n + 1 <

�
n+2

2

�
. Thus there is G 2 |IF (2)|. Set

Z := S [ F . Fix any G 2 |IF (2)|. Since Z \ Z \G ✓ S and h
1(IS(2)) = 0, we

have h
1(IZ\Z\G(2)) = 0. Since F ⇢ G, Lemma 2.3 and Remark 2.4 give S ⇢ G.

Since this is true for all G 2 |IF (2)|, we get |IS(2)| ◆ |IF (2)|. Since |S| � |F |

and h
1(IS(2)) = 0, we get again |F | = |S| and also that |IS(2)| = |IF (2)|.

Since F is contained in the base locus of |IF (2)|, we get F ✓ B.
(a1) Assume e � 2. By Remark 3.3 S \N is the base locus of IS\N (2).

Applying (if e < n� 1) n� 1� e times Lemma 3.6 we get B1 = S \H. Thus
B = S. Hence F ✓ S, a contradiction.

(a2) Assume e = 1. In this case B contains the line N . The proof of
Lemma 3.6 gives B1 = N[(S\H). By Theorem 1.2 we have F ⇢ N\(S\S\N).
Thus F = A1 [A2 with A1 ⇢ N , A2 ✓ S \ S \N and A1 \A2 = ;. We apply
Remark 3.5 with A = F and A

0 = N \ S and get q
0
2 h⌫d(S \ N)i and

q
00
2 h⌫4(S \ S \ N)i such that q 2 h{q

0
, q
00
}i. Since |S \ N | = 3, Sylvester’s

theorem q
0 has rank 3 with respect to degree 4 rational normal curve ⌫4(N).

We get |F \ N |  3. Since |F | = |S|, we get that each element of S(X, q) is
the union of S \ S \ N and an element of S(X, q

0). By Sylvester’s theorem
([21, §1.5]) we have dimS(⌫4(N), q0) = 1. A word about this case. We worked
taking F 6= S. In principle if S(X, q) is a singleton we got a contradiction,
not the proof that dimS(X, q) = 1. However, we may add S \ S \ N to any
E1 2 S(X, q

0) to get an element of S(X, q), and so it is never a singleton.
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1. Introduction

Let A be the class of analytic functions f(z) of the form

f(z) = z +
1X

k=2

akz
k (1)

in the open unit disc U = {z : |z| < 1} and normalized by f(0) = f
0(0)�1 = 0.

The Lipschitz- Lerch zeta function is a series characterized as follows

R(a, x, s) ⌘
1X

k=0

e
2k⇡ix

(a + k)s
, s, x, a 2 C,

with conditions 1� a /2 N and x � 0. The series converges 8s 2 C if x > 0 and
represents an entire function of s. The series converges absolutely for <(s) > 1
if x = 0. Lerch [23] and Lipschitz [26] studied this type of function with
regard to Dirichlet’s well known theorem on primes in arithmetic progression.
The Lipschitz-Lerch zeta function reduces to the meromorphic Hurwitz zeta
function ⇣(s, a) if x 2 Z with one single pole at s = 1 [37, Section 2, 3 Eq(2)].
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By using a di↵erent notation for the Lipschitz-Lerch zeta function, Bateman
gave the following function [3]:

�(z, s, a) ⌘
1X

k=0

z
k

(a + k)s
,

�
a 2 C \ Z�0 ; s 2 C when |z| < 1; <(s) > 1 when |z| = 1

�
. (2)

The equation (2) is connected to Lipschitz-Lerch zeta function by the rela-
tion �(e2k⇡ix

, s, a) = R(a, x, s) and called later Hurwitz-Lerch zeta function.
Also, the Riemann zeta function ⇣(s), the Hurwitz (or generalized) zeta

function ⇣(s, a) and the Lerch zeta function `s(⇠) are defined respectively as
follows (see, for details, [3, Chapter 1] and [37, Chapter 2]):

⇣(s) :=
1X

n=1

1
ns

= �(1, s, 1) = ⇣(s, 1) , (<(s) > 1) ,

⇣(s, a) :=
1X

n=0

1
(n + a)s

= �(1, s, a) , (<(s) > 1; a 2 C \ Z�0 ) ,

and `s(⇠) :=
1X

n=0

e
2n⇡i⇠

(n + 1)s
= �(e2⇡i⇠

, s, 1) , (<(s) > 1; ⇠ 2 R).

In addition, an important function of Analytic Number Theory such as the
Polylogarithmic function (or de Jonquière’s function) Lis(z) is given by:

Lis(z) :=
1X

n=1

z
n

ns
= z�(z, s, 1) ,

(s 2 C when |z| < 1; <(s) > 1 when |z| = 1).

It is known that the Hurwitz-Lerch zeta function �(z, s, a) in (2) can be
written as

�(z, s, a) =
1

�(s)

Z 1

0

t
s�1

e
�at

1� ze�t
dt

(<(a) > 0; <(s) > 0 when |z|  1 (z 6= 1); <(s) > 1 when z = 1). (3)

Besides, since

1X

n=0

f(n) =
k�1X

j=0

1X

n=0

f(kn + j) , (k 2 N),
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we have

�(z, s, a) = k
�s

k�1X

j=0

�
✓

z
k
, s,

a + j

k

◆
z

j
, (k 2 N). (4)

By combining (3) and (4), immediately we have:

�(z, s, a) =
k�1X

j=0

z
j

�(s)

Z 1

0

t
s�1

e
�(a+j)t

1� zke�kt
dt

(k 2 N; <(a) > 0; <(s) > 0 when |z|  1(z 6= 1); <(s) > 1 when z = 1). (5)

The above equation is mainly prompted by the sum-integral representa-
tion in which the authors introduce an analogous investigation of the following
general family of the Hurwitz-Lerch zeta function by using (µ)⇢n and (⌫)�n

(see [24]):

�(⇢,�)
µ,⌫ (z, s, a) :=

1X

n=0

(µ)⇢n

(⌫)�n

z
n

(n + a)s
,

( µ 2 C; a, ⌫ 2 C \ Z�0 ; ⇢,� 2 R+; ⇢ < � when s, z 2 C;
⇢ = � and s 2 C when |z| < 1 : ⇢ = � and <(s� µ + ⌫) > 1 when |z| = 1).

Here, and for the remainder of this paper, (�)k denotes the Pochhammer
symbol defined in terms of Gamma function, by

(�)k :=
� (� + k)

� (�)
=

(
� (� + 1) ... (� + n� 1) (k = n 2 N; � 2 C)
1 (k = 0; � 2 C\ {0}) .

We then have

�(�,�)
⌫,⌫ (z, s, a) = �(0,0)

µ,⌫ (z, s, a) = �(z, s, a)

and

�(1,1)
µ,1 (z, s, a) = �⇤µ(z, s, a) :=

1X

n=0

(µ)n

n!
z

n

(n + a)s
. (6)

Recently, Goyal and Laddha ([14], p. 100, Eq. (1.5)) studied the generalized
Hurwitz-Lerch zeta function �⇤µ(z, s, a) given by (6).

For functions f 2 A given by (1) and g 2 A (g(z) = z +
P1

n=2 bnz
n), the

Hadamard product (or convolution) of f and g can be defined by

(f ⇤ g) = z +
1X

n=2

anbnz
n
, z 2 U.
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The Hurwitz-Lerch zeta function �(z, s, a) given in (3) was recently studied
by Choi and Srivastava [8], Ferreira and Lopez [12], Garg et al. [13], Lin et

al.[25], Srivastava and Attiya [36], Lin and Srivastava et al [38] and others
(see [4, 5, 6, 7]).

Now,

Js,a : A ! A,

Js,af(z) = Gs,a ⇤ f(z) , (z 2 U ; a 2 C \ {Z�
0 }; s 2 C; f 2 A) (7)

where, for convenience

Gs,a(z) := (1 + a)s[�(z, s, a)� a
�s] (z 2 U). (8)

Successfully, by utilizing (1), (7) and (8), we can obtain

Js,af(z) = z +
1X

n=2

✓
1 + a

n + a

◆s

anz
n
.

Also let S⇤(↵) be classes of starlike functions and K(↵) classes of convex
functions of order ↵, 0  ↵ < 1. In 1975, Silverman [33] proved that f(z) 2
S⇤(↵) if the following condition is satisfied:

����
zf

0(z)
f(z)

� 1
���� < 1� ↵, (z 2 U). (9)

Geometrical importance of inequality (9) is that zf
0(z)/f(z) maps U onto

the inside of the circle with radius 1� ↵ and center at 1.
We can define S⇤(↵) (classes of starlike functions of reciprocal order ↵)

and K⇤(↵) (classes of convex functions of reciprocal order ↵), 0  ↵ < 1,
individually by

S⇤(↵) =
⇢

f(z) 2 A : < f(z)
zf 0(z)

> ↵, (z 2 U)
�

,

K⇤(↵) =
⇢

f(z) 2 A : < f
0(z)

zf 00(z) + f 0(z)
> ↵, (z 2 U)

�
.

In 2008, Nunokawa and his coauthors [29] enhanced inequality (9) for the
class S⇤(↵) and they showed that f(z) 2 S⇤(↵), 0 < ↵ <

1
2 , if and only if next

inequality holds:
����
zf

0(z)
f(z)

� 1
2↵

���� <
1
2↵

, (z 2 U).

In perspective of these outcomes, we now characterize the accompanying
subclass of analytic functions of reciprocal order and study its di↵erent prop-
erties.
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Definition 1.1. A function f 2 A is said to be in the class L(a, s, �) with

� 2 C \ {0,
1
2} and a 2 C \ Z�0 , s 2 C, if it satisfies the following inequality

<
✓

1 +
1
�

✓
Js,af(z)
zJ 0s,af(z)

� 1
◆◆

> 0,

where Js,af(z) = Gs,a(z) ⇤ f(z).

Example 1.2: Let us define the function Js,af(z) by

Js,af(z) =
z

(1 + (2� � 1)z)2�/(2��1)
.

This implies that

zJ
0
s,af(z)

Js,af(z)
=

1� z

1 + (2� � 1)z
.

Hence

1 +
1
�

✓
Js,af(z)
zJ 0s,af(z)

� 1
◆

=
1 + z

1� z
,

this further implies that

<
✓

1 +
1
�

✓
Js,af(z)
zJ 0s,af(z)

� 1
◆◆

= <1 + z

1� z
> 0, (z 2 U).

Noonan and Thomas [28] considered the qth Hankel determinant Hq(n),
q � 1, n � 1 for a function f 2 A as

Hq(n) =

��������

an an+1 · · · an+q�1

an+1 · · · · · · · · ·
· · · · · · · · · · · ·

an+q�1 · · · · · · an+2q�2

��������
, a1 = 1.

In the literature, many authors have shed light on the determinant Hq(n),
where H2(2) refer to the second Hankel determinant. After that Janteng et

al. ([16, 17]), Singh and Singh [35], and many authors have studied sharp
upper bounds on H2(2). Yavuz [39] studied the analytic functions defined by
Ruscheweyh derivative and got an upper bound for the second Hankel determi-
nant |a2a4�a3

2| for it in the unit disc. Mishra and Kund [22] studied a class of
analytic functions related to the Carlson-Sha↵er operator in the unit disc and
estimated the second Hankel determinant for this class. Singh and Mehrok [34]
investigated p-valent ↵-convex functions of the form f(z) = z

p +
P1

k=p+1 akz
k

in the unit disc and got the sharp upper bound of |ap+1ap+3 � a
2
p+2| for f(z).



18 K.A. CHALLAB ET AL.

Deniz et al. [10] researched bi-starlike and bi-convex functions of order � which
are important subclasses of bi-univalent functions and obtained for the sec-
ond Hankel determinant H2(2) of these subclasses. Deekonda and Thoutreddy
in [9] by using Toeplitz determinants concentrated on the functions belong-
ing to certain subclasses of analytic functions, and obtained an upper bound
on the second Hankel determinant |a2a4 � a3

2| for this class. Krishna and
Ramreddy [21] by using Toeplitz determinants, considered p-valent starlike
and convex functions of order ↵ and obtained an upper bound on the second
Hankel determinant |ap+1ap+3 � a

2
p+2|. We refer to H3(1) as the third Hankel

determinant. In 2014 Arif et al. [2] studied some families of starlike and con-
vex functions of reciprocal order defined by Al-Oboudi operator and obtained
coe�cient estimates, Fekete-Szegő inequality, and upper bound on third Han-
kel determinant for these families. Recently Mishra et al. [27] investigated
upper bounds on the third Hankel determinants for the starlike and convex
functions with respect to symmetric points in the open unit disc. Shanmugam
et al. [32] investigated the third Hankel determinant, H3(1), for normalized
univalent functions f(z) = z + a2z

2 + ... belonging to the class of ↵ starlike
functions. In 2015 Prajapat et al. [31] focused on the functions belonging to
the class of close-to-convex functions and obtained upper bound on third Han-
kel determinant for this class. Other examples defined on various classes can
be read in [1, 18, 19].

In this paper, the authors study the upper bound on H3(1) for a subclass
of analytic functions of reciprocal order by using Toeplitz determinant. Some
useful results include coe�cient estimates, Fekete-Szegő inequality, and upper
bound of third Hankel determinant for the functions belonging to the class
L(a, s, �).

To achieve the results, we need the following lemmas:

Lemma 1.3 ([30]). If q(z) is a function with <q(z) > 0 and is of the form

q(z) = 1 + c1z + c2z
2 + ..., (10)

then

|cn|  2, for n � 1.

Lemma 1.4 ([20]). If q(z) is of the form (10) with positive real part, then the

following sharp estimate holds:

��c2 � ⌫c1
2
��  2 max{1, |2⌫ � 1|}, for all ⌫ 2 C.

Lemma 1.5 ([15]). If q(z) is of the form (10) with positive real part, then

2c2 = c1
2 + (4� c1

2)x
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and

4c3 = c1
3 + 2c1(4� c1

2)x� c1(4� c1
2)x2 + 2(4� c1

2)(1� |x|2)z,

for some x and z satisfy |x|  1, |z|  1 and c1 2 [0, 2].

2. Some properties of the class L(a, s, �)

Theorem 2.1. Let f(z) 2 L(a, s, �). Then

|a2| 
2|�|⇣
1+a
2+a

⌘s

and for all n = 3, 4, 5, ...

|an| 
2|�|

(n� 1)
⇣

1+a
n+a

⌘s

n�1Y

k=2

✓
1 +

2|�|k
k � 1

◆
.

Proof. The function q(z) can be characterized as

q(z) = 1 +
1
�

✓
Js,af(z)
zJ 0s,af(z)

� 1
◆

,

where Js,af(z) is given by (7) with

Js,af(z) = z +
1X

n=2

✓
1 + a

n + a

◆s

anz
n
,

and q(z) is analytic in U with q(0) = 1, <q(z) > 0.
Now, by using (1) and (10), we get

z +
1X

k=2

Akz
k =

"
1 + �

 1X

k=1

ckz
k

!# 
z +

1X

k=2

kAkz
k

!
,

where

Ak =
✓

1 + a

k + a

◆s

ak. (11)

Comparing coe�cient of z
n, we get

(1� n)An = �
�
cn�1 + 2A2cn�2 + ... + (n� 1)An�1c1

 
. (12)
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Using triangle inequality and Lemma 1.3, we obtain

|(1� n)An|  2|�|
�
1 + 2|A2| + ... + (n� 1)|An�1|

 
. (13)

For n = 2 and n = 3 in (13), we can get the following easily

|a2| 
2|�|⇣
1+a
2+a

⌘s , |a3| 
|�|(1 + 4|�|)⇣

1+a
3+a

⌘s .

Making n = 4 in (13), we note that

|a4| 
2|�|(1 + 4|�|)(1 + 3|�|)

3
⇣

1+a
4+a

⌘s .

In general, by using the principle of mathematical induction, we can obtain

|An| 
2|�|

(n� 1)

n�1Y

k=2

✓
1 +

2|�|k
k � 1

◆
.

Presently, using relation (11), we get the required result:

|an| 
2|�|

(n� 1)
⇣

1+a
n+a

⌘s

n�1Y

k=2

✓
1 +

2|�|k
k � 1

◆
.

With � = 1� ↵ and s = 0, we obtain the following result.

Corollary 2.2 ([14]). Let f(z) 2 S⇤(↵). Then, for n = 3, 4, 5, ..., one has

|an| 
2(1� ↵)
(n� 1)

n�1Y

k=2

✓
1 +

2(1� ↵)k
k � 1

◆

with |a2|  2(1� ↵).

If we make s = 1 and � = 1� ↵, we can get the following easily

Corollary 2.3 ([14]). Let f(z) 2 K⇤(↵). Then, for n = 3, 4, 5, ..., one has

|an| 
2(1� ↵)

(n� 1)
⇣

1+a
n+a

⌘
n�1Y

k=2

✓
1 +

2(1� ↵)k
k � 1

◆

with |a2|  2(1�↵)

( 1+a
2+a ) .
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Theorem 2.4. If f(z) 2 L(a, s, �) and is of the form (1). Then

|a3 � µa2
2|  |�|⇣

1+a
3+a

⌘s max{1, |2⌫ � 1|},

where

⌫ = 2�

✓
1 + a

3 + a

◆s

0

B@
1⇣

1+a
3+a

⌘s �
µ

⇣
1+a
2+a

⌘2s

1

CA . (14)

Proof. Let f(z) 2 L(a, s, �). Then from (12) we have

a2 =
��c1⇣
1+a
2+a

⌘s , a3 =
��

2
⇣

1+a
3+a

⌘s (c2 � 2�c1
2).

We now consider

|a3 � µa2
2| =

|�|

2
⇣

1+a
3+a

⌘s

�������
c2 � 2�

✓
1 + a

3 + a

◆s

0

B@
1⇣

1+a
3+a

⌘s �
µ

⇣
1+a
2+a

⌘2s

1

CA c1
2

�������
.

Using Lemma 1.4, we obtain

|a3 � µa2
2|  |�|⇣

1+a
3+a

⌘s max{1, |2⌫ � 1|},

where ⌫ is given by (14).

Putting µ = 1, we get

Corollary 2.5. If f(z) 2 L(a, s, �). Then

|a3 � a2
2|  |�|⇣

1+a
3+a

⌘s .

Theorem 2.6. Let f(z) 2 L(a, s, �) and be of the form (1). Then

|a2a4 � a3
2| 

2

64
4
⇣

1+a
3+a

⌘2s
+ |�|

⇣
28
⇣

1+a
3+a

⌘2s
+ 24

⇣
1+a
2+a

⌘s⇣
1+a
4+a

⌘s⌘

3
⇣

1+a
2+a

⌘s⇣
1+a
3+a

⌘2s⇣
1+a
4+a

⌘s

+
48|�|2

⇣⇣
1+a
3+a

⌘2s
+
⇣

1+a
2+a

⌘s⇣
1+a
4+a

⌘s⌘
+ 3

⇣
1+a
2+a

⌘s⇣
1+a
4+a

⌘s

3
⇣

1+a
2+a

⌘s⇣
1+a
3+a

⌘2s⇣
1+a
4+a

⌘s

3

75⇥ |�|2.
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Proof. Let f(z) 2 L(a, s, �). Then, from (12), we have

a2 =
��c1⇣
1+a
2+a

⌘s , a3 =
��

2
⇣

1+a
3+a

⌘s (c2 � 2�c1
2)

and a4 =
��

3
⇣

1+a
4+a

⌘s


c3 �

7
2
�c1c2 + 3�

2
c1

3

�
. (15)

Consider

|a2a4 � a3
2| =

������
��c1⇣
1+a
2+a

⌘s · ��

3
⇣

1+a
4+a

⌘s


c3 �

7
2
�c1c2 + 3�

2
c1

3

�

� �
2

4
⇣

1+a
3+a

⌘2s (c2 � 2�c1
2)2

�������

|a2a4 � a3
2| =

���
⇣

�
2

12
⇣

1+a
2+a

⌘s⇣
1+a
3+a

⌘2s⇣
1+a
4+a

⌘s

⌘⇣
4
⇣1 + a

3 + a

⌘2s
c1c3

� 2�

⇣
7
⇣1 + a

3 + a

⌘2s
� 6

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
c2c1

2 + 12�
2
⇣⇣1 + a

3 + a

⌘2s

�
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
c1

4 � 3
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s
c2

2
⌘���.

Now using values of c2 and c3 from Lemma 1.5, we obtain

|a2a4 � a3
2| =

�
2

12
⇣

1+a
2+a

⌘s⇣
1+a
3+a

⌘2s⇣
1+a
4+a

⌘s ⇥
���
n⇣1 + a

3 + a

⌘2s
� �

⇣
7
⇣1 + a

3 + a

⌘2s

� 6
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
+ 12�

2
⇣⇣1 + a

3 + a

⌘2s
�
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘

� 3
4

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘so
c1

4 +
n

2
⇣1 + a

3 + a

⌘2s
� �

⇣
7
⇣1 + a

3 + a

⌘2s

� 6
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
� 3

2

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘so
(4� c1

2)c1
2
x

�
n⇣1 + a

3 + a

⌘2s
c1

2 +
3
4

⇣⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
(4� c1

2)
o

(4� c1
2)x2

+ 2c1

⇣1 + a

3 + a

⌘2s
(4� c1

2)(1� |x|2)z
���.
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Applying triangle inequality and replacing c1 by c, |x| by ⇢, and |z| by 1, we
get

|a2a4 � a3
2|  |�|2

12
⇣

1+a
2+a

⌘s⇣
1+a
3+a

⌘2s⇣
1+a
4+a

⌘s ⇥
hn⇣1 + a

3 + a

⌘2s
+ |�|

⇣
7
⇣1 + a

3 + a

⌘2s

+ 6
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
+ 12|�|2

⇣⇣1 + a

3 + a

⌘2s
+
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘

+
3
4

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘so
c
4 +

n
2
⇣1 + a

3 + a

⌘2s
+ |�|

⇣
7
⇣1 + a

3 + a

⌘2s

+ 6
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
+

3
2

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘so
(4� c

2)c2
⇢

+
n⇣1 + a

3 + a

⌘2s
c
2 +

3
4

⇣⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
(4� c

2)
o

(4� c
2)⇢2

+ 2c

⇣1 + a

3 + a

⌘2s
(4� c

2)(1� ⇢
2)
i

= F (c, ⇢).

Di↵erentiating with respect to ⇢, we get

@F (c, ⇢)
@⇢

=
|�|2

12
⇣

1+a
2+a

⌘s⇣
1+a
3+a

⌘2s⇣
1+a
4+a

⌘s ⇥
hn

2
⇣1 + a

3 + a

⌘2s
+ |�|

⇣
7
⇣1 + a

3 + a

⌘2s

+ 6
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
+

3
2

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘so
(4� c

2)c2

+
n

2
⇣1 + a

3 + a

⌘2s
c
2 +

3
2

⇣⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
(4� c

2)
o

(4� c
2)⇢

� 4c

⇣1 + a

3 + a

⌘2s
(4� c

2)⇢
i
.

Since @F (c,⇢)
@⇢ > 0 for ⇢ 2 [0, 1] and c 2 [0, 2], the maximize of F (c, ⇢) will exist

at ⇢ = 1. Let F (c, 1) = G(c), then

G(c) =
|�|2

12
⇣

1+a
2+a

⌘s⇣
1+a
3+a

⌘2s⇣
1+a
4+a

⌘s ⇥
hn⇣1 + a

3 + a

⌘2s
+ |�|

⇣
7
⇣1 + a

3 + a

⌘2s

+ 6
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
+ 12|�|2

⇣⇣1 + a

3 + a

⌘2s
+
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘

+
3
4

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘so
c
4 +

n
2
⇣1 + a

3 + a

⌘2s
|�|
⇣
7
⇣1 + a

3 + a

⌘2s

+ 6
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
+

3
2

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘so
(4� c

2)c2

+
n⇣1 + a

3 + a

⌘2s
c
2 +

3
4

⇣⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
(4� c

2)
o

(4� c
2)
i
.
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Now by di↵erentiating with respect to c, we obtain

G
0(c) =

|�|2

12
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘2s ⇣
1+a
4+a

⌘s ⇥
h
4
n⇣1 + a

3 + a

⌘2s
+ |�|

⇣
7
⇣1 + a

3 + a

⌘2s

+ 6
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
+ 12|�|2

⇣⇣1 + a

3 + a

⌘2s
+
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘

+
3
4

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘so
c
3 +

n
2
⇣1 + a

3 + a

⌘2s
+ |�|

⇣
7
⇣1 + a

3 + a

⌘2s

+ 6
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
+

3
2

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘so
(8c� 4c

3)

+
n⇣1 + a

3 + a

⌘2s
(8c� 4c

3)� 3
⇣⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
(4c� c

3)
oi

.

Since @G(c)/@c > 0 for c 2 [0, 2], G(c) has a maximum value at c = 2 and
hence

|a2a4 � a3
2|  |�|2

3
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘2s ⇣
1+a
4+a

⌘s

⇥
n

4
⇣1 + a

3 + a

⌘2s
+ |�|

⇣
28
⇣1 + a

3 + a

⌘2s
+ 24

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘

+ 48|�|2
⇣⇣1 + a

3 + a

⌘2s
+
⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘s⌘
+ 3

⇣1 + a

2 + a

⌘s⇣1 + a

4 + a

⌘so
.

Theorem 2.7. Let f(z) 2 L(a, s, �) and be of the form (1). Then

|a2a3 � a4| 
|�|

3
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘s ⇣
1+a
4+a

⌘s

⇥
n

24|�|2
⇣⇣1 + a

4 + a

⌘s
+
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘
+ 2|�|

⇣
3
⇣1 + a

4 + a

⌘s

+ 7
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘
+ 2

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘so
.

Proof. From (15), we can write

|a2a3 � a4| =
|�|

6
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘s ⇣
1+a
4+a

⌘s

⇥
���� 6�

2
⇣⇣1 + a

4 + a

⌘s
�
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘
c1

3 + �

⇣
3
⇣1 + a

4 + a

⌘s

� 7
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘
c1c2 + 2

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s
c3

���.
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Using Lemma 1.5 for the values of c2 and c3, we have

|a2a3 � a4| =
|�|

6
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘s ⇣
1+a
4+a

⌘s

⇥
���
n
� 6�

2
⇣⇣1 + a

4 + a

⌘s
�
⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘
+

�

2

⇣
3
⇣1 + a

4 + a

⌘s

� 7
⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘
+

1
2

⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘so
c1

3 +
n

�

2

⇣
3
⇣1 + a

4 + a

⌘s

� 7
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘
+
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘so
(4� c1

2)c1x

�
n1

2

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘so
c1(4� c1

2)x2

+
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s
(4� c1

2)(1� |x|2z)
���.

Applying triangle inequality and then putting |z| = 1, |x| = ⇢, and c1 = c, we
have

|a2a3 � a4| 
|�|

6
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘s ⇣
1+a
4+a

⌘s

⇥
hn

6|�|2
⇣⇣1 + a

4 + a

⌘s
+
⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘

+
|�|
2

⇣
3
⇣1 + a

4 + a

⌘s
+ 7

⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘

+
1
2

⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘so
c
3

+
n |�|

2

⇣
3
⇣1 + a

4 + a

⌘s
+ 7

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘

+
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘so
(4� c

2)c⇢

+
n1

2

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘so
c(4� c

2)⇢2

+
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s
(4� c

2)(1� ⇢
2)
i

= F (c, ⇢).



26 K.A. CHALLAB ET AL.

Di↵erentiating with respect to ⇢, we get

@F (c, ⇢)
@⇢

=
|�|

6
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘s ⇣
1+a
4+a

⌘s

⇥
hn |�|

2

⇣
3
⇣1 + a

4 + a

⌘s
+ 7

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘

+
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘so
(4� c

2)c

+
n⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘so
c(4� c

2)⇢

� 2
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s
(4� c

2)⇢
i
.

Now since @F (c,⇢)
@⇢ > 0 for c 2 [0, 2] and ⇢ 2 [0, 1], a maximum of F (c, ⇢) will

exist at ⇢ = 1 and let F (c, 1) = G(c). Then

G(c) =
|�|

6
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘s ⇣
1+a
4+a

⌘s

⇥
hn

6|�|2
⇣⇣1 + a

4 + a

⌘s
+
⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘

+
|�|
2

⇣
3
⇣1 + a

4 + a

⌘s
+ 7

⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘

+
1
2

⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘so
c
3

+
n |�|

2

⇣
3
⇣1 + a

4 + a

⌘s
+ 7

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘

+
3
2

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘so
(4� c

2)c
i
.

Now by di↵erentiating with respect to c, we obtain

G
0(c) =

|�|

6
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘s ⇣
1+a
4+a

⌘s

⇥
h
3
n

6|�|2
⇣⇣1 + a

4 + a

⌘s
+
⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘

+
|�|
2

⇣
3
⇣1 + a

4 + a

⌘s
+ 7

⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘
+

1
2

⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘so
c
2

+
n |�|

2

⇣
3
⇣1 + a

4 + a

⌘s
+ 7

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘

+
3
2

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘so
(4� 3c

2)
i
.
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Since @G(c)/@c > 0 for c 2 [0, 2], G(c) has a maximum value at c = 2, hence

|a2a3 � a4| 
|�|

3
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘s ⇣
1+a
4+a

⌘s

⇥
n

24|�|2
⇣⇣1 + a

4 + a

⌘s
+
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘

+ 2|�|
⇣
3
⇣1 + a

4 + a

⌘s
+ 7

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘

+ 2
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘so
.

Theorem 2.8. Let f(z) 2 L(a, s, �) and be of the form (1). Then

|H3(1)|  |�|3(1 + 4|�|)

3
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘3s ⇣
1+a
4+a

⌘s

⇥
h
4
⇣1 + a

3 + a

⌘2s
+ |�|

⇣
28
⇣1 + a

3 + a

⌘2s
+ 24

⇣1 + a

4 + a

⌘s⇣1 + a

2 + a

⌘s⌘

+ 48|�|2
⇣⇣1 + a

3 + a

⌘2s
+
⇣1 + a

4 + a

⌘s⇣1 + a

2 + a

⌘s⌘
+ 3

⇣1 + a

4 + a

⌘s⇣1 + a

2 + a

⌘si

+
4|�|2(1 + 4|�|)(1 + 3|�|)

9
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘s ⇣
1+a
4+a

⌘2s

⇥
h
12|�|2

⇣⇣1 + a

4 + a

⌘s
+
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘

+ |�|
⇣
3
⇣1 + a

4 + a

⌘s
+ 7

⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘s⌘
+
⇣1 + a

3 + a

⌘s⇣1 + a

2 + a

⌘si

+
|�|2(29|�| + 92|�|2 + 96|�|3 + 3)

6
⇣

1+a
5+a

⌘s⇣
1+a
3+a

⌘s .

Proof. Since

|H3(1)|  |a3||a2a4 � a3
2| + |a4||a2a3 � a1a4| + |a5||a3 � a2

2|,
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using Corollary 2.5, Theorem 2.6, Theorems 2.7 and a5, we have

|H3(1)|  |�|(1 + 4|�|)⇣
1+a
3+a

⌘s ⇥ |�|2

3
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘2s ⇣
1+a
4+a

⌘s

⇥
h
4
⇣1 + a

3 + a

⌘2s
+ |�|

⇣
28
⇣1 + a

3 + a

⌘2s
+ 24

⇣1 + a

4 + a

⌘s⇣1 + a

2 + a

⌘s⌘

+ 48|�|2
⇣⇣1 + a

3 + a

⌘2s
+
⇣1 + a

4 + a

⌘s⇣1 + a

2 + a

⌘s⌘
+ 3

⇣1 + a

4 + a

⌘s⇣1 + a

2 + a

⌘si

+
2|�|(1 + 4|�|)(1 + 3|�|)

3
⇣

1+a
4+a

⌘s ⇥ |�|

3
⇣

1+a
2+a

⌘s⇣
1+a
3+a

⌘s⇣
1+a
4+a

⌘s

⇥
h
24|�|2

⇣⇣1 + a

4 + a

⌘s
+
⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘

+ 2|�|
⇣
3
⇣1 + a

4 + a

⌘s
+ 7

⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘
+ 2

⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘si

+
2|�|

⇣
29
3 |�| + 92

3 |�|2 + 32|�|3 + 1
⌘

4
⇣

1+a
5+a

⌘s ⇥ |�|⇣
1+a
3+a

⌘s .

Finally, we have

|H3(1)|  (1 + 4|�|)|�|3

3
⇣

1+a
2+a

⌘s ⇣
1+a
3+a

⌘3s ⇣
1+a
4+a

⌘s

⇥
h
4
⇣1 + a

3 + a

⌘2s
+ |�|

⇣
28
⇣1 + a

3 + a

⌘2s
+ 24

⇣1 + a

4 + a

⌘s⇣1 + a

2 + a

⌘s⌘

+ 48|�|2
⇣⇣1 + a

3 + a

⌘2s
+
⇣1 + a

4 + a

⌘s⇣1 + a

2 + a

⌘s⌘
+ 3

⇣1 + a

4 + a

⌘s⇣1 + a

2 + a

⌘si

+
4|�|2(1 + 4|�|)(1 + 3|�|)

9
⇣

1+a
4+a

⌘2s⇣
1+a
2+a

⌘s⇣
1+a
3+a

⌘s

⇥
h
12|�|2

⇣⇣1 + a

4 + a

⌘s
+
⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘

+ |�|
⇣
3
⇣1 + a

4 + a

⌘s
+ 7

⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘s⌘
+
⇣1 + a

2 + a

⌘s⇣1 + a

3 + a

⌘si

+
|�|2

⇣
29|�| + 92|�|2 + 96|�|3 + 3

⌘

6
⇣

1+a
5+a
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1+a
3+a

⌘s .

This completes the proof.
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A counterexample to a priori bounds
under the Ahmad-Lazer-Paul condition

Alberto Boscaggin and Maurizio Garrione

Abstract. In the context of scalar second order ODEs at resonance,

we construct a counterexample showing that, in general, the Ahmad-

Lazer-Paul condition does not imply a priori bounds for T -periodic so-

lutions.

Keywords: Ahmad-Lazer-Paul condition, Landesman-Lazer condition, a priori bounds,
T -periodic solutions, resonance.
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1. Introduction

The forced scalar second order ODE

x00 + �x + r(t, x) = 0, (1)

where r : R ⇥ R ! R is T -periodic in the t-variable and bounded, is said
to be at resonance if the linear equation x00 + �x = 0 associated with (1)
has a nontrivial T -periodic solution. As is well known, this occurs if and
only if � = �k = (2k⇡/T )2 for some k 2 N = {0, 1, 2, . . .} and prevents, in
general, the T -periodic solvability of (1), which can be guaranteed only under
additional assumptions on the nonlinear term r (see, e.g., [7, 15]). After the
pioneering work [13] dealing with the separate case r(t, x) = g(x) � e(t), two
celebrated such assumptions turned out to be the so-called Landesman-Lazer
(LL) and Ahmad-Lazer-Paul (ALP) conditions. Denoting by ⌃k the eigenspace
associated with the eigenvalue �k (namely, the set of T -periodic solutions of
the equation x00 + �kx = 0), they read as follows:

- (LL) for every ' 2 ⌃k \ {0},
Z

{'>0}

⇣
lim inf
x!+1

r(t, x)
⌘
'(t) dt +

Z

{'<0}

⇣
lim sup
x!�1

r(t, x)
⌘
'(t) dt > 0,

where {' ? 0} = {t 2 [0, T ] | '(t) ? 0};

- (ALP) setting R(t, x) =
R x
0 r(t, s) ds,

lim
k'k1!+1

'2⌃k

Z T

0
R(t,'(t)) dt = +1.
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Such assumptions are the T -periodic versions of the ones given, respectively, in
[12] and in [1] for the Dirichlet problem associated with an elliptic PDE. In the
context of the T -periodic problem, they were originally provided, respectively,
in [14] and in [16], see also [7] for an exhaustive treatment of the subject.
While the Landesman-Lazer condition usually leads to a T -periodic solution of
(1) through topological methods relying on a priori bounds and degree theory,
the Ahmad-Lazer-Paul one allows to prove T -periodic solvability by variational
methods, precisely via the Rabinowitz saddle point theorem.
The aim of this brief note is to highlight that this dichotomy is not only a
matter of the chosen techniques but is substantial, in that the a priori bounds
on the solutions may actually fail under (ALP). Indeed, we are going to prove
the following result.

Theorem 1.1. For every k 2 N, there exists a bounded, continuous and T -

periodic function r : R ⇥ R ! R satisfying (ALP) and such that equation (1),
with � = �k, has a sequence of T -periodic solutions (uj)j with

kujk1 ! +1. (2)

Of course, the function r appearing in the above statement cannot satisfy
condition (LL) (see also Remark 2.2 below).

2. Proof of Theorem 1.1 and related remarks

We start with the easier case k = 0 (with corresponding eigenvalue �0 = 0),
which will indeed provide the idea for the proof in the more interesting case
k > 0. Here, ⌃0 is the 1-dimensional space made up by constant functions and
(1) reads as

x00 + r(t, x) = 0. (3)

The corresponding (ALP) condition is given by

lim
|x|!+1

Z T

0
R(t, x) dt = +1

and a natural choice for r is

r(t, x) = r(x) = sgn (x)| sin(⇡x)|,

where we mean sgn (0) = 0. Of course, such a function satisfies (ALP), but (3)
has the unbounded sequence of T -periodic solutions uj(t) ⌘ j (j 2 N). Notice
that all such uj ’s are multiple of the eigenfunction corresponding to �0, that
is, '0(t) ⌘ 1. This is the key point for the construction of the counterexample
when k � 1.
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In this case, take 0 6= 'k 2 ⌃k, with k'kk1 = 1 (for instance, one may take
'k(t) = cos(

p
�kt)) and, after having set Zk = {t 2 R | 'k(t) = 0}, define

r(t, x) =

8
<

:
sgn (x) |'k(t)|

����sin
✓

⇡x

'k(t)

◆���� if t /2 Zk,

0 if t 2 Zk.

(4)

Notice that Zk is discrete and made up by a countable number of points. Of
course, r is T -periodic in the first variable and |r(t, x)|  1 for every t, x;
moreover, it is immediate to check that for the choice

uj(t) = j'k(t), j 2 N,

it holds
r(t, uj(t)) ⌘ 0.

Thus, uj satisfies (1) - with � = �k - and (2). It remains to show that r is
continuous and satisfies (ALP).

The continuity at the points (t̄, x̄) with t̄ /2 Zk is obvious; on the other hand, if
t̄ 2 Zk and (tn, xn)! (t̄, x̄), then r(tn, xn)! 0 since sgn (xn)| sin(⇡xn/'k(tn)|
is bounded.

Finally, we show that r satisfies (ALP). To this end, we first notice that
R(t, x) � 0 for every t, x and R(t, x) = 0 if and only if t 2 Zk or x = 0;
moreover, it is easy to check that

lim
|x|!+1

R(t, x) = +1, for every t /2 Zk. (5)

Then, we observe that

' 2 ⌃k () '(t) = �'k(t + ✓) for some � � 0, ✓ 2 [0, T ],

so that k'k1 = � does not depend on ✓. Hence, the Ahmad-Lazer-Paul con-
dition (ALP) can be equivalently written as

lim
�!+1

Z T

0
R(t, �'k(t + ✓)) dt = +1, uniformly in ✓ 2 [0, T ]. (6)

We then show that r satisfies (6). By contradiction, let us assume that there
exist M > 0 and two sequences (�n)n, (✓n)n, with �n ! +1 and ✓n ! ✓̄ 2
[0, T ] such that

Z T

0
R(t, �n'k(t + ✓n)) dt M (7)
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for every n. Passing to the inferior limit at both sides and using Fatou’s Lemma
(recall that R(t, x) � 0), we obtain

Z

[0,T ]\(Zk[Z̄)
lim inf
n!+1

R(t, �n'k(t + ✓n)) dt


Z T

0
lim inf
n!+1

R(t, �n'k(t + ✓n)) dt M,

where Z̄ = {t 2 [0, T ] | 'k(t + ✓̄) = 0}. For every t 2 [0, T ] \ (Zk [ Z̄), we now
have that |�n'k(t + ✓n)|! +1, so that, by (5), we deduce that

lim inf
n!+1

R(t, �n'k(t + ✓n)) = +1 for every t 2 [0, T ] \ (Zk [ Z̄).

This contradicts (7) and eventually concludes the proof of Theorem 1.1.
Remark 2.1: By defining

r(t, x) =

8
<

:
sgn (x) |'k(t)|↵

����sin
✓

⇡x

'k(t)

◆����
↵

if t /2 Zk,

0 if t 2 Zk

for ↵ su�ciently large, it is possible to construct similar counterexamples where
the nonlinear term enjoys higher regularity.

Remark 2.2: It is clear that the function r defined in (4) does not satisfy any
kind of Landesman-Lazer condition, since

lim inf
x!+1

r(t, x) = 0 = lim sup
x!�1

r(t, x),

so that the left-hand side in (LL) is identically equal to 0 (recall that as shown,
e.g., in [8], (ALP) is weaker than (LL)). It can also be seen that r satisfies the
so-called potential Landesman-Lazer condition [18], an intermediate condition
between (LL) and (ALP), reading as

Z

{'>0}

⇣
lim inf
x!+1

R(t, x)
x

⌘
'(t) dt +

Z

{'<0}

⇣
lim sup
x!�1

R(t, x)
x

⌘
'(t) dt > 0

for every ' 2 ⌃k \{0}, so that also in this case the a priori bounds do not work
(indeed, the arguments used in [18] are variational).

Remark 2.3: The previous discussion can be extended with no di�culty to the
case of resonance with respect to the Dancer-Fučik spectrum, namely replacing
(1) by

x00 + µx+ � ⌫x� + r(t, x) = 0,

where ⇡/
p

µ + ⇡/
p

⌫ = T/k. In this case, the Ahmad-Lazer-Paul condition
to be considered has been given in [2, 4, 11], while the Landesman-Lazer one
dates back to [6].
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Remark 2.4: We observe that the provided counterexample can be extended
to several di↵erent situations. For instance, with obvious modifications we
can deal with Dirichlet and Neumann boundary conditions; in this case, the
proof can be considerably simplified, since the eigenspaces are 1-dimensional
and thus there is no dependence on ✓ in (6). More in general, one could adapt
the discussion to the equation

(p(t)x0)0 + �w(t)x + r(t, x) = 0,

where p(t) > 0 and w(t) � 0 for every t 2 (0, T ) and suitable regular-
ity/summability assumptions on p and q are fulfilled, together with boundary
conditions of Sturm-Liouville type

⇢
↵x(0) + �x0(0) = 0
�x(T ) + �x0(T ) = 0.

It is worth noticing that the search for radial solutions of boundary value prob-
lems associated with a second order elliptic PDE enters this setting. Again,
the main point is here that there is a sequence of eigenvalues whose associ-
ated eigenspace is 1-dimensional and the nodal properties of the corresponding
eigenfunctions are known. However, our counterexample becomes much more
meaningful if both (LL) and (ALP) provide existence for the considered bound-
ary value problem; from this point of view, existence results of Landesman-
Lazer and Ahmad-Lazer-Paul type in this more general setting seem not com-
pletely established in literature, especially for what concerns condition (ALP)
(cf. [5, 17] and the references therein).

Remark 2.5: We finally mention that an alternative way to prove the exis-
tence of T -periodic solutions under the Landesman-Lazer condition is based
on the Poincaré-Bohl theorem, as in [9]. Within this approach, condition (LL)
plays a role in showing that large-norm (in the phase-plane) solutions of the
Cauchy problems associated with (1) do not have integer rotation number (a
property which has been highlighted in [3] and later improved in other contexts,
e.g., [10]). Of course, such a property implies a priori bounds for T -periodic
solutions1, so that our example also shows that the Poincaré-Bohl approach
fails under the sole Ahmad-Lazer-Paul condition.
Acknowledgements. The authors acknowledge the support of GNAMPA-
INDAM (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro
Applicazioni, Istituto Nazionale di Alta Matematica “F. Severi”, Rome). They
also wish to thank the anonymous referee for her/his valuable comments and
suggestions.

1However, in general the converse does not hold, as is well seen already in the linear
case: the equation x00 + x = 2 cos t is solved by the unbounded family of functions {xA(t) =
(A+ t) sin t}A2R, having winding number equal to 1 on [0, 2⇡], but does not have 2⇡-periodic
solutions.



38 A. BOSCAGGIN AND M. GARRIONE

References

[1] S. Ahmad, A.C. Lazer, and J.L. Paul, Elementary critical point theory and
perturbations of elliptic boundary value problems at resonance, Indiana Univ.
Math. J. 25 (1976), 933–944.

[2] D. Bonheure and C. Fabry, A variational approach to resonance for asym-
metric oscillators, Comm. Pure Appl. Anal. 6 (2007), 163–181.

[3] A. Boscaggin and M. Garrione, Resonance and rotation numbers for pla-
nar Hamiltonian systems: Multiplicity results via the Poincaré-Birkho↵ theorem,
Nonlinear Anal. 74 (2011), 4166–4185.

[4] A. Boscaggin and M. Garrione, Planar Hamiltonian systems at reso-
nance: the Ahmad-Lazer-Paul condition, NoDEA Nonlinear Di↵erential Equa-
tions Appl. 20 (2013), 825–843.

[5] A. Boscaggin and M. Garrione, Resonant Sturm-Liouville boundary value
problems for di↵erential systems in the plane, Z. Anal. Anwend. 35 (2016), 41–
59.

[6] C. Fabry, Landesman-Lazer conditions for periodic boundary value problems
with asymmetric nonlinearities, J. Di↵erential Equations 116 (1995), 405–418.

[7] A. Fonda, Playing Around Resonance - An Invitation to the Search of Periodic
Solutions for Second Order Ordinary Di↵erential Equations, Birkhäuser, 2016.
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Asymptotic behavior for the elasticity
system with a nonlinear dissipative

term
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Abstract. We study the asymptotic behavior of an elasticity prob-
lem with a nonlinear dissipative term in a bidimensional thin domain
⌦". We prove some convergence results when the thickness tends to
zero. The specific Reynolds limit equation and the limit of Tresca free
boundary conditions are obtained.
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equation, variational formulation.
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1. Introduction and mathematical model

The topic dealing with propagation of elastic waves with dissipative term is a
subject of considerable interest due to its industrial applications such as the
dynamics of rubbers, silicones, and gels. Furthermore, in quantum mechanics
the dissipation term determines the phenomenon according to which a dynamic
system (wave, oscillation...) loses energy with time, where this energy turns
into heat. Heat production occurs usually when there is friction between two
bodies, and is mathematically modeled adding to the equation of motion a
term dependent on the velocity. From a theoretical point of view, the math-
ematics and mechanics of wave phenomena with dissipation is a classical yet
still active subject of research, where many studies have been published in this
field. We cite among these the article [15], where Lions studied theoretically
the problem for the wave equation with Dirichlet boundary conditions and a
nonlinear dissipative term

��@u

@t

��p @u

@t
, in which the author proved the existence

and the uniqueness of the solution. In [11] Georgiev and Todorova studied the
nonlinear wave equation involving the nonlinear damping term

��@u

@t

��m�1
@u

@t
and

a source term of type |u|p�1
u, from large initial data, they proved a global

existence theorem for 1 < p  m and a blow-up result for 1 < m < p. In [3],
Benaissa and Messaoudi studied the stability of solutions to the nonlinear wave
equation with the nonlinear dissipative term ↵

⇣
1 +

��@u

@t

��m�2
⌘

@u
"

@t
and proved

for his solution that energy decays exponentially. Lagnese [13] , proved some
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uniform stability results of elasticity systems with linear dissipative term.
In our paper, we study the asymptotic behavior of the hyperbolic equation
governed by a thin, isotropic and homogeneous elastic membrane in the dy-
namic regime with a dissipative term

�
↵

" +
��@u

"

@t

��� @u
"

@t
in a two dimensional

thin domain ⌦". It is worth noting that the boundary conditions for our prob-
lem consist of two conditions: The first is Dirichlet boundary condition on the
top and lateral parts, the other condition is Tresca’s friction law over lower
part of the border. This friction law has a threshold of friction (coe�cient of
friction) k

", when the elastic membrane and the foundation are in contact, the
foundation exerts on the elastic membrane a tangential e↵ort which does not
exceed the threshold k

". As long as the tangential stress has not reached the
threshold k

", the elastic membrane can not move relative to the foundation
and there is blockage. When this threshold is reached, the elastic membrane
can move tangentially relative to the foundation and then there is a slip. Some
research for initial and boundary value problems involving Tresca friction law
can be found in [10, 17].
In the literature, the asymptotic behavior of partial di↵erential equations in a
thin domain, particularly those governed by elastic systems has been widely
studied. Ciarlet and Destuynder [9] studied equilibrium states of a thin plate
⌦⇥ (�", +") under external forces where ⌦ is a smooth domain in R2 and " is
a small parameter, to justify the two-dimensional model of the plates. In the
paper [16] Paumier studied the asymptotic modeling of a thin elastic plate in
unilateral contact with friction against a rigid obstacle (Signorini problem with
friction) where he proved that any family of solutions of the three-dimensional
problem of Signorini with friction strongly converges towards an unique solution
of a two-dimensional problem of plate of the type Signorini without friction.
Léger and Miara in [14] justified of a mechanical model for an elastic shallow
shell in frictionless unilateral contact with an obstacle using the asymptotic
analysis. In [5, 6] Benseridi and Dilmi studied the asymptotic analysis of linear
elasticity with the nonlinear terms |u"|p�2

u
" in the stationary case, in [4] they

analyzed the asymptotic behavior of a dynamical problem of isothermal elastic-
ity with nonlinear friction of Tresca’s type but without including the nonlinear
dissipative term. Bayada and Lhalouani [2] investigated the asymptotic and
numerical analysis for a unilateral contact problem with Coulomb’s friction be-
tween an elastic body and a thin elastic soft layer. The reader can also review
some articles that are interested in studying the asymptotic analysis of some
fluid mechanics problems in a thin domain for the stationary case [1, 7, 8].
Our paper is structured as follows. In Section 1 we present the form of the do-
main ⌦", then we give the basic equations. In Section 2 we derive the variational
formulation of the problem and give the theorem of existence and uniqueness
of the weak solution. In Section 3 by a scale change we carry out the asymp-
totic analysis, in which the small parameter (thickness) of the domain tends to
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zero. Using Gronwall’s lemma and Korn’s inequality we establish some param-
eter independent estimates for the displacement and velocity fields. Finally in
Section 4 we go to the limit when the thickness tends to zero, we derive the
convergence theorem and find the limiting problem, for which we study the
solution.

Let ⌦" be a bounded domain of R2, where " is a small parameter which
ultimately will tend to zero, the boundary of ⌦" will be denoted by �" =
�̄"

1 [ �̄"

L
[ !̄, where �"

1 is the upper boundary of equation y = "h(x), �"

L
=

{x = 0} [ {x = l} is the lateral boundary and ! = ]0, l[ is a bounded interval,
which constitutes the bottom of the domain ⌦". For all x

0 = (x, y) 2 R2, the
domain ⌦" is given by

⌦" = {x0 2 R2 : 0 < x < l, 0 < y < "h(x)},

where h (.) is a function of class C
1 defined on [0, l] such that

0 < h = hmin  h(x)  hmax = h, 8x 2 [0, l] .

Let u
"(x0, t) be the displacement field, then the law of elastic behavior is given

by

�
"

ij
(u") = 2µdij(u") + �

2X

k=1

dkk(u")�ij ,

1  i, j  2; dij(u") =
1
2

✓
@u

"

i

@xj

+
@u

"

j

@xi

◆
,

where �ij is the Krönecker symbol, �, µ are the Lamé constants and dij(.) the
strain tensor.

The equation which governs the deformations of an isotropic elastic ho-
mogeneous body with a nonlinear dissipative term in dynamic regime is the
following

@
2
u

"

@t2
� div (�" (u")) +

✓
↵

" +
����
@u

"

@t

����

◆
@u

"

@t
= f

"
, in ⌦" ⇥ ]0, T [ , (1)

where |.| denotes the Euclidean norm of R2, f
" represents a force density and

↵
" 2 R+.

To describe the boundary conditions we use the usual notation

u
"

n
= u

"
.n, u

"

⌧
= u

" � u
"

n
.n, �

"

n
= (�"

.n) .n, �
"

⌧
= �

"
.n� (�"

n
) .n,

where n = (n1, n2) is the unit outward normal to �".
• The displacement is known on �"

1⇥]0, T [ and on �"

L
⇥]0, T [

u
" (x, h (x) , t) = 0 on �"

1⇥]0, T [, (2)
u

" (0, y, t) = u
" (l, y, t) = 0 on �"

L
⇥]0, T [.
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• On ! the velocity is assumed unknown and satisfies the following condition

@u
"

@t
.n = 0 on ]0, l[⇥]0, T [. (3)

• There exists friction on !, this friction is modeled by the nonlinear Tresca’s
law (see [10])

|�"

⌧
| < k

" )
�

@u
"

@t

�
⌧

= 0,
|�"

⌧
| = k

" ) 9� > 0 such that
�

@u
"

@t

�
⌧

= ���"

⌧

�
on ]0, l[⇥]0, T [, (4)

where k
" 2 C

1
0 (]0, l[), k

"
> 0 does not depend of t.

The problem consists in finding u
" satisfying (1)-(4) and the following initial

conditions

u
"(x0, 0) = #0(x0),

@u
"

@t
(x0, 0) = #1(x0), 8x0 2 ⌦". (5)

2. Weak formulation

Let L
p (⌦) be the space of real scalar or real vector functions on ⌦ whose

p
th power is absolutely integrable with respect to Lebesgue measure dx

0. This
is a Banach space with the norm

kuk
Lp(⌦) =

✓Z

⌦
|u|p dx

0
◆ 1

p

, 1  p < 1.

The Sobolev space H
1 (⌦) is the space of functions in L

2 (⌦) with first order
distributional derivatives also in L

2 (⌦). The norm of this space is
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H1(⌦) =
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L2(⌦)
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2

.

To find the weak formulation, we recall that Tresca’s boundary condition (4)
is equivalent to
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Multiplying (1) by
�
'� @u

"
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�
where ' is test-function, then integrating over

⌦" and using the Green‘s formula, we obtain
Z

⌦"

@
2
u

"

@t2

✓
'� @u

"

@t

◆
dx
0 +
Z

⌦"

�
"
.r
✓
'� @u

"

@t

◆
dx
0

�
Z

�"

�
"
.n

✓
'� @u

"

@t

◆
dx
0 +
Z

⌦"

✓
↵

" +
����
@u

"

@t

����

◆
@u

"

@t

✓
'� @u

"

@t

◆
dx
0

=
Z

⌦"

f
"

✓
'� @u

"

@t

◆
dx
0, (7)

on the other hand, the boundary condition (2)-(3) implies that
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going back to (7), we get
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Using (6) and the fact that
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we get the following variational formulation
8
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>>>>>>>>>>>>>>>:
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(8)
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where
K

" =
�
v 2 H

1(⌦")2 : v = 0 on �"

1 [ �"

L
, v.n = 0 on !

 
,

j
"(v) =

Z
l

0
k

" |v| dx, 8v 2 H
1(⌦")2,

a(u, v) = 2µ

Z
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d (u) d (v) dxdy + �

Z

⌦"

div (u) div (v) dxdy,

with

d (u) d (v) =
2X

i,j=1

dij (u) .dij (v) .

Theorem 2.1. Under the assumptions

f
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2
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0, T, L

2 (⌦")2
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,

#0 2 H
1(⌦")2, #1 2 H

1(⌦")2, (#1)⌧ = 0, (9)

there exists a unique solution u
" of (8) such that

u
"
,
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1(⌦")2
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@
2
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⌘

.

The proof of this theorem proceeds in a similar fashion as in Lions [10, 15].

3. Change of the domain and some estimates

In this section, we use the technique of scaling z = y/" for studying the asymp-
totic analysis of the problem (8). This method consists in transposing the
initial problem posed in the domain ⌦" to an equivalent problem posed in a
fixed domain ⌦ independent of " :

⌦ = {(x, z) 2 R2 : 0 < x < l, 0 < z < h(x)},

and � = �1 [ �L [ ! its boundary. We define on ⌦ the new unknowns and the
data ⇢

û
"

1 (x, z, t) = u
"

1 (x, y, t) ,
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2 (x, z, t) = "
�1

u
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2 (x, y, t) ,
⇢

f̂i (x, z, t) = "
2
f

"

i
(x, y, t) , i = 1, 2,

k̂ = "k
", ↵̂ = "

2
↵

",

where f̂i, i = 1, 2, k̂ and ↵̂ do not depend on ".
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Moreover, we define some function spaces on ⌦
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Vz is a Banach space for the norm
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.

Multiplying (8) by " then we inject the new variables and the new data, we
obtain the following variational formulation on the fixed domain ⌦.
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@û
"

1

@t

◆2

+
✓
"
@û
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@û
"

2

@t

◆
, 8'̂ 2 K,

û
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@û
"

@t
(0) = #̂1,

(10)

where

Ĵ ('̂) =
Z

l

0
k̂ |'̂| dx,
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and
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@û

"

1

@z
+ "

2 @û
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"

@t

◆
dxdz.

For the rest of this paper, we will denote by c possibly di↵erent positive con-
stants and we establish some estimates for the displacement field û

" in the
domain ⌦.

Theorem 3.1. Under the hypotheses of Theorem 2.1, there exists a constant c

independent of " such that
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Proof. First, we recall some inequalities
- Poincaré’s inequality

ku"k
L2(⌦")  "h̄ kru

"k
L2(⌦") .

- Young’s inequality

ab  ⌘
2 a

2

2
+ ⌘

�2 b
2

2
, 8 (a, b) 2 R2

,8⌘ > 0.
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- Korn’s inequality [12]
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where h̄ and CK are constants independent of ".
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For s 2 ]0, t[ by integration we get
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On the other hand, we have
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using Poincaré’s and Young’s inequalities, we obtain
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By inserting (14) in (13), and using Korn’s inequality, we find
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multiplying (15) by " we deduce that
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A =
���#̂1

���
2

L2(⌦)
+ (1 + 2µ + 3�)

���r#̂0

���
2

L2(⌦)
+ 4h̄

2
���f̂ (0)

���
2

L2(⌦)

+
4h̄

2

µCK

���f̂
���

2

L1(0,T,L2(⌦)2)
+

4h̄
2

µCK

�����
@f̂

@t

�����

2

L2(0,T,L2(⌦)2)
.

Now using Gronwall’s lemma, we have
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from which (11) follows.
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To show (12) we consider the approximate equation as in [15]
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Integrating this inequality over (0, t) and use Korn’s inequality, we get
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On the other hand, using Cauchy-Schwarz’s, Poincaré’s and Young’s inequali-
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ties, we obtain
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We use the same techniques for the other terms, so we will have the following
inequality
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µCK

����
@f

"

@t
(0)
����

2

L2(⌦")

+
4
�
"h̄
�2

µCK

Z
t

0

����
@

2
f

" (s)
@t2

����
2

L2(⌦")

ds + µCK kr#1k2L2(⌦")

+
4
�
"h̄
�2

µCK

����
@f

"

@t

����
2

L2(⌦")

+ µCK

Z
t

0

����r
@u

"

⇣
(s)

@t

����
2

L2(⌦")

ds. (17)

Now let us estimate @
2
u

"
⇣

@t2
(0). From (16) and (9) we deduce

 
@

2
u

"

⇣

@t2
(0) ,'

!
= (f" (0) ,')� a(#0,')� ↵

" (#1,')� (|#1|#1,') ,8' 2 K
".
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Therefore

�����

 
@

2
u

"

⇣

@t2
(0) ,'

!�����

 "h̄ kf" (0)k
L2(⌦") kr'kL2(⌦") + (2µ + 3�) k#0kH1(⌦") k'kH1(⌦")

+ ↵
" k#1kL2(⌦") k'kL2(⌦") +

✓Z

⌦"

|#1|4 dxdy

◆ 1
2

k'k
L2(⌦")


⇣
"h̄ kf" (0)k

L2(⌦") + (2µ + 3�) k#0kH1(⌦")

⌘
k'k

H1(⌦")

+

 
↵̂h̄

2 kr#1kL2(⌦") + "h̄

✓Z

⌦"

|#1|4 dxdy

◆ 1
2
!
k'k

H1(⌦") .

As " 3
2 kf" (0)k

L2(⌦") =
���f̂ (0)

���
L2(⌦)

, we multiply this last inequality by
p
".

Then using Sobolev embedding kvk
L4(⌦)  cs kvkH1(⌦), we get

p
"

�����
@

2
u

"

⇣

@t2
(0)

�����
L2(⌦")

 C
0,

where

C
0 = h̄

���f̂ (0)
���

L2(⌦)
+ (2µ + 3�)

���#̂0

���
H1(⌦)

+ ↵̂h̄
2
���#̂1

���
H1(⌦)

+ h̄cs

���#̂1

���
2

H1(⌦)

is independent of ". Passing to the limit in (17) when ⇣ tends to zero, we find

"����
@

2
u

"

@t2

����
2

L2(⌦")

+ µCK

����r
@u

"

@t

����
2

L2(⌦")

#

����
@

2
u

"

@t2
(0)
����

2

L2(⌦")

+ (2µ + 3�+ µCK) kr#1k2L2(⌦") +
4
�
"h̄
�2

µCK

����
@f

"

@t
(0)
����

2

L2(⌦")

+
4
�
"h̄
�2

µCK

Z
t

0

����
@

2
f

" (s)
@t2

����
2

L2(⌦")

ds +
4
�
"h̄
�2

µCK

����
@f

"

@t

����
2

L2(⌦")

+
Z

t

0

"����
@

2
u

" (s)
@t2

����
2

L2(⌦")

+ µCK

����r
@u

" (s)
@t

����
2

L2(⌦")

#
ds. (18)
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Multiplying now (18) by ", we obtain

"

"����
@

2
u

"

@t2

����
2

L2(⌦")

+ µCK

����r
@u

"

@t

����
2

L2(⌦")

#


Z

t

0
"

"����
@

2
u

" (s)
@t2

����
2

L2(⌦")

+ µCK

����r
@u

" (s)
@t

����
2

L2(⌦")

#
ds + B,

where B is a constant does not depend of "

B = (2µ + 3�+ µCK)
���r#̂1

���
2

L2(⌦)
+ (C 0)2 +

4h̄
2

µCK

�����
@f̂

@t
(0)

�����

2

L2(⌦)

+
4h̄

2

µCK

�����
@f̂

@t

�����

2

L1(0,T,L2(⌦)2)
+

4h̄
2

µCK

�����
@

2
f̂

@t2

�����

2

L2(0,T,L2(⌦)2)
.

By the Gronwall’s lemma, there exists a constant c that does not depend of "
such that

"

����
@

2
u

"

@t2

����
2

L2(⌦")

+ "

����r
@u

"

@t

����
2

L2(⌦")

 c,

we conclude (12).

4. Convergence theorem and limiting problem

Theorem 4.1. Under the hypotheses of Theorem 3.1,
there exists u

⇤
1 2 L

2 (0, T, Vz) \ L
1 (0, T, Vz), such that

û
"

1 * u
⇤
1

@û
"
1

@t
*

@u
⇤
1

@t

)
weakly in L

2 (0, T, Vz)
and weakly ⇤ in L

1 (0, T, Vz) , (19)

"
@û

"
1

@x
* 0

"
@
2
û

"
1

@x@t
* 0

)
weakly in L

2
�
0, T, L

2 (⌦)
�

and weakly ⇤ in L
1 �0, T, L

2 (⌦)
�
,

(20)

"
@û

"
1

@t
* 0

"
@
2
û

"
1

@t2
* 0

)
weakly in L

2
�
0, T, L

2 (⌦)
�

and weakly ⇤ in L
1 �0, T, L

2 (⌦)
�
,

(21)

"
2 @û

"
2

@x
* 0

"
2 @

2
û

"
2

@x@t
* 0

)
weakly in L

2
�
0, T, L

2 (⌦)
�

and weakly ⇤ in L
1 �0, T, L

2 (⌦)
�
,

(22)
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"
2 @û

"
2

@t
* 0

"
2 @

2
û

"
2

@z@t
* 0

"
2 @

2
û

"
2

@t2
* 0

9
>>=

>>;

weakly in L
2
�
0, T, L

2 (⌦)
�

and weakly ⇤ in L
1 �0, T, L

2 (⌦)
�
,

(23)

"
2
3

@û
"
1

@t
* 0

"
5
3

@û
"
2

@t
* 0

)
weakly in L

3
�
0, T, L

3 (⌦)
�

. (24)

Proof. According to Theorem 3.1, there exists a constant c independent of "
such that ����

@û
"

1

@z

����
2

L2(⌦)

 c.

Using this estimate with the Poincaré inequality in the domain ⌦, we get

kû"

1k
2
L2(⌦)  h̄

����
@û

"

1

@z

����
2

L2(⌦)

 c.

So (û"

1)"
is bounded in L

2 (0, T, Vz)\L
1 (0, T, Vz), which implies the existence

of an element u
⇤
1 in L

2 (0, T, Vz)\L
1 (0, T, Vz) such that (û"

1)"
converges weakly

to u
⇤
1 in L

2 (0, T, Vz)\L
1 (0, T, Vz), the same for

⇣
@û

"
1

@t

⌘

"

, thus we obtain (19).
For (20)-(24), according to (11), (12) and (19).

Theorem 4.2. Under the hypotheses of Theorem 4.1, the limit u
⇤
1 satisfies the

following variational inequality

µ

Z

⌦

@u
⇤
1

@z
.
@

@z

✓
'̂1 �

@u
⇤
1

@t

◆
dxdz + ↵̂

Z

⌦

@u
⇤
1

@t
.

✓
'̂1 �

@u
⇤
1

@t

◆
dxdz

+ Ĵ ('̂)� Ĵ

✓
@u

⇤
1

@t

◆
�
✓

f̂1, '̂1 �
@u

⇤
1

@t

◆
, 8'̂ 2 ⇧ (K) , (25)

and the parabolic problem
8
<

:
�µ

@
2
u
⇤
1

@z2
(t) + ↵̂

@u
⇤
1

@t
(t) = f̂1 (t) , in L

2 (⌦) ,

u
⇤
1 (x, z, 0) = #̂0,1.

(26)

Proof. As Ĵ (·) is convex and lower semicontinuous i.e

lim
"!0

 
inf
Z

l

0
k̂

����
@û

"

1

@t

���� dx

!
�
Z

l

0
k̂

����
@u

⇤
1

@t

���� dx,
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we pass to the limit when " tends to zero in (10) and using the convergence
results of the Theorem 4.1, we find the following limit inequality

µ

Z

⌦

@u
⇤
1

@z
· @
@z

✓
'̂1 �

@u
⇤
1

@t

◆
dxdz + ↵̂

Z

⌦

@u
⇤
1

@t
·
✓
'̂1 �

@u
⇤
1

@t

◆
dxdz

+ Ĵ ('̂)� Ĵ

✓
@u

⇤
1

@t

◆
�
Z

⌦
f̂1

✓
'̂1 �

@u
⇤
1

@t

◆
dxdz. (27)

We now choose in the variational inequality (27)

'̂1 =
@u

⇤
1

@t
±  ,  2 H

1
0 (⌦) ,

we find
µ

Z

⌦

@u
⇤
1

@z

@ 

@z
dxdz + ↵̂

Z

⌦

@u
⇤
1

@t
·  dxdz =

Z

⌦
f̂1 dxdz.

According to Green’s formula, we obtain

�
Z

⌦
µ
@

@z

✓
@u

⇤
1

@z

◆
 dxdz +

Z

⌦
↵̂
@u

⇤
1

@t
·  dxdy =

Z

⌦
f̂1 dxdz, 8 2 H

1
0 (⌦) .

Therefore

�µ
@

2
u
⇤
1 (t)

@z2
+ ↵̂

@u
⇤
1 (t)
@t

= f̂1 (t) , in H
�1 (⌦) , 8t 2 ]0, T [ , (28)

and, as f̂1 2 L
2 (⌦), then (28) is valid in L

2 (⌦).

Theorem 4.3. Under the same assumptions of Theorem 4.1, the traces

⌧
⇤ (x, t) =

@u
⇤
1

@z
(x, 0, t) and s

⇤ (x, t) = u
⇤
1 (x, 0, t)

satisfy the following inequality
Z

l

0
k̂

✓���� +
@s
⇤

@t

�����
����
@s
⇤

@t

����

◆
dx�

Z
l

0
µ⌧

⇤
 dx � 0, 8 2 L

2 (]0, l[) , (29)

and the following limit form of the Tresca boundary conditions

µ |⌧⇤| < k̂ ) @s
⇤

@t
= 0,

µ |⌧⇤| = k̂ ) 9� > 0 such that
@s

⇤

@t
= ��⌧⇤,

)
a.e on ]0, l[⇥ ]0, T [ . (30)

Moreover u
⇤
1 and s

⇤ satisfies the following weak form of the Reynolds equation
Z

l

0

 
F̃ � h

2
s
⇤ +

Z
h

0
u
⇤
1 (x, z, t) dz + Ũ1

!
 
0
(x) dx = 0, 8 2 H

1 (]0, l[) ,

(31)
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where

F̃ (x, h, t) =
1
µ

Z
h

0
F (x, z, t) dz � h

2µ
F (x, h, t) ,

Ũ1 (x, h, t) = � ↵̂
µ

Z
h

0
U1 (x, z, t) dz +

↵̂h

2µ
U1 (x, h, t) ,

F (x, z, t) =
Z

z

0

Z
⇣

0
f̂1 (x, ⌘, t) d⌘d⇣,

U1 (x, z, t) =
Z

z

0

Z
⇣

0

@u
⇤
1

@t
(x, ⌘, t) d⌘d⇣.

Proof. For the proof of (29), (30), we follow the same steps as in [1]. To prove
(31) by integrating (26) from 0 to z, we see that

�µ
@u

⇤
1

@z
(x, z, t) + µ

@u
⇤
1

@z
(x, 0, t) + ↵̂

Z
z

0

@u
⇤
1

@t
(x, ⌘, t) d⌘ =

Z
z

0
f̂1 (x, ⌘, t) d⌘.

Integrating again between 0 to z, we obtain

u
⇤
1 (x, z, t) = s

⇤ + z⌧
⇤ +

↵̂

µ

Z
z

0

Z
⇣

0

@u
⇤
1

@t
(x, ⌘, t) d⌘d⇣

� 1
µ

Z
z

0

Z
⇣

0
f̂1 (x, ⌘, t) d⌘d⇣, (32)

in particular for z = h (x) we get

s
⇤ + h⌧

⇤ = � ↵̂
µ

Z
h

0

Z
⇣

0

@u
⇤
1

@t
(x, ⌘, t) d⌘d⇣ +

1
µ

Z
h

0

Z
⇣

0
f1 (x, ⌘, t) d⌘d⇣. (33)

Integrating (32) from 0 to h, we obtain

Z
h

0
u
⇤
1 (x, z, t) dz = hs

⇤ +
1
2
h

2
⌧
⇤ +

↵̂

µ

Z
h

0

Z
z

0

Z
⇣

0

@u
⇤
1

@t
(x, ⌘, t) d⌘d⇣dz

� 1
µ

Z
h

0

Z
z

0

Z
⇣

0
f̂1 (x, ⌘, t) d⌘d⇣dz. (34)

From (33) and (34), we deduce that

Z
h

0
u
⇤
1 (x, z, t) dz � h

2
s
⇤ + F̃ + Ũ1 = 0,
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with

F̃ (x, h, t) =
1
µ

Z
h

0
F (x, z, t) dz � h

2µ
F (x, h, t) ,

Ũ1 (x, h, t) = � ↵̂
µ

Z
h

0
U1 (x, z, t) dz +

↵̂h

2µ
U1 (x, h, t) ,

F (x, z, t) =
Z

z

0

Z
⇣

0
f̂1 (x, ⌘, t) d⌘d⇣,

U1 (x, z, t) =
Z

z

0

Z
⇣

0

@u
⇤
1

@t
(x, ⌘, t) d⌘d⇣.

Therefore
Z

l

0

 Z
h

0
u
⇤
1 (x, z, t) dz � h

2
s
⇤ + F̃ + Ũ1

!
 
0
(x) dx = 0.

Theorem 4.4. The solution u
⇤
1 of the limiting problem (25), (26) is unique in

L
2 (0, T, Vz) \ L

1 (0, T, Vz).

Proof. Suppose that there exist two solutions u
⇤
1 and u

⇤⇤
1 of the variational

inequality (25), we have

µ
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⌦
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◆
, (35)

and

µ
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1
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⌦
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1

@t
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1
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◆
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◆
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✓
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◆
. (36)

We take '̂ = @u
⇤⇤
1

@t
in (35), then '̂ = @u

⇤
1

@t
in (36), and by summing the two

inequalities, we obtain
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Z

⌦

@
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✓
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1
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� @u

⇤⇤
1
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If we put W̄ (t) = u
⇤
1 (t)� u

⇤⇤
1 (t), this implies

µ
d

dt

����
@W̄

@z

����
2

L2(⌦)

+ ↵̂

����
@W̄

@t

����
2

L2(⌦)

 0.

We have W̄ (0) = 0, then we find
����
@W̄

@z

����
2

L2(⌦)

 0.

Using Poincaré’s inequality, we conclude
��W̄

��
L2(0,T,Vz)

=
��W̄

��
L1(0,T,Vz)

= 0.
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Change of variables’ formula for the
integration of the measurable real
functions over infinite-dimensional

Banach spaces

Claudio Asci

Abstract. In this paper we study, for any subset I of N⇤
and for

any strictly positive integer k, the Banach space EI of the bounded

real sequences {xn}n2I , and a measure over
�
RI ,B(I)

�
that generalizes

the k-dimensional Lebesgue one. Moreover, we recall the main results

about the di↵erentiation theory over EI . The main result of our paper

is a change of variables’ formula for the integration of the measurable

real functions on
�
RI ,B(I)

�
. This change of variables is defined by

some functions over an open subset of EJ , with values on EI , called

(m,�)-general, with properties that generalize the analogous ones of the

finite-dimensional di↵eomorphisms.
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1. Introduction

In the mathematical literature, some articles introduced infinite-dimensional
measures analogue of the Lebesgue one: see for example the pioneering paper
of Jessen [10], that one of Léandre [13], in the context of the noncommutative
geometry, that one of Tsilevich et al. [19], which studies a family of �-finite
measures in the space of distributions, that one of Baker [7], which defines
a measure on RN⇤

that is not �-finite, that one of Henstock et al. [9], and
that one of Tepper et al. [15]. However, the results obtained do not include an
infinite-dimensional change of variables’ formula for the integration of the mea-
surable real functions, analogous to that which applies in the finite-dimensional
case. For example, in the paper of Accardi et al. [1], the authors describe the
transformations of generalized measures on locally convex spaces under smooth
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transformations of these spaces, but these measures have no connection with
the Lebesgue one. The problem that arises is essentially the following. Consider
the integration formula with respect to an image measure, that is

Z

E

fd (' (µ)) =
Z

S

f(')dµ,

where (S, ⌃, µ) and (E, E) are a measure space and a measurable space, respec-
tively, ' : (S, ⌃) �! (E, E) and f : (E, E) �! (R,B) are measurable functions.
In the particular case in which E and S are open sets, suitably constructed, of
two infinite-dimensional measurable spaces ⌦1 and ⌦2, respectively, on which
we can define two families M1 and M2 of measures analogue of the Lebesgue
one, and ' has properties that generalize the analogous ones of the standard
finite-dimensional di↵eomorphisms, we expect existence of two measure �1 in
M1 and �2 in M2 such that ' (µ) = �1, while µ has density |detJ'| (properly
defined) with respect to �2.

In order to achieve this result, in the articles [4], [5] and [6], for any subset
I of N⇤, we define the Banach space EI ⇢ RI of the bounded real sequences
{xn}n2I , the �-algebra BI given by the restriction to EI of B(I) (defined as the
product indexed by I of the same Borel �-algebra B on R), and a class of func-
tions over an open subset of EJ , with values on EI , called (m,�)-general, with
properties similar to those of the finite-dimensional di↵eomorphisms. More-
over, for any strictly positive integer k, we introduce over the measurable space�
RI ,B(I)

�
a family of infinite-dimensional measures �(k,I)

N,a,v, dependent on ap-
propriate parameters N , a, v, that in the case I = {1, ..., k} coincide with
the k-dimensional Lebesgue measure on Rk. More precisely, in the paper [4],
we define some particular linear functions over EJ , with values on EI , called
(m,�)-standard, while in the article [5] we present some results about the dif-
ferentiation theory over EI , and we remove the assumption of linearity for the
(m,�)-standard functions. In the last two papers, we provide a change of vari-
ables’ formula for the integration of the measurable real functions on

�
RI ,B(I)

�
;

this change of variables is defined by some particular (m,�)-standard functions.
In the paper [6], we introduce a class of functions, called (m,�)-general, that
generalizes the set of the (m,�)-standard functions given in [5]. The main re-
sult is the definition of the determinant of a linear (m,�)-general function, as
the limit of a sequence of the determinants of some standard matrices.

In this paper, we prove that the change of variables’ formula given by the
standard finite-dimensional theory and in the papers [4] and [5] can be extended
by using the (m,�)-general functions. In Section 2, we recall the construction
of the infinite-dimensional Banach space EI , with its �-algebra BI and its
topologies ⌧I and ⌧k·k

I
; moreover, we expose the main results about the di↵er-

entiation theory over this space. In Section 3, we recall some properties of the
(m,�)-general functions defined in [6], and we expose some additional results



INFINITE-DIMENSIONAL CHANGE OF VARIABLES’ FORMULA 63

about these functions. In Section 4, we present the main theorem of our paper,
that is a change of variables’ formula for the integration of the measurable real
functions on

�
RI ,B(I)

�
; this change of variables is defined by the bijective,

C1 and (m,�)-general functions, with further properties (Theorem 4.5). In
Section 5, we expose some ideas for further study in the probability theory.

2. Di↵erentiation theory over infinite-dimensional Banach
spaces

Let I 6= ; be a set and let k 2 N⇤; indicate by ⌧ , by ⌧ (k), by ⌧ (I), by B,
by B(k), by B(I), by Leb, and by Leb(k), respectively, the euclidean topology
on R, the euclidean topology on Rk, the topology

O

i2I

⌧ , the Borel �-algebra

on R, the Borel �-algebra on Rk, the �-algebra
O

i2I

B, the Lebesgue measure

on R, and the Lebesgue measure on Rk. Moreover, for any set A ⇢ R, indicate
by B(A) the �-algebra induced by B on A, and by ⌧(A) the topology induced
by ⌧ on A; analogously, for any set A ⇢ RI , define the �-algebra B(I)(A) and
the topology ⌧ (I)(A). Finally, if S =

Y

i2I

Si is a Cartesian product, for any

(xi : i 2 I) 2 S and for any ; 6= H ⇢ I, define xH = (xi : i 2 H) 2
Y

i2H

Si, and

define the projection ⇡I,H on
Y

i2H

Si as the function ⇡I,H : S �!
Y

i2H

Si given

by ⇡I,H (xI) = xH .

Theorem 2.1. Let I 6= ; be a set and, for any i 2 I, let (Si,⌃i, µi) be a measure

space such that µi is finite. Moreover, suppose that, for some countable set

J ⇢ I, µi is a probability measure for any i 2 I\J and

Y

j2J

µj(Sj) 2 R+
. Then,

over the measurable space

 
Y

i2I

Si,
O

i2I

⌃i

!
, there is a unique finite measure µ,

indicated by

O

i2I

µi, such that, for any H ⇢ I such that |H| < +1 and for any

A =
Y

h2H

Ah ⇥
Y

i2I\H

Si 2
O

i2I

⌃i, where Ah 2 ⌃h 8h 2 H, we have µ(A) =

Y

h2H

µh(Ah)
Y

j2J\H

µj(Sj). In particular, if I is countable, then µ(A) =
Y

i2I

µi(Ai)

for any A =
Y

i2I

Ai 2
O

i2I

⌃i.
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Proof. See the proof of Corollary 4 in Asci [4].

Henceforth, we will suppose that I, J are sets such that ; 6= I, J ⇢ N⇤;
moreover, for any k 2 N⇤, we will indicate by Ik the set of the first k elements
of I (with the natural order and with the convention Ik = I if |I| < k);
furthermore, for any i 2 I, set |i|I = |I \ (0, i]|. Analogously, define Jk and
|j|J , for any k 2 N⇤ and for any j 2 J .

The following theorem generalizes a result proved in Rao [14] (Theorem 3,
page 349), and can be considered a generalization of the Tonelli’s theorem,
in the integration of a function over an infinite-dimensional measure space.
The integral of the function is the limit of a sequence of integrals of the same
function, with respect to a finite subset of variables.

Theorem 2.2. Let (Si,⌃i, µi) be a measure space such that µi is finite, for any

i2I, and
Q
i2I

µi(Si) 2 [0,+1); moreover, let (S, ⌃, µ)=

 
Y

i2I

Si,
O

i2I

⌃i,
O

i2I

µi

!
,

let f 2 L1 (S, ⌃, µ) and, for any H ⇢ I such that 0 < |H| < +1, let the

measurable function fHc : (S, ⌃) �! (R,B) defined by

fHc(x) =
Z

SH

f(·, xHc)dµH ,

where (SH ,⌃H , µH) is the measure space

 
Y

i2H

Si,
O

i2H

⌃i,
O

i2H

µi

!
. Then, there

exists D 2 ⌃ such that µ(D) = 0 and such that, for any x 2 Dc
, one has

lim
n!+1

fIc
n
(x) =

R

S

fdµ.

Proof. See the proof of Corollary 3 in Asci [5].

Definition 2.3. For any set I 6= ;, define the function k·kI : RI �! [0,+1]
by

kxkI = sup
i2I

|xi|, 8x = (xi : i 2 I) 2 RI ,

and define the vector space

EI = {x 2 RI : kxkI < +1}.

Moreover, indicate by BI the �-algebra B(I)(EI), by ⌧I the topology ⌧ (I)(EI),
and by ⌧k·k

I
the topology induced on EI by the distance dI : EI⇥EI �! [0,+1)

defined by dI(x, y) = kx� ykI , for any x, y 2 EI ; furthermore, for any set
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A ⇢ EI , indicate by ⌧k·k
I
(A) the topology induced on A by ⌧k·k

I
. Finally, for

any x0 2 EI and for any � 2 R+
, indicate by BI(x0, �) the set {x 2 EI :

kx� x0kI < �}.

Proposition 2.4. Let H, I be sets such that ; 6= H ( I, and let A ⇢ EH ,

B ⇢ EI\H ; then:

1. EI is a Banach space, with the norm k·kI .

2. ⌧k·k
I
(A⇥B) is the product of the topologies ⌧k·k

H
(A) and ⌧k·k

I\H
(B).

3. Let A =

 
Y

i2I

Ai

!
\ EI 6= ;, where Ai 2 ⌧ , for any i 2 I; then, one has

A 2 ⌧k·k
I

if and only if there exists h 2 I such that Ai = R, for any

i 2 I\Ih.

4. One has ⌧I ⇢ ⌧k·k
I
; moreover, if |I| = +1, then ⌧I ( ⌧k·k

I
.

Proof. 1. See, for example, the proof of Remark 2 in [4].

2. Indicate by ⌧k·k
H

(A)
N
⌧k·k

I\H
(B) the product of the topologies ⌧k·k

H
(A)

and ⌧k·k
I\H

(B); 8D 2 ⌧k·k
H

(A), let D0 2 ⌧k·k
H

such that D = D0 \ A;
then, 8x =

�
xH , xI\H

�
2 D0 ⇥ EI\H , there exists � 2 R+ such that

xH 2 BH (xH , �) ⇢ D0, xI\H 2 BI\H

�
xI\H , �

�
⇢ EI\H , and so x 2

BI (x, �) ⇢ D0⇥EI\H ; then, we have D0⇥EI\H 2 ⌧k·k
I
, from which D⇥

B =
�
D0 ⇥ EI\H

�
\(A⇥B) 2 ⌧k·k

I
(A⇥B); analogously, 8E 2 ⌧k·k

I\H
(B),

we have A ⇥ E 2 ⌧k·k
I
(A ⇥ B), and so D ⇥ E = (D ⇥B) \ (A ⇥ E) 2

⌧k·k
I
(A⇥B); then, we obtain ⌧k·k

H
(A)

N
⌧k·k

I\H
(B) ⇢ ⌧k·k

I
(A⇥B).

Conversely, 8x =
�
xH , xI\H

�
2 EI , 8 � 2 R+, we have BI(x, �) \ (A ⇥

B) = (BH(xH , �) \A) ⇥
�
BI\H(xI\H , �) \B

�
2 ⌧k·k

H
(A)

N
⌧k·k

I\H
(B),

from which ⌧k·k
I
(A⇥B) ⇢ ⌧k·k

H
(A)

N
⌧k·k

I\H
(B).

3. We can suppose |I| = +1. If there exists h 2 I such that Ai = R, for

any i 2 I\Ih, then A =

 
Y

i2Ih

Ai

!
⇥ EI\Ih

; thus, since
Y

i2Ih

Ai 2 ⌧k·k
I
h

,

EI\Ih
2 ⌧k·k

I\I
h

, from point 2 we have A 2 ⌧k·k
I
.

Conversely, suppose that there exists J ⇢ I such that |J | = +1 and such
that Aj 6= R, 8 j 2 J ; then, since A 6= ;, there exists x 2 A such that
dI (x,EI\A) = 0, and so A /2 ⌧k·k

I
.
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4. Let

E =

(
A =

 
Y

i2I

Ai

!
\ EI : Ai 2 ⌧ , 8 i 2 I,

Ai = R, 8 i 2 I\Ih, for some h 2 I

)
;

as we observed in the proof of point 3, we have E ⇢ ⌧k·k
I
; moreover, by

definition of ⌧I , we have ⌧I = ⌧(E) ⇢ ⌧k·k
I
; furthermore, if |I| = +1,

8x 2 EI , 8 � 2 R+, we have BI(x, �) 2 ⌧k·k
I
, BI(x, �) /2 ⌧I , and so

⌧I ( ⌧k·k
I
.

Proposition 2.5. Let H, I be sets such that ; 6= H ⇢ I, and let ⇡I,H : EI �!
EH be the function given by ⇡I,H (x) = ⇡I,H (x), for any x 2 EI ; then:

1. ⇡I,H :
�
EI , ⌧k·k

I

�
�!

�
EH , ⌧k·k

H

�
is continuous and open.

2. ⇡I,H : (EI , ⌧I) �! (EH , ⌧H) is continuous and open.

3. ⇡I,H : (EI ,BI) �! (EH ,BH) is measurable.

Proof. Points 1 and 2 are proved, for example, in Proposition 6 in [5]; moreover,
the proof of point 3 is analogous to the proof of the continuity of the function
⇡I,H : (EI , ⌧I) �! (EH , ⌧H).

Remark 2.6: Let H, I, J be sets such that ; 6= H  J , let U = U1⇥U2 2 ⌧k·k
J
,

where U1 2 ⌧k·k
H

, U2 2 ⌧k·k
J\H

, let  : U1 ⇢ EH �! EI be a function and
let ' : U ⇢ EJ �! EI be the function given by ' (x) =  (xH), for any
x =

�
xH , xJ\H

�
2 U ; then:

1.  is
�
⌧k·k

H
(U1), ⌧k·k

I

�
-continuous if and only if ' is

�
⌧k·k

J
(U), ⌧k·k

I

�
-

continuous.

2.  is
�
⌧ (H)(U1), ⌧I

�
-continuous if and only if ' is

�
⌧ (J)(U), ⌧I

�
-continuous.

3. If  is
�
B(H)(U1),BI

�
-measurable, then ' is

�
B(J)(U),BI

�
-measurable.

Proof. 8A ⇢ EI , we have

'�1(A) =
⇣
⇡�1

J,H �  �1
⌘

(A), �1(A) =
�
⇡J,H � '�1

�
(A);

then, from Proposition 2.5, we obtain the statement.
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Definition 2.7. Let U 2 ⌧k·k
J
, let x0 2 U , let l 2 EI and let ' : U ⇢ EJ �!

EI be a function; we say that lim
x!x0

'(x) = l if, for any " 2 R+
, there exists

a neighbourhood N 2 ⌧k·k
J
(U) of x0 such that, for any x 2 N\{x0}, one has

k'(x)� lkI < ".

Definition 2.8. Let U 2 ⌧k·k
J

and let ' : U ⇢ EJ �! EI be a function; we

say that ' is continuous in x0 2 U if lim
x!x0

'(x) = '(x0), and we say that ' is

continuous in U if, for any x 2 U , ' is continuous in x.

Remark 2.9: Let U 2 ⌧k·k
J
, let V 2 ⌧k·k

I
and let ' : U ⇢ EJ �! V ⇢ EI be

a function; then, ' :
�
U, ⌧k·k

J
(U)

�
�!

�
V, ⌧k·k

I
(V )

�
is continuous if and only if

' is continuous in U .

Definition 2.10. Let U 2 ⌧k·k
J
, let V 2 ⌧k·k

I
and let ' : U ⇢ EJ �! V ⇢

EI be a function; we say that ' is a homeomorphism if ' is bijective and

the functions ' :
�
U, ⌧k·k

J
(U)

�
�!

�
V, ⌧k·k

I
(V )

�
and '�1 :

�
V, ⌧k·k

I
(V )

�
�!�

U, ⌧k·k
J
(U)

�
are continuous.

Definition 2.11. Let U 2 ⌧k·k
J
, let A ⇢ U , let ' : U ⇢ EJ �! EI be a

functions and let {'n}n2N be a sequence of functions such that 'n : U �! EI ,

for any n 2 N; we say that:

1. The sequence {'n}n2N converges to ' over A if, for any " 2 R+
and for

any x 2 A, there exists n0 2 N such that, for any n 2 N, n � n0, one

has k'n(x)� '(x)kI < ".

2. The sequence {'n}n2N converges uniformly to ' over A if, for any " 2
R+

, there exists n0 2 N such that, for any n 2 N, n � n0, and for any

x 2 A, one has k'n(x)� '(x)kI < ".

The following concept generalizes Definition 6 in [4] (see also the theory in
the Lang’s book [12] and that in the Weidmann’s book [20]).

Definition 2.12. Let A = (aij)i2I,j2J be a real matrix I ⇥ J (eventually infi-

nite); then, define the linear function A = (aij)i2I,j2J : EJ �! RI
, and write

x �! Ax, in the following manner:

(Ax)i =
X

j2J

aijxj, 8x 2 EJ , 8 i 2 I, (1)

on condition that, for any i 2 I, the sum in (1) converges to a real number. In



68 CLAUDIO ASCI

particular, if |I| = |J |, indicate by II,J =
�
�ij

�
i2I,j2J

the real matrix defined

by

�ij =
⇢

1 if |i|I = |j|J
0 otherwise

,

and call �ij generalized Kronecker symbol. Moreover, indicate by A(L,N)
the

real matrix (aij)i2L,j2N , for any ; 6= L ⇢ I, for any ; 6= N ⇢ J , and indicate

by
tA = (bji)j2J,i2I : EI �! RJ

the linear function defined by bji = aij, for

any j 2 J and for any i 2 I. Furthermore, if I = J and A = tA , we say that A

is a symmetric function. Finally, if B = (bjk)j2J,k2K is a real matrix J ⇥K,

define the I ⇥K real matrix AB = ((AB)ik)i2I,k2K by

(AB)ik =
X

j2J

aijbjk, (2)

on condition that, for any i 2 I and for any k 2 K, the sum in (2) converges

to a real number.

Proposition 2.13. Let A = (aij)i2I,j2J be a real matrix I ⇥ J ; then:

1. The linear function A = (aij)i2I,j2J : EJ �! RI
given by (1) is defined

if and only if, for any i 2 I,
X

j2J

|aij | < +1.

2. One has sup
i2I

X

j2J

|aij | < +1 if and only if A(EJ) ⇢ EI and A is continu-

ous; moreover, if A(EJ) ⇢ EI , then kAk = sup
i2I

X

j2J

|aij |.

3. If B = (bjk)j2J,k2K : EK �! EJ is a linear function, then the linear

function A �B : EK �! RI
is defined by the real matrix AB.

4. If A(EJ) ⇢ EI , then, for any ; 6= L ⇢ I, for any ; 6= N ⇢ J , one has

A(L,N)(EN ) ⇢ EL.

Proof. The proofs of points 1 and 2 are analogous to the proof of Proposition 7
in [4]. Moreover, the proof of point 3 is analogous to that one true in the
particular case |I|, |J | , |K| < +1 (see, e.g., the Lang’s book [12]). Finally,
suppose that A(EJ) ⇢ EI ; let ; 6= L ⇢ I, let ; 6= N ⇢ J , let x = (xn : n 2 N) 2
EN and let y = (yj : j 2 J) 2 EJ such that yj = xj , 8 j 2 N , and yj = 0,



INFINITE-DIMENSIONAL CHANGE OF VARIABLES’ FORMULA 69

8 j 2 J\N ; we have

sup
i2L

���
⇣
A(L,N)x

⌘

i

��� = sup
i2L

������

X

j2N

aij(xj)

������
= sup

i2L

������

X

j2J

aij(yj)

������

 sup
i2I

������

X

j2J

aij(yj)

������
= sup

i2I
|(Ay)i| < +1 ) A(L,N)x 2 EL;

then, point 4 follows.

The following definitions (from Definition 2.14 to Definition 2.18) can be
found in [5] and generalize the di↵erentiation theory in the finite case (see, e.g.,
the Lang’s book [11]).

Definition 2.14. Let U 2 ⌧k·k
J
; a function ' : U ⇢ EJ �! EI is called

di↵erentiable in x0 2 U if there exists a linear and continuous function A :
EJ �! EI defined by a real matrix A = (aij)i2I,j2J , and one has

lim
h!0

k'(x0 + h)� '(x0)�AhkI

khkJ

= 0. (3)

If ' is di↵erentiable in x0 for any x0 2 U , ' is called di↵erentiable in U . The

function A is called di↵erential of the function ' in x0, and it is indicated by

the symbol d'(x0).

Definition 2.15. Let U 2 ⌧k·k
J
, let v 2 EJ such that kvkJ = 1 and let a func-

tion ' : U ⇢ EJ �! RI
; for any i 2 I, the function 'i is called di↵erentiable

in x0 2 U in the direction v if there exists the limit

lim
t!0

'i(x0 + tv)� 'i(x0)
t

.

This limit is indicated by
@'i

@v (x0), and it is called derivative of 'i in x0 in the

direction v. If, for some j 2 J , one has v = ej, where (ej)k = �jk, for any k 2
J , indicate

@'i

@v (x0) by
@'i

@xj

(x0), and call it partial derivative of 'i in x0, with

respect to xj. Moreover, if there exists the linear function defined by the matrix

J'(x0) =
⇣
(J'(x0))ij

⌘

i2I,j2J
: EJ �! RI

, where (J'(x0))ij = @'i

@xj

(x0), for

any i 2 I, j 2 J , then J'(x0) is called Jacobian matrix of the function ' in x0.

Finally, if, for any x 2 U , there exists J'(x), then the function x �! J'(x) is

indicated by J'.
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Definition 2.16. Let U 2 ⌧k·k
J
, let i, j 2 J and let ' : U ⇢ EJ �! R be a

function di↵erentiable in x0 2 U with respect to xi, such that the function
@'
@xi

is di↵erentiable in x0 with respect to xj. Indicate
@

@xj

⇣
@'
@xi

⌘
(x0) by

@2'
@xj@xi

(x0)
and call it second partial derivative of ' in x0 with respect to xi and xj. If

i = j, it is indicated by
@2'
@x2

i

(x0). Analogously, for any k 2 N⇤
and for any

j1, ..., jk 2 J , define
@k'

@xj
k

...@xj1
(x0) and call it k-th partial derivative of ' in x0

with respect to xj1 , ...xjk
.

Definition 2.17. Let U 2 ⌧k·k
J

and let k 2 N⇤
; a function ' : U ⇢ EJ �! RI

is called Ck
in x0 2 U if, in a neighbourhood V 2 ⌧k·k

J
(U) of x0, for any

i 2 I and for any j1, ..., jk 2 J , there exists the function defined by x �!
@k'i

@xj
k

...@xj1
(x), and this function is continuous in x0; ' is called Ck

in U if, for

any x0 2 U , ' is Ck
in x0.

Definition 2.18. Let U 2 ⌧k·k
J

and let V 2 ⌧k·k
I
; a function ' : U ⇢ EJ �!

V ⇢ EI is called di↵eomorphism if ' is bijective and C1
in U , and the function

'�1 : V ⇢ EI �! U ⇢ EJ is C1
in V .

3. Theory of the (m, �)-general functions

The following definition introduces a class of functions, called m-general, that
generalize the linear functions (aij)i2I,j2J : EJ �! EI (see the next Re-
mark 3.15). For example, the equation corresponding to a 1-general function
is obtained by formula 1, by substituting the functions xj �! aijxj for some
functions 'ij .

Definition 3.1. Let m 2 N⇤
and let ; 6= U =

0

@U (m) ⇥
Y

j2J\Jm

Aj

1

A \ EJ 2

⌧k·k
J
, where U (m) 2 ⌧ (m)

, Aj 2 ⌧ , for any j 2 J\Jm. A function ' : U ⇢
EJ �! EI is called m-general if, for any i 2 I and for any j 2 J\Jm, there

exist some functions '(I,m)
i : U (m) �! R and 'ij : Aj �! R such that

'i(x) = '(I,m)
i (xJm

) +
X

j2J\Jm

'ij(xj), 8x 2 U.

Moreover, for any ; 6= L ⇢ I and for any Jm ⇢ N ⇢ J , indicate by '(L,N)
the

function '(L,N) : ⇡J,N (U) �! RL
defined by

'(L,N)
i (xN ) = '(I,m)

i (xJm
) +

X

j2N\Jm

'ij(xj), 8xN 2 ⇡J,N (U), 8 i 2 L. (4)
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Furthermore, for any ; 6= L ⇢ I and for any ; 6= N ⇢ J\Jm, indicate by

'(L,N)
the function '(L,N) : ⇡J,N (U) �! RL

given by

'(L,N)
i (xN ) =

X

j2N

'ij(xj), 8xN 2 ⇡J,N (U), 8 i 2 L. (5)

In particular, suppose that m = 1; then, let j 2 J such that {j} = J1

and indicate U (1)
by Aj and '(I,1)

i by 'ij, for any i 2 I; moreover, for any

; 6= L ⇢ I and for any ; 6= N ⇢ J , indicate by '(L,N)
the function '(L,N) :

⇡J,N (U) �! RL
defined by formula (5).

Furthermore, for any l, n 2 N⇤
, indicate '(Il,N)

by '(l,N)
, '(L,Jn)

by '(L,n)
,

and '(Il,Jn)
by '(l,n)

.

The following definition introduces a class of m-general functions ' : U ⇢
EJ �! EI , called (m,�)-general, that will be used to provide a change of
variables’ formula for the integration of the measurable real functions over�
RI ,B(I)

�
. In fact, the properties of some (m,�)-general functions generalize

the analogous ones of the standard finite-dimensional di↵eomorphisms. In par-
ticular, if A is a linear (m,�)-general function, we can define the determinant
of A (see the next Theorem 3.18 and Definition 3.19): a concept without sense,
if A is an arbitrary matrix I ⇥ J .

Definition 3.2. Let m 2 N⇤
, let ; 6= U =

0

@U (m) ⇥
Y

j2J\Jm

Aj

1

A \ EJ 2 ⌧k·k
J
,

where U (m) 2 ⌧ (m)
, Aj 2 ⌧ , for any j 2 J\Jm, and let � : I\Im �! J\Jm be

an increasing function; a function ' : U ⇢ EJ �! EI m-general and such that

|J | = |I| is called (m,�)-general if:

1. 8 i 2 I\Im, 8 j 2 J\ (Jm [ {�(i)}), 8 t 2 Aj, one has 'ij(t) = 0; more-

over

'(I\Im,J\Jm)
�
⇡J,J\Jm

(U)
�
⇢ EI\Im

.

2. 8 i 2 I\Im, 8x 2 U , there exists J'i
(x) : EJ �! R; moreover, 8xJm

2
U (m)

, one has

X

i2I\Im

���J'(I,m)
i

(xJm
)
��� < +1.

3. 8 i 2 I\Im, the function 'i,�(i) : A�(i) �! R is constant or injective;

moreover, 8x�(I\Im) 2
Y

j2�(I\Im)

Aj, one has sup
i2I\Im

���'0i,�(i)

�
x�(i)

���� < +1

and inf
i2I'

���'0i,�(i)

�
x�(i)

���� > 0, where I' = {i 2 I\Im : 'i,�(i) is injective}.
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4. If, for some h 2 N, h � m, one has |�(i)|J\Jm
= |i|I\Im

, 8 i 2 I\Ih,

then, 8x�(I\Im) 2
Y

j2�(I\Im)

Aj, there exists

Y

i2I'

'0i,�(i)

�
x�(i)

�
2 R⇤

.

Moreover, set

A = A(') =
n

h 2 N, h � m : |�(i)|J\Jm
= |i|I\Im

, 8 i 2 I\Ih

o
.

If the sequence

n
J

'(I,m)
i

(xJm
)
o

i2I\Im

converges uniformly on U (m)
to the

matrix (0 . . . 0) and there exists a 2 R such that, for any " > 0, there exists

i0 2 N, i0 � m, such that, for any i 2 I' \ (I\Ii0) and for any t 2 A�(i), one

has

���'0i,�(i) (t)� a
��� < ", then ' is called strongly (m,�)-general.

Furthermore, for any Im ⇢ L ⇢ I and for any Jm ⇢ N ⇢ J , define the

function '(L,N) : U ⇢ EJ �! RI
in the following manner:

'(L,N)
i (x) =

8
<

:

'(L,N)
i (xN ) 8 i 2 Im, 8x 2 U

'i(x) 8 i 2 L\Im, 8x 2 U
'i,�(i)(x�(i)) 8 i 2 I\L, 8x 2 U

.

Finally, for any l, n 2 N, l, n � m, indicate '(Il,N)
by '(l,N)

, '(L,Jn)
by

'(L,n)
, '(Il,Jn)

by '(l,n)
, and '(m,m)

by '.

Definition 3.3. A function ' : U ⇢ EJ �! EI (m,�)-general is called (m,�)-
standard (or (m,�) of the first type) if, for any i 2 I\Im and for any xJm

2
U (m)

, one has '(I,m)
i (xJm

) = 0. Moreover, a function ' : U ⇢ EJ �! EI

(m,�)-standard and strongly (m,�)-general is called strongly (m,�)-standard

(see also Definition 28 in [5]).

Remark 3.4: Let ' : U ⇢ EJ �! EI be a (m,�)-general function; then:

1. � is injective if and only if, for any i1, i2 2 I\Im such that i1 < i2, one
has �(i1) < � (i2).

2. � is bijective if and only if, for any i 2 I\Im, one has |�(i)|J\Jm
= |i|I\Im

.

3. There exists m0 2 N, m0 � m, such that Aj = R, for any j 2 J\Jm0 .

Proof. The statement follows from Definition 3.2 and point 3 of Proposition 2.4.
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Proposition 3.5. Let Im ⇢ L ⇢ I, let Jm ⇢ N ⇢ J and let ' : U ⇢ EJ �! EI

be a (m,�)-general function; then, one has '(L,N)(U) ⇢ EI , and the function

'(L,N) : U ⇢ EJ �! EI is (m,�)-general. Moreover, suppose that, for any

j 2 J\Jm, for any t 2 Aj, one has
P

i2I\Im

��'0i,j (t)
�� < +1; then, for any n 2 N,

n � m, '(L,N)
is (n, ⌧)-general, where the function ⌧ : I\In �! J\Jn is defined

by

⌧(i) =
⇢
�(i) if �(i) 2 J\Jn

min (J\Jn) if �(i) /2 J\Jn
, 8 i 2 I\In. (6)

Proof. Since Im ⇢ L ⇢ I and Jm ⇢ N ⇢ J , 8 i 2 I\Im, 8x 2 U , we have
���'(L,N)

i (x)
��� 

���'(I,m)
i (xJm

)
���+

��'i,�(i)

�
x�(i)

��� ,

and so sup
i2I\Im

���'(L,N)
i (x)

��� < +1; then, '(L,N)(U) ⇢ EI . Moreover, from

the definition of '(L,N), the function '(L,N) : U ⇢ EJ �! EI is (m,�)-
general. Furthermore, suppose that, for any j 2 J\Jm, for any t 2 Aj , one hasP
i2I\Im

��'0i,j (t)
�� < +1; 8n 2 N, n � m, and 8xJn

2 ⇡J,Jn
(U), we have

X

i2I\In

����J('(L,N))(I,Jn)

i

(xJn
)
���� 

X

i2I\In

���J'(I,Jn)
i

(xJn
)
���

=
X

i2I\In

���J'(I,m)
i

(xJm
)
���+

X

j2Jn\Jm

0

@
X

i2I\In

��'0i,j (xj)
��

1

A < +1;

then, '(L,N) is (n, ⌧)-general, where the function ⌧ : I\In �! J\Jn is defined
by formula (6).

Proposition 3.6. Let ; 6= L ⇢ I, let ; 6= N ⇢ J such that Jm ⇢ N or

N ⇢ J\Jm, and let ' : U ⇢ EJ �! EI be a (m,�)-general function; then:

1. For any x 2 U , there exists the function J'(L,N)(x) : EN �! RL
if and

only if, for any i 2 L \ Im and for any j 2 N , there exists the partial

derivative
@'i

@xj

(x), and for any i 2 L \ Im one has

X

j2N

���@'i

@xj

(x)
��� < +1;

moreover, in this case one has J'(L,N)(x) (EN ) ⇢ EL, and J'(L,N)(x) is

continuous.

2. For any x 2 U , there exists the function J'(I\Im,J)(x) : EJ �! EI\Im
,

and it is continuous.
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3. Suppose that Im ⇢ L and Jm ⇢ N , and let x 2 U ; then, there exists

the function J'(L,N)(x) : EJ �! RI
if and only if, for any i 2 Im and

for any j 2 N , there exists the partial derivative
@'i

@xj

(x), and for any

i 2 Im one has

X

j2N

���@'i

@xj

(x)
��� < +1; moreover, in this case one has

J'(L,N)(x) (EJ) ⇢ EI , and J'(L,N)(x) is continuous and (m,�)-general.

Proof. 1. From Definition 3.2, 8 i 2 L \ (I\Im) and 8 j 2 N , there exists

the partial derivative @'(L,N)
i

@xj

(x) = @'i

@xj

(x), and one has

X

j2N

����
@'i

@xj
(x)

���� 
���J'(I,m)

i

(xJm
)
���+

���'0i,�(i)

�
x�(i)

���� < +1,

8 i 2 L \ (I\Im) ; (7)

then, from Proposition 2.13, there exists the function J'(L,N)(x) : EN �!
RL if and only if, 8 i 2 L \ Im and 8 j 2 N ,there exists the partial

derivative @'(L,N)
i

@xj

(x) = @'i

@xj

(x), and 8 i 2 L\ Im one has
X

j2N

���@'i

@xj

(x)
��� <

+1.

Furthermore, since
P

i2I\Im

���J'(I,m)
i

(xJm
)
��� < +1, we have

sup
i2L\(I\Im)

���J'(I,m)
i

(xJm
)
��� < +1,

and so formula (7) implies

sup
i2L\(I\Im)

X

j2N

����
@'i

@xj
(x)

����

 sup
i2L\(I\Im)

���J'(I,m)
i

(xJm
)
���+ sup

i2L\(I\Im)

���'0i,�(i)

�
x�(i)

���� < +1;

thus, if there exists the function J'(L,N)(x), we obtain sup
i2L

X

j2N

���@'i

@xj

(x)
��� <

+1; then, from Proposition 2.13, we have J'(L,N)(x) (EN ) ⇢ EL, and
J'(L,N)(x) is continuous.

2. The statement follows from point 1.
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3. By Definition 3.2, 8 i 2 I\Im and 8 j 2 J , there exists the partial deriva-

tive @'(L,N)
i

@xj

(x), and one has

X

j2J

�����
@'(L,N)

i

@xj
(x)

����� 
X

j2J

����
@'i

@xj
(x)

����


���J'(I,m)

i

(xJm
)
���+

���'0i,�(i)

�
x�(i)

���� < +1, 8 i 2 I\Im; (8)

then, from Proposition 2.13, there exists the function J'(L,N)(x) : EJ �!
RI if and only if, 8 i 2 Im and 8 j 2 J ,there exists the partial derivative
@'(L,N)

i

@xj

(x), and 8 i 2 Im one has
X

j2J

����
@'(L,N)

i

@xj

(x)
���� < +1; thus, this

happens if and only if, 8 i 2 Im and 8 j 2 N ,there exists the partial

derivative @'i

@xj

(x), and 8 i 2 Im one has
X

j2N

���@'i

@xj

(x)
��� < +1.

Moreover, from formula (8), we have

sup
i2I\Im

X

j2J

�����
@'(L,N)

i

@xj
(x)

�����

 sup
i2I\Im

���J'(I,m)
i

(xJm
)
���+ sup

i2I\Im

���'0i,�(i)

�
x�(i)

���� < +1;

then, if there exists the function J'(L,N)(x), we obtain

sup
i2I

X

j2J

�����
@'(L,N)

i

@xj
(x)

����� < +1;

thus, from Proposition 2.13, we have J'(L,N)(x) (EJ) ⇢ EI , and J'(L,N)(x)
is continuous; furthermore, by Definition 3.2, J'(L,N)(x) is (m,�)-general.

Proposition 3.7. Let ' : U ⇢ EJ �! EI be a (m,�)-standard function; then:

1. Suppose that ' is injective, ⇡I,H('(U)) 2 ⌧ (H)
, for any H ⇢ I\Im such

that 0 < |H|  2, the function 'i : U �! R is C1
, for any i 2 Im, and

detJ'(m,m)(x) 6= 0, for any x 2 U (m)
; then the functions 'i,�(i), for any

i 2 I\Im, and '(m,m)
are injective, and � is bijective.

2. Suppose that ' is bijective, the function 'i : U �! R is C1
, for any

i 2 Im, and det J'(m,m)(x) 6= 0, for any x 2 U (m)
; then the functions

'i,�(i), for any i 2 I\Im, '(m,m)
and � are bijective.
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3. Suppose that 'ij(xj) = 0, for any i 2 Im, for any j 2 J\Jm, for any

xj 2 Aj, ' is injective, and ⇡I,H('(U)) 2 ⌧ (H)
, for any H ⇢ I\Im such

that 0 < |H|  2; then the functions 'i,�(i), for any i 2 I\Im, and '(m,m)

are injective, and � is bijective.

4. Suppose that 'ij(xj) = 0, for any i 2 Im, for any j 2 J\Jm, for any

xj 2 Aj, and ' is bijective; then the functions 'i,�(i), for any i 2 I\Im,

'(m,m)
and � are bijective.

5. If the functions 'i,�(i), for any i 2 I\Im, and '(m,m)
are injective, and

� is bijective, then ' is injective.

6. If the functions 'i,�(i), for any i 2 I\Im, '(m,m)
and � are bijective, then

' is bijective.

Proof. The statement follows from Proposition 31, Proposition 32 and Re-
mark 33 in [5].

Corollary 3.8. Let ' : U ⇢ EJ �! EI be a (m,�)-general function; then:

1. If ' is injective and ⇡I,H('(U)) 2 ⌧ (H), for any H ⇢ I\Im such that
0 < |H|  2, then the functions 'i,�(i), for any i 2 I\Im, and '(m,m) are
injective, and � is bijective.

2. If ' is bijective, then the functions 'i,�(i), for any i 2 I\Im, '(m,m) and
� are bijective.

Proof. Observe that ' is (m,�)-standard, and 'ij(xj) = 0, for any i 2 Im, for
any j 2 J\Jm, for any xj 2 Aj ; then, from points 3 and 4 of Proposition 3.7,
we obtain the statements 1 and 2.

Proposition 3.9. Let m 2 N⇤
, let ; 6= L ⇢ I, let ; 6= N ⇢ J such that

Jm ⇢ N or N ⇢ J\Jm, and let ' : U ⇢ EJ �! EI be a function m-

general and such that, for any i 2 L and for any j 2 N\Jm, the functions

'(I,m)
i :

�
U (m),B(m)

�
U (m)

��
�! (R,B) and 'ij : (Aj ,B(Aj)) �! (R,B) are

measurable; then:

1. The function

'(L,N) : (⇡J,N (U),B(N)(⇡J,N (U))) �!
⇣
RL,B(L)

⌘

is measurable; in particular, suppose that, for any i 2 I and for any j 2
J\Jm, '(I,m)

i and 'ij are measurable functions; then, ' : (U,B(J)(U)) �!
(EI ,BI) is measurable.
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2. If ' is (m,�)-general, Im ⇢ L and Jm ⇢ N , then the function '(L,N) :
(U,B(J)(U)) �! (EI ,BI) is measurable.

Proof. 1. 8 i 2 L and 8M ⇢ N such that Jm ⇢ M or M ⇢ J\Jm, consider
the function b'(i,M,N) : ⇡J,N (U) �! R defined by

b'(i,M,N)(x) =
⇢
'({i},M)(xM ) if M 6= ;
0 if M = ; , 8x 2 ⇡J,N (U);

observe that, 8n 2 N, n � m, we have

b'(i,N\Jn,N)(x) = b'(i,N\Jm,N)(x) +
X

j2N\(Jn\Jm)

b'(i,{j},N)(x),

8x 2 ⇡J,N (U); (9)

moreover, from Remark 2.6, the functions b'(i,N\Jm,N) and b'(i,{j},N),
8 j 2 N \ (Jn\Jm), are

�
B(N)(⇡J,N (U)),B

�
-measurable; thus, from for-

mula (9), b'(i,N\Jn,N) is
�
B(N)(⇡J,N (U)),B

�
-measurable; then, since

lim
n�!+1

b'(i,N\Jn,N) = '(L,N)
i ,

'(L,N)
i is

�
B(N)(⇡J,N (U)),B

�
-measurable too. Furthermore, let

⌃(L) =

(
B =

Y

i2L

Bi : Bi 2 B, 8 i 2 L

)
;

8B =
Q
i2L

Bi 2 ⌃(L), we have

⇣
'(L,N)

⌘�1
(B) =

\

i2L

⇣
'(L,N)

i

⌘�1
(Bi) 2 B(N)(⇡J,N (U)).

Finally, since � (⌃(L)) = B(L), 8B 2 B(L), we obtain
�
'(L,N)

��1
(B) 2

B(N)(⇡J,N (U)), and so '(L,N) : (⇡J,N (U),B(N)(⇡J,N (U))) �!
�
RL,B(L)

�

is measurable. In particular, suppose that, 8 i 2 I and 8 j 2 J\Jm,
the functions '(I,m)

i and 'ij are measurable; then, ' : (U,B(J)(U)) �!�
RI ,B(I)

�
is measurable; thus, since '(U) ⇢ EI , we obtain that ' is�

B(J)(U),BI

�
-measurable.

2. If ' is (m,�)-general, Im ⇢ L and Jm ⇢ N , from Proposition 3.5, the
function '(L,N) : U ⇢ EJ �! EI is (m,�)-general, and so m-general.
Moreover, we have

'(L,N)
i (x) =  (I,m)

i (xJm
) +

X

j2J\Jm

 ij(xj), 8x 2 U , 8 i 2 I,
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where

 (I,m)
i =

⇢
'(I,m)

i if i 2 L
0 if i 2 I\L

,

 ij =
⇢
'ij if (i, j) 2 (Im ⇥ (N\Jm)) [ ((I\Im)⇥ (J\Jm))
0 if (i, j) 2 Im ⇥ (J\N) ;

furthermore, 8 i 2 I, 8 j 2 J\Jm,  (I,m)
i :

�
U (m),B(m)

�
U (m)

��
�!

(R,B) and  ij : (Aj ,B(Aj)) �! (R,B) are measurable functions, and so,
from point 1, '(L,N) : (U,B(J)(U)) �!

�
RI ,B(I)

�
is measurable; finally,

since '(L,N)(U) ⇢ EI , we obtain that '(L,N) is
�
B(J)(U),BI

�
-measurable.

Proposition 3.10. Let ' : U ⇢ EJ �! EI be a (m,�)-general function such

that � is bijective and ⇡I,I\Im
� ' :

⇣
U, ⌧k·k

J
(U)) �! (EI\Im

, ⌧k·k
I\Im

⌘
is con-

tinuous; then, for any n 2 N, n � m, '(n,n) : (⇡J,Jn
(U) , ⌧ (n)(⇡J,Jn

(U))) �!
(Rn, ⌧ (n)) is continuous if and only if '(n,n) : (U, ⌧k·k

J
(U)) �! (EI , ⌧k·k

I
) is

continuous.

Proof. Let n 2 N, n � m, and suppose that '(n,n) is continuous; moreover, let
B = B1 ⇥ B2 2 ⌧k·k

I
, where B1 2 ⌧ (n), B2 2 ⌧k·k

I\In

; since � is bijective, we
have

⇣
'(n,n)

⌘�1
(B) =

⇣
'(n,n)

⌘�1
(B1)⇥ ⇡J,J\Jn

⇣�
⇡I,I\In

� '
��1 (B2)

⌘
;

moreover, since '(n,n) and ⇡I,I\Im
�' are continuous, and Rn�m⇥B2 2 ⌧k·k

I\Im

,
we have ⇣

'(n,n)
⌘�1

(B1) 2 ⌧ (n)(⇡J,Jn
(U)),

�
⇡I,I\In

� '
��1 (B2) =

�
⇡I\Im,I\In

�
�
⇡I,I\Im

� '
���1 (B2)

=
�
⇡I,I\Im

� '
��1 �Rn�m ⇥B2

�
2 ⌧k·k

J
(U),

and so ⇡J,J\Jn

⇣�
⇡I,I\In

� '
��1 (B2)

⌘
2 ⌧k·k

J\Jn

�
⇡J,J\Jn

(U)
�
, from Proposi-

tion 2.5; then, we obtain
�
'(n,n)

��1
(B) 2 ⌧k·k

J
(U); finally, from Proposi-

tion 2.4, 8B 2 ⌧k·k
I
, we have

�
'(n,n)

��1
(B) 2 ⌧k·k

J
(U), and so '(n,n) is

continuous.
Conversely, suppose that '(n,n) is continuous; 8B 2 ⌧ (n), we have B ⇥

EI\In
2 ⌧k·k

I
, and so

�
'(n,n)

��1
(B⇥EI\In

) 2 ⌧k·k
J
(U); then,

�
'(n,n)

��1
(B) =

⇡J,Jn

⇣�
'(n,n)

��1
(B ⇥ EI\In

)
⌘
2 ⌧ (n)(⇡J,Jn

(U)).
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Proposition 3.11. Let m 2 N⇤
, let ; 6= L ⇢ I, let ; 6= N ⇢ J such that

Jm ⇢ N or N ⇢ J\Jm, and let ' : U ⇢ EJ �! EI be a function m-general

and C1
in x0 = (x0,j : j 2 J) 2 U ; then:

1. The function '(L,N) : ⇡J,N (U) �! RL
is C1

in (x0,j : j 2 N).

2. If ' is (m,�)-general, Im ⇢ L and Jm ⇢ N , then the function '(L,N) :
U ⇢ EJ �! EI is C1

in x0.

Proof. See the proof of Proposition 2.28 in [6].

Proposition 3.12. Let ' : U ⇢ EJ �! EI be a (m,�)-general function such

that ' : U �! '(U) is a homeomorphism. Then, the functions '(m,m) :
U (m) �! '(m,m)

�
U (m)

�
and 'i,�(i) : Ai �! 'i,�(i)(Ai), for any i 2 I\Im, are

homeomorphisms, and � is bijective.

Proof. From Proposition 37 in [5], the statement is true if ' is (m,�)-standard;
moreover, observe that ' is (m,�)-standard, ' = ('), '(m,m) = (')(m,m),
'i,�(i) = 'i,�(i), 8 i 2 I\Im; then, the statement is true if ' is (m,�)-general
too.

Proposition 3.13. Let ' : U ⇢ EJ �! EI be a (m,�)-general function.

Then, ' : U �! '(U) is a di↵eomorphism if and only if the functions '(m,m) :
U (m) �! '(m,m)

�
U (m)

�
and 'i,�(i) : Ai �! 'i,�(i)(Ai), for any i 2 I\Im, are

di↵eomorphisms, and � is bijective.

Proof. From Proposition 38 in [5], the statement is true if ' is (m,�)-standard;
then, as we observed in the proof of Proposition 3.12, the statement is true if
' is (m,�)-general too.

Definition 3.14. Let A = (aij)i2I,j2J : EJ �! EI be a linear (m,�)-general

function; 8 i 2 I\Im, set �i = �i(A) = ai,�(i).

Remark 3.15: For any m 2 N⇤, a linear function A = (aij)i2I,j2J : EJ �! EI

is m-general; moreover, if |J | = |I| and � : I\Im �! J\Jm is an increasing
function, A is (m,�)-general if and only if:

1. 8 i 2 I\Im, 8 j 2 J\ (Jm [ {�(i)}), one has aij = 0.

2. 8 j 2 Jm,
X

i2I\Im

|aij | < +1; moreover, one has sup
i2I\Im

|�i| < +1 and

inf
i2I\Im:�i 6=0

|�i| > 0.
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3. If A 6= ;, there exists
Y

i2I\Im:�i 6=0

�i 2 R⇤.

Furthermore, A is strongly (m,�)-general if and only if A is (m,�)-general
and there exists a 2 R such that the sequence {�i}i2I\Im:�i 6=0 converges to a.

Finally, A is (m,�)-standard if and only if A is (m,�)-general and aij = 0,
for any i 2 I\Im, for any j 2 Jm.

Corollary 3.16. Let m 2 N⇤
, let ; 6= L ⇢ I, let ; 6= N ⇢ J and let

A = (aij)i2I,j2J : EJ �! EI be a linear function; then:

1. The function A(L,N) : (EN ,BN ) �! (EL,BL) is measurable; in particu-
lar, A : (EJ ,BJ) �! (EI ,BI) is measurable.

2. If A is (m,�)-general, Im ⇢ L and Jm ⇢ N , then the function A
(L,N) :

(EJ ,BJ) �! (EI ,BI) is measurable.

Proof. 1. From Proposition 2.13, we have A(L,N) (EN ) ⇢ EL; furthermore,
from Remark 3.15, A is 1-general; moreover, we have J1 ⇢ N or N ⇢
J\J1; then, from Proposition 3.9, A(L,N) : (EN ,BN ) �!

�
RL,B(L)

�
is

measurable, and so A(L,N) : (EN ,BN ) �! (EL,BL) is measurable; in
particular, A : (EJ ,BJ) �! (EI ,BI) is measurable.

2. The statement follows from Proposition 3.9.

Henceforth, we will suppose that |I| = +1. The following definitions and
results (from Proposition 3.17 to Proposition 3.21) can be found in [6] and
generalize the standard theory of the m⇥m matrices.

Proposition 3.17. Let A = (aij)i2I,j2J : EJ �! EI be a linear (m,�)-general

function; then, A is continuous.

Theorem 3.18. Let A = (aij)i2I,j2J : EJ �! EI be a linear (m,�)-general

function; then, the sequence
�
detA(n,n)

 
n�m

converges to a real number. More-

over, if A 6= ;, by setting m = minA, we have

lim
n�!+1

detA(n,n) =
X

p2I\Im

0

@
Y

q2I\I|p|

�q

1

A
X

j2Jm

ap,j

⇣
cofA(|p|,|p|)

⌘

p,j

+ detA(m,m)

0

@
Y

q2I\Im

�q

1

A . (10)
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Conversely, if A = ;, we have lim
n�!+1

det A(n,n) = 0.

Definition 3.19. Let A = (aij)i2I,j2J : EJ �! EI be a linear (m,�)-general

function; define the determinant of A, and call it detA, the real number

det A = lim
n�!+1

det A(n,n).

Corollary 3.20. Let A = (aij)i2I,j2J : EJ �! EI be a linear (m,�)-general

function such that aij = 0, 8 i 2 Im, 8 j 2 J\Jm, or A is (m,�)-standard.

Then, if � is bijective, we have

det A = det A(m,m)
Y

i2I\Im

�i.

Conversely, if � is not bijective, we have det A = 0. In particular, if A = II,J ,

we have detA = 1.

Proposition 3.21. Let ' : U ⇢ EJ �! EI be a (m,�)-general function and let

x0 = (x0,j : j 2 J) 2 U such that there exists the function J' (x0) : EJ �! EI ;

then, J' (x0) is (m,�)-general; moreover, for any n 2 N, n � m, there exists

the linear (m,�)-general function J'(n,n) (x0) : EJ �! EI , and one has

detJ' (x0) = lim
n!+1

detJ'(n,n) (x0) .

Proposition 3.22. Let m 2 N⇤
, let n 2 N, n � m, and let ' : U ⇢ EJ �! EI

be a function m-general such that, for any i 2 In, for any j1 2 Jm and for any

j2 2 Jn\Jm, there exist the functions
@'(I,m)

i

@xj1
:
�
U (m),B(m)

�
U (m)

��
�! (R,B)

and
@'ij2
@xj2

: (Aj2 ,B(Aj2)) �! (R,B), and they are measurable; then:

1. The function detJ'(n,n) :
�
⇡J,Jn

(U),B(n)(⇡J,Jn
(U))

�
�! (R,B) is mea-

surable.

2. Suppose that ' is (m,�)-general and, for any i 2 I\Im, the function

'0i,�(i) : (A�(i),B(A�(i))) �! (R,B)

is measurable; then, for any x 2 U , there exists the function J'(n,n)(x) :
EJ �! EI , and it is (m,�)-general; moreover, the function detJ'(n,n) :�
U,B(J)(U)

�
�! (R,B) is measurable.



82 CLAUDIO ASCI

3. Suppose that ' is (m,�)-general and, for any x 2 U , there exists the

function J' (x) : EJ �! EI ; moreover, suppose that, for any i 2 I, for

any j1 2 Jm and for any j2 2 J\Jm, the functions

@'(I,m)
i

@xj1

:
⇣
U (m),B(m)

⇣
U (m)

⌘⌘
�! (R,B)

and
@'ij2
@xj2

: (Aj2 ,B(Aj2)) �! (R,B) are measurable; then the function

det J' :
�
U,B(J)(U)

�
�! (R,B) is measurable.

Proof. 1. From Remark 2.6, 8 i 2 In, 8 j 2 Jn, the function

@'(I,n)
i

@xj
:
⇣
⇡J,Jn

(U),B(n)(⇡J,Jn
(U))

⌘
�! (R,B)

is measurable; moreover, we have

�
J'(n,n)(x)

�
ij

=
@'(I,n)

i

@xj
(x), 8x 2 ⇡J,Jn

(U);

then, by definition of determinant, the function

detJ'(n,n) :
⇣
⇡J,Jn

(U),B(n)(⇡J,Jn
(U))

⌘
�! (R,B)

is measurable too.

2. If ' is (m,�)-general, from Proposition 3.5, '(n,n) is (m,�)-general too;
then, from Proposition 2.13, 8x 2 U , there exists the function J'(n,n)(x) :
EJ �! EI , and it is (m,�)-general, from Remark 3.15.
If A (') = ;, 8x 2 U , we have A

�
J'(n,n)(x)

�
= ;, and so det J'(n,n)(x) =

0; then, the function det J'(n,n) :
�
U,B(J)(U)

�
�! (R,B) is measurable.

Conversely, if A (') 6= ;, set m = minA ('), bm = max{n, m}; observe
that '(n,n) is (bm, ⇢)-standard, where the bijective increasing function
⇢ : I\I bm �! J\J bm is defined by ⇢(i) = �(i), 8 i 2 I\I bm; thus, 8x 2 U ,
J'(n,n)(x) is (bm, ⇢)-standard too, and so Corollary 3.20 implies

det J'(n,n)(x) = det
�
J'(n,n)

�( bm, bm) (xJcm)
Y

i2I\Icm

'0i,�(i)

�
x�(i)

�
, 8x 2 U .

(11)

If bm > n, we have det
�
J'(n,n)

�( bm, bm) (xJcm) = 0, and so detJ'(n,n)(x) =
0, 8x 2 U ; then, det J'(n,n) :

�
U,B(J)(U)

�
�! (R,B) is measurable.

Finally, if bm = n, from formula (11), we have

det J'(n,n)(x) = det J'(n,n) (xJn
)
Y

i2I\In

'0i,�(i)

�
x�(i)

�
, 8x 2 U ;



INFINITE-DIMENSIONAL CHANGE OF VARIABLES’ FORMULA 83

moreover, from point 1, the function

detJ'(n,n) :
⇣
⇡J,Jn

(U),B(n)(⇡J,Jn
(U))

⌘
�! (R,B)

is measurable, and so it is
�
B(J)(U),B

�
-measurable, from Remark 2.6;

analogously, 8 i 2 I\In, '0i,�(i) :
�
U,B(J)(U)

�
�! (R,B) is measurable;

then, 8h 2 N, h � n, the function fh :
�
U,B(J)(U)

�
�! (R,B) defined

by
fh(x) = det J'(n,n) (xJn

)
Y

i2Ih\In

'0i,�(i)

�
x�(i)

�
, 8x 2 U ,

is measurable; furthermore, we have det J'(n,n)(x) = lim
h!+1

fh(x), 8x 2

U , and so det J'(n,n) :
�
U,B(J)(U)

�
�! (R,B) is measurable too.

3. By assumption and from point 2, 8n 2 N, n � m, there exists the func-
tion detJ'(n,n) :

�
U,B(J)(U)

�
�! (R,B), and it is measurable; more-

over, from Proposition 3.21, we have det J' (x) = lim
n!+1

detJ'(n,n) (x),

8x 2 U , and so det J' :
�
U,B(J)(U)

�
�! (R,B) is measurable.

Proposition 3.23. Let m 2 N⇤
, let n 2 N, n � m, and let ' : U ⇢ EJ �! EI

be a function m-general such that '(n,n)
is C1

; then, the function det J'(n,n) :�
⇡J,Jn

(U), ⌧ (n)(⇡J,Jn
(U))

�
�! (R, ⌧) is continuous.

Proof. Since '(n,n) is C1, 8 i 2 In, 8 j 2 Jn, the function

@'(n,n)
i

@xj
:
⇣
⇡J,Jn

(U), ⌧ (n)(⇡J,Jn
(U))

⌘
�! (R, ⌧)

is continuous; then, by definition of determinant, the function det J'(n,n) :�
⇡J,Jn

(U), ⌧ (n)(⇡J,Jn
(U))

�
�! (R, ⌧) is continuous too.

4. Change of variables’ formula

Definition 4.1. Let k 2 N⇤
, let M,N 2 R+

, let a = (ai : i 2 I) 2 [0,+1)I

such that

Y

i2I:ai 6=0

ai 2 R+
, and let v = (vi : i 2 I) 2 EI ; define the following

sets in BI :

E(k,I)
N,a,v = Rk ⇥

Y

i2I\Ik


vi �

N

2
ai, vi +

N

2
ai

�
;

E(k,I)
M,N,a,v =

Y

h2Ik

[vh �M,vh + M ]⇥
Y

i2I\Ik


vi �

N

2
ai, vi +

N

2
ai

�
.
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Moreover, define the �-finite measure �(k,I)
N,a,v over

�
RI ,B(I)

�
in the following

manner:

�(k,I)
N,a,v = Leb(k) ⌦

0

@
O

i2I\Ik

1
N

Leb

✓
· \


vi �

N

2
ai, vi +

N

2
ai

�◆1

A .

Lemma 4.2. Let k 2 N⇤
, let N 2 R+

, let a = (ai : i 2 I) 2 [0,+1)I
such

that

Y

i2I:ai 6=0

ai 2 R+
, and let v = (vi : i 2 I) 2 EI ; then, for any measurable

function f :
�
RI ,B(I)

�
�! (R,B) such that f+

(or f�) is �(k,I)
N,a,v-integrable,

one has Z

RI

fd�(k,I)
N,a,v =

Z

E(k,I)
N,a,v

fd�(k,I)
N,a,v.

Proof. See the proof of Lemma 46 in [5].

Proposition 4.3. Let ' : U ⇢ EJ �! EI be a (m,�)-general function such

that the function ' is bijective, and suppose that there exists "=("i : i 2 I\Im) 2
[0,+1)I\Im such that

���'(I,m)
i (xJm

)
���  "i, for any i 2 I\Im, for any xJm

2

U (m)
, and such that

Y

i2I\Im

(1 + 2"i) 2 R+
; moreover, let N 2 [1,+1), let

a = (ai : i 2 I) 2 [0,+1)I
such that

Y

i2I:ai 6=0

ai 2 R+
, and let v 2 EI ; then:

1. There exist b = (bj : j 2 J) 2 [0,+1)J
and z 2 EJ such that

Y

j2J:bj 6=0

bj 2

R+
and such that, for any l, n, k 2 N, l, n, k � m, one has

'�1
⇣
E(k,I)

N,a,v

⌘
⇢ E(k,J)

N,b,z,
⇣
'(l,n)

⌘�1 ⇣
E(k,I)

N,a,v

⌘
⇢ E(k,J)

N,b,z.

In particular, if ' is (m,�)-standard, the statement is true for any N 2
R+

, and one has

'�1
⇣
E(k,I)

N,a,v

⌘
=
⇣
'(l,n)

⌘�1 ⇣
E(k,I)

N,a,v

⌘
= E(k,J)

N,b,z,

'�1

 �

E(k,I)
N,a,v

!
=
⇣
'(l,n)

⌘�1
 �

E(k,I)
N,a,v

!
=

�

E(k,J)
N,b,z.
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2. Suppose that the function 'ij is continuous, for any i 2 Im, for any

j 2 J\Jm, and the function '(m,m) :
�
U (m), ⌧ (m)(U (m))) �! (Rm, ⌧ (m)

�

is open; then, for any M 2 R+
, there exists O 2 R+

such that, for any

l, n, k 2 N, l, n, k � m, one has

'�1
⇣
E(k,I)

M,N,a,v

⌘
⇢ E(k,J)

O,N,b,z,
⇣
'(l,n)

⌘�1 ⇣
E(k,I)

M,N,a,v

⌘
⇢ E(k,J)

O,N,b,z.

In particular, if ' is (m,�)-standard, the statement is true for any N 2 R+.

Proof. 1. Since ' is bijective, from Corollary 3.8, the functions 'i,�(i), 8 i 2
I\Im, and � are bijective.

Let N 2 [1,+1), let a = (ai : i 2 I) 2 [0,+1)I such that
Y

i2I:ai 6=0

ai 2

R+, let v 2 EI , and let a = (ai : i 2 I\Im) 2 [0,+1)I\Im , where

ai =
⇢

max{1, ai} if "i > 0
ai if "i = 0 , 8 i 2 I\Im;

define b = (bj : j 2 J) 2 [0,+1)J and z = (zj : j 2 J) 2 [0,+1)J such
that bj = zj = 1, 8 j 2 Jm; moreover, 8 i 2 I\Im, set

b�(i) =

���'�1
i,�(i)

�
vi + N

2 ai (1 + 2"i)
�
� '�1

i,�(i)

�
vi � N

2 ai (1 + 2"i)
����

N
,

z�(i) =
'�1

i,�(i)

�
vi � N

2 ai (1 + 2"i)
�

+ '�1
i,�(i)

�
vi + N

2 ai (1 + 2"i)
�

2
. (12)

Observe that, 8 i 2 I\Im, we have b�(i) 6= 0 if and only if ai 6= 0; then,
since � (I\Im) = J\Jm, we have

Y

j2J:bj 6=0

bj =
Y

j2J\Jm:bj 6=0

bj =
Y

i2I\Im:ai 6=0

b�(i)

=

0

@
Y

i2I\Im:ai 6=0

���'�1
i,�(i)

�
vi+ N

2 ai (1+2"i)
�
�'�1

i,�(i)

�
vi�N

2 ai (1+2"i)
����

Nai (1 + 2"i)

1

A

·

0

@
Y

i2I\Im:ai 6=0

ai

1

A

0

@
Y

i2I\Im:ai 6=0

(1 + 2"i)

1

A . (13)
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Moreover, 8 i 2 I\Im the function '�1
i,�(i) is derivable on R; then, if ai 6= 0,

the Lagrange theorem implies that, for some ⇠i 2 (vi� N
2 ai (1 + 2"i) , vi +

N
2 ai (1 + 2"i)), we have

���'�1
i,�(i)

�
vi + N

2 ai (1 + 2"i)
�
� '�1

i,�(i)

�
vi � N

2 ai (1 + 2"i)
����

Nai (1 + 2"i)

=
����
⇣
'�1

i,�(i)

⌘0
(⇠i)

���� =
1���'0i,�(i)('
�1
i,�(i)(⇠i))

���
; (14)

furthermore, 8 i 2 I\Im, 'i,�(i) is injective, and so I' = I\Im; then
Y

i2I\Im:ai 6=0

���'0i,�(i)('
�1
i,�(i)(⇠i))

��� =
Y

i2I':ai 6=0

���'0i,�(i)('
�1
i,�(i)(⇠i))

��� 2 R+,

(15)
from Definition 3.2. Moreover, we have

Y

i2I\Im:ai 6=0

ai =

0

@
Y

i2I\Im:ai>1,"i>0

ai

1

A

0

@
Y

i2I\Im:ai 6=0,"i=0

ai

1

A 2 R+,

Y

i2I\Im:ai 6=0

(1 + 2"i) 2 R+;

then, from formulas (13), (14) and (15), we obtain
Y

j2J:bj 6=0

bj 2 R+.

Moreover, let x0 = (x0,j : j 2 J) 2 U ; 8 i 2 I\Im, we have

����'
�1
i,�(i)

✓
vi �

N

2
ai (1 + 2"i)

◆����

=
����'
�1
i,�(i)

✓
vi �

N

2
ai (1 + 2"i)

◆
� x0,�(i) + x0,�(i)

����


����'
�1
i,�(i)(vi �

N

2
ai (1 + 2"i))� '�1

i,�(i)('i,�(i)(x0,�(i)))
����+

��x0,�(i)

�� ;

(16)

furthermore, from the Lagrange theorem, there exists ⇣i 2 (⇢i, ⌧i), where

⇢i = min{vi �
N

2
ai (1 + 2"i) ,'i,�(i)(x0,�(i))},

⌧i = max{vi �
N

2
ai (1 + 2"i) ,'i,�(i)(x0,�(i))},
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such that
����'
�1
i,�(i)(vi �

N

2
ai (1 + 2"i))� '�1

i,�(i)('i,�(i)(x0,�(i)))
����

=
����
⇣
'�1

i,�(i)

⌘0
(⇣i)

����

����vi �
N

2
ai (1 + 2"i)� 'i,�(i)(x0,�(i))

����

=
��vi � N

2 ai (1 + 2"i)� 'i,�(i)(x0,�(i))
��

���'0i,�(i)('
�1
i,�(i)(⇣i))

���
;

thus, from (16), we obtain
����'
�1
i,�(i)

✓
vi �

N

2
ai (1 + 2"i)

◆����


��vi � N

2 ai (1 + 2"i)� 'i,�(i)(x0,�(i))
��

���'0i,�(i)('
�1
i,�(i)(⇣i))

���
+
��x0,�(i)

�� . (17)

We have sup
i2I\Im

��vi � N
2 ai (1 + 2"i)

��  kvkI + N
2 kakI (1 + 2 k"kI) < +1;

moreover, from Definition 3.2, we have

sup
i2I\Im

��'i,�(i)(x0,�(i))
�� = sup

i2I\Im

���'(I\Im,J\Jm)
i

⇣
(x0)J\Jm

⌘��� < +1,

inf
i2I\Im

���'0i,�(i)('
�1
i,�(i)(⇣i)

��� = inf
i2I'

���'0i,�(i)('
�1
i,�(i)(⇣i)

��� > 0;

then, there exists c 2 R+ such that sup
i2I\Im

���'0i,�(i)('
�1
i,�(i)(⇣i))

���
�1
 c, and

so formula (17) implies

sup
i2I\Im

����'
�1
i,�(i)

✓
vi �

N

2
ai (1 + 2"i)

◆����

 c

 
sup

i2I\Im

����vi �
N

2
ai (1 + 2"i)

����+ sup
i2I\Im

��'i,�(i)(x0,�(i))
��
!

+ kx0kJ <+1.

Analogously, we have

sup
i2I\Im

����'
�1
i,�(i)

✓
vi +

N

2
ai (1 + 2"i)

◆���� < +1;

then, from formula (12), we obtain that sup
i2I\Im

��z�(i)

�� < +1, and so

z 2 EJ .
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Moreover, let k 2 N, k � m, and let x = (xj : j 2 J) 2 '�1
⇣
E(k,I)

N,a,v

⌘
;

8 i 2 I\Ik, we have

'(I,m)
i (xJm

) + 'i,�(i)(x�(i)) = 'i(x) 2

vi �

N

2
ai, vi +

N

2
ai

�

) 'i,�(i)(x�(i)) 2

vi �

N

2
ai � '(I,m)

i (xJm
) , vi +

N

2
ai � '(I,m)

i (xJm
)
�

⇢

vi �

N

2
ai � "i, vi +

N

2
ai + "i

�
;

moreover, since N � 1, we have N
2 ai + "i  N

2 ai (1 + 2"i), and so x�(i) 2
[↵i,�i], where

↵i = min
⇢
'�1

i,�(i)

✓
vi �

N

2
ai (1 + 2"i)

◆
,'�1

i,�(i)

✓
vi +

N

2
ai (1 + 2"i)

◆�
,

�i = max
⇢
'�1

i,�(i)

✓
vi �

N

2
ai (1 + 2"i)

◆
,'�1

i,�(i)

✓
vi +

N

2
ai (1 + 2"i)

◆�
;

thus, formula (12) implies

x�(i) 2

z�(i) �

N

2
b�(i), z�(i) +

N

2
b�(i)

�
; (18)

finally, since � (I\Ik) = J\Jk, we obtain '�1
⇣
E(k,I)

N,a,v

⌘
⇢ E(k,J)

N,b,z.

Furthermore, let l, n 2 N, l, n � m, and let

x = (xj : j 2 J) 2
⇣
'(l,n)

⌘�1 ⇣
E(k,I)

N,a,v

⌘
;

8 i 2 Il\Ik, since 'i(x) = '(l,n)
i (x), by repeating the previous arguments,

we have formula (18); conversely, 8 i 2 I\Il, we have

'i,�(i)(x�(i)) = 'i(x) 2

vi �

N

2
ai, vi +

N

2
ai

�
,

and so x�(i) 2 [�i, �i], where

�i = min
⇢
'�1

i,�(i)

✓
vi �

N

2
ai

◆
,'�1

i,�(i)

✓
vi +

N

2
ai

◆�
,

�i = max
⇢
'�1

i,�(i)

✓
vi �

N

2
ai

◆
,'�1

i,�(i)

✓
vi +

N

2
ai

◆�
; (19)
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then, since [�i, �i] ⇢ [↵i,�i], we obtain formula (18) again; thus, we have
�
'(l,n)

��1
⇣
E(k,I)

N,a,v

⌘
⇢ E(k,J)

N,b,z.

In particular, if ' is (m,�)-standard, 8 i 2 I\Im, we have "i = 0, and so
ai = ai; then, 8N 2 R+, we have

'�1
i,�(i)

✓
vi �

N

2
ai, vi +

N

2
ai

�◆
= [�i, �i]

=

z�(i) �

N

2
b�(i), z�(i) +

N

2
b�(i)

�
; (20)

thus, 8 k 2 N, k � m, we obtain '�1
⇣
E(k,I)

N,a,v

⌘
= E(k,J)

N,b,z, '
�1

 �

E(k,I)
N,a,v

!
=

�

E(k,J)
N,b,z; analogously, 8 l, n 2 N, l, n � m, from formula (20), we have

�
'(l,n)

��1
⇣
E(k,I)

N,a,v

⌘
= E(k,J)

N,b,z,
�
'(l,n)

��1

 �

E(k,I)
N,a,v

!
=

�

E(k,J)
N,b,z.

2. Suppose that the function 'ij is continuous, 8 i 2 Im, 8 j 2 J\Jm, and
the function '(m,m) :

�
U (m), ⌧ (m)(U (m))) �! (Rm, ⌧ (m)

�
is open; since '

is bijective, from Corollary 3.8, '(m,m) is bijective too; moreover, 8M 2
R+, consider the set

E
(I)
M,N,a,v =

Y

i2I


vi �

N

2
ai, vi +

N

2
ai

�
,

where N = max{2M,N} 2 [1,+1), ai = max{1, ai}, 8 i 2 I. We have
E

(I)
M,N,a,v ⇢ E(m,I)

N,a,v
, where a =

�
ai : i 2 I

�
2 [1,+1)I ; moreover, we have

Y

i2I\Im:ai 6=0

ai =
Y

i2I\Im:ai>1

ai 2 R+;

then, from point 1, there exist b =
�
bj : j 2 J

�
2 [0,+1)J and z 2 EJ

such that
Y

j2J:bj 6=0

bj 2 R+ and such that

'�1
⇣
E

(I)
M,N,a,v

⌘
⇢ '�1

⇣
E(m,I)

N,a,v

⌘
⇢ E(m,J)

N,b,z
;

then, 8x = (xj : j 2 J) 2 '�1
⇣
E

(I)
M,N,a,v

⌘
, we have

��xJ\Jm

��
J\Jm



kzkJ\Jm
+ N

2

��b
��

J\Jm

⌘ O1 2 R+. Moreover, 8 i 2 Im, we have

'i(x) = '(m,m)
i (xJm

) +
X

j2J\Jm

'ij(xj),
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and so
xJm

=
⇣
'(m,m)

⌘�1
wIm

, (21)

where
wi = 'i(x)�

X

j2J\Jm

'ij (xj) , 8 i 2 Im; (22)

furthermore, 8 i 2 I\Im, we have

'(I,m)
i (xJm

) + 'i,�(i)(x�(i)) = 'i(x) 2

vi �

N

2
ai, vi +

N

2
ai

�

) 'i,�(i)(x�(i)) 2

vi �

N

2
ai � '(I,m)

i (xJm
) , vi +

N

2
ai � '(I,m)

i (xJm
)
�

⇢

vi �

N

2
ai � "i, vi +

N

2
ai + "i

�
,

and so
x�(i) 2

⇥
↵i,�i

⇤
⇢ A�(i), (23)

where

↵i = min
⇢
'�1

i,�(i)

✓
vi �

N

2
ai � "i

◆
,'�1

i,�(i)

✓
vi +

N

2
ai + "i

◆�
,

�i = max
⇢
'�1

i,�(i)

✓
vi �

N

2
ai � "i

◆
,'�1

i,�(i)

✓
vi +

N

2
ai + "i

◆�
;

then, since 8 i 2 Im, 8 j 2 J\Jm, the function 'ij is continuous, there
exists O2 = O2 (', M, N, a, v) 2 R+ such that

sup
i2Im

X

j2J\Jm

|'ij (xj)|  O2,

and so kwIm
kIm

 kvkIm
+ N

2

��a
��

Im

+ O2 ⌘ O3 2 R+, from (22);

then, since the function
�
'(m,m)

��1
is continuous, from (21), we have

kxJm
kJm

 O4, for some O4 = O4 (', M, N, a, v) 2 R+ such that
⇣
'(m,m)

⌘�1
([�O3, O3]

m) ⇢ [�O4, O4]
m ,

and so kxkJ  max {O1, O4}. Thus, if b, z are the sequences defined by
point 1, we have

'�1
⇣
E

(I)
M,N,a,v

⌘
⇢
Y

j2J

[�max {O1, O4} ,max {O1, O4}]

⇢
Y

j2J

[zj �O, zj + O] , (24)
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where O ⌘ max {O1, O4} + kzkJ 2 R+; moreover, 8 k 2 N, k � m, we
have E(k,I)

M,N,a,v ⇢ E(k,I)
N,a,v \ E

(I)
M,N,a,v; then, from formula (24), we obtain

'�1
⇣
E(k,I)

M,N,a,v

⌘
⇢ '�1

⇣
E(k,I)

N,a,v

⌘
\ '�1

⇣
E

(I)
M,N,a,v

⌘

⇢ E(k,J)
N,b,z \

Y

j2J

[zj �O, zj + O] ⇢ E(k,J)
O,N,b,z.

Furthermore, let l, n 2 N, l, n � m; from point 1, we have
⇣
'(l,n)

⌘�1 ⇣
E

(I)
M,N,a,v

⌘
⇢
⇣
'(l,n)

⌘�1 ⇣
E(m,I)

N,a,v

⌘
⇢ E(m,J)

N,b,z
;

then, 8x = (xj :j 2 J) 2
�
'(l,n)

��1
⇣
E

(I)
M,N,a,v

⌘
, we have

��xJ\Jm

��
J\Jm


O1. Moreover, 8 i 2 Im, we have

'(l,n)
i (x) = '(m,m)

i (xJm
) +

X

j2Jn\Jm

'ij(xj),

and so
xJm

=
⇣
'(m,m)

⌘�1
wIm

, (25)

where
wi = '(l,n)

i (x)�
X

j2Jn\Jm

'ij (xj) , 8 i 2 Im; (26)

furthermore, 8 i 2 Il\Im, since 'i(x) = '(l,n)
i (x), we have formula (23).

Finally, 8 i 2 I\Il, we have

'i,�(i)(x�(i)) = '(l,n)
i (x) 2


vi �

N

2
ai, vi +

N

2
ai

�

) x�(i) 2
⇥
�i, �i

⇤
,

where

�i = min
⇢
'�1

i,�(i)

✓
vi �

N

2
ai

◆
,'�1

i,�(i)

✓
vi +

N

2
ai

◆�
,

�i = max
⇢
'�1

i,�(i)

✓
vi �

N

2
ai

◆
,'�1

i,�(i)

✓
vi +

N

2
ai

◆�
;

then, since
⇥
�i, �i

⇤
⇢
⇥
↵i,�i

⇤
, we obtain formula (23) again, from which

sup
i2Im

X

j2Jn\Jm

|'ij (xj)|  sup
i2Im

X

j2J\Jm

|'ij (xj)|  O2,
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and so kwIm
kIm

 O3, from (26).

Then, since the function
�
'(m,m)

��1
is continuous, from (25), we have

kxJm
kJm

 O4, and so kxkJ  max {O1, O4}. Thus, we have

⇣
'(l,n)

⌘�1 ⇣
E

(I)
M,N,a,v

⌘
⇢
Y

j2J

[�max {O1, O4} ,max {O1, O4}]

⇢
Y

j2J

[zj �O, zj + O] ; (27)

finally, 8 k 2 N, k � m, from point 1 and formula (27), we obtain

⇣
'(l,n)

⌘�1 ⇣
E(k,I)

M,N,a,v

⌘
⇢
⇣
'(l,n)

⌘�1 ⇣
E(k,I)

N,a,v

⌘
\
⇣
'(l,n)

⌘�1 ⇣
E

(I)
M,N,a,v

⌘

⇢ E(k,J)
N,b,z \

Y

j2J

[zj �O, zj + O] ⇢ E(k,J)
O,N,b,z.

In particular, if ' is (m,�)-standard, 8N 2 R+, 8 l, n, k 2 N, l, n, k � m,
from point 1, we have

'�1
⇣
E(k,I)

N,a,v

⌘
=
⇣
'(l,n)

⌘�1 ⇣
E(k,I)

N,a,v

⌘
= E(k,J)

N,b,z;

moreover, we have formulas (24) and (27) again, from which

'�1
⇣
E(k,I)

M,N,a,v

⌘
⇢ E(k,J)

O,N,b,z,
⇣
'(l,n)

⌘�1 ⇣
E(k,I)

M,N,a,v

⌘
⇢ E(k,J)

O,N,b,z.

Proposition 4.4. Let (S, ⌃) be a measurable space, let I be a ⇡-system on S,

and let µ1 and µ2 be two measures on (S, ⌃), �- finite on I; if �(I) = ⌃ and

µ1 and µ2 coincide on I, then µ1 and µ2 coincide on ⌃.

Proof. See, for example, Theorem 10.3 in Billingsley [8].

Now, we can prove the main result of our paper, that improves Theorem 47
in [5], and generalizes the change of variables’ formula for the integration of
a measurable function on Rm with values in R (see, for example, the Lang’s
book [11]).
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Theorem 4.5. (Change of variables’ formula). Let ' : U ⇢ EJ �! EI be a

bijective, continuous and (m,�)-general function, such that ⇡I,I\Im
� ' is con-

tinuous and such that, for any n 2 N, n � m, the function '(n,n) : U �! EI

is a di↵eomorphism; moreover, suppose that there exists " = ("i : i 2 I\Im) 2
(R+)I\Im

such that

���'(I,m)
i (xJm

)
���  "i, for any i 2 I\Im, for any xJm

2 U (m)
,

and such that

Y

i2I\Im

(1 + 2"i) 2 R+
; furthermore, suppose that the sequence

n�
'(n,n)

��1
o

n�m
converges uniformly to '�1

over the closed and bounded sub-

sets of EI , and the sequence
�
det J'(n,n)

 
n�m

converges uniformly over the

closed and bounded subsets of U ; finally, let N 2 [1,+1), let a = (ai : i 2 I) 2
[0,+1)I

such that

Y

i2I:ai 6=0

ai 2 R+
, let v 2 EI , and let b 2 [0,+1)J

and

z 2 EJ defined by Proposition 4.3. Then, for any k 2 N, k � m, for any

B 2 B(I)

 �

E(k,I)
N,a,v

!
and for any measurable function f :

�
RI ,B(I)

�
�! (R,B)

such that f+
(or f�) is �(k,I)

N,a,v-integrable, one has

Z

B

fd�(k,I)
N,a,v =

Z

'�1(B)

f(') lim
n!+1

��det J'(n,n)

�� d�(k,J)
N,b,z.

In particular, assume that, for any x 2 U , there exists the function J'(x) :
EJ �! EI ; then, one has

Z

B

fd�(k,I)
N,a,v =

Z

'�1(B)

f(') |detJ'| d�(k,J)
N,b,z.

Proof. The previous assumptions imply that ' is bijective, 'ij is continuous,
8 i 2 Im, 8 j 2 J\Jm, and '(m,m) :

�
U (m), ⌧ (m)(U (m))) �! (Rm, ⌧ (m)

�
is

open; thus, 8M 2 R+, 8N 2 [1,+1), 8 a = (ai : i 2 I) 2 [0,+1)I such thatY

i2I:ai 6=0

ai 2 R+, and 8 v 2 EI , let O 2 R+ and let b, z be the sequences

defined by Proposition 4.3. Then, 8n, k 2 N, n � k � m, 8B =
Y

i2I

Bi 2

B(I)
⇣
E(k,I)

M,N,a,v

⌘
and 8 i 2 I\In, we have Bi 2 B

�⇥
vi � N

2 ai, vi + N
2 ai

⇤�
; more-

over, since
�
'(n,n)

��1
(B) ⇢ E(k,J)

N,b,z, we have

'�1
i,�(i)(Bi) 2 B

✓
z�(i) �

N

2
b�(i), z�(i) +

N

2
b�(i)

�◆
,
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from which
Z

B

d�(k,I)
N,a,v =

Z

Q
p2I

Bp

d

0

@Leb(k) ⌦

0

@
O

q2I\Ik

1
N

Leb

����
B([vq�N

2 aq,vq+ N

2 aq])

1

A

1

A

=
1

Nn�k

Z

Q
p2In

Bp⇥
Q

q2I\In

Bq

d

0

@Leb(n) ⌦

0

@
O

q2I\In

1
N

Leb

����
B([vq�N

2 aq,vq+ N

2 aq])

1

A

1

A

=
1

Nn�k

Z

Q
p2In

Bp

dLeb(n) ·
Z

Q
q2I\In

Bq

d

0

@
O

q2I\In

1
N

Leb

����
B([vq�N

2 aq,vq+ N

2 aq])

1

A . (28)

Moreover, we have

Z

Q
q2I\In

Bq

d

0

@
O

q2I\In

1
N

Leb

����
B([vq�N

2 aq,vq+ N

2 aq])

1

A =
Z

Q
q2I\In

Bq

d

0

@
O

q2I\In

1
N

Leb

����
B(Bq)

1

A

= lim
p!+1

Z

Q
q2Ip\In

Bq

d

0

@
O

q2Ip\In

1
N

Leb

����
B(Bq)

1

A (by Theorem 2.1)

= lim
p!+1

Z

Q
q2Ip\In

'�1
q,�(q)(Bq)

Q
q2Ip\In

���'0q,�(q)

��� · d

0

@
O

q2Ip\In

1
N

Leb

����
B('�1

q,�(q)(Bq))

1

A

(since, 8 q 2 Ip\In, 'q,�(q) is a di↵eomorphism, by Proposition 3.13)

=
Z

Q
q2I\In

'�1
q,�(q)(Bq)

Q
q2I\In

���'0q,�(q)

��� · d

0

@
O

q2I\In

1
N

Leb

����
B('�1

q,�(q)(Bq))

1

A

(by Theorem 2.2)

=
Z

Q
q2I\In

'�1
q,�(q)(Bq)

Q
q2I\In

���'0q,�(q)

���· d

0

@
O

q2I\In

1
N

Leb

����
B([z�(q)�N

2 b�(q),z�(q)+
N

2 b�(q)])

1

A.

Moreover, from Proposition 3.13, '(n,n) is a di↵eomorphism, and so formula
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(28) implies
Z

B

d�(k,I)
N,a,v =

1
Nn�k

Z

('(n,n))�1
 Q

p2In

Bp

!
|det J'(n,n) |dLeb(n)

·
Z

Q
q2I\In

'�1
q,�(q)(Bq)

Q
q2I\In

���'0q,�(q)

���· d

0

@
O

q2I\In

1
N

Leb

����
B([z�(q)�N

2 b�(q),z�(q)+
N

2 b�(q)])

1

A

=
1

Nn�k

Z

('(n,n))�1
(B)

|detJ'(n,n) |d

0

@Leb(n)

⌦

0

@
O

q2I\In

1
N

Leb

����
B([z�(q)�N

2 b�(q),z�(q)+
N

2 b�(q)])

1

A

1

A

=
Z

('(n,n))�1
(B)

|detJ'(n,n) |d

0

@Leb(k)

⌦

0

@
O

q2I\Ik

1
N

Leb

����
B([z�(q)�N

2 b�(q),z�(q)+
N

2 b�(q)])

1

A

1

A

✓
since

⇣
'(n,n)

⌘�1
(B) ⇢ E(k,J)

N,b,z

◆

=
Z

('(n,n))�1
(B)

|detJ'(n,n) |d�(k,J)
N,b,z. (29)

Consider the measures µ1 and µ2 on ⌃ ⌘ B(I)
⇣
E(k,I)

M,N,a,v

⌘
defined by

µ1(B) =
Z

B

d�(k,I)
N,a,v,

µ2(B) =
Z

('(n,n))�1
(B)

|detJ'(n,n) |d�(k,J)
N,b,z;

from (29), µ1 and µ2 coincide on the set

I =

(
B 2 ⌃ : B =

Y

i2I

Bi

)
;
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moreover, we have µ1

⇣
E(k,I)

M,N,a,v

⌘
= µ2

⇣
E(k,I)

M,N,a,v

⌘
< +1, E(k,I)

M,N,a,v 2 I, and

so µ1 and µ2 are �- finite on I. Then, since I is a ⇡-system on E(k,I)
M,N,a,v such

that �(I) = ⌃, from Proposition 4.4, 8B 2 B(I)
⇣
E(k,I)

M,N,a,v

⌘
, we have

Z

B

d�(k,I)
N,a,v =

Z

('(n,n))�1
(B)

|det J'(n,n) |d�(k,J)
N,b,z. (30)

Moreover, since E(k,I)
M,N,a,v is closed and bounded, the sequence

n�
'(n,n)

��1
o

n�k

converges uniformly to '�1 over E(k,I)
M,N,a,v; furthermore, since ' is continuous,

'�1
⇣
E(k,I)

M,N,a,v

⌘
is closed; then, there exist n 2 N, n � k, and � 2 R+ such

that, 8 i > n,
�
'(i,i)

��1
⇣
E(k,I)

M,N,a,v

⌘
⇢ '�1

⇣
E(k,I)

M,N,a,v

⌘
+ BJ(0, �) ⇢ U , from

which

⇣
'(n,n)

⌘�1
(B) ⇢

[

h�k

⇣
'(h,h)

⌘�1 ⇣
E(k,I)

M,N,a,v

⌘

⇢
 

n[

h=k

⇣
'(h,h)

⌘�1 ⇣
E(k,I)

M,N,a,v

⌘![⇣
'�1

⇣
E(k,I)

M,N,a,v

⌘
+ BJ(0, �)

⌘
,

8n � k;

then, from Proposition 4.3, 8n � k, we have

⇣
'(n,n)

⌘�1
(B) ⇢ E(k,J)

O,N,b,z

\
  

n[

h=k

⇣
'(h,h)

⌘�1 ⇣
E(k,I)

M,N,a,v

⌘![⇣
'�1

⇣
E(k,I)

M,N,a,v

⌘
+ BJ(0, �)

⌘!

⌘ E(k,I,',�)
M,N,a,v ⇢ U, (31)

and so
Z

E(k,I)
M,N,a,v

1Bd�(k,I)
N,a,v =

Z

E(k,I,',�)
M,N,a,v

1B('(n,n))|detJ'(n,n) |d�(k,J)
N,b,z. (32)

Moreover, 8h 2 {k, ..., n}, '(h,h) is continuous, since from Proposition 3.13 it is
a di↵eomorphism; then, since ⇡I,I\Im

� ' is continuous, from Proposition 3.10,
'(h,h) is continuous too, and so formula (31) implies that E(k,I,',�)

M,N,a,v is a closed



INFINITE-DIMENSIONAL CHANGE OF VARIABLES’ FORMULA 97

subset of U ; furthermore, we have E(k,I,',�)
M,N,a,v ⇢ E(k,J)

O,N,b,z, and so E(k,I,',�)
M,N,a,v is

bounded.
From formula (32), if  :

�
RI ,B(I)

�
�! ([0,+1),B ([0,+1))) is a simple

function such that  (x) = 0, 8x /2 E(k,I)
M,N,a,v, we have

Z

E(k,I)
M,N,a,v

 d�(k,I)
N,a,v =

Z

E(k,I,',�)
M,N,a,v

 ('(n,n))|detJ'(n,n) |d�(k,J)
N,b,z.

Then, if l :
�
RI ,B(I)

�
�! ([0,+1),B ([0,+1))) is a measurable function

such that l(x) = 0, 8x /2 E(k,I)
M,N,a,v, and { i}i2N is a sequence of increasing

positive simple functions over
�
RI ,B(I)

�
such that lim

i�!+1
 i = l,  i(x) = 0,

8x /2 E(k,I)
M,N,a,v, 8 i 2 N, from Beppo Levi theorem we have

Z

E(k,I)
M,N,a,v

ld�(k,I)
N,a,v = lim

i�!+1

Z

E(k,I)
M,N,a,v

 id�
(k,I)
N,a,v

= lim
i�!+1

Z

E(k,I,',�)
M,N,a,v

 i('(n,n))|det J'(n,n) |d�(k,J)
N,b,z

=
Z

E(k,I,',�)
M,N,a,v

l('(n,n))|detJ'(n,n) |d�(k,J)
N,b,z, (33)

from which
Z

E(k,I)
M,N,a,v

ld�(k,I)
N,a,v = lim

n�!+1

Z

E(k,I,',�)
M,N,a,v

l('(n,n))|detJ'(n,n) |d�(k,J)
N,b,z. (34)

In particular, formula (34) is true if l : RI �! [0,+1) is
�
B(I),B ([0,+1))

�
-

measurable,
�
⌧ (I), ⌧ ([0,+1))

�
-continuous and such that l

�
RI

�
⇢ [0, 1], l(x) =

0, 8x /2 E(k,I)
M,N,a,v. In this case, let {fn}n�k be the sequence of the measurable

functions

fn :
⇣
E(k,I,',�)

M,N,a,v ,B(J)
⇣
E(k,I,',�)

M,N,a,v

⌘⌘
�! ([0,+1),B ([0,+1)))

given by

fn(x) = l('(n,n)(x))|detJ'(n,n)(x)|, 8x 2 E(k,I,',�)
M,N,a,v , 8n � k;

since E(k,I,',�)
M,N,a,v is closed and bounded, the sequence

�
detJ'(n,n)

 
n�k

converges

uniformly over E(k,I,',�)
M,N,a,v ; then, there exists bn 2 N, bn � k, such that, 8x 2
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E(k,I,',�)
M,N,a,v , 8n > bn, we have |detJ'(n,n)(x)|  |det J'(bn,bn)(x)| + 1; thus, since

l
�
RI

�
⇢ [0, 1], 8n � k, we have |fn|  |detJ'(n,n) |  g, where

g :
⇣
E(k,I,',�)

M,N,a,v ,B(J)
⇣
E(k,I,',�)

M,N,a,v

⌘⌘
�! ([0,+1),B ([0,+1)))

is the measurable function defined by

g(x) =
bnX

h=k

|detJ'(h,h)(x)|+ |detJ'(bn,bn)(x)|+ 1, 8x 2 E(k,I,',�)
M,N,a,v . (35)

Moreover, 8h 2 {k, ..., bn}, we have

|detJ'(h,h)(x)| = |detJ'(h,h)(xJh
)|

Y

i2I\Ih

���'0i,�(i)(x�(i))
��� , 8x 2 E(k,I,',�)

M,N,a,v ; (36)

furthermore, from Proposition 3.23 and Proposition 3.13, 8h 2 {k, ..., bn},
8 i 2 I\Ih, the functions detJ'(h,h) and '0i,�(i) are continuous; then, since the

sets ⇡J,Jh

⇣
E(k,I,',�)

M,N,a,v

⌘
and ⇡J,{�(i)}

⇣
E(k,I,',�)

M,N,a,v

⌘
are closed and bounded, from

formulas (35) and (36), there exists � 2 R+ such that g(x)  �, 8x 2 E(k,I,',�)
M,N,a,v ;

thus, by definition of E(k,I,',�)
M,N,a,v , we have

Z

E(k,I,',�)
M,N,a,v

gd�(k,J)
N,b,z  ��(k,J)

N,b,z

⇣
E(k,I,',�)

M,N,a,v

⌘
 ��(k,J)

N,b,z

⇣
E(k,J)

O,N,b,z

⌘

= �
Y

p2Jk

Leb ([zp �O, zp + O])
Y

q2J\Jk

1
N

Leb

✓
zq �

N

2
bq, zq +

N

2
bq

�◆

= � (2O)k
Y

q2J\Jk

bq < +1.

Moreover, since lim
i2I,i�!+1

"i = 0, we have lim
n�!+1

'(n,n) = ', and so

lim
n�!+1

fn(x) = l('(x)) lim
n!+1

��detJ'(n,n)(x)
�� ,8x 2 E(k,I,',�)

M,N,a,v ;

then, from the dominated convergence theorem, we obtain

lim
n�!+1

Z

E(k,I,',�)
M,N,a,v

l('(n,n))|detJ'(n,n) |d�(k,J)
N,b,z

=
Z

E(k,I,',�)
M,N,a,v

l(') lim
n!+1

��detJ'(n,n)

�� d�(k,J)
N,b,z;
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consequently, from (34), we have

Z

E(k,I)
M,N,a,v

ld�(k,I)
N,a,v =

Z

E(k,I,',�)
M,N,a,v

l(') lim
n!+1

��detJ'(n,n)

�� d�(k,J)
N,b,z. (37)

Let B =
Q
i2I

Bi 2 B(I)
⇣
E(k,I)

M,N,a,v

⌘
, where Bi = (↵i,�i), 8 i 2 I, and let �i =

�i�↵i

2 , 8 i 2 I; moreover, 8h 2 N⇤, 8 t 2 [0, 1], consider the set

Ah,t =
Y

i2I

✓
↵i +

t�i
h

,�i �
t�i
h

◆
,

and consider the function lh : RI �! [0,+1) defined by

lh(x) =

8
><

>:

1 if x 2
�

Ah,1

t if x 2 @Ah,t

0 if x 2 RI\Ah,0

.

Observe that, 8h 2 N⇤, lh : RI �! [0,+1) is a function such that lh
�
RI

�
⇢

[0, 1], lh(x) = 0, 8x /2 E(k,I)
M,N,a,v; moreover, 8 t1, t2 2 [0,+1) such that t1 < t2,

we have

l�1
h ((t1, t2)) =

8
><

>:

; if t1 � 1
�

Ah,t1 if t1 < 1 < t2
�

Ah,t1\Ah,t2 if t1 < t2  1

,

l�1
h ([0, t2)) =

⇢
RI if t2 > 1
RI\Ah,t2 if t2  1 ;

thus, lh is
�
B(I),B ([0,+1))

�
-measurable and

�
⌧ (I), ⌧ ([0,+1))

�
-continuous.

Then, since {lh}h2N⇤ is an increasing positive sequence such that lim
h�!+1

lh =
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1B , from Beppo Levi theorem and (37), we have

Z

B

d�(k,I)
N,a,v =

Z

E(k,I)
M,N,a,v

1Bd�(k,I)
N,a,v = lim

h�!+1

Z

E(k,I)
M,N,a,v

lhd�(k,I)
N,a,v

= lim
h�!+1

Z

E(k,I,',�)
M,N,a,v

lh(') lim
n!+1

��detJ'(n,n)

�� d�(k,J)
N,b,z

=
Z

E(k,I,',�)
M,N,a,v

1B(') lim
n!+1

��detJ'(n,n)

�� d�(k,J)
N,b,z

=
Z

'�1(B)

lim
n!+1

��det J'(n,n)

�� d�(k,J)
N,b,z. (38)

Moreover, Proposition 4.4 implies that the previous formula (38) is true 8B 2

B(I)

 �

E(k,I)
M,N,a,v

!
. Consider the measures µ and � on

 �

E(k,I)
N,a,v,B(I)

 �

E(k,I)
N,a,v

!!

defined by

µ(B) =
Z

B

d�(k,I)
N,a,v,

�(B) =
Z

'�1(B)

lim
n!+1

��detJ'(n,n)

�� d�(k,J)
N,b,z,

and set Bl = B \
�

E(k,I)
l,N,a,v, 8 l 2 N⇤, 8B 2 B(I)

 �

E(k,I)
N,a,v

!
. Since Bl ⇢ Bl+1,

'�1 (Bl) ⇢ '�1 (Bl+1),
S

l2N⇤
Bl = B and

S
l2N⇤

'�1(Bl) = '�1(B), from the

continuity property of µ and � and (38), we have

Z

B

d�(k,I)
N,a,v = lim

l�!+1

Z

Bl

d�(k,I)
N,a,v

= lim
l�!+1

Z

'�1(Bl)

lim
n!+1

��detJ'(n,n)

�� d�(k,J)
N,b,z

=
Z

'�1(B)

lim
n!+1

��det J'(n,n)

�� d�(k,J)
N,b,z. (39)
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Then, let B 2 B(I)

 �

E(k,I)
N,a,v

!
and let g :

�
RI ,B(I)

�
�! ([0,+1),B ([0,+1)))

be a measurable function; 8x /2
�

E(k,I)
N,a,v, we have (g1B) (x) = 0; thus, by

proceeding as in the proof of formula (33), formula (39) implies
Z

B

gd�(k,I)
N,a,v =

Z

RI

1Bgd�(k,I)
N,a,v =

Z

RJ

(1Bg) (') lim
n!+1

��detJ'(n,n)

�� d�(k,J)
N,b,z

=
Z

'�1(B)

g(') lim
n!+1

��detJ'(n,n)

�� d�(k,J)
N,b,z.

Then, for any measurable function f :
�
RI ,B(I)

�
�! (R,B) such that f+ (or

f�) is �(k,I)
N,a,v-integrable, we have

Z

B

fd�(k,I)
N,a,v =

Z

B

f+d�(k,I)
N,a,v �

Z

B

f�d�(k,I)
N,a,v

=
Z

'�1(B)

f+(') lim
n!+1

��detJ'(n,n)

�� d�(k,J)
N,b,z

�
Z

'�1(B)

f�(') lim
n!+1

��det J'(n,n)

�� d�(k,J)
N,b,z

=
Z

'�1(B)

f(') lim
n!+1

��det J'(n,n)

�� d�(k,J)
N,b,z. (40)

In particular, assume that, 8x 2 U , there exists the function J'(x) : EJ �!
EI ; from Proposition 3.21, we have

lim
n!+1

��det J'(n,n)(x)
�� =

���� lim
n!+1

det J'(n,n)(x)
���� = |detJ'(x)| , 8x 2 U,

and so formula (40) implies
Z

B

fd�(k,I)
N,a,v =

Z

'�1(B)

f(') |detJ'| d�(k,J)
N,b,z.

5. Problems for further study

A natural application of this paper, in the probabilistic framework, is the de-
velopment of the theory of the infinite-dimensional continuous random vari-
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ables, defined in the paper [4]. In particular, we can prove the formula of the
density of such random variables composed with the (m,�)-general functions,
with further properties. Consequently, it is possible to introduce many random
variables that generalize the well known continuous random vectors in Rm (for
example, the Beta random variables in EI defined by the (m,�)-general ma-
trices), and to develop some theoretical results and some applications in the
statistical inference. Moreover, we can define a convolution between the laws
of two independent and infinite-dimensional continuous random variables, as
in the finite case.

Furthermore, in the statistical mechanics, it is possible to describe the sys-
tems of smooth hard particles, by using the Boltzmann equation (see, for ex-
ample, the paper [18]), or the more general Master kinetic equation, described
in the papers [17] and [16]. In order to study the evolution of these systems,
we can consider the model of countable particles, such that their joint infinite-
dimensional density can be determined by composing a particular random vari-
able with a (m,�)-general function.

Finally, we can generalize the papers [2] and [3] (where we estimate the rate
of convergence of some Markov chains on [0, p)k to a uniform random vector)
by considering the recursion {Xn}n2N on [0, p)N

⇤
defined by

Xn+1 = AXn + Bn (mod p),

where X0 = x0 2 EI , A is a bijective, linear, integer and (m,�)-general func-
tion, p 2 R+, and {Bn}n2N is a sequence of independent and identically dis-
tributed random variables with values on EI . As noted above, it is possible
to determine the density of the random variable AXn, for any n 2 N⇤; conse-
quently, we expect to prove that, with some assumptions on the law of Bn, the
sequence {Xn}n2N converges with geometric rate to a random variable with law
O

i2N⇤

✓
1
pLeb

���
B([0,p))

◆
, that is the uniform random variable on [0, p)N

⇤
. More-

over, we wish to quantify the rate of convergence in terms of A, p, m, and the
law of Bn.
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On elliptic curves of bounded degree in
a polarized Abelian variety

Lucio Guerra

Abstract. For a polarized complex Abelian variety A we study the
function NA(t) counting the number of elliptic curves in A with degree
bounded by t. This extends our previous work in dimension two. We
describe the collection of elliptic curves in the product A = S ⇥ F
of an Abelian variety and an elliptic curve by means of an explicit
parametrization, and in terms of the parametrization we express the
degrees of elliptic curves relative to a split polarization. When this
is applied to the self product A = Ek of an elliptic curve, it turns
out that an asymptotic estimate of the counting function NA(t) can be
obtained from an asymptotic study of the degree form on the group of
endomorphisms of the elliptic curve.

Keywords: Elliptic curve, Abelian variety, polarization.

MS Classification 2010: 14K20, 14H52.

1. Introduction

Let A be a complex Abelian variety, of dimension n > 1, endowed with a
polarization. With the expression ‘elliptic curve in an Abelian variety’ we
mean a one-dimensional subtorus. Every algebraic curve in A has a degree
with respect to the polarization, and the following finiteness theorem holds: for
every integer t � 1 the collection of elliptic curves E ⇢ A such that deg(E)  t
is finite. In dimension n = 2 this was known to Bolza and Poincaré, and a
modern account is in the paper of Kani [7]. For Jacobian varieties of arbitrary
dimension the theorem was proved by Tamme and was brought to an e↵ective
form in another paper of Kani [6]. For an arbitrary Abelian variety A the
theorem follows from a general result proved by Birkenhake and Lange in [1], to
the e↵ect that the collection of all Abelian subvarieties with bounded exponent
in A is finite.

Denote by NA(t) the number of elliptic curves in A with degree bounded by
t. In a previous paper [4], we presented an approach to the counting function
NA(t) in dimension n = 2. In the most relevant situation, when the Abelian
surface is the product E ⇥ E0 of two elliptic curves, the approach was based
on explicit coordinates in the Néron Severi group and an explicit Diophantine
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equation for the collection of elliptic curves in the Abelian surface. We have
to correct an expression given in that paper for the quantity � that is required
in the main theorem (as is explained in §3.2). This leaves the statement of the
theorem formally unaltered, and the same is for its proof and its consequences.

The main aim of the present paper is to study the function NA(t) in ar-
bitrary dimension. The problem of bounding this function is invariant under
isogenies, and the most relevant case is when the Abelian variety A is the self
product Ek of an elliptic curve, with a split polarization (the sum of pullback
polarizations from the factors). An approach to the 3-dimensional counting
function, still based on explicit Diophantine equations, was investigated in [3].
Here we present a di↵erent approach, which is based on parametrization rather
than equations in coordinates.

We study the collection of elliptic curves in the product S⇥F of an Abelian
variety and an elliptic curve. We show that the subcollection consisting of the
elliptic curves which are not contained in S⇥{0} and are di↵erent from {0}⇥F
is bijectively parametrized by a certain set of parameter data (Theorem 5.1)
and that, with respect to a split polarization, the degrees of the correspond-
ing elliptic curves in S ⇥ F can be expressed in terms of the parameter data
(Theorem 5.2). When these results on parametrization are applied to the self
product Ek of an elliptic curve, it turns out that, in this case, an estimate of
the counting function NA(t) can be obtained from an asymptotic study of the
degree form f 7�! deg(f) on the group of endomorphisms of the elliptic curve
(that is provided in Proposition 4.1). The tool for this is the same result from
Number Theory, concerning the number of lattice points in a bounded region
in the real plane, that was used in the previous work on the 2-dimensional
counting function.

Here is the fundamental information that is needed in our asymptotic esti-
mate of the counting function. Define:

m the minimum of the degrees of the factors of Ek, the various
copies of E, with respect to the given polarization;

d the minimum degree of an isogeny E ! E;

� when the elliptic curve has complex multiplication, the (neg-
ative) discriminant of the degree form on the endomorphism
group End(E).

Assume moreover that k � 2. In terms of these data, we prove (in §6) the
following main result:

Theorem 1.1. There is an asymptotic estimate

NEk(t) = C tr + O(ti),

where r = k if the curve admits no complex multiplication, and r = 2k � 1 if
the curve has complex multiplication, the constant C being given by
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2k/(k + 1)
(
p

d)k�1 mk
for r = k,

(2⇡)k�1/k

(
p
��)k�1 m2k�1

for r = 2k � 1,

the exponent i being

k � 1 for r = k, 2k � 3 + 2e for r = 2k � 1,

where e = 33/104 = 0.317 . . . .

Finally we show that the result above for the self product of an elliptic
curve implies some result holding for an arbitrary polarized Abelian variety
(Proposition 7.1).

2. Some preliminary material

2.1. Elliptic curves as homology classes

Let A be an Abelian variety, of dimension n > 1. Every curve C ⇢ A determines
a homology class [C] in H2(A, Z). For elliptic curves (subgroups), the induced
correspondence �

elliptic curves in A
 
�! H2(A, Z)

is injective and the homology classes � = [C] in H2(A, Z) corresponding to
elliptic curves in A satisfy the following basic properties:

� � is primitive (indivisible),

� � · H > 0 for some (every) ample divisor H.

These results are certainly well known (the last property is obvious), however
a proof can be found in [3], §2.

In dimension n = 2, the homology classes of elliptic curves in the Abelian
surface A belong to the Néron Severi group NS(A) ,! H2(A, Z), and are
characterized in that group by means of the two properties above together
with the numerical condition (cf. [7], Theorem 1.1):

� � · � = 0.

2.2. Degree with respect to a polarization

Let L in NS(A) be an ample divisor class, representing a polarization of A.
For every curve C ⇢ A the degree with respect to the polarization is

deg(C) := C · L.

Let A be a polarized Abelian variety (we usually omit an explicit reference
to the polarization). The following is a classical result: for every integer t � 1
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the collection of elliptic curves E ⇢ A such that deg(E)  t is finite. It is a
consequence of a general result proved by Birkenhake and Lange in [1], to the
e↵ect that the collection of all Abelian subvarieties with bounded exponent in
A is finite.

Let us recall some definitions. The polarization defines a natural isogeny � :
A! bA to the dual variety. The order of ker(�) is the degree of the polarization
and the exponent of ker(�) is called the exponent of the polarization on A.
Clearly the exponent is a divisor of the degree. For an Abelian subvariety E
of A one has the exponent and the degree of the induced polarization. If E
is an elliptic curve in A we know that the degree of the curve is equal to the
degree of the induced polarization. So elliptic curves with bounded degree have
bounded exponent, and the theorem follows.

We define the function
NA(t)

counting the number of elliptic curves in A with degree bounded by t.

2.3. Product Abelian surfaces

Consider an Abelian surface of the form E⇥E0 where E,E0 are elliptic curves.
There is a natural isomorphism

Z2
�Hom(E,E0) ⇠

�! NS(E ⇥ E0)

(a, b; f) 7�! (b� 1)[Eh] + (a� deg(f))[E0
v] + [��f ],

where Eh := E⇥ {0} and E0
v := {0}⇥E0 are the ‘horizontal’ and the ‘vertical’

factor, and ��f is the graph of the homomorphism �f . The intersection form
on NS(E ⇥ E0) is expressed as

D · D0 = ab0 + ba0 �
�
deg(f + f 0)� deg(f)� deg(f 0)

�

if the divisors D and D0 arise as above from the data (a, b; f) and (a0, b0; f 0).
This is a special case of the description of correspondences between two

curves in terms of homomorphisms between the associated Jacobian varieties
(cf. e.g. [2], Theorem 11.5.1) and also is a special case of a result of Kani ([8],
Proposition 61) for the Néron Severi group of a product Abelian variety.

2.4. Elliptic curves in a product Abelian surface

Using the description of NS(E ⇥E0) in §2.3 above and the characterization of
elliptic curves in an Abelian surface in §2.1, we can now describe the collection
of elements (a, b; f) in the group Z2

�Hom(E,E0) such that the corresponding
divisor class [D] is the class of an elliptic curve in E ⇥ E0.
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Besides the condition of primitivity of the element (a, b; f), the numerical
condition D · D = 0 becomes

ab = deg(f)

and the positivity condition D · H > 0 is equivalent to

a + b > 0

(using the ample divisor H := Eh + E0
v).

If on E⇥E0 we choose a split polarization L = mEh +nE0
v, where m,n are

positive integers, then the degree of divisors with respect to the polarization is
given by the linear function

deg(D) = am + bn

if D corresponds to (a, b; f).
When E and E0 are not isogenous then clearly Eh and E0

v are the only
elliptic curves in E ⇥ E0. When E and E0 are isogenous, the graphs of homo-
morphisms E ! E0 form an infinite collection of elliptic curves in E ⇥ E0.

2.5. Reducibility

We will make use of the Poincaré reducibility theorem with respect to a polar-
ization, in the following form.

If A is a polarized Abelian variety and B is an Abelian subvariety of A,
there is a unique Abelian subvariety B0 of A such that the sum homomorphism
B⇥B0

! A is an isogeny and the pullback polarization on B⇥B0 is the sum of
the pullback polarizations from B and B0 (cf. [2], Theorem 5.3.5 and Corollary
5.3.6).

2.6. A result from Number Theory

The following is a classical problem in Number Theory, originating from Gauss’
circle problem. Given a compact convex subset K in R2, estimate the number
N := card (Z2

\K) of integer vectors (or lattice points) belonging to the convex
set. This number is naturally approximated by the area A of the subset, and
then the question is to estimate the (error or) discrepancy N�A. The following
estimate is due to Nosarzewska [9]. If K is a compact convex region in R2 of
area A whose boundary is a Jordan curve of length L then

N  A +
1
2
L + 1.
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We will apply this result through the following consequence. For every scale
factor t 2 R�0 denote by N(t) the number of lattice points in the deformed
region

p
t K. Then

N(t)  A t +
L

2
t1/2 + 1.

The inequality above is valid for arbitrary t. But in an asymptotic estimate

N(t) = A t + O(te)

(an implicit inequality holding for t� 0) the exponent e may be lowered, and
precisely one can take

e = 33/104 = 0.317 . . .

This follows from a result of Huxley [5].

3. Summary of previous results, with correction

3.1. The homomorphism group and the degree form

For the basic theory of elliptic curves we refer to [10]. Let E,E0 be elliptic
curves. The homomorphism group Hom(E,E0) is a free abelian group of rank
at most 2, and the degree map

Hom(E,E0) �! Z

such that f 7�! deg(f) is a quadratic form.
Assume now that the elliptic curves E,E0 are isogenous, i.e. that the group

Hom(E,E0) has rank > 0. Denote by

d the minimum nonzero value of the degree form

and let ' : E �! E0 be an isogeny of minimum degree d.
If the group Hom(E,E0) has rank 1, one has the isomorphism Z ⇠

�!

Hom(E,E0) given by x 7�! x'. For every x 2 Z one has deg(x') = x2d
and this describes the degree form.

Assume now that Hom(E,E0) has rank 2. This happens if and only if E
has complex multiplication, and the same is for E0. In this case there is an
isomorphism Z2 ⇠

�! Hom(E,E0) and the degree form is expressed as a binary
quadratic form. So, when the elliptic curves have complex multiplication, we
denote by

� the discriminant of the degree form.

Explicit descriptions of the homomorphism group and the degree form, in pres-
ence of complex multiplication, are given in §3.3.

Remark that both d and � only depend on the unordered pair E,E0. This
is because the isomorphism Hom(E,E0)  ! Hom(E0, E), sending a homo-
morhism f to the dual homomorphism bf , preserves the degree forms.
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3.2. Estimate for the counting function

Consider a product Abelian surface E ⇥E0 endowed with a split polarization.
Assume that E,E0 are isogenous elliptic curves. Together with the invariants
d and � introduced in §3.1 above, we also define

m the minimum of deg(E) and deg(E0), the degrees with respect
to the polarization.

Theorem 3.1. If E,E0 are isogenous, there is an asymptotic estimate

NE⇥E0(t) = C tr�1 + O(ti),

with r = 3 when E,E0 admit no complex multiplication and r = 4 when E,E0

have complex multiplication, the constant C being given by
⇡

4
p

d m2
for r = 3,

⇡

3
p
�� m3

for r = 4,

the exponent i being

0 for r = 3, 85
52 = 1.634 . . . for r = 4.

The proof given in [4], §5.2, actually works without modification with the
new definition of the quantity � and independently of the order chosen for the
factor curves. While the expression for � given in [ibid.], §3.2, needs to be
corrected, as is explained in the following section.
Remark 3.2: In the statement of Theorem 3.1 the exponent which gives the
order of growth of the asymptotic estimate has been written as r � 1 in order
to remind the interpretation of r as the rank of the group NS(E ⇥ E0). In
higher dimensions such a purpose seems not to be meaningful any more. It
must be noticed moreover that the estimate in Theorem 3.1 is slightly sharper
than the estimate which is obtained from Theorem 1.1 in the special case k = 2
(in the earlier estimate the numerical part of the constant C is smaller and the
exponent i is smaller in the case with no complex multiplication).

3.3. Computing the degree form

We use the representation of an elliptic curve E as the quotient C/⇤ where
⇤ = h1, ⌧i is the lattice in C associated to a modulus ⌧ for E, a complex
number with positive imaginary part, that is determined up to the natural
action of SL(2, Z).

Let E and E0 be elliptic curves, that we identify with C/⇤ and C/⇤0 with
⇤ = h1, ⌧i and ⇤0 = h1, ⌧ 0i for suitable moduli ⌧ and ⌧ 0. There is the natural
identification

Hom(E,E0) ! {↵ 2 C s.t. ↵⇤ ✓ ⇤0} =: H.
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Assume that there is an isogeny E ! E0. In this case, according to [4],
Lemma 3.1, we can choose moduli ⌧ and ⌧ 0 such that

⌧ 0 = `⌧ and ` =
p

q

with p, q coprime positive integers. If the homomorphism group Hom(E,E0)
has rank 1 the situation is clear (see §3.1).

Assume now that Hom(E,E0) has rank 2. Then E has complex multipli-
cation, and the same is for E0. Therefore the modulus ⌧ is algebraic of degree
2 over Q. So, assume that ⌧ satisfies the equation

⌧2 +
u

w
⌧ +

v

w
= 0

with u, v, w in Z such that w > 0 and (u, v, w) = (1) and moreover

u2
� 4vw < 0

as ⌧ is an imaginary complex number.
Remark 3.3: In the previous paper [4] in Lemma 3.4 we made a wrong as-
sertion (the error in the proof is the claim that certain three coe�cients are
always coprime). Although some (slightly di↵erent) statement of the same kind
is nevertheless true, it turns out to be however unnecessary for the purposes
of the paper. This is because the subsequent statements, Proposition 3.5 and
Proposition 3.6, and their proofs, can be slightly modified so to provide general
expressions for the degree form and its discriminant. The new statements are
given just below.

From the pairs w, p and v, q, dividing in each pair by the greatest common
divisor, we obtain coprime pairs

w̄, p̄ and v̄, q̄.

Moreover, since p, q are coprime, we can write

u = pp0 + qq0

for suitable integers p0, q0.

Proposition 3.4. An explicit isomorphism Z2 ⇠
�! H is given by

(x, y) 7�! (xp + yp̄q̄q0) + (yw̄q̄)(`⌧).

Proof. The part of the proof which has to be adjusted is the analysis of the
conditions for a complex number ↵ = a + b(`⌧) to be an element of H, namely
the conditions that the rational numbers b(p/q)(v/w) and a(q/p)� b(u/w) be
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integers. In particular, this requires that bp(v/w) and bp(u/w) are integers.
Since u, v, w are coprime, it follows that w | bp and hence that w̄ | b.

The full condition (bp/w)(v/q) 2 Z means that q | (bp/w)v, that is q̄ |

(bp/w) = (b/w̄)p̄, and hence that q̄ | (b/w̄) and w̄q̄ | b. So the first condition
above is satisfied if and only if one has b = w̄q̄y with y 2 Z.

Then the second condition above requires that aq� (bp/w)u belongs to pZ,
that is aq � (p̄q̄)yu 2 pZ, that is (p̄q̄)yu = aq + a0p for some integer a0. Since
p, q are coprime, the solutions are of the form (a0, a) = p̄q̄y(p0, q0) + x(�q, p)
with x 2 Z. Thus a = xp + yp̄q̄q0, as in the statement.

Proposition 3.5. The degree of the homomorphism f : E ! E0 corresponding
to (x, y) 2 Z2 is given by

deg(f) = x2(pq) + xy(p̄q̄)(qq0 � pp0) + y2(p̄q̄)(�p̄q̄p0q0 + v̄w̄).

The discriminant of the quadratic form f 7! deg(f) on Hom(E,E0) is
equal to

� = (p̄q̄)2
�
u2
� 4vw

�
.

Proof. What is only to be adjusted is the computation of deg(f) as
����
a �b`(v/w)
b (a/`)� b(u/w)

���� =
����
xp + yp̄q̄q0 �yp̄v̄

yw̄q̄ xq � yp̄q̄p0

���� ,

where we used the expressions for a, b given in the previous proposition: it
leads to the expression given in the statement. It is also easy to calculate the
discriminant � of this quadratic form in x, y.

When the elliptic curves are isomorphic, the preceding formulas are simpli-
fied. In this case we have p = q = 1 and we can choose p0 = 0, q0 = u. Thus,
in this particular case, the expressions given in the previous paper are indeed
correct.

4. Homomorphisms with bounded degree

We present a result on the asymptotic behavior of the degree form

Hom(E,E0) �! Z

that will be needed in the following. Define

�(t)

to be the number of homomorphisms f having deg(f)  t.
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Proposition 4.1. Let E,E0 be isogenous elliptic curves. The function �(t)
admits the following asymptotic estimates:

(i) if E,E0 are without complex multiplication then

�(t) =
2
p

d
t1/2 + O(1)

where d is the minimum nonzero value of the degree form;

(ii) if E,E0 have complex multiplication then

�(t) =
2⇡
p
��

t + O(te)

where � is the discriminant of the degree form and e is the exponent
appearing in §2.6.

Proof. We have seen in §3.1 how the degree form f 7�! deg(f) can be expressed
in terms of coordinates. (i) In this case there is one coordinate x and the
degree form is expressed as x 7�! x2d; the inequality x2d  t admits precisely

2
�

1
p

d
t1/2

⌫
+ 1 solutions. (ii) In this case, in terms of two coordinates, the

degree form is expressed as a positive definite quadratic form Q(x, y) with
discriminant � < 0. Because of the result from Number Theory quoted in §2.6,
the number of integer solutions of the inequality Q(x, y)  t admits an estimate
of the form At + O(te) where A is the area of the ellipse Q(x, y)  1 in R2,
that is given by 2⇡/

p
��.

5. Elliptic curves in a product Abelian variety

Let S be an Abelian variety, let F be an elliptic curve, and consider the product
Abelian variety A = S ⇥ F . We denote, for an arbitrary Abelian variety, with
the symbol

EC(A)

the collection of homology classes � = [C] in H2(A, Z) corresponding to elliptic
curves C in A. We now describe the collection EC(A) for a product Abelian
variety A = S ⇥ F . Denote by Sh := S ⇥ {0} and by Fv := {0} ⇥ F the
horizontal and the vertical factors in A.

If C is an elliptic curve in A, di↵erent from Fv, then D = pr1(C) is an elliptic
curve in S, corresponding to an element � = [C] in the Néron Severi group
NS(D ⇥ F ). This group is described (see §2.3) by means of an isomorphism

Z2
�Hom(D,F ) ⇠

�! NS(D ⇥ F ).
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There is moreover the composite isomorphism

Z2
�Hom(F,D) ⇠

�! NS(F ⇥D) ⇠
�! NS(D ⇥ F )

where the right hand arrow is induced by the obvious isomorphism j : F⇥D �!
D ⇥ F , and this composite isomorphism turns out to be

(u, v; g) 7�! (u� deg(g))[Dh] + (v � 1)[Fv] + [j⇤��g].

In order to take into account at one time all possible elliptic curves D in
S, we introduce the product Z2

⇥ Hom0(F, S), where the superscript means
nonzero homomorphisms, and the correspondence

C : Z2
⇥Hom0(F, S) �! H2(S ⇥ F, Z)

C(u, v; g) := (u� deg(g))[D(g)h] + (v � 1)[Fv] + [j⇤��g]

where by definition D(g) = g(F ) and deg(g) denotes the degree of the induced
isogeny F ! g(F ). Here j denotes the obvious isomorphism j : F⇥S �! S⇥F .

So we define the set of “parameter data”

D(S ⇥ F )

consisting of all elements (u, v; g) in Z2
⇥Hom0(F, S) such that

(u, v; g) is primitive, uv = deg(g) and u + v > 0.

Here the word primitive clearly refers to the module Z2
�Hom(F, S).

Theorem 5.1. There is a bijective correspondence

D(S ⇥ F ) ! EC(S ⇥ F ) \
⇣
EC(Sh) [

�
[Fv]

 ⌘

induced by the correspondence C defined above.

Proof. Let C be an elliptic curve in S⇥F di↵erent from Fv. The projection of
C into S is an elliptic curve D and the class of C in NS(D⇥F ) is represented
by a divisor of the form (u � deg(f))Dh + (v � 1)Fv + j⇤��f where f is a
homomorphism F ! D and the conditions (u, v; f) primitive and uv = deg(f)
are satisfied. Note that f = 0 if and only if C = Dh is contained in Sh

(since C 6= Fv). Because the condition uv = deg(f) = 0 admits two primitive
solutions, (1, 0; 0) and (0, 1; 0), corresponding to the classes of Dh and Fv,
respectively. If g denotes the composite homomorphism F ! D ,! S and
if f 6= 0 then D(g) = D and the class of C arises from the element (u, v; g)
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belonging to D(S ⇥ F ). This shows that the correspondence in the statement
is surjective.

In order to prove that the correspondence is injective, consider the homo-
morphism H2(S ⇥ F, Z) �! H2(S, Z) induced by the first projection map. It
maps [C(u, v; g)] 7�! u[D(g)]. If (u, v; g) and (u0, v0; g0) define the same class
in H2(S ⇥ F, Z) then u[D(g)] = u0[D(g0)]. Since g, g0 6= 0 then u, u0 6= 0
and therefore [D(g)] = [D(g0)] and u = u0, as the class of an elliptic curve
is primitive. And then D(g) = D(g0) since the homology class uniquely de-
termines the elliptic curve. Furthermore, working with the homomorphism
H2(S⇥F, Z) �! H2(F, Z) induced by the second projection map, we also find
that v = v0.

Let D be the elliptic curve D(g) = D(g0). The inclusion D ,! S induces
injective homomorphisms Hi(D, Z) �! Hi(S, Z) for i = 1, 2. Therefore the
homomorphism H2(D⇥F, Z) �! H2(S⇥F, Z) is injective too. Hence (u, v; g)
and (u0, v0; g0) define the same class in H2(D⇥ F, Z) and it follows that g = g0

also holds.

Assume now that on A = S ⇥ F we are given a split polarization

L = ⇥S + n⇥F

where ⇥S and ⇥F denote the pullbacks to A of a polarization on S and the
principal polarization on F , respectively, and where n is a positive integer. If
the polarization on S is represented by ⇥ then ⇥S is represented by ⇥ ⇥ F ;
similarly, ⇥F is represented by S ⇥ {0}.

We also consider the particular case when S = E1 ⇥ · · · ⇥ Ek is a product
of elliptic curves, endowed with a split polarization

⇥S = m1⇥1 + · · · + mk⇥k,

where ⇥i denotes the pullback to A of the principal polarization on the ith
factor and the coe�cients mi are positive integers. Note that in this case a ho-
momorphism g : F �! S is given by a sequence h1, . . . , hk of homomorphisms
hi : F �! Ei.

Theorem 5.2. The degree function D(S ⇥ F ) �! Z is given by

deg C(u, v; g) = u D(g) · ⇥ + n v.

In the particular case S = E1 ⇥ · · ·⇥ Ek, one has the expression

deg C(u, v; g) =
m1 deg(h1) + · · · + mk deg(hk)

v
+ n v.
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Proof. We need the following intersection numbers:

D(g)h · L = D(g) · ⇥,

Fv · L = n,

j⇤��g · L = deg g⇤(⇥) + n = deg(g) D(g) · ⇥ + n .

Therefore for the intersection number C(u, v; g) · L we find the expression

(u� deg(g)) D(g) · ⇥ + (v � 1)n + deg(g) D(g) · ⇥ + n = u D(g) · ⇥ + n v.

In the particular case, we need the following intersection number:

D(g) · ⇥ = m1#g h�1
1 (0) + · · · + mk#g hk

�1(0)

= m1
deg(h1)
deg(g)

+ · · · + mk
deg(hk)
deg(g)

.

Hence, because of the condition uv = deg(g) 6= 0, we have for deg C(u, v; g)
the expression

u
m1 deg(h1) + · · · + mk deg(hk)

deg(g)
+ n v

=
m1 deg(h1) + · · · + mk deg(hk)

v
+ n v.

6. On the number of elliptic curves

Let A = Ek, with k � 2, be the kth self product of an elliptic curve E, endowed
with a split polarization L = m1⇥1+· · ·+mk⇥k, where ⇥i denotes the pullback
to A of the principal polarization on the ith factor and the coe�cients mi are
positive integers.

We keep the notation of §5, writing A = Ek�1
⇥E, and defining (Ek�1)h :=

Ek�1
⇥{0} and Ev := {(0, . . . , 0)}⇥E. Let moreover m be the minimum among

the coe�cients m1, . . . ,mk.
The set EC(Ek) is the disjoint union of EC((Ek�1)h) [

�
[Ev]

 
and the

complementary subset which, according to Proposition 5.1, is bijective to the
set of parameter data D(Ek). It follows that the number NEk(t) is, for t� 0,
the sum of

NEk�1(t) + 1

and the number of elements of the set
n

(u, v; g) in D(Ek) s.t. deg C(u, v; g)  t
o

.
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There is the following chain of injective maps
n

(u, v; g) prim. s.t. u + v > 0, uv = deg(g) 6= 0 and deg C(u, v; g)  t
o

#

n
(v;h1, . . . , hk�1) s.t. 1  mkv  t,

1 
m1 deg(h1) + · · · + mk�1 deg(hk�1)

v
 t
o

#

n
(v;h1, . . . , hk�1) s.t. 1  v 

t

m
, deg(hi)  v

t

m

o

so the number of elements of the set of parameter data in the top of the chain
is bounded above by

X

1v t
m

�
✓

vt

m

◆k�1

where �(t) is the function which counts endomorphisms of E having degree
bounded by t. Let us denote the bounding function above with the symbol

�Ek(t).

Lemma 6.1. There is an asymptotic estimate

�Ek(t) = C tr + O(ti)

with the same constant C and the same exponents r and i which are defined in
the statement of Theorem 1.1.

Proof. This is obtained applying Proposition 4.1 for the function � which ap-
pears in the definition of �Ek .

If the elliptic curve E admits no complex multiplication, for the bounding
function we have the expression

X

1v t
m

(
2
p

d

✓
vt

m

◆1/2

+ O(1)

)k�1

where the integer d is the minimum degree of an isogeny E ! E. The expres-
sion above can be written as

✓
2
p

dm

◆k�1
 

t(k�1)/2
X

1v t
m

v(k�1)/2

!
+

X

1v t
m

O
⇣
(vt)(k�2)/2

⌘
.
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Now, applying the estimate for a sum of powers of integers given in Remark 6.2
below, we substitute

X

1v t
m

v(k�1)/2 =
2

k + 1

⇣ t

m

⌘(k+1)/2
+ O

⇣
t(k�1)/2

⌘

and, writing
X

1v t
m

v(k�2)/2 = O
⇣
tk/2

⌘
, we substitute

X

1v t
m

O
⇣
(vt)(k�2)/2

⌘
= O

 
t(k�2)/2

X

1v t
m

v(k�2)/2

!
= O

�
tk�1

�

and we end with the asymptotic estimate

2k/(k + 1)
(
p

d)k�1 mk
tk + O(tk�1).

If the elliptic curve E has complex multiplication, the bounding function
can be written as

X

1v t
m

⇢
2⇡
p
��

✓
vt

m

◆
+ O ((vt)e)

�k�1

where the integer � is the (negative) discriminant of the degree form on End(E).
The expression above can be written as

=
X

1v t
m

(
(2⇡)k�1

�p
�� m

�k�1
(vt)k�1 + O

�
(vt)e+k�2

�
)

=
(2⇡)k�1

�p
�� m

�k�1

 
tk�1

X

1v t
m

vk�1

!
+

X

1v t
m

O
�
(vt)k�2+e

�

.

Here, using Remark 6.2 again, we substitute
X

1v t
m

vk�1 =
1
k

⇣ t

m

⌘k
+ O

�
tk�1

�

and, writing
X

1v t
m

vk�2+e = O
�
tk�1+e

�
, we substitute

X

1v t
m

O((vt)k�2+e) = O

 
tk�2+e

X

1v t
m

vk�2+e

!
= O

�
t2k�3+2e

�
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and we end with the estimate
(2⇡)k�1/k

(
p
��)k�1 m2k�1

t2k�1 + O
�
t2k�3+2e

�
.

Remark 6.2: (Communicated by the referee.) About partial sums of in-
creasing functions. Let f : [0,+1) ! [0,+1) be an increasing function.
To estimate

Pt
n=1 f(n) observe that in each interval [n, n + 1] it satisfies

f(n)  f(x)  f(n + 1). It follows that for each positive integer t,
Z t

0
f(x)dx 

tX

n=1

f(n) 
Z t+1

1
f(x)dx.

In the case f(x) = xp (p arbitrary positive real) we get

tp+1

p + 1


tX

n=1

np


(t + 1)p+1

p + 1
�

1
p + 1

from which it follows that
tX

n=1

np =
tp+1

p + 1
+ O(tp).

If t is a positive real number, an analogous estimate holds, which in the pre-

ceding proof is written in the form
X

1nt

np =
tp+1

p + 1
+O(tp), where n is meant

to be an integer ranging in the interval [1, t].
We are now in a position to prove the result in the introduction.

Proof of Theorem 1.1. Remind that the function NEk(t) is bounded above by

NEk�1(t) + 1 + �Ek(t).

We argue by induction on k � 2. The initial step k = 2 follows immediately
from the estimate of �E2(t) given in Lemma 6.1 above.

When k > 2, if the statement holds for Ek�1 then it holds for Ek too.
In both cases, either with complex multiplication or not, by the inductive
assumption we have

NEk�1(t) = O(tr
0
)

where, in both cases,

r0 < r and r0  i.

From Lemma 6.1 we know that

�Ek(t) = Ctr + O(ti).

Hence the theorem follows.



ELLIPTIC CURVES OF BOUNDED DEGREE 121

7. Arbitrary polarized Abelian varieties

7.1. Behavior under isogenies

Let A,B be polarized Abelian varieties and let ' : B ! A be an isogeny,
preserving the polarizations (the polarization on B is the pullback of the po-
larization on A), whose degree we call d. There is a one to one correspondence

�
elliptic curves in A

 ⇠
�!

�
elliptic curves in B

 
.

Given E ⇢ A the corresponding E⇤ in B is the connected component of 0 in
the pre-image '�1(E). The restricted isogeny E⇤

! E has degree dE  d (in
fact a divisor of d), and the degree of E⇤ is given by

deg(E⇤) = dE deg(E)

(by the projection formula: E⇤
· '⇤L = '⇤E⇤

· L = dE E · L). Therefore:

deg(E)  deg(E⇤)  d deg(E).

It follows that the functions counting elliptic curves in A and in B are
related by the following inequalities:

NA(t)  NB(dt) and NB(t)  NA(t).

7.2. On the counting function

Let A be a polarized Abelian variety, of dimension n. Let us say that a sequence
E1, . . . , Ei of elliptic curves in A is independent if the Abelian subvariety E1 +
· · · + Ei has dimension i. If A contains i independent elliptic curves then,
because of the reducibility theorem (§2.5), replacing the given elliptic curves
without modifying the sequence of Abelian subvarieties E1 + · · · + Ej , with
j = 1, . . . , i, we can even obtain that, under the sum isogeny E1⇥ · · ·⇥Ei �!

E1 + · · · + Ei ✓ A, the pullback polarization from A is a split polarization on
E1 ⇥ · · ·⇥ Ei.

Let k be the maximum number of independent elliptic curves in A. There
is, as above, a special isogeny E1⇥ · · ·⇥Ek �! E1 + · · ·+ Ek ✓ A. Moreover,
every elliptic curve in A is contained in E1 + · · · + Ek. Hence, without loss of
generality, we may assume that A = E1 + · · · + Ek and that, under the sum
isogeny

E1 ⇥ · · ·⇥ Ek �! A,

the pullback polarization from A is a split polarization on E1 ⇥ · · ·⇥ Ek. Let
d be the degree of such an isogeny. From the discussion in §7.1 above, we have

NA(t)  NE1⇥···⇥Ek(dt).
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It follows that, in order to have a general estimate of the counting function
NA(t), we can reduce to the particular case in which A = E1 ⇥ · · · ⇥ Ek and
the polarization splits.

Proposition 7.1. The function NA(t) can be given an asymptotic estimate of
the form

NA(t) = Ctr + O(ti)
for some constant C and exponents r, i with i < r.

Proof. According to the preceding discussion, we only need to consider the
case in which A = E1 ⇥ · · · ⇥ Ek is a product of elliptic curves, with a split
polarization.

If the factor elliptic curves are all isogenous, we can choose one elliptic
curve E together with isogenies E ! Ei and then construct a product isogeny
Ek
! A, so that the pullback polarization on Ek is a split polarization again.

If d is the degree of such an isogeny then, from the discussion in §7.1, we have

NA(t)  NEk(dt)

and the statement follows from Theorem 1.1.
More generally, separating the collection E1, . . . , Ek into (maximal) isogeny

classes, and rearranging, we have an isomorphism

E1 ⇥ · · ·⇥ Ek
⇠= B1 ⇥ · · ·⇥Bh,

each factor Bi being a maximal product of isogenous elliptic curves from the
given collection. The split polarization on E1 ⇥ · · ·⇥Ek corresponds to a split
polarization on B1 ⇥ · · · ⇥ Bh. Define B := B1 ⇥ · · · ⇥ Bh and consider the
isogeny B �! A. Let d be the degree of such an isogeny. From the discussion
in §7.1, we have

NA(t)  NB(dt).
It is easy to see that NB(t) = NB1(t) + · · · + NBh(t). This is because an
elliptic curve in B, projecting non-trivially to di↵erent factors Br and Bs,
would therefore project onto non-isogenous elliptic curves Ei and Ej , which
is impossible. From the discussion above, for a product of isogenous elliptic
curves, we have

NB`(t) = C` tr` + O(ti`)
with i` < r`. It follows that NB(dt) = Ctr +O(ti), where r = max{r1, · · · , rh}

and i < r.

Remark 7.2: When A = J(C) is the Jacobian of a curve of genus g > 1, there
is an e↵ective bound for the function NA(t) due to Kani (cf. [6], Theorem
4), which is asymptotically of order O(t2g2�2) (ibid., p. 187). The asymptotic
bound in the present paper (Theorem 1.1, Proposition 7.1) is instead of order
O(t2g�1).
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1. Introduction

For a first order ordinary di↵erential system

x
0 = f(t, x),

with f : [a, b] ⇥ Rn
! Rn continuous, a natural generalization of the homoge-

neous two–point boundary conditions (BC)

A1x(a) = A2x(b),

where A1, A2 are (n⇥ n)–matrices, is the m–point BC

mX

j=1

Ajx(tj) = 0,

where a = t1 < t2 < . . . < tm = b and A1, . . . , Am are (n⇥ n)–matrices. Such
a multi–point boundary condition is itself a special case of the nonlocal or

1
Based on lectures given by Jean Mawhin at the Dipartimento di Matematica e Geoscienze

of the University of Trieste in April 2019.
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integral BC
Z b

a
dA(s)x(s) = 0,

where A : [a, b] ! L(Rn
, Rn) has bounded variation and the integral is of

Riemann–Stieltjes type.

Nonlocal boundary conditions of the type

mX

j=1

Ajx(tj) +
Z 1

0
B(s)x(s) ds = 0

for some (n ⇥ n)–matrix–valued function B : [0, 1] ! L(Rn
, Rn), were first

introduced for linear di↵erential equations by Picone [91] in 1908, and already
applied to physics by von Mises [111] in 1912. Using Riesz representation
theorem, those conditions are themselves contained in the more general form

Z 1

0
dA(s)x(s) = 0,

where A : [0, 1] ! L(Rn
, Rn) is a (n ⇥ n)–matrix–valued functions with

bounded variation. They were first introduced for linear systems in 1931 by
Cioranescu [12] and by Smorgorshewsky [98] in 1940. A good survey of the
linear theory is given by Krall in [57].

Nonlocal boundary conditions can be considered also for second order dif-
ferential systems of the form

x
00 = f(t, x, x

0), (1)

where f : [a, b]⇥ Rn
⇥ Rn

! Rn is continuous.

Without searching the maximum of generality, the most useful homogeneous
two–point BC for system (1) are obtained by choosing two of the following
expressions

x(a) = Ax(b) + Bx
0(b), x

0(a) = Cx(b) + Dx
0(b),

x(b) = Ex(a) + Fx
0(a), x

0(b) = Gx(a) + Hx
0(a),

where A,B,C, D, E, F, F,H are (n⇥n)–matrices. The corresponding nonlocal
BC are obtained by taking two of the following conditions

x(a) =
Z b

a
dA(s)x(s) +

Z b

a
dB(s)x0(s), (2)
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x
0(a) =

Z b

a
dC(s)x(s) +

Z b

a
dD(s)x0(s), (3)

x(b) =
Z b

a
dE(s)x(s) +

Z b

a
dF(s)x0(s), (4)

x
0(b) =

Z b

a
dG(s)x(s) +

Z b

a
dH(s)x0(s), (5)

where A,B, C,D, E ,F ,G,H : [a, b] ! L(Rn
, Rn) are (n ⇥ n)–matrix valued

functions having bounded variation.

Choosing A,B, C,D constant, the conditions (2)–(3) reduce to the initial
type conditions, and choosing E ,F ,G,H constant, the conditions (4)–(5)
reduce to the terminal type conditions for (1). Choosing A,B, E ,F con-
stant, the conditions (2)–(4) become the Dirichlet conditions, and choosing
C,D,G,H constant, the conditions (3)–(5) become the Neumann conditions.
Mixed conditions are obtained by choosing A,B,G,H constant in (2)–(5) or
C,D, E ,F constant in (3)–(4). The periodic conditions can be obtained by
taking A such that

R b
a dA(s)x(s) = x(b), B constant, C constant and D such

that
R b

a dD(s)x0(s) = x
0(b). It su�ces, for example, to take A(s) = h(s)In with

h(a) = 0 and h(s) = 1 for s 2 (a, b].

The first paper dealing with nonlinear di↵erential equations with integral
boundary conditions seems to be due to Birkho↵ and Kellogg [7] in 1922, as an
application of their famous extension of Brouwer’s fixed point theorem to some
function spaces. Interesting surveys of the nonlinear theory have been given by
Whyburn [112], Conti [13], Krall [57], Ma [66] and Ntouyas [87]. They mostly
deal with scalar problems and cover the period 1908–2005.

In this survey, we concentrate on di↵erential systems of first and second
order (excluding specific results for scalar equations and for higher-order equa-
tions), and on methods based upon convexity, topological degree and maxi-
mum principle–like techniques to obtain pointwise estimates for the possible
solutions. Because of the nonlocal character of the boundary conditions, those
methods are more delicate to use than for two–point boundary value problems.
We first deal with first order systems, and then with second order systems,
discuss the sharpness of the obtained existence conditions and compare them
with some well known classical ones for standard two-point boundary condi-
tions like the initial, terminal, periodic, Dirichlet, mixed and Neumann ones.
Let us mention also that the nonlocal boundary conditions presented are not
by far the most general ones to which the methods apply, but have been chosen
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in order to associate a minimum of technical complication with a maximum of
significancy.

Various other methods have been used to study nonlocal boundary value
problems and various other classes of conditions have been imposed to the
nonlinearities to obtain existence and multiplicity results. Let us mention iter-
ation methods for Lipschitizian nonlinearities with su�ciently small coe�cients
[9, 15, 23, 76, 80, 81], topological methods for nonlinearities satisfying suitable
growth and/or sign conditions [2, 4, 5, 8, 11, 14, 43, 44, 50, 52, 53, 55, 56, 65, 68,
71, 72, 77, 82, 83, 90, 95, 96, 97, 102, 105, 106, 107, 108, 109], maximal principle
type arguments for monotone nonlinearities [17, 18, 22, 23, 40], fixed point the-
orems and index on cones for positive solutions [3, 16, 20, 24, 25, 26, 35, 36, 37,
38, 39, 41, 42, 45, 46, 47, 48, 49, 51, 61, 62, 63, 64, 94, 99, 113, 114, 115, 117],
variational methods for potential nonlinearities [1, 21, 27, 28, 29, 33, 67, 84,
85, 86, 110, 116]. Those methods and results will not be considered here.

2. First order systems

2.1. Boundary conditions

Let us consider a first order system of ordinary di↵erential equations

x
0 = f(t, x) (6)

with f : [0, 1] ⇥ Rn
! Rn continuous. We choose [0, 1] for the independent

variable without loss of generality.

The homogeneous two point BC have the form

Ax(0) = Bx(1)

where A and B are (n⇥ n)–matrices.

Notice that for f ⌘ 0 in (6) the BVP becomes

x
0 = 0 , x(t) = c 2 Rn

, (A�B)c = 0.

Two cases are possible. If
det(A�B) 6= 0,

0 is the unique solution and we say that the BC is non–resonant. If

det(A�B) = 0,

the problem has infinitely any solutions and the BC is called resonant.
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Standard examples of “two–point boundary conditions” for (6) are given
by the initial value condition on [0, 1] x(0) = 0 (A = In, B = 0n, non–
resonant), the terminal value condition on [0, 1] x(1) = 0 (A = 0n, B = In,
non–resonant), the anti–periodic BC x(0) + x(1) = 0 (A = �B = In, non–
resonant), and the periodic BC x(0) = x(1) (A = B = In, resonant).

Given 0 = t1 < t2 < . . . < tm = 1, one can consider also the m–point BC

mX

j=1

Ajx(tj) = 0. (7)

For f ⌘ 0 in (6), the solutions are x(t) = c with c such that (
Pm

j=1 Aj)c = 0.

Again, if det(
Pm

j=1 Aj) 6= 0, the BC (7) is called non–resonant, and if this
determinant is equal to zero, the BC is called resonant.

2.2. Nonlocal initial or terminal type BC

For simplicity of exposition and of the statements, we restrict ourself to the
special but representative cases of the nonlocal initial type condition

x(0) =
Z 1

0
x(s)dh(s) (8)

and of the nonlocal terminal type condition

x(1) =
Z 1

0
x(s) dh(s), (9)

where

(h0) h : [0, 1] ! R is non–decreasing.

Recall that, for any continuous functions x : [0, 1] ! Rn, the corresponding
Riemann–Stieltjes integrals always exist. Without loss of generality, we can
assume that

h(0) = 0.

We first discuss the situation where

(h1)
Z 1

0
dh(s) = h(1) < 1.
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This is a non–resonant situation because each problem

x
0 = 0, x(0) =

Z 1

0
x(s) dh(s), x

0 = 0, x(1) =
Z 1

0
x(s) dh(s)

has the solution x(t) = c with c verifying the equation

c = h(1)c,

which has only the trivial solution. This case contains of course the initial and
terminal null conditions.

Then, we consider the case where

(h2)
Z 1

0
dh(s) = h(1) = 1.

In this situation, which is clearly a resonant one, the second members of (8)
and (9) can be seen as some average of the values of x(s) on the interval [0, 1].

In order to prevent the right–hand member in (8) to be x(0), which would
reduce (8) to an identity, we must prevent in (8) h to have the form

h(x) =
⇢

0 if x = 0
1 if x 2 (0, 1] , (10)

which corresponds to assume that

(h3) there exists ⌧ 2 (0, 1) such that h(⌧) < 1.

Similarly, in order to prevent (9) to become an identity, we exclude in (9) h of
the form

h(x) =
⇢

0 if x 2 [0, 1)
1 if x = 1 , (11)

which corresponds to assume that

(h4) there exists ⌧ 2 (0, 1) such that h(⌧) > 0.

Example 2.1: For h given by (11), we have
R 1
0 x(s) dh(s) = x(1), and (8)

reduces to the periodic BC x(0) = x(1).
For h given by (10), we have

R 1
0 x(s) dh(s) = x(0), and (9) reduces again to

the periodic BC.
Example 2.2: For

h(x) =

8
<

:

0 if x 2 [0,↵)
� if x 2 [↵, 1)
1 if x = 1
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where ↵, � 2 (0, 1), we have
Z 1

0
x(s) dh(s) = �x(↵) + (1� �)x(1),

and (8) reduces to the three–point BC x(0) = �x(↵) + (1� �)x(1).
Example 2.3: For

h(x) =

8
<

:

0 if x = 0
� if x 2 (0,↵]
1 if x 2 (↵, 1]

where ↵, � 2 (0, 1), we have
Z 1

0
x(s) dh(s) = �x(0) + (1� �)x(↵),

and (8) reduces to the three–point BC x(1) = (1� �)x(↵) + �x(0).

2.3. Linear nonlocal initial or terminal type BVP

Let C
0 be the space C([0, 1], Rn) of all continuous mappings from [0, 1] into Rn

with the uniform norm kxk = max {kx1||1, . . . , kxnk1}.

The following results are useful to reduce our problems to a fixed point
form.

Lemma 2.4. If conditions (h0), (h1) or (h0), (h2), (h3) hold, then, for each
z 2 C

0, the linear nonlocal initial value problem

x
0 + x = z(t), x(0) =

Z 1

0
x(s) dh(s) (12)

has the unique solution

x(t) =
✓

1�
Z 1

0
e
�s

dh(s)
◆�1 Z 1

0

Z u

0
e
�t�u+s

z(s) ds dh(u)

+
Z t

0
e
�(t�s)

z(s) ds. (13)

Proof. By the variation of constants formula, the initial value problem

x
0 + x = z(t), x(0) = c

has the unique solution

x(t) = ce
�t +

Z t

0
e
�(t�s)

z(s) ds (c 2 Rn).
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It satisfies the boundary condition (8) if and only if c satisfies the linear alge-
braic system

c = c

Z 1

0
e
�t

dh(t) +
Z 1

0

Z t

0
e
�(t�s)

z(s) ds dh(t),

which has the unique solution

c =
✓

1�
Z 1

0
e
�s

dh(s)
◆�1 Z 1

0

Z u

0
e
�(u�s)

z(s) ds dh(u)

if
R 1
0 e

�s
dh(s) 6= 1. This is trivially the case if conditions (h0), (h1) hold. If

conditions (h0), (h2), (h3) hold, we have
Z 1

0
e
�s

dh(s) =
Z 1

0
d[e�s

h(s)] +
Z ⌧

0
e
�s

h(s) ds +
Z 1

⌧
e
�s

h(s) ds

 e
�1 + h(⌧)

Z ⌧

0
e
�s

ds +
Z 1

⌧
e
�s

ds

= e
�1 + h(⌧)(1� e

�⌧ ) + (e�⌧
� e

�1)
= (1� e

�⌧ )h(⌧) + e
�⌧

< 1

and the result follows.

Let us denote by K1 : C
0
! C

0 the linear operator mapping z into x given
by (13). Notice that each K1z is of class C

1.

Corollary 2.5. There exists C1 > 0 such that, for each z 2 C
0, one has

kK1zk  C1kzk, k(K1z)0k  (C1 + 1)kzk,

and K1 is a compact operator.

Proof. Follows easily from (12) and (13) and Arzelà-Ascoli’s theorem.

Lemma 2.6. If conditions (h0), (h1) or (h0), (h2), (h4) hold, then, for each
z 2 C

0, the linear nonlocal terminal value problem

x
0
� x = z(t), x(1) =

Z 1

0
x(s) dh(s) (14)

has the unique solution

x(t) =
✓

1�
Z 1

0
e
s�1

dh(s)
◆�1 Z 1

0

Z u

1
e
t�1+u�s

z(s) ds dh(u)

+
Z t

1
e
t�s

z(s) ds. (15)
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Proof. Let z 2 C
0. By the variation of constants formula, the terminal value

problem

x
0
� x = z(t), x(1) = c

has the unique solution

x(t) = e
t�1

c +
Z t

1
e
t�s

z(s) ds (c 2 Rn).

It satisfies the boundary condition (9) if c verifies the linear algebraic system

c�

✓Z 1

0
e
t�1

dh(t)
◆

c =
Z 1

0

Z t

1
e
t�s

z(s) ds dh(t).

which has the unique solution

c =
✓

1�
Z 1

0
e
s�1

dh(s)
◆�1 Z 1

0

Z u

1
e
u�s

z(s) ds dh(u),

if 1 6=
R 1
0 e

s�1
dh(s). This is trivially the case if conditions (h0), (h1) hold. In

the second case, we have
Z 1

0
e
s�1

dh(s) =
Z 1

0
d[es�1

h(s)]�
Z ⌧

0
e
s�1

h(s) ds�

Z 1

⌧
e
s�1

h(s) ds

 1� h(⌧)
Z 1

⌧
e
s�1

ds = 1� h(⌧)(1� e
⌧�1) < 1

and the result follows.

Let us denote by K2 : C
0
! C

0 the linear operator mapping z into x given
by (15). Notice that each K2z is of class C

1.

Corollary 2.7. There exists C2 > 0 such that, for each z 2 C
0, one has

kK2zk  C2kzk, k(K2z)0k  (C2 + 1)kzk,

and K2 is a compact operator.

Proof. Follows easily from (14) and (15) and Arzelà-Ascoli’s theorem.

2.4. Fixed point formulation of nonlinear nonlocal initial
or terminal type BVP

Let now f : [0, 1]⇥Rn
! Rn be continuous and define the mapping N1 : C

0
!

C
0 by

N1x = f( · , x(·))� x(·), 8x 2 C
0
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and the mapping N2 : C
0
! C

0 by

N2x = f( · , x(·)) + x(·), 8x 2 C
0
.

It is easy to show that N1 and N2 are continuous on C
0 and take bounded sets

of C
0 into bounded sets of C

0. Under the conditions of Lemma 2.4,

G1 := K1N1 : C
0
! C

0

is compact on bounded subsets of C
0, and the nonlinear nonlocal initial

type problem

x
0 = f(t, x), x(0) =

Z 1

0
x(s) dh(s) (16)

is equivalent to the fixed point problem in C
0

x = G1x. (17)

Similarly, under the conditions of Lemma 2.6,

G2 := K2N2 : C
0
! C

0

is compact on bounded subsets of C
0, and the nonlinear nonlocal terminal

type problem

x
0 = f(t, x), x(1) =

Z 1

0
x(s) dh(s) (18)

is equivalent to the fixed point problem in C
0

x = G2x. (19)

We apply to the equations (17) and (19) the following existence result,
which follows easily from Leray-Schauder continuation theorem [60, 69].

Proposition 2.8. Let X be a real normed space, ⌦ ⇢ X be an open bounded
neighborhood of 0, and T : ⌦ ! X be a compact operator. If x 6= �Tx for every
(x,�) 2 @⌦⇥ (0, 1), then T has at least a fixed point in ⌦.

2.5. Some classical results for periodic BC

Let h · | · i denote the classical inner product in Rn, | · | the corresponding Eu-
clidian norm, and BR ⇢ Rn the closed ball of center 0 and radius R > 0.

A classical existence theorem for the periodic BVP associated to (6) is the
following one.
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Theorem 2.9. If there exists R > 0 such that either

hu|f(t, u)i � 0, 8 (t, u) 2 [0, 1]⇥ @BR, (20)

or

hu|f(t, u)i  0, 8 (t, u) 2 [0, 1]⇥ @BR, (21)

then the problem

x
0 = f(t, x), x(0) = x(1) (22)

has at least one solution taking values in BR.

Notice that the two statements in Theorem 2.9 are equivalent : each one
implies the other one through the change of variables ⌧ = 1 � t. The full
statement can be seen as a nonlinear version of the following linear elementary
result

Proposition 2.10. For each � 2 R \ {0} and each e 2 C
0, the problem

x
0 = �x + e(t), x(0) = x(1)

has a solution.

Quite strangely, it is di�cult to locate the first appearance of Theorem
2.9 in the literature. It is a special case (not directly mentioned !) of The-
orem 3.2 in Krasnosel’skii’s monograph [58] of 1966. On the other hand, it
is explicitely mentioned by Gustafson and Schmitt in 1974 [30] (with strict
inequalities in (20) or (21)) as a special case of the following theorem.

Let C be an open convex neighborhood of 0 in Rn. It is well known that
8u 2 @C, 9 ⌫(u) 2 Rn

\{0} : h⌫(u)|ui > 0 and C ⇢ {v 2 Rn : h⌫(u)|v�ui < 0}.
The mapping ⌫ : @C ! Rn

\ {0} is called an outer normal field on @C.

Theorem 2.11. If there exists a bounded convex open neighborhood C of 0 in
Rn, and an outer normal field ⌫ on @C such that either

h⌫(u)|f(t, u)i > 0, 8 (t, u) 2 [0, 1]⇥ @C

or
h⌫(u)|f(t, u)i < 0, 8 (t, u) 2 [0, 1]⇥ @C,

then the problem (22) has at least one solution taking values in C.

Notice that Krasnosel’skii’s monograph is not quoted by Gustafson and
Schmitt. In [69], the connexion between Krasnosel’skii’s results and Gustafson-
Schmitt’s ones is made explicit, the Gustafson-Schmitt’s theorem is extended
to the case of weak inequalities and Krasnosel’skii’s theorem is shown to be a
special case of this extension of Gustafson-Schmitt’s theorem.
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2.6. Nonlocal initial type BVP

The following theorem essentially comes from [73]. The special case of a global
initial value problem can be found in [70].

Theorem 2.12. If h : [0, 1] ! R satisfies conditions (h0), h(1) or conditions
(h0), h(2), (h3), and if there exists an open, bounded, convex neighborhood C

of 0 in Rn and an outer normal field ⌫ on @C such that

h⌫(u)|f(t, u)i  0, 8 (t, u) 2 [0, 1]⇥ @C, (23)

then the problem (16) has at least one solution taking values in C for all t 2

[0, 1].

Proof. Let us consider the equation (17) and define the open bounded neigh-
borhood ⌦ of 0 in C

0 by

⌦ = {x 2 C
0 : x(t) 2 C, 8 t 2 [0, 1]}. (24)

Notice that

⌦ = {x 2 C
0 : x([0, 1]) ⇢ C},

@⌦ = {x 2 ⌦ : 9 t0 2 [0, 1] : x(t0) 2 @C}. (25)

By the discussion above G1 is compact on ⌦. According to Proposition 2.8, a
solution of (17) in ⌦, i.e. a solution of (16) such that x(t) 2 C for all t 2 [0, 1]
will exist, if we can show that, for each � 2 (0, 1), no possible solution of the
problem

x
0 + x = �[f(t, x) + x], x(0) =

Z 1

0
x(s) dh(s), (26)

belongs to @⌦. Let � 2 (0, 1) and x(t) 2 @⌦ be a possible solution to (26). Then
x(t) 2 C for all t 2 [0, 1] and there is some t0 2 [0, 1] such that x(t0) 2 @C.
Therefore, for all t 2 [0, 1],

⇠t0(t) := h⌫(x(t0))|x(t)i  h⌫(x(t0), x(t0)i = ⇠t0(t0), 8 t 2 [0, 1],

which means that the real function ⇠t0 : [0, 1] ! R reaches its maximum at t0.
If t0 2 (0, 1],

0  ⇠
0
t0(t0) = h⌫(x(t0))|x0(t0)i

= �(1� �)h⌫(x(t0))|x(t0)i+ �h⌫(x(t0))|f(t0, x(t0)) < 0,
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a contradiction. If t0 = 0 and conditions (h0), (h1) hold, then

⇠0(0) = h⌫(x(0)), x(0)i =
Z 1

0
h⌫(x(0)), x(s) dh(s)i

 max
[0,1]

h⌫(x(0)), x(s)i
Z 1

0
dh(s) < max

[0,1]
h⌫(x(0), x(s)i

= max
s2[0,1]

⇠0(s),

a contradiction. If t0 = 0 and conditions (h0), (h2), (h3) hold, it remains only
to consider the case where 0 is the only value of t at which x(t) 2 @C, i.e. the
case where ⇠0 reaches its maximum only at 0. Then

⇠0(s) < ⇠0(0), 8s 2 (0, 1],

and hence, using the boundary condition and assumptions (h2) and (h3),

⇠0(0) =
⌧

⌫(x(0))
����
Z 1

0
x(s) dh(s)

�
=

Z 1

0
h⌫(x(0))|x(s) dh(s)i

=
Z 1

0
h⌫(x(0))|x(s)i dh(s) =

Z 1

0
⇠0(s) dh(s)

=
Z ⌧

0
⇠0(s) dh(s) +

Z 1

⌧
⇠0(s) dh(s)

 ⇠0(0)h(⌧) + (max
[⌧,1]

⇠0)[1� h(⌧)] < ⇠0(0),

a contradiction. Consequently the assumptions of Proposition 2.8 are satisfied
for G1 on ⌦, and the conclusion follows.

Corollary 2.13. If h : [0, 1] ! R satisfies conditions (h0), h(1) or conditions
(h0), (h2), (h3), and if there exists R > 0 such that

hu|f(t, u)i  0, 8 (t, u) 2 [0, 1]⇥ @BR, (27)

then the problem (16) has at least one solution taking values in BR.

Proof. Take C = BR and, for each u 2 @BR, ⌫(u) = u.

Corollary 2.14. If h : [0, 1] ! R satisfies conditions (h0), h(1) or conditions
(h0), (h2), (h3), and if there exists Rj > 0 (1  j  n) such that

uifi(t, u)  0, 8 (t, u) 2 [0, 1]⇥
nY

j=1

[�Rj , Rj ] : |ui| = Ri (1  i  n), (28)

then the problem (16) has at least one solution taking values in ⇧n
j=1[�Rj , Rj ].
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h⌫(u)|f(t, u)i � 0 h⌫(u)|f(t, u)i  0

C C

Figure 1: The case when C is a hexagon.

C C

hu|f(t, u)i � 0 hu|f(t, u)i  0

Figure 2: The case when C is a ball.

Proof. Take C =
Qn

j=1(�Rj , Rj) and, for each u 2
Qn

j=1[�Rj , Rj ] and |ui| =
Ri, ⌫(u) = uie

i, where e
i = (0, . . . , 0, 1, 0, . . . , 0) is the i

th element of the
canonical basis of Rn (i = 1, . . . , n).

2.7. Nonlocal terminal type BVP

The following theorem essentially comes from [73].

Theorem 2.15. If h : [0, 1] ! R satisfies conditions (h0), h(1), or conditions
(h0), (h2),(h4), and if there exists an open, bounded, convex neighborhood C

of 0 in Rn and an outer normal field ⌫ on @C such that

h⌫(u)|f(t, u)i � 0, 8 (t, u) 2 [0, 1]⇥ @C, (29)
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h⌫(u)|f(t, u)i � 0 h⌫(u)|f(t, u)i  0

C C

Figure 3: The case when C is a rectangle.

then the problem (18) has at least one solution taking values in C.

Proof. Let us consider the equation (19) and let ⌦ the open bounded neigh-
borhood of 0 in C

0 defined by (24). By the discussion above G2 is compact
on ⌦. According to Proposition 2.8, a solution of (19) in ⌦, i.e. a solution of
(16) such that x(t) 2 C for all t 2 [0, 1] will exist if we can show that for each
� 2 (0, 1), no possible solution of the problem

x
0
� x = �[f(t, x)� x], x(1) =

Z 1

0
x(s) dh(s), (30)

belongs to @⌦. Let � 2 (0, 1) and x(t) 2 @⌦ be a possible solution to (26). Then
x(t) 2 C for all t 2 [0, 1] and there is some t0 2 [0, 1] such that x(t0) 2 @C.
Therefore, for all t 2 [0, 1],

⇠t0(t) := h⌫(x(t0))|x(t)i  h⌫(x(t0)|x(t0)i = ⇠t0(t0), 8 t 2 [0, 1],

which means that the real function ⇠t0 : [0, 1] ! R reaches its maximum at t0.
If t0 2 [0, 1),

0 � ⇠
0
t0(t0) = h⌫(x(t0))|x0(t0)i

= (1� �)h⌫(x(t0))|x(t0)i+ �h⌫(x(t0))|f(t0, x(t0)) > 0,

a contradiction. If t0 = 1, and conditions (h0), (h1) holds, then, because of the
boundary condition,

⇠1(1) = h⌫(x(1))|x(1)i =
Z 1

0
h⌫(x(1))|x(s) dh(s)i

 max
[0,1]

h⌫(x(1))|x(s)i
Z 1

0
dh(s) < max

[0,1]
h⌫(x(1)|x(s)i

= max
s2[0,1]

⇠1(s),
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a contradiction. If t0 = 1, and conditions (h0), (h2), (h4) hold, it remains only
to consider the case where 1 is the only value of t at which x(t) 2 @C, i.e. the
case where ⇠1 reaches its maximum only at 1. Then

⇠1(s) < ⇠1(1), 8s 2 [0, 1),

and hence, using the boundary condition and Assumptions (h3), (h4),

⇠1(1) =
⌧

⌫(x(1))
����
Z 1

0
x(s) dh(s)

�
=

Z 1

0
h⌫(x(1))|x(s) dh(s)i

=
Z 1

0
h⌫(x(1))|x(s)i dh(s) =

Z 1

0
⇠1(s) dh(s)

=
Z ⌧

0
⇠1(s) dh(s) +

Z 1

⌧
⇠1(s) dh(s)

 (max
[0,⌧ ]

⇠1)h(⌧) + ⇠1(1)[1� h(⌧)] < ⇠1(1),

a contradiction. Consequently the assumptions of Proposition 2.8 are satisfied
for G2 and ⌦, and the conclusion follows.

Corollary 2.16. If h : [0, 1] ! R satisfies conditions (h0), h(1) or conditions
(h0), h(2), h(4), and if there exists R > 0 such that

hu|f(t, u)i � 0, 8 (t, u) 2 [0, 1]⇥ @BR, (31)

then the problem (18) has at least one solution taking values in BR.

Proof. Take C = BR and, for each u 2 @BR, ⌫(u) = u.

Corollary 2.17. If h : [0, 1] ! R satisfies conditions (h0), h(1) or conditions
(h0), (h2), (h4), and if there exists Rj > 0 (1  j  n) such that

uifi(t, u) � 0, 8 (t, u) 2 [0, 1]⇥
nY

j=1

[�Rj , Rj ] : |ui| = Ri (1  i  n), (32)

then the problem (18) has at least one solution taking values in ⇧n
j=1[�Rj , Rj ].

Proof. Take C =
Qn

j=1(�Rj , Rj) and, for each u 2
Qn

j=1[�Rj , Rj ] and |ui| =
Ri, ⌫(u) = uie

i, where e
i = (0, . . . , 0, 1, 0, . . . , 0) is the i

th element of the
canonical basis of Rn (i = 1, . . . , n).
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2.8. Lower and upper solutions for nonlocal initial or
terminal BVP

Corollaries 2.14 and 2.17 can be generalized by extending the classical concepts
of lower and upper solutions to our nonlocal boundary value problems.

Definition 2.18. We say that ↵ 2 C
1([0, 1], Rn) is a lower solution and

� 2 C
1([0, 1], Rn) an upper solution for problem (16), if

↵i(t)  �i(t) (1  i  n)

and, for each i 2 {1, . . . , n},

↵
0
i(t)  f(t, u1, . . . , ui�1,↵i(t), ui+1(t), . . . , un(t)),
�
0
i(t) � f(t, u1, . . . , ui�1,�i(t), ui+1(t), . . . , un(t)), (33)

whenever ↵j(t)  uj  �j(t), t 2 [0, 1], j 2 {1, . . . , n} \ {i},

↵i(0) 
Z 1

0
↵i(s) dh(s), �i(0) �

Z 1

0
�i(s) dh(s).

Definition 2.19. We say that ↵ 2 C
1([0, 1], Rn) is a lower solution and

� 2 C
1([0, 1], Rn) an upper solution for problem (18), if

↵i(t)  �i(t) (1  i  n)

and, for each i 2 {1, . . . , n},

↵
0
i(t) � f(t, u1, . . . , ui�1,↵i(t), ui+1(t), . . . , un(t)),
�
0
i(t)  f(t, u1, . . . , ui�1,�i(t), ui+1(t), . . . , un(t)), (34)

whenever ↵j(t)  uj  �j(t), t 2 [0, 1], j 2 {1, . . . , n} \ {i},

↵i(1) �
Z 1

0
↵i(s) dh(s), �i(1) 

Z 1

0
�i(s) dh(s).

For the initial value problem and a scalar equation, the concept and the
corresponding theorem was introduced by Peano [88] in 1895, rediscovered by
Perron [89] in 1912, and extended to systems by Müller in 1927 [79]. The case
of periodic solutions was first considered by Moretto [78] in the scalar case,
by Knobloch [54] in 1962 for locally Lipschitzian systems, and generalized to
continuous systems in 1974 [69].

Theorem 2.20. If conditions (h0), (h1) or conditions (h0), (h2), (h3) hold,
and if a couple of lower and upper solutions ↵, � exists for (16), then the
problem (16) has a solution x such that ↵i(t)  xi(t)  �i(t) for all t 2 [0, 1]
and all i 2 {1, . . . , n}.
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Proof. For each i 2 {1, . . . , n}, define the continuous and bounded function
�i : [0, T ]⇥ R ! R by

�i(t, ui) :=

8
<

:

↵i(t) if ui < ↵i(t)
ui if ↵i(t)  ui  �i(t)

�i(t) if ui > �i(t)
(35)

and consider the modified problem

x
0
i = �[xi � �i(t, xi)] + fi(t, �1(t, x1), . . . , �n(t, xn)) := gi(t, x) (1  i  n)

x(0) =
Z 1

0
x(s) dh(s). (36)

As each �i and fi(·, �1(·, ·), . . . , �n(·, ·)) are bounded, for each i 2 {1, . . . , n},
there exists Ri > 0 such that gi(t, u) � 0 for all u 2

Qn
j=1[�Rj , Rj ] verifying

ui = �Ri and such that gi(t, u)  0 for all u 2
Qn

j=1[�Rj , Rj ] verifying
ui = Ri. Using Corollary 2.14, we have a solution x to (36) such that x(t) 2Q

j=1n [�Rj , Rj ] for all t 2 [0, 1]. We now show that ↵i(t)  xi(t)  �i(t) for
all t 2 [0, 1] and all i 2 {1, . . . , n}, so that x is a solution to (16). Fix some
i 2 {1, . . . , n} and assume that there is some ⌧ 2 [0, 1] such that xi(⌧) < ↵i(⌧).
Then xi � ↵i reaches a negative minimum at some t0 2 [0, 1]. If t0 2 (0, 1],
then x

0
i(⌧)� ↵

0
i(⌧)  0, and hence

↵
0
i(⌧) � x

0
i(⌧) = �[xi(⌧)� ↵i(⌧)]

+ fi(⌧, �1(⌧, x1(⌧)), . . . ,↵i(⌧), . . . , �n(⌧, xn(⌧)))
> fi(⌧, �1(⌧, x1(⌧)), . . . ,↵i(⌧), . . . , �n(⌧, xn(⌧))),

a contradiction with the definition (33) of lower solution for (16). If t0 = 0,
then, using the previous contradiction, we can assume that

xi(0)� ↵i(0) < xi(t)� ↵i(t) 8 t 2 (0, 1]

and hence, integrating over [0, 1] and using the boundary conditions for xi

and ↵i,

[xi(0)� ↵i(0)]h(1) 

Z 1

0
xi(t) dh(t)�

Z 1

0
↵i(t) dh(t)  xi(0)� ↵i(0)

so that

[1� h(1)][xi(0)� ↵i(0)] � 0,

and, using (h1),

xi(0)� ↵i(0) � 0,
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a contradiction. We leave to the reader the proof in the case where conditions
(h0), (h2), (h3) hold. The reasoning is similar to show that xi(t)  �i(t) for all
t 2 [0, 1] and all i 2 {1, . . . , n}. Hence, the solution x to (36) is also a solution
to problem (16).

A similar proof provides the corresponding result for the nonlocal terminal
type BVP.

Theorem 2.21. If conditions (h0), (h1) or conditions (h0), (h2), (h4) hold,
and if a couple of lower and upper solutions ↵, � exists for (18), then the
problem (18) has a solution x such that ↵i(t)  xi(t)  �i(t) for all t 2 [0, 1]
and all i 2 {1, . . . , n}.

Extensions of Knobloch’s theorem to some multipoint boundary value prob-
lems have been given by Ponomarev [92, 93].

2.9. Periodic vs resonant nonlocal initial or terminal type
BC

The special case of Theorem 2.12 with h given by (11) (which satisfies as-
sumptions (h0), (h2), (h3)), together with the special case of Theorem 2.15
with h given by (10) (which satisfies assumptions (h0), (h2), (h4)) provide a
proof of the generalized version of Theorem 2.11 with non–strict inequalities in
the assumptions, and of its consequence Theorem 2.9, for periodic boundary
conditions.

Comparing the statement of Theorem 2.9 for the periodic problem, with
the statements of the corresponding Corollaries 2.13 and 2.16 we see that the
sense of the inequality in conditions (27) and (31) depends upon the nonlocal
boundary condition.

On the other hand, as it is easily verified by direct computation, the system

x
0 = �x + e(t),

with each of the three–point boundary conditions

x
0(0) =

1
2
[x(1/2) + x(1)], x(1) =

1
2
[x(1/2) + x(0)],

has a solution for each e 2 C
0 and each � 2 R \ {0}. This is a consequence of

the fact that the only real eigenvalue of d
dt with each boundary condition is 0.

Hence a natural question is to know whether the conclusion of the above
corollaries still holds when the sense of the corresponding inequality upon f is
reversed.
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We show by some counterexamples that the answer is negative in general,
which of course implies that the same negative answer holds for Theorems
2.12 and 2.15. In this sense, the existence conditions given in Theorems 2.12
and 2.15 are sharp.

The construction of our counterexamples depends upon the study of some
associated complex eigenvalue problem and of the corresponding Fredholm al-
ternative for some special three–point boundary conditions. The results are
taken from [74].

2.10. Nonlocal initial or terminal type eigenvalue
problems

We first consider the three–point eigenvalue problem

z
0(t) = �z(t), z(0) =

1
2
[z(1/2) + z(1)], (37)

where � 2 C, z : [0, 1] ! C. The boundary condition is a special case of the
one in Corollary 2.13 with

h(s) =

8
<

:

0 if s 2 [0,
1
2 )

1
2 if s 2 [ 12 , 1)
1 if s = 1.

Proposition 2.22. The problem (37) has the eigenvalues

�IC,1,k = 2k(2⇡i), �IC,2,k = log 4 + (2k + 1)(2⇡i) (k 2 Z).

They are located in the right part of the complex plane.

Proof. The eigenvalue problem (37) has a nontrivial solution if and only if
� 2 C is such that

1 =
1
2
e
�/2 +

1
2
e
�
. (38)

Setting µ := e
�/2, the equation (38) becomes the equation in µ

1
2
µ

2 +
1
2
µ� 1 = 0

with solutions µIC,1 = 1 and µIC,2 = �2. The equation e
�/2 = µIC,1 is satisfied

for �
2 = 2k⇡i (k 2 Z), which gives the eigenvalues �IC,1,k (k 2 Z). The equation

e
�/2 = µIC,2 = �2 is satisfied for �

2 = log 2 + (2k + 1)(⇡i) (k 2 Z), which gives
the eigenvalues �IC,2,k (k 2 Z).
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Similarly, we consider the three–point eigenvalue problem

z
0(t) = �z(t), z(1) =

1
2
[z(0) + z(1/2)], (39)

where � 2 C, z : [0, 1] ! C. The boundary condition is a special case of the
one in Corollary 2.16 with

h(s) =

8
<

:

0 if s = 0
1
2 if s 2 (0,

1
2 ]

1 if s 2 ( 1
2 , 1].

Proposition 2.23. The problem (39) has the eigenvalues

�TC,1,k = 2k(2⇡i), �TC,2,k = � log 4 + (2k + 1)(2⇡i) (k 2 Z).

They are located in the left part of the complex plane.

Proof. The eigenvalue problem (39) has a nontrivial solution if and only if
� 2 C is such that

e
� =

1
2

+
1
2
e
�/2

. (40)

Setting µ := e
�/2, the equation (40) becomes the equation in µ

µ
2
�

1
2
µ�

1
2

= 0,

with solutions µTC,1 = 1, µTC,2 = �
1
2 . The equation e

�/2 = µTC,1 = 1 is
satisfied for �

2 = 2k⇡i (k 2 Z), which gives the eigenvalues �TC,1,k (k 2 Z).
The equation e

�/2 = µTC,2 = �
1
2 is satisfied for �

2 = � log 2+(2k+1)⇡i (k 2 Z),
which gives the eigenvalues �TC,2,k (k 2 Z).

Remark 2.24: The eigenvalues of the periodic boundary conditions

z
0 = �z, z(0) = z(1)

are, as easily seen, �P,k = k(2⇡i) (k 2 Z). In the case of the problem (39), half
of the eigenvalues of the periodic problem move to the line <z = � log 4, and,
in the case of the problem (37), the same half moves to the line <z = log 4. In
each case, the symmetry of the spectrum with respect to the imaginary axis is
lost (see Fig. 3).
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oo o

4⇡i 4⇡i

2⇡i� log 4 + 2⇡i log 4 + 2⇡i

z(1) = 1
2

⇥
z(0) + z

�
1
2

�⇤
z(0) = 1

2

⇥
z

�
1
2

�
+ z(1)

⇤
z(0) = z(1)

Figure 4: Eigenvalues.

2.11. Fredholm alternative for some linear nonlocal initial
or terminal type BVP

To construct our counterexamples, we use of the Fredholm alternative for the
corresponding forced eigenvalue problems.

Proposition 2.25. � is an eigenvalue of (37) (resp. (39)) if and only if there
exists e 2 C([0, 1], C) such that the nonhomogeneous problem (41) (resp. (42))
has no solution.

Proof. It is shown in Lemmas 2.4 and 2.6 (or by direct verification) that the
non-homogeneous problems

z
0 + z = e(t), z(0) =

1
2
z(1/2) +

1
2
z(1)

and

z
0
� z = e(t), z(1) =

1
2
z(1/2) +

1
2
z(0)

have a unique solution z = K1e and z = K2e for every e 2 C([0, 1], C), with K1

and K2 compact in C([0, 1], C). Consequently, each problem

z
0
� �z = e(t), z(0) =

1
2
z(1/2) +

1
2
z(1), (41)
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and

z
0
� �z = e(t), z(1) =

1
2
z(1/2) +

1
2
z(0), (42)

can be written equivalently

z = (� + 1)K1z + K1e, z = (�� 1)K2z + K2e,

and the Fredholm alternative follows from Riesz theory of linear compact op-
erators.

2.12. Counterexamples to Corollaries 2.13 and 2.16 under
opposite vector fields sign conditions

We finalize the construction of our counterexamples.

In the case of a three–point boundary condition of initial type, we apply
Proposition 2.25 to the eigenvalue �IC,2,0 = log 4 + 2⇡i of (37). Using Propo-
sition 2.25, let e 2 C([0, 1], C) be such that the problem

z
0(t) = (log 4 + 2⇡i)z(t) + e(t), z(0) =

1
2
z(1/2) +

1
2
z(1)

has no solution. Setting z(t) = x1(t) + ix2(t), e(t) = e1(t) + ie2(t), the equiv-
alent planar real problem

x
0 = f(t, x), x(0) =

1
2
x(1/2) +

1
2
x(1) (43)

with

f(t, u) := ((log 4)u1 � 2⇡u2 + e1(t), 2⇡u1 + (log 4)u2 + e2(t)) ,

is such that

hu|f(t, u)i = (log 4)(u2
1 + u

2
2) + u1e1(t) + u2e2(t)

� (log 4)|u|2 � |e(t)||u| > 0

when |u| � R for some su�ciently large R, and has no solution.

Applying Proposition 2.25 to the case of the eigenvalue �TC,2,0 = � log 4 +
2⇡i of (39), let e 2 C([0, 1], C) be such that the problem

z
0(t) = (� log 4 + 2⇡i)z(t) + e(t), z(1) =

1
2
z(0) +

1
2
z(1/2)
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has no solution. Setting z(t) = x1(t) + ix2(t), e(t) = e1(t) + ie2(t), the equiv-
alent planar real problem

x
0 = f(t, x), x(1) =

1
2
x(0) +

1
2
x(1/2) (44)

with

f(t, u) := (�(log 4)u1 � 2⇡u2 + e1(t), 2⇡u1 � (log 4)u2 + e2(t)) ,

is such that

hu|f(t, u)i = �(log 4)(u2
1 + u

2
2) + u1e1(t) + u2e2(t) (45)

 �(log 4)|u|2 + |e(t)||u| < 0,

when |u| � R for some su�ciently large R, and has no solution.

Remark 2.26: The symmetry–breaking for the spectra of the three–point BVP
of terminal or initial type, explains the di↵erence in the existence conditions
for the nonlinear problems with the three–point boundary conditions and with
the periodic conditions. The presence of the complex spectrum in the left or
the right half plane influences like a ghost the existence of solutions of the real
nonlinear systems. Of course, extra conditions upon f could provide existence
results with the sign conditions of the counterexamples.
Remark 2.27: Our counterexamples do not cover the case of n odd. For n = 3,

if one adds the equations

x
0
3 = (log 4)x3 +

log 4
4

(x1 + x2), x3(0) =
1
2
[x3(1/2) + x3(1)],

or
x
0
3 = �(log 4)x3 +

log 4
4

(x1 + x2), x3(1) =
1
2
[x3(0) + x3(1/2)]

to (43) or to (44) respectively, the corresponding boundary value problems
have no solutions and the nonlinear parts verify the opposite sign conditions
to Corollaries 2.13 and 2.16 respectively. The counterexamples for n = 2 and
n = 3 easily provide counterexamples in any dimension n � 2.
Remark 2.28: As easily seen, the periodic problem

z
0 = 2⇡iz + e

2⇡it
, z(0) = z(1). (46)

has no solution. Letting z = x1 + ix2, the equivalent real planar problem

x
0 = f(t, x), x(0) = x(1)

with

f1(t, x1, x2) = �2⇡x2 + cos(2⇡t), f2(t, x1, x2) = 2⇡x1 + sin(2⇡t),
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has no solution, and is such that

hx|f(t, x)i = cos(2⇡t)x1 + sin(2⇡t)x2

For x = R[cos(2⇡✓), sin(2⇡✓)] 2 @BR (✓ 2 [0, 1]), we have

hx|f(t, x)i = R[cos(2⇡t) cos(2⇡✓) + sin(2⇡t) sin(2⇡✓)]
= R cos[2⇡(t� ✓)] (t, ✓ 2 [0, 1]),

which implies that, for each t 2 [0, 1], hx|f(t, x)i takes both positive and neg-
ative values on @BR. Hence, the assumptions of the existence theorems for
periodic problems given above are sharp.

2.13. An easy extension of Theorems 2.12 and 2.15

Let g : [0, 1]⇥Rn
⇥Rn

! Rn be continuous. By replacing f by g in the equiv-
alent formulation as a fixed point problem and in the proofs, it is immediate
to prove the following extensions of Theorems 2.12 and 2.15.

Theorem 2.29. If h : [0, 1] ! R satisfies conditions (h0),(h1), or conditions
h(0), h(2), h(3), and if there exists an open, bounded, convex neighborhood C

of 0 in Rn and an outer normal field ⌫ on @C such that

h⌫(u)|g(t, v, u)i  0, 8 (t, v, u) 2 [0, 1]⇥ C ⇥ @C, (47)

then the problem

x
0(t) = g

✓
t,

Z t

0
x(s) ds, x(t)

◆
(t 2 [0, 1]), x(0) =

Z 1

0
dh(s)x(s) (48)

has at least one solution taking values in C.

Proof. The main di↵erence in the proof is that the nonlinear mapping N1 :
C

0
! C

0 occuring in the fixed point formulation is now defined by

N1x(t) = g

✓
t,

Z t

0
x, x(t)

◆
� x(t) (t 2 [0, 1]),

and its value at t 2 [0, 1] depends not only on x(t) but on all values of x(s) for
s 2 [0, t]. It is easily checked that it does not modify the compactness properties
of the operator K1N1. All the other arguments of the proof remain valid mutatis
mutandis because of the uniformity of assumption (47) with respect to v.

Theorem 2.30. If h : [0, 1] ! R satisfies conditions (h0), (h1), or conditions
h(0), h(2), h(4), and if there exists an open, bounded, convex neighborhood C

of 0 in Rn and an outer normal field ⌫ on @C such that

h⌫(u)|g(t, v, u)i � 0, 8 (t, v, u) 2 [0, 1]⇥ C ⇥ @C,
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then the problem

x
0(t) = g

✓
t,

Z t

0
x(s) ds, x(t)

◆
(t 2 [0, 1]), x(1) =

Z 1

0
x(s) dh(s) (49)

has at least one solution taking values in C.

Proof. Similar to Theorem 2.15 using the remarks in the proof of Theorem 2.29.

Of course, the following extensions, where the value of x
0(t) depends this

time upon the values of x(s) for s 2 [t, 1], are obtained in a similar way.

Theorem 2.31. If h : [0, 1] ! R satisfies conditions (h0),(h1), or conditions
h(0), h(2), h(3), and if there exists an open, bounded, convex neighborhood C

of 0 in Rn and an outer normal field ⌫ on @C such that

h⌫(u)|g(t, v, u)i  0, 8 (t, v, u) 2 [0, 1]⇥ C ⇥ @C,

then the problem

x
0(t) = g

✓
t,

Z t

1
x(s) ds, x(t)

◆
(t 2 [0, 1]), x(0) =

Z 1

0
dh(s)x(s)

has at least one solution taking values in C.

Theorem 2.32. If h : [0, 1] ! R satisfies conditions (h0), (h1), or conditions
h(0), h(2), h(4), and if there exists an open, bounded, convex neighborhood C

of 0 in Rn and an outer normal field ⌫ on @C such that

h⌫(u)|g(t, v, u)i � 0, 8 (t, v, u) 2 [0, 1]⇥ C ⇥ @C,

then the problem

x
0(t) = g

✓
t,

Z t

1
x(s) ds, x(t)

◆
(t 2 [0, 1]), x(1) =

Z 1

0
x(s) dh(s)

has at least one solution taking values in C.

3. Second order systems

3.1. Boundary conditions

We now consider the case of second order (1) where f : [0, 1]⇥Rn
⇥Rn

! Rn

is continuous. Again there is no loss of generality in taking the independent
variable in [0, 1].
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We consider in what follows the following particular nonlocal conditions:
the Dirichlet type nonlocal conditions

x(0) = 0, x(1) =
Z 1

0
x(s) dh(s), (50)

the mixed type nonlocal conditions

x
0(0) = 0, x(1) =

Z 1

0
x(s) dh(s), (51)

the nonlocal conditions of initial type

x(0) = 0, x
0(0) =

Z 1

0
x
0(s) dh(s),

the mixed type nonlocal conditions

x(0) = 0, x
0(1) =

Z 1

0
x
0(s) dh(s),

and the nonlocal conditions of terminal type

x(1) = 0, x
0(1) =

Z 1

0
x
0(s) dh(s).

Neumann type nonlocal conditions are considered in [73, 102, 108] using
other continuation theorems.

3.2. Some nonlocal BVP for linear second order systems

We start with the Dirichlet type nonlocal BC.

Lemma 3.1. If conditions (h0), (h1) or (h0), (h2), (h4) hold, then, for each
z 2 C

0, the linear nonlocal Dirichlet type problem

x
00
� x = z(t), x(0) = 0, x(1) =

Z 1

0
x(s) dh(s) (52)

has the unique solution

x(t) =
✓

sinh 1�
Z 1

0
sinh s dh(s)

◆�1 Z 1

0

Z u

0
sinh(u� s)z(s) ds dh(u) sinh t

+
Z t

0
sinh(t� s)z(s) ds. (53)
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Proof. By the variation of constants formula for each c 2 Rn, the initial value
problem

x
00
� x = z(t), x(0) = 0, x

0(0) = c,

has the unique solution

x(t) = c sinh t +
Z t

0
sinh(t� s)z(s) ds.

It satisfies the boundary condition (50) if and only if c satisfies the linear
algebraic system

c sinh 1 = c

Z 1

0
sinh t dh(t) +

Z 1

0

Z t

0
sinh(t� s)z(s) ds dh(t),

which has the unique solution

c =
✓

sinh 1�
Z 1

0
sinh s dh(s)

◆�1 Z 1

0

Z u

0
sinh(u� s)z(s) ds dh(u).

if
R 1
0 sinh s dh(s) 6= sinh 1. Following the reasoning of the corresponding Lemma

for first order systems, and noticing that sinh reaches its maximum on [0, 1] at
1, this is the case if conditions (h0), (h1) or conditions (h0), (h2), (h4) hold.
The result follows.

Let C
1 be the Banach space of mappings x : [0, 1] ! Rn of class C

1 with
the norm

kxk := max{kx1k1, . . . , kxnk1, kx
0
1k1, . . . , kx

0
nk1}.

Like in the first order case, formula (53) defines a compact linear mapping

K1 : C
0
! C

1
, z 7! x.

In a similar way, one can prove the corresponding results for the mixed type
nonlocal BC.

Lemma 3.2. If conditions (h0), (h1) or (h0), (h2), (h4) hold, then, for each
z 2 C

0, the linear nonlocal mixed type problem

x
00
� x = z(t), x

0(0) = 0, x(1) =
Z 1

0
x(s) dh(s) (54)

has a unique solution x and the corresponding linear mapping

K2 : C
0
! C

1
, z 7! x

is compact.



CONVEXITY, TOPOLOGY 153

3.3. Fixed point formulation of nonlinear nonlocal BVP
of the second order

Let now f : [0, 1] ⇥ Rn
⇥ Rn

! Rn be continuous and define the mapping
N : C

1
! C

0 by

Nx = f( · , x(·), x0(·))� x(·).

It is easy to show that N is continuous on C
1 and take bounded sets of C

1 into
bounded sets of C

0. Under the conditions of Lemma 3.1,

G1 := K1N : C
1
! C

1

is compact on bounded subsets of C
1, and the nonlinear nonlocal Dirichlet

type problem

x
00 = f(t, x, x

0), x(0) = 0, x(1) =
Z 1

0
x(s) dh(s) (55)

is equivalent to the fixed point problem in C
1

x = G1x. (56)

Similarly, under the conditions of Lemma 3.2,

G2 := K2N : C
1
! C

1

is compact on bounded subsets of C
1, and the nonlinear nonlocal mixed

type problem

x
00 = f(t, x, x

0), x
0(0) = 0, x(1) =

Z 1

0
x(s) dh(s) (57)

is equivalent to the fixed point problem in C
1

x = G2x. (58)

We want to apply to the equations (56) and (58) the Leray–Schauder exis-
tence result given in Proposition 2.8, where now X = C

1, so that the a priori
estimates are requested not only upon x but also upon x

0.

3.4. Bernstein–Hartman lemma

In order to obtain the a priori estimates on x
0 requested by Proposition 2.8

when an a priori estimate on x is known, we use the following lemma, a special
case of a more general result of Hartman [31, 32] for functions with values in
Rn. For n = 1, the result, without condition (59), was proved by Bernstein in
1912 [6].
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Lemma 3.3. Assume that x 2 C
2([0, 1], Rn) satisfies the following inequalities

|x(t)|  R,

and

|x
00(t)|  �|x

0(t)|2 + K

for all t 2 [0, 1] and some R > 0, K � 0 and � � 0 such that

�R < 1. (59)

Then, there exists M = M(R, �,K) such that for all t 2 [0, 1],

|x
0(t)|  M.

Remark 3.4: For n � 2, the condition (59) is sharp, as shown by the example
of the sequence of functions, introduced by Heinz [34],

xn : [0, 2⇡] ! R2
, t 7! (cos nt, sinnt) (n 2 N),

for which, with h · | · i the usual inner product and | · | the Euclidian norm in R2,

|xn(t)| = 1, |x
00
n(t)| = |x

0
n(t)|2 = n

2
,

so that that the conclusion of Lemma 3.3 does not hold for �R = 1 and T = 2⇡,
as |x0n(t)| = n can be arbitrary large.

3.5. Some nonlocal nonlinear BVP of Dirichlet or mixed
type

We first show that conditions with respect to u on the vector field f(t, u, v)
similar to those introduced for first order systems also lead to the existence of
solutions for second order systems.

Theorem 3.5. Assume that conditions (h0),(h1) or conditions (h0),(h2),(h4)
hold, and that there exists an open, bounded, convex neighborhood C of 0 in Rn,
and an outer normal vector field ⌫ on @C, such that

h⌫(u)|f(t, u, v)i � 0, whenever u 2 @C and hv|⌫(u)i = 0

and

|f(t, u, v)|  �|v|
2 + K,

for some � � 0 such that �R < 1, K � 0, and R = maxu2C |u|. Then the
problem (55) has at least one solution such that x(t) 2 C for all t 2 [0, 1].
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Proof. Let us consider the equation (56) and define first the open bounded
neighborhood ⌦1 of 0 in C

0 by

⌦1 = {x 2 C
0 : x(t) 2 C, 8 t 2 [0, 1]}. (60)

As first step in applying Proposition 2.8, we show that for each � 2 (0, 1), no
possible solution of the problem

x
00
� x = �[f(t, x, x

0)� x], x(0) = 0, x(1) =
Z 1

0
x(s) dh(s), (61)

belongs to @⌦1. Let � 2 (0, 1) and x(t) 2 @⌦1 be a possible solution to (61).
Then x(t) 2 C for all t 2 [0, 1] and there is some t0 2 [0, 1] such that x(t0) 2 @C.
Therefore, for all t 2 [0, 1],

⇠t0(t) := h⌫(x(t0))|x(t)i  h⌫(x(t0)|x(t0)i = ⇠t0(t0), 8 t 2 [0, 1],

which means that the real function ⇠t0 : [0, 1] ! R reaches its maximum at t0.
Because of the first boundary condition, we cannot have t0 = 0. If t0 2 (0, 1),
0 = ⇠

0
t0(t0) = h⌫(x(t0))|x0(t0)iand

0 � ⇠
00
t0(t0) = h⌫(x(t0))|x00(t0)i

= (1� �)h⌫(x(t0))|x(t0)i+ �h⌫(x(t0))|f(t0, x(t0), x0(t0)) > 0,

a contradiction. Finally, if t0 = 1, we use the second boundary condition
like in the nonlocal terminal like problem for first order systems to obtain the
contradiction.

Now, as x(t) 2 C for all t 2 [0, 1], we have, for all t 2 [0, 1],

|x
00(t)| = |(1� �)x(t) + �f(t, x(t), x0(t))|

 R + �|x
0(t)|2 + K = �|x

0(t)|2 + (R + K)

and Lemma 3.3 implies the existence of M > 0 depending only upon R, �,K

such that |x0(t)|  M for all t 2 [0, 1]. If we set

⌦2 := {x 2 C
1 : |x0(t)| < M + 1, 8 t 2 [0, 1]},

and ⌦ = ⌦1 \ ⌦2, all the assumptions of Proposition 2.8 are satisfied and the
conclusion follows.

In a similar way, we can prove the following existence result for the prob-
lem (57).

Theorem 3.6. Assume that conditions (h0),(h1) or conditions (h0),(h2),(h4)
hold, and that there exists an open, bounded, convex neighborhood C of 0 in Rn,
and an outer normal vector field ⌫ on @C, such that

h⌫(u)|f(t, u, v)i � 0, whenever u 2 @C, hv|⌫(u)i = 0
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and

|f(t, u, v)|  �|v|
2 + K,

for some � � 0 such that �R < 1, K � 0, and R = maxu2C |u|. Then the
problem (57) has at least one solution such that x(t) 2 C for all t 2 [0, 1].

The choice of C = BR provide the corresponding special cases.

Corollary 3.7. Assume that conditions (h0), (h1) or conditions (h0), (h2),
(h4) hold, and that there exists R > 0 such that

hu|f(t, u, v)i � 0, whenever u 2 @BR and hv|ui = 0

and

|f(t, u, v)|  �|v|
2 + K,

for some � � 0 such that �R < 1, and K � 0. Then the problem (55) has at
least one solution such that x(t) 2 BR for all t 2 [0, 1].

Special cases of Corollary 3.7 can be found in [100].

Corollary 3.8. Assume that conditions (h0), (h1) or conditions (h0), (h2),
(h4) hold, and that there exists R > 0 such that

hu|f(t, u, v)i � 0, whenever u 2 @BR and hv|ui = 0

and

|f(t, u, v)|  �|v|
2 + K,

for some � � 0 such that �R < 1, and K � 0. Then the problem (57) has at
least one solution such that x(t) 2 BR for all t 2 [0, 1].

The assumptions in Corollaries 3.7 and 3.8 can be slightly improved by
taking in account the curvature of the ball, in contrast with the general case of
convex sets which may have flat curvature almost everywhere (polyhedra). The
corresponding conditions were first obtained by Hartman [31, 32] for Dirichlet
boundary conditions, and extended by various authors to other classical two–
point BC like mixed, Neumann or periodic, and to some four-point boundary
conditions and component-wise Bernstein-Nagumo conditions by Calábek [10].

Theorem 3.9. Assume that conditions (h0),(h1) or conditions (h0),(h2),(h4)
hold, and that there exists R > 0 such that

|v|
2 + hu|f(t, u, v)i � 0, whenever u 2 @BR and hv|ui = 0
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and

|f(t, u, v)|  �|v|
2 + K,

for some � � 0 such that �R < 1, and K � 0. Then the problem (55) has at
least one solution such that x(t) 2 BR for all t 2 [0, 1].

Proof. Following the lines of the proof of Theorem 3.5, we define first the open
bounded neighborhood ⌦1 of 0 in C

0 by

⌦1 = {x 2 C
0 : |x(t)| < R, 8 t 2 [0, 1]}.

As first step in applying Proposition 2.8, we show that for each � 2 (0, 1), no
possible solution of the problem

x
00
� x = �[f(t, x, x

0)� x], x(0) = 0, x(1) =
Z 1

0
x(s) dh(s), (62)

belongs to @⌦1. Let � 2 (0, 1) and x(t) 2 @⌦1 be a possible solution to (62).
Then |x(t)|2  R

2 for all t 2 [0, 1] and there is some t0 2 [0, 1] such that
|x(t0)|2 = R

2. Therefore the function ⇠(t) := |x(t)|2/2 reaches its maximum
at t0. Because of the first boundary condition, we cannot have t0 = 0. If
t0 2 (0, 1), 0 = ⇠

0(t0) = hx(t0)|x0(t0)iand

0 � ⇠
00
t0(t0) = |x

0(t0)|2 + hx(t0)|x00(t0)i

� �|x
0(t0)|2 + (1� �)|x(t0)|2 + �hx(t0)|f(t0, x(t0), x0(t0)) > 0,

a contradiction. Finally, if t0 = 1, we use the second boundary condition and
its consequence

|x(1)| 
Z 1

0
|x(s)| dh(s),

and the nonlocal terminal type problem for first order systems to obtain the
contradiction. The remaining part of the proof is exactly similar to that of
Theorem 3.5.

In a similar way, we prove the corresponding result for the mixed case.

Theorem 3.10. Assume that conditions (h0),(h1) or conditions (h0),(h2),(h4)
hold, and that there exists R > 0 such that

|v|
2 + hu|f(t, u, v)i � 0, whenever u 2 @BR and hv|ui = 0

and

|f(t, u, v)|  �|v|
2 + K,

for some � � 0 such that �R < 1, and K � 0. Then the problem (57) has at
least one solution such that x(t) 2 BR for all t 2 [0, 1].
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3.6. Other nonlocal nonlinear BVP of mixed type

Let us consider the nonlocal BVP of initial type

x
00 = f(t, x, x

0), x(0) = 0, x
0(0) =

Z 1

0
x
0(s) dh(s). (63)

The following existence theorem is given in [75]. This time the vector field
condition similar to the one for first order systems is made on f(t, u, v) with
respect to v.

Theorem 3.11. Assume that h satisfies conditions (h0), (h1), or conditions
(h0), (h2), (h3) and that there exists an open, bounded, convex neighborhood C

of 0 in Rn and an outer normal field ⌫ to @C such that

h⌫(v)|f(t, u, v)i  0, 8 (t, u, v) 2 [0, 1]⇥ C ⇥ @C. (64)

Then the problem (63) has at least one solution x such that x(t) 2 C and
x
0(t) 2 C for all t 2 [0, 1].

Proof. We set y = x
0, so that, using the first boundary condition x(0) = 0,

x(t) =
Z t

0
x
0(s) ds =

Z t

0
y(s) ds,

and the problem (63) can be written, in terms of y,

y
0(t) = f

✓
t,

Z t

0
y(s) ds, y(t)

◆
, y(0) =

Z 1

0
y(s) dh(s). (65)

The result follows then from Theorem 2.29 and the fact that, by the convexity
of C,

R t
0 y(s) ds 2 C for all t 2 [0, 1].

A similar result, with a similar proof using Theorem 2.30, holds for the
following nonlinear BVP of mixed type.

Theorem 3.12. Assume that h satisfies conditions (h0), (h1), or conditions
(h0), (h2), (h4) and that there exists an open, bounded, convex neighborhood C

of 0 in Rn and an outer normal field ⌫ to @C such that

h⌫(v)|f(t, u, v)i � 0, 8 (t, u, v) 2 [0, 1]⇥ C ⇥ @C. (66)

Then the problem

x
00 = f(t, x, x

0), x(0) = 0, x
0(1) =

Z 1

0
x
0(s) dh(s)

has at least one solution x such that x(t) 2 C and x
0(t) 2 C for all t 2 [0, 1].
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Finally, using Theorems 2.31 and 2.32 and the fact that x(t) =
R t
1 x

0(s) ds =R t
1 y(s) ds, we obtain in a similar way the following results.

Theorem 3.13. Assume that h satisfies conditions (h0), (h1), or conditions
(h0), (h2), (h3) and that there exists an open, bounded, convex neighborhood C

of 0 in Rn and an outer normal field ⌫ to @C such that condition (64) holds.
Then the problem

x
00 = f(t, x, x

0), x
0(0) =

Z 1

0
x
0(s) dh(s), x(1) = 0

has at least one solution x such that x(t) 2 C and x
0(t) 2 C for all t 2 [0, 1].

Theorem 3.14. Assume that h satisfies conditions (h0), (h1), or conditions
(h0), (h2), (h4) and that there exists an open, bounded, convex neighborhood
C of 0 in Rn and an outer normal field ⌫ to @C such that the condition (66)
holds. Then the problem

x
00 = f(t, x, x

0), x(1) = 0, x
0(1) =

Z 1

0
x
0(s) dh(s)

has at least one solution x such that x(t) 2 C and x
0(t) 2 C for all t 2 [0, 1].

Special cases of those results when C = BR as well as results for other
similar nonlocal boundary conditions can be found in [59, 101, 103, 104].
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linéaires dans un domaine à une seule dimension, Mat. Sbornik (Recueil
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Abstract. In the present paper, partly a survey, we discuss up-
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1. Introduction

We consider finite group-actions of large order on various low-dimensional man-
ifolds with free fundamental group, and also on higher-dimensional analogues
and on finite graphs. All group-actions in the present paper will be faithful
and smooth. The manifolds we consider are the following:

Section 1.1: 3-dimensional handlebodies and the closely related case of
surfaces with nonempty boundary;

Section 1.2: closed 3-dimensional handles, i.e. connected sums ]g(S1⇥S
2)

of g copies of S
1 ⇥ S

2, considering first arbitrary actions and then free
actions (the case of free actions is in close analogy with the results in
section 1.1);

Section 1.3: handlebodies in arbitrary dimensions;

Section 1.4: finite graphs, considering also finite group-actions on finite
graphs embedded in spheres.

1
A first version of the present paper appeared 2016 in arXiv:1604.06695.
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1.1. Finite group-actions on 3-dimensional handlebodies

and bounded surfaces

In analogy with the classical Hurwitz-bound 84(g � 1) for the order of a fi-
nite, orientation-preserving group-action on a closed, orientable surface of genus
g � 2, an uper bound for the order of a finite group of orientation-preserving
di↵eomorphisms of a a 3-dimension handlebody Vg of genus g � 2 is 12(g � 1)
([18],[5, Theorem 7.2]). More generally, the following holds.

Theorem 1.1 ([8]). Let mhb(g) denote the maximum order of a finite, orien-
tation-preserving group-action on a 3-dimensional handlebody of genus g > 1.

i) There are the upper and lower bounds

4(g + 1)  mhb(g)  12(g � 1),

and both 4(g + 1) and 12(g � 1) occur for infinitely many genera g.

ii) If g is odd then mhb(g) = 8(g� 1) or mhb(g) = 12(g� 1), and both cases
occur for infinitely many values of g.

iii) The possible values of mhb(g) are of the form 4n
n�2 (g � 1), for an integer

n � 3, and infinitely many values of n occur resp. do not occur. Moreover
if a value of n occurs then it occurs for infinitely many g.

For finite group-actions on bounded surfaces (compact with nonempty bound-
ary, orientable or not), exactly the same results hold (and with the same proofs),
using the setting in [6] (see [8, Section 3]). Note that, by taking the product
with an interval (twisted if the surface is nonorientable), every finite group
acting on a bounded surface of algebraic genus g (defined as the rank of the
free fundamental group) admits also an orientation-preserving action on a han-
dlebody of genus g.

Theorem 1.2. Let mbs(g) denote the maximum order of a finite, possibly
orientation-reversing group-action on a bounded, orientable or nonorientable
surface of algebraic genus g > 1.

i) mbs(g)  mhb(g).

ii) All statements of Theorem 1.1 remain true for mbs(g).

iii) There are values of g such that mbs(g) is strictly smaller than mhb(g).

Part iii) of Theorem 1.2 is proved in [1] by computational methods; the two
smallest values of g such that mbs(g) < mhb(g) are g = 161 and g = 3761.
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1.2. Finite group-actions on closed handles

After the classical cases of 3-dimensional handlebodies and bounded surfaces,
we consider actions of finite groups G on closed 3-dimensional analogues of
handlebodies, the connected sums Hg = ]g(S1 ⇥ S

2) of g copies of S
1 ⇥ S

2

(similar as Vg = ]
@
g (S1 ⇥ D

2) is the boundary-connected sum of g copies of
S

1 ⇥ D
2; so Hg is the double of Vg along its boundary). We will call Hg a

closed handle or just a handle of genus g

Since Hg admits S
1-actions (see [9]), it admits finite cyclic group-actions of

arbitrarily large order acting trivially on the fundamental group. Let G0 denote
the normal subgroup of all elements of G acting trivially on the fundamental
group (up to inner automorphisms); by [14, Proposition 2], G0 is cyclic, the
quotient Hg/G0 is again a closed handle of the same genus g and the factor
group G/G0 acts faithfully on the fundamental group of the quotient Hg/G0

⇠=
Hg. Hence one is led to consider actions of finite groups G on Hg which act
faithfully on the fundamental group, i.e. induce an injection into the outer
automorphism group Out Fg of the fundamental group of Hg, the free group
Fg of rank g.

Theorem 1.3 ([14]). Let mch(g) denote the maximum order of a finite, orien-
tation-preserving group-action on a closed handle Hg of genus g > 1 which
induces a faithful action on the fundamental group.

i) For g � 15, there is the quadratic upper bound mch(g)  24g(g � 1).

ii) For all g, there are the quadratic lower bounds 2g
2  mch(g) if g is

even, and (g + 1)2  mch(g) if g is odd.

We don’t know the exact value of mch(g) at present but believe that for
large g it coincides with the lower bounds 2g

2 resp. (g+1)2 of the second part
of Theorem 1.3; for small values of g there are group-actions of larger orders,
e.g. mch(2) = 12, mch(3) = 48 and mch(4) = 192.

Next we consider the case of free actions of finite groups on closed handles
Hg which is in strong analogy with the cases of arbitrary (i.e., not necessarily
free) actions on handlebodies and bounded surfaces (where free means that
every nontrivial element has empty fixed point set).

Theorem 1.4. Let mchf (g) denote the maximum order of a free, orientation-
preserving finite group-action on a closed handle Hg of genus g > 1.

i) For all g > 1,
2(g + 1)  mchf (g)  6(g � 1)

and both 2(g + 1) and 6(g � 1) occur for infinitely many genera g.
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ii) If g is odd then mchf (g) = 4(g � 1) or mchf (g) = 6(g � 1), and both
cases occur for infinitely many g.

iii) The possible values of mchf (g) are of the form 2n
n�2 (g� 1), for an integer

n � 3, and infinitely many values of n occur resp. do not occur.

We note that exactly the same results hold for finite orientation-preserving
group-actions on bounded, orientable surfaces of algebraic genus g.

The proof of Theorem 1.4 combines methods of the handlebody case (The-
orem 1.1) with those for closed handles (Theorem 1.3); since it is shorter and
less technical, as an illustration of the methods we give the proof in section 2.

1.3. Finite group-actions on handlebodies in arbitrary

dimensions

A closed handle Hg is the boundary of a 4-dimensional handlebody, in par-
ticular the upper bounds of Theorem 1.3 i) hold also for finite group-actions
on 4-dimensional handlebodies. More generally, an orientable handlebody V

d
g

of dimension d and genus g is defined as a regular neighbourhood of a finite
graph, with free fundamental group of rank g, embedded in the sphere S

d; al-
ternatively, it is obtained from the closed disk D

d of dimension d by attaching
along its boundary g copies of a handle D

d�1 ⇥ [0, 1] in an orientable way, or
as the boundary-connected sum ]

@
g (S1 ⇥D

d�1) of g copies of S
1 ⇥D

d�1.
After Thurston and Perelman, finite group-actions in dimension 3 are ge-

ometric; this is no longer true in higher dimensions, so in order to generalize
Theorem 1.3 one has to consider some kind of standard actions also in higher
dimensions. A natural way to proceed is to uniformize handlebodies V

d
g by

Schottky groups (free groups of Möbius transformations of D
d acting by isome-

tries on its interior, the Poincaré-model of hyperbolic space H
d); this realizes

the interior of a handlebody V
d
g as a hyperbolic manifold, and we will consider

finite groups of isometries of such hyperbolic (Schottky type) handlebodies.
By [15], every finite subgroup of the outer automorphism group Out Fg of a

free group Fg
⇠= ⇡1(V d

g ) can be realized by the action of a group of isometries of
a hyperbolic handlebody V

d
g (in the sense of the Nielsen realization problem),

for a su�ciently large dimension d.

Theorem 1.5 ([7]). Let G be a finite group of isometries of a hyperbolic han-
dlebody V

d
g , of dimension d � 3 and genus g > 1, which acts faithfully on the

fundamental group.

i) The order of G is bounded by a polynomial of degree d/2 in g if d is even,
and of degree (d + 1)/2 if d is odd.
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ii) The degree d/2 is best possible in even dimensions whereas in odd dimen-
sions the optimal degree is either (d� 1)/2 or (d + 1)/2.

So in odd dimensions the optimal degree remains open at present; note
that, for d = 3, the bound (d + 1)/2 = 2 is not best possible since it gives a
quadratic bound instead of the actual linear bound 12(g� 1), so maybe for all
odd dimensions the optimal degree is (d� 1)/2.

1.4. Finite group-actions on finite graphs

Let G be a finite group of automorphisms of a finite graph �̃ of rank g > 1
(defined as the rank of its free fundamental group), allowing closed and multiple
edges. Note that, without changing the rank of a graph, we can delete all free
edges, i.e. nonclosed edges with a vertex of valence 1 (an isolated vertex). By
possibly subdividing edges, we can also assume that G acts without inversions
(of edges), i.e. no element acts on an edge as a reflection in its midpoint. We
say that a finite graph is hyperbolic if it has rank g > 1 and no free edges. In
the following, all finite group-actions on graphs will be faithful and without
inversions.

By [15], each finite subgroup G of the outer automorphism group Out Fg

of a free group Fg can be induced by an action of G on a finite graph of rank
g (this is again a version of the Nielsen realization problem). Conversely, if
G acts on a hyperbolic graph then G induces an injection into OutFg ([16,
Lemma 1]). By [13], for g � 3 the largest possible order of a finite subgroup of
Out Fg is 2g

g!; in particular, there is no linear or polynomial bound in g for the
order of G. In strong analogy with Theorems 1.1 and 1.4, the following holds
(proved in section 3):

Theorem 1.6. i) The maximal order of a finite group G acting with trivial
edge stabilizers and without inversions on a finite hyperbolic graph of rank
g is equal to 6(g�1) or 4(g�1), and both cases occur for infinitely many
values of g.

ii) Let G be a finite group acting without inversions on a finite hyperbolic
graph. If c denotes the order of an edge stabilizer of the action of G then
|G|  6c(g � 1).

iii) Equality |G| = 6c(g� 1) is obtained only for c = 1, 2, 4, 8 and 16. There
are infinitely many values of c such that the second largest possibility
|G| = 4c(g � 1) is obtained.

Finally, Theorem 1.5 has the following application to finite group-actions
on finite graphs embedded in spheres.
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Theorem 1.7 ([19]). Let G be a finite subgroup of the orthogonal group O(d+1)
acting on a pair (Sd

,�), for a finite hyperbolic graph � of genus g > 1 embedded
in S

d. Then the order of G is bounded above by a polynomial of degree d/2 in
g if d is even and of degree (d + 1)/2 if d is odd. The degree d/2 is best
possible in even dimensions whereas in odd dimensions the optimal degree is
either (d� 1)/2 or (d + 1)/2.

For the case of the 3-sphere, by Theorem 1.1 an upper bound for the order
of G is 12(g� 1). The finitely many (hyperbolic) graphs � in S

3 for which this
upper bound is attained are classified in [12], and the possible genera are g =
2, 3, 4, 5, 6, 9, 11, 17, 25, 97, 121, 241 and 601. By Theorem 1.3, an upper
bound for the case of S

4 is 24g(g � 1), for g � 15.

2. Finite group-actions on closed handles and the proof of

Theorem 1.4

We briefly recall some concepts from [14]. Let G be a finite group acting
on a handle Hg. By the equivariant sphere theorem, there is an equivariant
decomposition of Hg into 0-handles S

3 connected by 1-handles S
2⇥[�1, 1], and

an associated finite graph �̃ with an action of g. In the language of [14], this
induces on the quotient orbifold Hg/G the structure of a closed handle-orbifold,
i.e. Hg/G decomposes into 0-handle orbifolds S

3
/Gv connected by 1-handle

orbifolds (S2
/Ge)⇥ [�1, 1] (in the case of a free action, Hg/G is a 3-manifold

and one may just use the classical decomposition into prime manifolds). This
defines a finite graph of finite groups (�,G) associated to the G-action, with
underlying graph � = �̃/G; by subdividing edges, we assume here that G acts
without inversions of edges on �. The vertices of � correspond to the 0-handle
orbifolds, the edges to the 1-handle orbifolds. The vertex groups Gv of (�,G)
are the stabilizers in G of the 0-handles S

3 of Hg and isomorphic to finite
subgroups of the orthogonal group SO(4), the edge groups Ge are stabilizers of
1-handles of Hg and isomorphic to finite subgroups of SO(3). The fundamental
group ⇡1(�,G) of the graph of groups (�,G) is defined as the iterated free
product with amalgamation and HNN-extension of the vertex groups along the
edge groups (starting with a maximal tree), and is isomorphic to the orbifold
fundamental group of the quotient orbifold Hg/G. There is a surjection � :
⇡1(�,G) ! G, and Hg is the orbifold covering of Hg/G associated to the kernel
of � (isomorphic to the free group Fg). Conversely, if � : ⇡1(�,G) ! G is a
surjection with torsionfree kernel onto a finite group G then its kernel is the
fundamental group of a graph of groups with trivial vertex and edge groups (a
free group) defining a handlebody which is a regular orbifold covering of the
handle-orbifold associated to the graph of groups (�,G).

We will assume in the following that the graph of groups (�,G) has no trivial



ON UPPER AND LOWER BOUNDS 173

edges, i.e. edges with two di↵erent vertices such that the edge group coincides
with one of the two vertex groups (by contracting such edges).

We denote by

�(�,G) =
X 1

|Gv|
�

X 1
|Ge|

the Euler characteristic of the graph of groups (�,G) (the sum is taken over all
vertex groups Gv resp. edge groups Ge of (�,G)); then

g � 1 = ��(�,G) |G|

(see [10, 11, 17] for the general theory of graphs of groups, groups acting on
trees and groups acting on finite graphs).
Remark 2.1: The approach to finite group-actions on 3-dimensional handle-
bodies (Theorem 1.1) is analogous, using the equivariant Dehn lemma/loop
theorem instead of the equivariant sphere theorem. The 0-handles are disks
D

3 connected by 1-handles D
2 ⇥ [�1, 1], the vertex groups of the graph of

groups (�,G) are finite subgroups of SO(3) and the edge groups finite sub-
groups of SO(2) (i.e., cyclic groups). In the case of maximal order 12(g � 1),
⇡1(�,G) is one of the following four products with amalgamation ([5, 15]):

D2 ⇤Z2 S3, D3 ⇤Z3 A4, D4 ⇤Z4 S4, D5 ⇤Z5 A5

where Dn denotes the dihedral group of order 2n, A4 and A5 the alternating
groups of orders 12 and 60, and S4 the symmetric group of order 24.
Remark 2.2: For the case of finite group-actions on bounded surfaces (The-
orem 1.2), one decomposes the action along properly embedded arcs; the 0-
handles are disks D

2 connected by 1-handles D
1 ⇥ [�1, 1], the vertex groups

of (�,G) are finite subgroups of O(2) (cyclic or dihedral) and the edge groups
subgroups of O(1) ⇠= Z2 (i.e., of order two generated by a reflection of D

1, or
trivial). In the case of maximal order 12(g � 1), ⇡1(�,G) is the free product
with amalgamation D2 ⇤Z2 D3 (the first of the four groups in part i).

Proof of Theorem 1.4. i) Suppose that G acts freely on a closed handle Hg,
g > 1. Since there are no orientation-preserving free actions of a finite group
on S

2, the edge groups of the associated graph of groups (�,G) are all trivial.
It is easy to see then that the minimum positive value for ��(�,G) is realized
exactly by the graph of groups (�,G) with exactly one edge and vertex groups
Z2 and Z3, with ⇡1(�,G) ⇠= Z2 ⇤ Z3 and ��(�,G) = 1 � 1/2 � 1/3 = 1/6 (we
will say that (�,G) is of type (2,3) in the following), and hence |G| = 6(g � 1)
is the largest possible order.

Let M be the 3-manifold which is the connected sum of two lens spaces with
fundamental groups Z2 and Z3, with ⇡1(M) ⇠= Z2 ⇤ Z3. Let � be a surjection
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from Z2 ⇤Z3 to a cyclic or dihedral group G of order 6. The regular covering of
M associated to the kernel F2 of � (torsionfree, hence free) is a closed handle
of genus 2 on which G acts as the group of covering transformations, and
this realizes the largest possible order |G| = 6(g � 1). By factorizing Z2 ⇤ Z3

by characteristic subgroups of F2 of arbitrary large finite indices, one obtains
examples for the maximal order |G| = 6(g � 1) for arbitrarily large values of g

(see also the remark after the proof for explicit examples realizing the maximum
order).

Concerning the lower bound 2(g + 1), we consider a graph of groups (�,G)
with exactly one edge, of type (2, n), with ⇡1(�,G) ⇠= Z2 ⇤ Zn and ��(�,G) =
1�1/2�1/n = (n�2)/2n. Let M be the connected sum of two lens spaces, with
⇡1(M) ⇠= Z2 ⇤ Zn, and let � : Z2 ⇤ Zn ! Dn be a surjection onto the dihedral
group of order 2n. The covering of M associated to the kernel of � is a closed
handle Hg of genus g with a free G-action; also, g� 1 = (n� 2)|G|/2n = n� 2,
hence n = g + 1 and |G| = 2(g + 1). (Note that, if n is even, there is also a
surjection of Z2 ⇤ Zn onto the cyclic group Zn which gives an order |G| = n =
2g < 2(g + 1).)

It remains to show that |G| = 2(g + 1) is the largest possible order for
infinitely many values of g. It is easy to see that the graphs of groups (�,G)
with trivial edge groups and with a possible surjection of ⇡1(�,G) onto a group
of order |G| > 2(g + 1) have exactly one edge, of type (2, n), (3,3), (3,4) or
(3,5).

We exclude first the case of a graph of groups (�,G) of type (2, n). A finite
quotient G of ⇡1(�,G) with torsionfree kernel has order xn, for some positive
integer x, hence |G| = xn = 2n(g�1)/(n�2) and x(n�2) = 2(g�1). Suppose
that g � 1 is a prime number. As seen above, the cases x = 1 and x = 2 give
orders 2g and 2(g +1), so we can assume that x > 2 and hence n = 3 or n = 4.

Let n = 3, so G has order 6(g � 1). Suppose in addition that g > 7; then 6
and g � 1 are coprime and, by a result of Schur-Zassenhaus, G is a semidirect
product of Zg�1 and a group Ḡ of order 6. We can also assume that 3 does not
divide g � 2 (or, equivalently, that g � 1 is one of the infinitely many primes
congruent to 2 mod 3, by a result of Dirichlet). Then an element of order 3 in
Ḡ acts trivially on Zg�1 by conjugation, the element of order 2 acts trivially or
dihedrally, and this implies easily that G cannot be generated by two elements
of orders 2 and 3.

Now let n = 4; then G has order 4(g � 1) and is a semidirect product of
Zg�1 and Z4 (since g � 1 is prime). Suppose that g � 1 is one of the infinitely
many primes congruent to 11 mod 12, so 4 does not divide g�2 (and, as before,
3 does not divide g� 2). Then the element of order two in Z4 acts trivially on
Zg�1, is the unique element of order two in G and the square of every element
of order 4, so clearly G cannot be generated by two elements of orders 2 and 4.

It remains to exclude the types (3,3), (3,4) and (3,5). If (�,G) is of type
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(3,3) then |G| = 3(g � 1). As before, since 3 does not divide g � 2, there is a
unique subgroup of order 3 in G and G is not generated by two elements of order
3. In the cases (3,4) and (3,5) one has |G| = 12(g�1)/5 and |G| = 15(g�1)/7;
since g = 8 is already excluded, also these two cases are not possible.

We have shown that mchf (g) = 2(g + 1) for infinitely many genera g, and
this concludes the proof of part i) of Theorem 1.4.

ii) For an odd integer g, we consider the semidirect product G = (Z(g�1)/2o

Z4) o Z2, of order 4(g � 1). Denoting by x a generator of Z(g�1)/2, by y

a generator of Z4 and by t a generator of Z2, the actions of the semidirect
product are given by yxy

�1 = x
�1

, txt
�1 = x

�1 and tyt
�1 = xy. There is a

surjection with torsionfree kernel � : Z2 ⇤ Z4 ! G which maps a generator of
Z2 to t and a generator of Z4 to y. As before, � defines a free action of G on a
closed handle Hg of genus g, so mchf (g) � 4(g� 1); this leaves the possibilities
mchf (g) = 4(g � 1) and mchf (g) = 6(g � 1).

Suppose that g = 2p + 1, for a prime p > 12. We show that there is no
surjection � of Z2 ⇤ Z3 onto a group G of order 6(g � 1) = 12p, and hence
mchf (g) = 4(g � 1). By the Sylow theorems, such a group G has a normal
subgroup Zp, and the factor group is the alternating group A4 (since this is the
only group of order 12 generated by two elements of orders 2 and 3). Again
by the theorem of Schur-Zassenhaus, G is a semidirect product Zp o A4. If the
action of A4 on Zp is trivial then clearly such a surjection � does not exist.
Suppose that the action of A4 on Zp is nontrivial; since the automorphism
group of Zp is cyclic, the action of A4 factors through a nontrivial action of
the factor group Z3 of A4, and the subgroup D2 of A4 acts trivially. By the
Sylow theorems, up to conjugation we can assume that a surjection � maps
the factor Z3 of Z2 ⇤ Z3 to A4. Since any involution in A4 acts trivially on Zp,
every element of order 2 in G is in A4, and hence � is not surjective.

Finally, any surjection � : Z2 ⇤ Z3 ! A4 defines a free action of A4 on a
closed handle of genus 3. Factorizing by characteristic subgroups of arbitrary
large indices of the kernel F3 of �, one obtains mchf (g) = 6(g�1) for infinitely
many odd values of g.

iii) Suppose that n � 2 is prime, and let g = n � 1 and |G| = 2n. Then it
follows easily as above that mchf (g) = 2n(g�1)/(n�2), hence infinitely many
values of n occur. We will show that also infinitely many values of n do not
occur.

Let n be congruent to 2 mod 8, n 6= 2, and suppose that there exists g such
that mchf (g) = 2n(g�1)/(n�2). Then 8 divides (n�2)mchf (g) = 2n(g�1) and
also 4(g�1), so g�1 is even and g is odd. By ii), mchf (g) = 2n(g�1)/(n�2) �
4(g � 1), and this gives the contradiction n  4.

This concludes the proof of Theorem 1.4.

Remark 2.3: We give an explicit construction realizing the maximum order
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|G| = 6(g� 1) for infinitely many values of g. Let g = p+1, for a prime p such
that 6 divides p� 1. We shall define a surjection � of Z2 ⇤Z3 onto a semidirect
product G = Zp o Z6; this defines an action of G on a closed handle of genus
g = p + 1 of maximal possible order |G| = 6(g � 1), hence mchf (g) = 6(g � 1).
Writing Zp additively and Z6 multiplicatively, suppose that a generator t of Z6

acts by conjugation on Zp by an automorphism of order 6, in particular t
3 acts

dihedrally on Zp; let ↵ be the automorphism of order 3 of Zp induced by t
2.

Fixing a generator a of Zp, one has ↵(a) = a + b for some b 6= 0 in Zp; then
↵

3(a) = a implies b + ↵(b) + ↵
2(b) = 0. Considering the factors of Z2 ⇤ Z3, let

� map a generator of Z2 to bt
3 = t

3(�b) and a generator of Z3 to bt
2. Since

also b generates Zp, clearly � is a surjection.

3. Finite group-actions on finite graphs and the proof of

Theorem 1.6

Let G be a finite group acting without inversions on a finite, hyperbolic graph �̃
of rank g. Considering the quotient graph � = �̃/G, we associate to each vertex
group and edge group of � the stabilizer in G of a preimage in �̃ (starting with
a lift of a maximal tree in � to �̃); this defines a finite graph of finite groups
(�,G) and a surjection � : ⇡1(�,G) ! G, injective on vertex groups, with kernel
Fg. Conversely, by the theory of groups acting on trees and graphs of groups
(see [10, 11, 17]), such a surjection � : ⇡1(�,G) ! G defines an action of G on
a finite graph �̃ of rank g = ��(�,G) |G| + 1; the action of G on �̃ is faithful
if and only if every finite normal subgroup of ⇡1(�,G) is trivial (since a finite
normal subgroup must be contained in all edge groups; see [7, Lemma 1]).

Proof of Theorem 1.6. i) Let G be a finite group which acts with trivial edge
stabilizers and without inversions on a finite graph �̃, of rank g > 1. Then
the associated graph of groups (�,G) has trivial edge groups, and clearly
��(�,G) = 1/6 is the smallest positive value which can be obtained for the
Euler characteristic �(�,G) (realized by the graph of groups with one edge and
edge groups Z2 and Z3). Hence |G|  6(g� 1) and, as in the proof of Theorem
1.4, the upper bound 6(g � 1) is obtained for infinitely many values of g.

For an integer m > 1, choose a surjection � : Z2 ⇤ D2 ! G where G is the
dihedral group D2m or the group Z2 ⇥ Dm, of order 4m. Then � defines an
action of G on a finite graph of rank g = m + 1, hence |G| = 4m = 4(g � 1).
On the other hand, if g � 1 is a prime such that 3 does not divide g � 2 then
it follows as in the proof of Theorem 1.4 that there does not exist a surjection
of Z2 ⇤Z3 onto any group of order 6(g� 1), so 4(g� 1) is the maximal possible
order for infinitely many g.

ii) As before, the action of G on �̃ is associated to a surjection with torison-
free kernel � : ⇡1(�,G) ! G, for a finite graph of finite groups (�,G). We can
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assume that (�,G) has no trivial edges, i.e. edges with two di↵erent vertices
such that the edge group coincides with one of the vertex groups (by contracting
such an edge). Since the action of G on �̃ is faithful, every finite normal
subgroup of ⇡1(�,G) is trivial. Let e be an edge of � with an edge group of
order c; let � = �(�,G) denote the Euler-characteristic of (�,G) and n the
order of G.

Suppose first that e is a closed edge (a loop). If e is the only edge of (�,G)
then

�� � 1
c
� 1

2c
=

1
2c

, g � 1 = ��n � n

2c
, n  2c(g � 1)

(since every finite normal subgroup of ⇡1(�,G) is trivial, the edge group of e

cannot coincide with the vertex group).
If e is closed and not the only edge then

�� � 1
c
, g � 1 = ��n � n

c
, n  c(g � 1).

Suppose that e is not closed. If e is the only edge of (�,G) then both vertices
of e are isolated and

�� � 1
c
� 1

2c
� 1

3c
=

1
6c

, g � 1 = �� n � n

6c
, n  6c(g � 1).

If e is not closed, not the only edge and has exactly one isolated vertex then

�� � 1
c
� 1

2c
=

1
2c

, g � 1 = �� n � n

2c
, n  2c(g � 1).

Finally, if e is not closed, not the only edge and has no isolated vertex then

�� � 1
c
, g � 1 = �� n � n

c
, n  c(g � 1).

Concluding, in all cases we have |G|  6c(g � 1), proving ii).
iii) By [3] and [4], there are only finitely many free products with amalga-

mation of two finite groups, without nontrivial finite normal subgroups, such
that the amalgamated subgroup has indices 2 and 3 in the two factors (and
the same holds also for indices 3 and 3). These e↵ective (2,3)-amalgams are
classified in [3], there are exactly seven such amalgams (described below), and
the amalgamated subgroups have order 1, 2, 4, 8 or 16. It follows then from
the proof of ii) that equality |G| = 6c(g � 1) can be obtained only for these
values of c.

On the other hand, by [2] there are infinitely many e↵ective (2,4)-amalgams,
and hence |G| = 4c(g � 1) is obtained for infinitely many values of c.

This concludes the proof of Theorem 1.6.
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Remark 3.1: The seven e↵ective (2, 3)-amalgams, with amalgamated sub-
groups of orders c = 1, 2, 4, 8 or 16, are the following:

Z2 ⇤ Z3, Z4 ⇤Z2 D3, D2 ⇤Z2 D3, D4 ⇤D2 D6, D8 ⇤D4 S4, D̃8 ⇤D4 S4,

K32 ⇤(D4⇥Z2) (S4 ⇥ Z2),

where D̃8 denotes the quasidihedral group of order 16 and K32 a group of order
32.
Remark 3.2: Finally, we describe the two families which realize the largest
possible orders for all g. As noted before, the largest order of a finite group
G of automorphisms of a finite graph of rank g > 2 without free edges (or
equivalently, of a finite subgroup G of Out Fg) is 2g

g!, and this is realized by
the automorphism group (Z2)g

o Sg of a finite graph with one vertex and
g closed edges (a bouquet of g circles or a multiple closed edge), subdividing
edges to avoid inversions. Considering the quotient graph/graph of groups, this
action is associated to a surjection

� : ((Z2)g
o Sg) ⇤((Z2)g�1oSg�1) ((Z2)g

o Sg�1) ! (Z2)g
o Sg

For g � 3, this realizes the unique action of maximal possible order 2g
g! (the

unique finite subgroup of Out Fg of maximal order, up to conjugation).
The second family of large orders is given by the automorphism groups

Sg+1⇥Z2 of the graphs with two vertices and g+1 connecting edges (a multiple
nonclosed edge, subdividing edges again to avoid inversions), associated to the
surjections

� : Sg+1 ⇤Sg (Sg ⇥ Z2) ! Sg+1 ⇥ Z2

These realize the largest possible order for g = 2, and again for g = 3.
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