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Foreword

Number 52 of our journal Rendiconti dell’Istituto di Matematica dell’Uni-
versità di Trieste is divided in two issues. The first issue contains fifteen articles
dedicated to Professor Julián López-Gómez on the occasion of his 60th birthday.
The second issue is divided into two sections. The first one is a collection of
ten articles dedicated to Professor Bruno Zimmermann on the occasion of his
70th birthday. This section has been edited with the collaboration of our
colleague Mattia Mecchia as guest editor, whose valuable help we acknowledge
with great pleasure. In the second section we publish four more papers which
were normally submitted to the journal and did not enter in the previous two
special sections.

Alessandro Fonda
Emilia Mezzetti
Pierpaolo Omari





3

Preface

This part of Volume 52 of RIMUT is dedicated to Professor Julián López-
Gómez on the occasion of his sixtieth birthday: it contains fifteen invited papers
in the field of Nonlinear Differential Equations, authored by some distinguished
mathematicians who have collaborated with him in various ways during the last
three decades.

The Editor of RIMUT who has taken care of this issue, Pierpaolo Omari,
wishes to thank all Authors for their valuable contributions, as well as all
Experts who collaborated in the reviewing process of the papers published
herein for their highly professional work. Last, but not least, a warm thank
is due as well to prof. Marcela Molina-Meyer, the wife of Julián, who kindly
provided a lot of information about his biography.

Julián López-Gómez was born in Sacedón, Guadalajara province, on Septem-
ber 11th, 1959, in “La Alcarria”, where, as Julián likes to point out, the bees
produce the best honey of Spain! With wonderful landscapes and cliffs over the
Tagus river, that ends in Lisbon, Sacedón had 1890 inhabitants when he was
born. But Sacedón did not have any High School to complete Secondary Stud-
ies in 1969. Thus, since the salary of his father could not cover the fees of the
High School internship in Guadalajara, Julián began his Secondary Studies on
an independent basis at the age of 10 supervised by Don Timoteo, a senior pro-
fessor with almost no knowledge of “Modern Mathematics”, who nevertheless
really loved Mathematics and trained him to calculate very fluidly in any basis.
By his lack of knowledge of “Modern Mathematics”, the marks of Julián dur-
ing the annual exams in the public High School of Guadalajara were extremely
poor the first three years: Julián could not understand neither the usual ab-
stract symbols to design operations in algebraic structures, nor the standard
set operations, nor what a Venn diagram was. As Julián says: “Bourbakist
mathematics had not been designed for Don Timoteo and myself!”

When Julián reached 12 years, the salary of his father was almost doubled
and he could finally enter at the age of 13 the internship of the Diocesan Col-
lege at Guadalajara, the unique one existing there, to complete his Secondary
Studies. Although he needed some complementary lectures of Latin and Math-
ematics at the beginning, he finished his studies very brilliantly getting the
best marks of the Diocesan College since its foundation. At the Secondary
School, he also enjoyed a top-level mathematical educator, Doña Concha, a
young mathematician, who seemed to have a secret pact with the real numbers
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and the sequences of rational numbers. Her construction fascinated so much
Julián that he begun to spend most of his time solving all the exercises pro-
posed by her. Nonetheless, very fortunately for him, at the High School Julián
also got a complete humanistic formation in Art, History, as well as in Spanish,
French and Classical Literature: disciplines that he has constantly loved and
cultivated, besides Mathematics, of course.

During 1975-76, Julián completed his University Orientation Course in
Santa Ana School, where he was so lucky as to enjoy another excellent ed-
ucator in Mathematics, Doña Teresa. As a consequence, he got the highest
marks of his province in his Entrance Exam to Complutense University of
Madrid, where he completed his Degree on Pure Mathematics in the period
1976-1981. His most influential Professors during his graduation were M. de
Guzmán, C. Fernández-Pérez and A. Somolinos. Professor Fernández-Pérez
was the advisor of Julián in the elaboration of his Degree Thesis, defended
in November 1981. Simultaneously, Julián attended the inspiring “Seminar of
Mathematical Biology” organized by A. Somolinos and F. Montero, where he
got fascinated by the power of Nonlinear Differential Equations in modeling
many important biological phenomena. This definitively pushed him to spe-
cialize in Nonlinear Analysis and Partial Differential Equations. In June 1984,
Julián defended his PhD Thesis, titled “Critical cases of Hopf bifurcation at
multiples eigenvalues”, under the supervision of A. Casal, although at that
time Julián worked on a rather independent basis as his mathematical back-
ground was already excellent for his age. Julián feels extremely fortunate of
having had some of the best possible mathematical educators in the Spanish
Transition. Two years later, he got a permanent Lectureship at the Polytech-
nic University of Madrid and, after six months, in November 1986, he moved
to another Lectureship at the Complutense University, where he later got his
present position of Full Professor, after winning a National Habilitation Com-
petition against 58 competitors. Julián was the first habilitated mathematician
in Applied Mathematics of Spain!

In his brilliant career Julián has advised 14 Doctoral Thesis and has played
an important role in the elaboration of the Doctoral Thesis of some other
students. He delivered an impressing number of advanced courses or seminars
all over the world: Europe, North and South America, Asia, Australia, and
North Africa. Till now he has authored about 200 papers and 13 books. He also
serves, or has served, as Editor of several international mathematical journals,
in particular of our one since 2014.

All this confirms that Professor Julián López-Gómez is a leading expert
in the field of Nonlinear Analysis, Bifurcation Theory, and Partial Differential
Equations.

Congratulations and best wishes, Julián!
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1. Introduction

Recent numerical studies in [5] have shown chaotic aspects in a model describing
the motion of charged particles inside a tokamak magnetic field.

A tokamak is a device, invented in the 1950s by the Soviet physicists
Sakharov and Tamm, which employs a powerful magnetic field to confine hot
plasma in the shape of a torus and keep it away from the machine walls. At the
current stage of scientific knowledge and engineering capabilities, tokamaks are
still considered among the most promising devices for a possible future produc-
tion of energy through controlled atomic fusion. From this point of view, the
study of mathematical and physical models describing the motion of charged
particles inside toroidal (or cylindrical) magnetic fields like those generated by
the tokamak coils is of great significance for the possible applications to plasma
physics. In the recent past, periods of great expectation on the possibility of
obtaining a stable controlled nuclear fusion process using the tokamaks were fol-
lowed by periods of disappointment for the failure of some critical experiments.
This happened due to the discovery of several new and unexpected instability
phenomena that have compromised the performance of the device, including
dangerous fluctuations of the plasma going in contact with the walls of the
reactor. The sensitive dependence on initial conditions is one of the typical
instability phenomena appearing in connection with so-called “chaotic behav-
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ior”. Although stable and random motions can coexist and thus the presence
of some chaotic dynamics may be compatible with results about the bounded-
ness of the solutions, nevertheless in many cases (typical examples come from
celestial mechanics, see [9, Introduction]) small instability effects due to chaos
phenomena may produce relevant long term consequences. From this point of
view, investigating the possibility of chaos in differential equations models for
tokamak magnetic confinement, is not only a topic with its own theoretical
interest, but it may also suggest some possible issues to be taken into account
by the scientists involved in the design of these devices.

In [5] the Authors have considered two different configurations leading to
Hamiltonian chaos for charged particle motions in a toroidal magnetic field. In
the (r, θ, φ) coordinates for the torus (cf. [5, Fig. 1]) the tokamak magnetic
field has the following form

B =
B0R

ξ
(êφ + f(r)êθ), (1)

where ξ = R + r cos(θ) and êφ, êθ are the unit vectors associated respectively
with the φ and θ directions. The toroidal component along êφ depends upon the
external magnetic field generated by the coils around the device. The constant
B0, according to [5] is the typical magnetic intensity at the center of the torus.
If the plasma is present, a generated current inside the tokamak leads to the
creation of a poloidal component for the magnetic field, expressed by the term
f(r)êθ

1.
In a recent paper [7], we have examined the first configuration considered

by the Authors in [5], namely the case in which the poloidal component is
negligible. This situation is useful for the study of the motion on an hypothetic
single charged particle inside the tokamak with no plasma inside.

In the present article we focus our attention to the second case discussed
in [5] in which the effect of the plasma is substantial. In order to simplify the
model, in [5, Section C and IV] the Authors consider a cylindrical magnetic
geometry, which is the limit, when R tends to infinity, of the toroidal system. In
this approximation, the direction êφ becomes a stationary vector, subsequently
identified to the z-component. In this manner, instead of an empty toroidal
solenoid, we are led now to consider a cylindrical plasma tube. An application
of Newton law to a charged particle of mass m and charge q moving in this
magnetic field (see Section 2 for the details), leads to an integrable system with
an associated effective Hamiltonian of the form

Heff =
mṙ2

2
+
mA2

2r2
+

(qB0)2

8m
r2 +

q2

2m
F 2(r), r > 0, (2)

1The terms “toroidal” and “poloidal” refer to directions relative to a torus of reference.
The poloidal direction follows a small circular ring around the surface, while the toroidal
direction follows a large circular ring around the torus (according to Wikipedia). The intro-
duction of these terms comes from [6] for the study of the Earth’s magnetic field.
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where A is a positive constant and F (r) =
∫ r
f(x) dx (see [5, Appendix B]).

Clearly the choice of f and then F greatly influences the Hamiltonian and
hence the corresponding dynamics of the particles.

Writing (2) in a dimensionless form and deriving the corresponding differ-
ential equation for the new variable x := r > 0, we find that the trajectories of
the charged particles can be described by a second-order Duffing equation

ẍ+ g(x) = 0

with a singularity at the origin. In [5] the Authors propose a mechanism
to produce chaotic dynamics by a perturbation of (2). More precisely, the
constant A in (2) (indicated in [5] by C ′′ in the dimensionless version of Heff )
is now considered as a slowly time dependent variable. Numerical evidence of
chaos for the stroboscopic (Poincaré) map is provided by the analysis of the
Poincaré section. Inspired by this example, we try to analyze this problem
with a different approach, by considering a time-periodic perturbation of the
associated Duffing equation. Our perturbation can be produced either by a
slow modification of the constant A as in [5] o, by modifying the magnetic
intensity B0 . In each case, we produce chaotic dynamics by assuming that a
formerly presumed constant coefficient in (2) becomes a slowly varying stepwise
periodic function. The choice of a stepwise function (following [11, 12]) has
the advantage that the corresponding differential equation system becomes
a switched system for which we can apply recent results from the theory of
topological horseshoes and therefore we can give a rigorous analytical proof of
the existence of chaos.

In our investigation and following [5], we assume for the function F (the
primitive of the amplitude of the poloidal field), the expression

F (x) := ax2 exp

(
−x

2

c2

)
,

where a, c > 0 are suitable constants. With such a choice of the function F and
tuning suitably the constants a and c (the Authors in [5] provide physically
meaningful values for these constants), we can produce, for the planar system

ẋ = y, ẏ = −g(x),

a phase-portrait which consists of two local centers surrounded by periodic or-
bits of increasing period and bounded by two homoclinic trajectories departing
from an intermediate saddle point, thus altogether shaping a typical eight fig-
ure. After a small perturbation of the magnetic field we obtain another eight
shaped figure which partially overlaps with the previous one. Near the inter-
sections of the homoclinic trajectories associated with the two portraits we can
define some appropriate rectangular regions where we can prove the existence
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of chaos on m-symbols (m ≥ 2), for the Poincaré map, using the “stretching
along the paths” (SAP) technique [13, 17]. It is well known that for periodic
planar systems obtained as a perturbation of an autonomous system with a
homoclinic orbit at a saddle point, the Melnikov method (see [8]) is a powerful
tool to verify the existence of chaotic dynamics. Relevant developments for
periodically perturbed Duffing equations are given in [3, 15]. In the applica-
tions of the Melnikov method one has to prove the existence of simple zeros
for suitable integrals depending on the explicit analytical expression of the ho-
moclinic solution. Unfortunately, in our example, such analytical expression is
not available and this motivates the use of a different approach.

The plan of the paper is the following. In Section 2 we briefly describe the
mathematical model considered in [5] in order to give a physical justification
about the Hamiltonian defined in (2). In Section 3 we choose a special form for
F (x) (as proposed in [5]) which produces a double well potential in Heff . Next
in the same section, we also discuss the corresponding phase-portrait for the
associated Duffing equation and then, as a further step, we introduce the time-
periodic perturbation on the differential equation and define six rectangular
regions where we will focus our analysis for the SAP technique. Section 4
contains our main result about chaotic dynamics whose proof is finally given
in the subsequent Section 5.

2. Mathematical model

We follow the calculations in [5, Appendix B], in order to introduce the math-
ematical model that we are going to study. In [5] the Authors introduce a
cylindrical magnetic geometry, which is considered as the limit, when R tends
to infinity, of the toroidal system. The approximation to new geometric con-
figuration leads to a magnetic field rewritten as

B = B0êz + f(r)êθ.

This is derived in [5] from (1) as a limit for R → ∞ and considering the z-
direction identified with the axes along with êφ, which is considered now as a
constant. In order to avoid misunderstanding, it is important to notice (cf. [5,
Appendix B]) that the z-direction here is not the one considered originally in [5,
Fig. 1]. Moreover, with respect to (1), now the function f already incorporates
the effect of B0 .

In order to find the differential system describing the dynamics of the par-
ticle of mass m and charge q moving in this magnetic field, we use the fact that
the force acting on the charged particle is given by F = q~v ∧ B (where ~v is the
velocity of the particle). Next we recall also the expressions of the velocity and
the acceleration in cylindrical coordinates, namely

~v = ṙêr + rθ̇êθ + żêz
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and
~a = (r̈ − rθ̇2)êr + (rθ̈ + 2ṙθ̇)êθ + z̈êz.

Then, an application of the Newton second law, yields to
r̈ − rθ̇2 = q

m (B0rθ̇ − f(r)ż)

rθ̈ + 2ṙθ̇ = − qB0

m ṙ

z̈ = q
m ṙf(r)

(3)

Multiplying by r the second equation and then integrating the second and the
third equations, we obtain {

θ̇ = A
r2 −

qB0

2m

ż = q
mF (r)

(4)

where A is a constant and F (r) =
∫ r
f(x)dx. Substituting the two equations

of (4) into the first equation of (3), we obtain the second-order ODE

r̈ − A2

r3
+

(
qB0

2m

)2

r +
q2

m2
f(r)F (r) = 0. (5)

Multiplying equation (5) by ṙ and then integrating we finally obtain∫
ṙr̈dt−

∫
r=r(t)

A2

r3
dr +

(
qB0

2m

)2 ∫
r=r(t)

rdr

+
q2

m2

∫
r=r(t)

F (r)F ′(r)dr = constant.

Thus we end up with an effective Hamiltonian, which is precisely the one con-
sidered in (2), namely

Heff :=
mṙ2

2
+
mA2

2r2
+

(qB0)2

8m
r2 +

q2

2m
F 2(r).

3. Geometric configurations

Following [5] we consider now the effective Hamiltonian

Heff :=
ṙ2

2
+
A2

2r2
+
B2

0

8
r2 + F 2(r) (6)

for

F (r) := ar2 exp

(
−r

2

c2

)
, (7)
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where A, a, c are suitable positive constants and B0 is the intensity (magnitude)
of the magnetic field. Without loss of generality, we have considered in (6) a
unitary mass m and a unitary charge q (cf. formula (B7) in [5]). According
to (2), the term depending on f(r) should be of the form F 2(r)/2, but clearly
there is no mistake in replacing it with F 2(r) (just rename the original function
f or replace a with a

√
2 in (7)). As in [5] we assume that the constants in the

function F are adjusted in order to generate a double well potential in the
effective Hamiltonian. We split Heff as

Heff = Ec + V0(r) + F 2(r),

where Ec, is the kinetic energy and V0 is the potential in absence of the com-
ponent of the magnetic field given by f(r). To explain the details, the potential
V0(r) tends to infinity for r → 0+ and r → +∞ and it has a unique point of
minimum at r0 > 0, where r2

0 := 2A/B0. In [5], the Authors propose to fix the
parameters a and c for the function F in order to produce a maximum point
near r0, so that the new potential V0(r) + F 2(r) assumes a double-well shape
as in Figure 1 below. This is obtained by choosing c2 close to r2

0 and a > 0
sufficiently large.

Figure 1: A possible profile of the modified potential V0(r) + F 2(r) for r > 0. The
coefficients are tuned-up with a choice of c2 > r2

0.

The level lines of the effective Hamiltonian function in the right half-plane
R+

0 × R describe a phase-portrait with two centers separated by homoclinic
orbits emanated from an intermediate saddle point. The typical portrait is like
in Figure 2.

The level lines of Heff are associated with the orbits of the second-order
Duffing equation

ẍ+ g(x) = 0, (8)

or, equivalently, the planar conservative system{
ẋ = y

ẏ = −g(x),
(9)
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Figure 2: Some level lines associated with the Hamiltonian Heff in the plane (r, ṙ)
for r > 0.

for x := r > 0, y = ṙ and

g(x) :=
d

dx

(
V0(x) + F (x)2

)
= −A

2

x3
+
B0

2

4
x+ 2F (x)f(x), (10)

where we have set

f(x) := F ′(x).

If we choose F in order to produce a potential as described in [5, Section IV]
and in Figure 1, we find that the map g has precisely three simple zeros for
x > 0 that we denote and order as

a < xs < b.

In the phase-plane R+
0 × R, the points (a, 0) and (b, 0) are local centers, while

(xs, 0) is a saddle point.
The level line of the Hamiltonian/energy function (from now on denoted simply
by H) passing through (xs, 0) is given by

H(x, y) :=
y2

2
+ V0(x) + F 2(x) = cs := V0(xs) + F 2(xs).

Such level line is a double homoclinic loop, namely, it splits as

Ol ∪ {(xs, 0)} ∪ Or ,
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where Ol and Or two homoclinic orbits at the saddle point {(xs, 0)}. By con-
vention, we suppose that Ol is contained in the strip 0 < x < xs and surrounds
(a, 0), while Or is contained in the half-plane strip x > xs and surrounds (b, 0).
We denote by (a, 0) and the (b, 0) the intersection points of Ol and, respectively,
Or with the x-axis. By definition, we have

0 < a < a < xs < b < b,

with a, xs, b the three solutions of V0(x) + F 2(x) = cs (see Figure 1).
We also introduce the open regions

Wl := {(x, y) : 0 < x < xs , H(x, y) < cs}

and

Wr := {(x, y) : x > xs , H(x, y) < cs}.

By construction, we have

∂Wl = Ol ∪ {(xs, 0)} and ∂Wr = Or ∪ {(xs, 0)}

(see Figure 3).

Figure 3: The saddle point (xs, 0) with the homoclinic orbits Ol,Ol and the resulting
regions Wl,Wl.

As a next step, we suppose that the modulus of the magnetic field B0 is
effected by a small change so that the three equilibrium points (a, 0), (xs, 0) and
(b, 0) are shifted along the x-axis. We suppose that the effect is small enough
so that the new point (xs, 0) will belong to the region surrounded by Ol or

the one surrounded by Or. More precisely, if we denote by B
(1)
0 and B

(2)
0 two

different values of the magnetic field and associated the index i = 1, 2 to the
corresponding equilibrium points and homoclinic orbits, we will assume that

H(1)(x(2)
s , 0) < H(1)(x(1)

s , 0) and H(2)(x(1)
s , 0) < H(2)(x(2)

s , 0). (11)
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We tacitly use the convention that the apex i = 1, 2 is associated to the points,
orbits and regions of the phase-plane associated with the differential systems

having Hamiltonians H(1) and H(2) for the magnetic fields B
(1)
0 and B

(2)
0 . Un-

der the assumption (11) the homoclinic loops associated with the two Hamil-
tonian systems, overlap as in Figure 4.

Figure 4: An example of the double homoclinic loops overlapping. The effect is
obtained by moving the saddle point xs. This occurs via a change of parameters
in the equation. The aspect/ratio has been slightly modified in order to make the
overlapping more evident.

Our plan is to construct some regions homeomorphic to rectangles which
are obtained as intersections of suitable narrow bands around the homoclinics.

Let us consider the level line H(1)(x, y) = c(1) with c(1) < H(1)(x
(1)
s , 0) and

H(1)(x
(1)
s , 0) − c(1) small enough. This level line splits into two components,

which are contained in the open regions W(1)
l and W(1)

r , respectively. Now the

equation V0(x) + F 2(x) = c(1) has four solutions that we will denote a
(1)
± and

b
(1)
± , so that

a(1) < a
(1)
− < a(1) < a

(1)
+ < x(1)

s < b
(1)
− < b(1) < b

(1)
+ < b(1) .

For the system associated with B
(2)
0 , we can similarly determine some corre-

sponding points with

a(2) < a
(2)
− < a(2) < a

(2)
+ < x(2)

s < b
(2)
− < b(2) < b

(2)
+ < b(2) .

By suitably selecting the energy levels, it is always possible to enter in a setting
such that the crossing condition

(CC)

a
(1)
− < a(2) < a

(2)
− < a

(1)
+

b
(1)
− < a

(2)
+

b
(2)
− < b

(1)
+ < b(1) < b

(2)
+

holds.
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Let us consider now the ∞-shaped regions

Ai := {(x, y) : x > 0 , c(i) ≤ H(i)(x, y) ≤ c(i)s }, for i = 1, 2,

which are bounded by homoclinics O(i)
l and O(i)

r .
As previously observed, the level line H(i)(x, y) = c(i) has two components

which are closed orbits contained in the regions W(i)
l and W(i)

r , respectively.
We set, for i = 1, 2,

Γ
(i)
l := {(x, y) : 0 < x < x(i)

s , H(i)(x, y) = c(i)} ⊂ W(i)
l ,

Γ(i)
r := {(x, y) : x > x(i)

s , H(i)(x, y) = c(i)} ⊂ W(i)
r

and denote by τ
(i)
l and τ

(i)
r the fundamental periods of the orbits Γ

(i)
l and Γ

(i)
r ,

respectively.
The sets A1 and A2 intersects into six rectangular regions that we denote

by a±, b±, c±, respectively, labelling from left to right and using the sign +
or − according to the fact that the region is contained in the upper or lower
half-plane (see Figure 5).

Figure 5: An example of intersection of A1 with A2 producing the six rectangular
regions a±, b±, c±.

Each one of the six regions introduced above can be “orientated” in two
different manners. By an orientation of a topological rectangle R, we mean
the selection of two opposite sides whose union is denoted by R−. The two
components of R− are conventionally called the left and the right side (the
order according to which we select to associate the terms “right” or “left” with
the two sides of R− is not relevant). The pair (R,R−) is called an oriented
rectangle.

Now, let R be any of the a±, b±, c±. We observe that we can give a natural
orientation to the regionR in two different manners, by choosing asR− the two

intersection of R with H(1) = c(1) and with H(1) = c
(1)
s or the two intersection
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of R with H(2) = c(2) and with H(2) = c
(2)
s . The corresponding oriented

rectangle (R,R−) will be denoted as
^

R in the former case and as
_

R in the latter

one. For example and with reference to Figure 5, the oriented rectangle
_

b− is
the region b− (center-below) in which we have selected as a couple of opposite
sides forming b−− the intersections of b− with the level lines H(2) = c(2) and

H(2) = c
(2)
s . Analogously, the oriented rectangle

^
c + is the region c+ (upper-

right) in which we have selected as a couple of opposite sides forming c−+ the

intersections of c+ with the level lines H(1) = c(1) and H(1) = c
(1)
s .

At this point we are ready to introduce a dynamical aspect, by suppos-
ing that we switch periodically between the two systems associated with the
Hamiltonians H(1) and H(2). More in detail, we consider the non-autonomous
second-order scalar equation

ẍ+ g(t, x) = 0 (12)

and also the associated first order system{
ẋ = y

ẏ = −g(t, x)
(13)

in the right-half plane x > 0, where g : R × R+
0 → R is T -periodic in the

t-variable and such that

g(t, x) :=

{
g1(x), for 0 ≤ t < T1

g2(x), for T1 ≤ t < T1 + T2 = T,
(14)

where

gi(x) :=
∂H(i)

∂x
(x, y), for i = 1, 2.

Equation (13) is a switched system (see [2] and the references therein) and its
associated Poincaré map Φ can be decomposed as

Φ = Φ2 ◦ Φ1

where Φi is the Poincaré map on the time-interval [0, Ti] associated with the
system {

ẋ = y

ẏ = −gi(x)
(15)

for i = 1, 2.
Notice that, by the particular nature of the switched system (13), we can

equivalently study the Poincaré map

Φ = Φ1 ◦ Φ2.

Indeed, in this latter case, we consider just a shift in time of the solutions.
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4. Main result

After this preliminary discussion, we are now in position to state our main
result which reads as follows.

Theorem 4.1. For any integer m ≥ 2, there are T ∗1 and T ∗2 > 0 such that for
each T1 > T ∗1 and T2 > T ∗2 , the Poincaré map Φ induces chaotic dynamics on
m symbols in each of the sets a± , b± and c± . Moreover, the result is robust in
the sense that it is stable for small perturbations of system (13).

Our definition of chaotic dynamics is linked to the concept of chaos ac-
cording to Block and Coppel [1, 4], with a special emphasis to the presence
of periodic points. More precisely, we say that a continuous and one-to-one
map ψ induces chaotic dynamics on m symbols in a set R if there exists m
pairwise disjoint compact subsets K1, . . . ,Km of R such that for each two-sides
sequence (si)i∈Z of m symbols there exists a trajectory xi+1 = ψ(xi) of ψ such
that xi ∈ Ksi for each i ∈ Z. Moreover, if the sequence of symbols (si)i∈Z is
a k-periodic sequence, then also the sequence of points (xi)i∈Z is k-periodic.
As a consequence of this definition, we have also that there exists a compact
invariant set Λ ⊂ R having the set of periodic points of ψ as dense subset such
that ψ|Λ is topologically semiconjugate (by a continuous and surjective map
h) to the full shift automorphism on m-symbols σ : Σm → Σm := {1, . . . ,m}Z.
Moreover, for each k-periodic two-sided sequence s := (si)i∈Z , the set h−1(s)
contains a k-periodic point of ψ (see [13, 16, 17]).

The proof of Theorem 4.1 is based on a variant of the theory of topological
horseshoes [10], as developed in [16, 17]. In the first part of the next section
we recall the basic tools and definitions that we are going to use.

5. Technical estimates and proof of the main result

Let M̂ := (M,M−) and N̂ := (N ,N−) be oriented rectangles and let ψ be
a continuous map. Let also m be a positive integer. We say that the triplet
(M̂, N̂ , ψ) has the SAP (stretching along the paths) property with crossing
number m, if there exist K1, . . . ,Km pairwise disjoint compact subsets of M
such that any path γ in M connecting the two components of M− possesses
m sub-paths γ1, . . . γm with γi in Ki such that ψ ◦γi is a path in N connecting
the two components of N−. When this situation occurs, we write

ψ : M̂ m−→m N̂ .

We avoid mentioning the apex m when m = 1.
The above property is compatible with composition of maps, indeed we

have that:

φ : L̂ m−→k M̂, ψ : M̂ m−→m N̂ =⇒ ψ ◦ φ : L̂ m−→km N̂ .
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The SAP property will be applied to prove the existence of complex dy-
namics for the Poincaré map, using the following result.

Lemma 5.1. Let R̂ := (R,R−) be an oriented rectangle and ψ : R → R2 be a
continuous and one-to-one map. Suppose that

ψ : R̂ m−→m R̂,

for some m ≥ 2. Then ψ induces chaotic dynamics on m symbols on the set R.

See [13, 16, 17, 18] for the general theory.

Remark 5.2: A byproduct of Lemma 5.1 implies the existence of at least m
fixed points for ψ in R. More precisely, each of the pairwise disjoint compact
sets K1 . . . ,Km, involved in the definition of ψ : R̂ m−→m R̂, contains at least
one fixed point of ψ.

The hypothesis of injectivity for the map ψ is not mandatory and the the-
ory can be developed for arbitrary continuous maps. However, assuming ψ
one-to-one is useful in order to have a semiconjugation with the Bernoulli shift
on two-sided sequences (see [13] for a general discussion on this aspect). Since
we apply this technique to the Poincaré map associated with a locally Lips-
chitz continuous differential system, the hypothesis of injectivity will be always
satisfied. �

Now we are going to describe the crossing relationships involving the sets
^
a±,

^

b±,
^
c ± and the dual ones

_
a±,

_

b±,
_
c ± by the maps Φi .

Lemma 5.3. Given any positive integer `1, it holds that

Φ1 :
^
a+ m−→`1

_
a−,

provided that T1 > `1τ
(1)
l .

Proof. Let γ : [0, 1] → a+ be a (continuous) map such that γ(0) ∈ Γ
(1)
l and

γ(1) ∈ O(1)
l . Equivalently, H(1)(γ(0)) = c(1) and H(1)(γ(1)) = c

(1)
s . We exam-

ine the evolution of the set γ̄ := γ([0, 1]) along the Poincaré map Φ1. Observe
that Φ1 is associated with the system

ẋ = y, ẏ = −g1(x) (16)

on the time-interval [0, T1].
Along the proof, we denote by ζ(t, z0) = (x(t, z0), y(t, z0)) the solution of (16)
satisfying the initial condition ζ(0) = z0. By definition, Φ1(z0) = ζ(T1, z0), for
any z0 ∈ R+

0 × R.
The point γ(1) belongs to the homoclinic trajectory and therefore it remains

on O(1)
l for all the forward time, moving in the upper phase-plane from left to
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right but never meeting the saddle point x
(1)
s . As a consequence, x(t, γ(1)) <

x
(1)
s and y(t, γ(1)) > 0 for all t ∈ [0, T1]. On the other hand, the point γ(0)

belongs to the periodic orbit Γ
(1)
l of period τ

(1)
l and therefore, if T1 > τ

(1)
l ,

it makes at least `1 complete turns (in the clockwise sense) around the center
(a(1), 0) in the interval [0, T1].

If we introduce a polar coordinate system (θ, ρ), starting from the half-line
{(x, 0) : x < a(1)} and counting positive rotations in the clockwise sense, we
have that 0 < θ(γ(s)) < π for all s ∈ [0, 1] and then we define the sets

Kj := {z ∈ a+ : (2j − 1)π < θ(Φ(1)(z)) < 2jπ}, for j = 1, . . . , `1.

By the previous observation about the movement of the points γ(1) and γ(0) un-
der the influence of the dynamical system of (16), we know that θ(Φ1(γ(1))) <
π, while θ(Φ1(γ(0))) > 2j`1π.

A simple continuity argument on the map [0, 1] 3 s 7→ θ(Φ1(γ(s))), implies
the existence of `1 pairwise disjoint intervals [αj , βj ] ⊂ [0, 1] such that (2j −
1)π ≤ θ(Φ1(γ(s))) ≤ 2jπ for all s ∈ [αj , βj ] with θ(Φ1(γ(αj)) = 2jπ and
θ(Φ1(γ(βj)) = (2j − 1)π.
By definition, the path Φ1 ◦ γ restricted to the interval [αj , βj ] is contained in
the half-annulus

A1 ∩ {(x, y) : 0 < x < x(1)
s , y ≤ 0}

and therefore, it crosses the rectangle a− intersecting both components of a−−.
Using again an elementary continuity argument of the map s 7→ Φ1(γ(s)), for
each j = 1, . . . , `1, we determine a sub-interval [α′j , β

′
j ] ⊂ [αj , βj ] such that,

Φ1(γ(s)) ∈ a− for all s ∈ [α′j , β
′
j ]. Moreover, Φ1(γ(α′j)) and Φ1(γ(β′j)) belong

to different components of a−. Note also that, by construction, γ(s) ∈ Kj for

all s ∈ [α′j , β
′
j ]. We have thus verified the SAP property for (

^
a+,

_
a−,Φ1) with

crossing number `1, provided that T1 > `1τ
(1)
l and the proof is complete. �

At this point, we can repeat the same argument of the proof of Lemma 5.3
and consider all the possible combinations between the oriented rectangles and
the maps Φi . We can summarize these conclusions by the following lemmas
where the times τ∗i can be easily determined from the periods of the closed

orbits Γ
(i)
l and Γ

(i)
s .

Lemma 5.4. There exist times τ∗1 and τ∗2 , such that, for any positive integers
`1, `2 it holds that:

Φ1 :
^
a± m−→`1

_
a± ,

^

b± m−→`1
_

b± ,
_
c ± ,

^
c ± m−→`1

_

b± ,
_
c ± ,

provided that T1 > `1τ
∗
1 .

Φ2 :
_
a± m−→`2

^
a± ,

^

b± ,
_

b± m−→`2
^
a± ,

^

b± ,
_
c ± m−→`2

^
c ± ,

provided that T2 > `2τ
∗
2 .
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In the above lemma, when we write a condition such as
^
a± m−→` _a± , we mean

that all the four possibilities in the choice of ± for the domain and codomain
are possible.

The content of Lemma 5.4 is explained by means of Figure 6 and Figure 7.

Figure 6: This graph represents all the possible connections by the partial Poincaré
map Φ1. The arrows correspond to the m−→ symbol. The integer `1 is not indicated
but it can be arbitrarily chosen provided that T1 > `1τ

∗
1 .

Now, we are in position to conclude with the proof of our main result.

Proof of Theorem 4.1. Using Lemma 5.4 along with Lemma 5.1 we can guar-
antee that the Poincaré map Φ = Φ2 ◦ Φ1, as well as Φ = Φ1 ◦ Φ2 induces
chaotic dynamics on any finite number of symbols, provided that T1 and T2

are large enough.
From the proof of Lemma 5.3 it is clear that the result is stable by small per-

turbations and the same holds for all the connections considered in Lemma 5.4.
In our case we have several possibilities of producing chaotic dynamics on

m ≥ 2 symbols on a rectangular region R chosen among the sets a± , b± and
c± . In order to explain better how these possibilities arise, we fix out attention
only on the Poincaré map Φ = Φ2 ◦ Φ1 (the other case is treated in a similar
manner).

A first and more natural case is to take max{`1, `2} ≥ 2, so that

m = `1 × `2 ≥ 2
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Figure 7: This graph represents all the possible connections by the partial Poincaré
map Φ2. The arrows correspond to the m−→ symbol. The integer `2 is not indicated
but it can be arbitrarily chosen provided that T2 > `2τ

∗
2 .

and, considering the connections described in Lemma 5.4, we immediately see

that Lemma 5.1 can be applied for R̂ any of the sets
^
a± ,

^

b± ,
^
c ±. However,

a more careful analysis of the connection diagrams shows that in these sets the
SAP property with crossing number greater or equal than two can be obtained
also in the case when `1 = `2 = 1 (this may be more interesting from the point
of view of the applications because we need a lesser restriction on the period).
In fact, the following connections are available

^
a+ m−→

_
a+ m−→

^
a+ ,

^
a+ m−→

_
a− m−→

^
a+

^
a− m−→

_
a− m−→

^
a− ,

^
a− m−→

_
a+ m−→

^
a−

^

b+ m−→
_

b+ m−→
^

b+ ,
^

b+ m−→
_

b− m−→
^
a+

^

b− m−→
_

b− m−→
^

b− ,
^

b− m−→
_

b+ m−→
^

b−
^
c + m−→

_
c + m−→

^
c + ,

^
c + m−→

_
c − m−→

^
a+

^
c − m−→

_
c − m−→

^
c − ,

^
c − m−→

_
c + m−→

^
c −

and therefore, we find that

Φ :
^
a± m−→2 ^

a± ,
^

b± m−→2
^

b± ,
^
c ± m−→2 ^

c ± .
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In the last formula we use the convention that []± m−→ []± means that only the
two possibilities []+ m−→ []+ and []− m−→ []− are available.

The situation becomes more complicated and interesting if we consider the

iterates of the map Φ. For instance, for the map Φ2, and taking R̂ =
^
a+ as a

starting set, new connections are available, such as

^
a+ m−→2

^

b± m−→2 ^
a+ and

^
a+ m−→2 ^

a± m−→2 ^
a+ .

Hence, counting all the possible connections for Φ2, we obtain that

Φ2 :
^
a+ m−→16 ^

a+.

In fact, from
^
a+ we come back again to

^
a+ by Φ2 passing through the four

sets
^
a± and

^

b± and, each time we apply Φ we have two itineraries available.
Similar combinations occur for the other oriented rectangles. �

6. Final remarks

The existence of chaos in differential systems which are obtained as periodic
perturbations of planar autonomous systems exhibiting homoclinic or hetero-
clinic trajectories is a well established fact (see [15, 8]). The methods of proof
applied in those situations, such as the Melnikov method, usually permit to en-
ter in the framework of Smale’s horseshoe (cf. [19] and [14]) which guarantees
the existence of a compact invariant set for the Poincaré map Φ, where Φ is
topologically conjugate to the Bernoulli shift on a certain set of symbols. Our
result provides a weaker form of chaos since only the semiconjugation is proved.
On the other hand, in the concrete applications, some explicit knowledge of the
homoclinic (or heteroclinic) solution, in terms of its analytic expression is of-
ten needed. A typical example is given by the classical periodically perturbed
Duffing equation

ẍ− x+ x3 = εp(ωt), (17)

where the Melnikov function can be explicitly defined (see [8]) thanks to the
knowledge of the analytic expression of the homoclinic solutions of

ẋ = y, ẏ = x− x3.

In the model studied in the present paper, two difficulties arise: first, we do not
know an explicit form of the homoclinic solutions of system (9) and, secondly,
the periodic perturbation leading to (12) from (8), which corresponds to a
variation of the form B0 7→ B0(t) in (10), appears to be more complicated than
the perturbation considered in equation (17). Our approach, even if applied to
the simplified situation of a stepwise functionB0(t), allows to prove the presence
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of chaotic dynamics using only few geometric information on the geometry of
the level curves of the associated energy functions. As already shown in [12]
and in [11, Section 8], the choice of a stepwise coefficient has the advantage
not only to simplify some technical estimates, but also to put in evidence the
presence of interesting bifurcation phenomena for the solutions of the nonlinear
equations which are involved.
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1. Introduction

It has been known since long that spacial interactions in population dynam-
ics can be adequately modeled by systems of reaction-diffusion equations (see
E.E. Holmes et al. [10], A. Okubo and S.A. Levin [17], or J.D. Murray [15],
[16], for instance). In general, these systems possess a quasilinear structure and
show an extremely rich qualitative behavior depending on the various structural
assumptions which can meaningfully be imposed.

Reaction-diffusion equations are of great importance also in many other
scientific areas as, for example, physics, chemistry, mechanical and chemical
engineering, and the social sciences. Thus our mathematical results are not
restricted to population dynamics. It is just a matter of convenience to describe
the phenomenological background and motivation in terms of populations.

Throughout this paper, Ω is a bounded domain in Rm with a smooth bound-
ary Γ lying locally on one side of Ω. (In population dynamics, m = 1, 2, or 3.
But this is not relevant for what follows.) By ν we denote the inner (unit)
normal vector field on Γ and use · or (· | ·) for the Euclidean inner product
in Rm.

We assume that Ω is occupied by n different species described by their den-
sities u1, . . . , un and set u := (u1, . . . , un). The spacial and temporal change
of u, that is, the (averaged) movement of the individual populations, is math-
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ematically encoded in the form of conservation laws

∂tui + div ji(u) = fi(u) in Ω× R+, 1 ≤ i ≤ n. (1)

Here ji(u) is the (mass) flux vector, fi(u) the production rate of the i-th species,
and (1) is a mass balance law (e.g., S.R. de Groot and P. Mazur [7]).

In order to get a significant model we have to impose constitutive assump-
tions on the n-tuple j(u) =

(
j1(u), . . . , jn(u)

)
of flux vectors. In population

dynamics it is customary to build on phenomenological laws which are basi-
cally variants and extensions of Fick’s law, and we adhere in this paper to that
practice. Thus we assume that

ji(u) = −ai(u) gradui,

where the ‘diffusion coefficient’ ai(u) ∈ C1(Ω) may depend on the interaction
of some, or all, species, hence on u. The fundamental assumption is then that

ai(u)(x) > 0, x ∈ Ω. (2)

Besides of modeling the behavior of the populations in Ω, their conduct
on the boundary Γ has also to be analyzed. We restrict ourselves to homo-
geneous boundary conditions. Then there are essentially two cases which are
meaningful, namely the Dirichlet boundary condition

ui = 0 on Γ× R+

or the no-flux condition

ν · ji(u) = 0 on Γ× R+

for population i, or combinations thereof.

In the standard mathematical theory of reaction-diffusion equations it is
assumed that ai(u) is uniformly positive on Ω. The focus of this paper is on
the nonuniform case where ai(u) may tend to zero as we approach Γ.

In population dynamics nonuniformly positive one-population models have
been introduced by W.S.C. Gurney and R.M. Nisbet [8] and M.E. Gurtin and
R.C. MacCamy [9]. Arguing that the population desires to avoid overcrowding,
they arrive at flux vectors of the form j(u) = −uk gradu with k ≥ 1. Thus their
models are special instances of the porous media equation. Here the diffusion
coefficient degenerates, in particular, near the Dirichlet boundary.

Ever since the appearance of the pioneering papers [8], [9], there have been
numerous studies of the (weak) solvability of reaction-diffusion equations and
systems exhibiting porous media type degenerations. We do not go into detail,
since we propose a different approach.
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In a series of papers, J. López-Gómez has studied (partly with coauthors)
qualitative properties of one- and two-population models which he termed ‘de-
generate’ (see [1, 6, 11, 12, 13] and the references therein). In those works the
term ‘degenerate’, however, refers to the vanishing on some open subset of Ω
of the ‘logistic coefficient’, which is part of f(u).

For the following heuristic discussion, which describes the essence of our
approach, we can assume that n = 1 and that a is independent of u.

If the Dirichlet boundary condition holds, then the population gets extinct if
it reaches Γ. In the case of the no-flux condition, Γ is impenetrable, that is, the
species can neither escape through the boundary nor can it get replenishment
from the outside. In this sense we can say that the ‘population lives in a hostile
neighborhood’.

No slightly sensible species will move toward places where it is endangered
to get killed, nor will it run head-on against an impenetrable wall. Instead, it
will slow down drastically if it comes near such places. In mathematical terms
this means that the flux in the normal direction has to decrease to zero near Γ.
To achieve this, the diffusion coefficient a has to vanish sufficiently rapidly at Γ.

To describe more precisely what we have in mind, we study the motion of
the population in a normal collar neighborhood of Γ. This means that we fix
0 < ε ≤ 1 such that, setting

S :=
{
q + yν(q) ; 0 < y ≤ ε, q ∈ Γ

}
,

the map
ϕ : S → [0, ε]× Γ, q + yν(q) 7→ (y, q) (3)

is a smooth diffeomorphism. Note that

y = dist(x,Γ), x = q + yν(q) ∈ S.

We extend ν to a smooth vector field on S, again denoted by ν, by setting

ν(x) := ν(q), x = q + yν(q) ∈ S. (4)

Then the normal derivative

∂νu(x) := ν(x) · gradu(x) (5)

is well-defined for x ∈ S.

As usual, we denote by ϕ∗ the push-forward and by ϕ∗ the pull-back by ϕ
of functions and tensors, in particular of vector fields. Then

ϕ∗(a grad) = (ϕ∗a)
∂

∂y
⊕ (ϕ∗a) gradΓ on N := (0, ε]× Γ, (6)
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where gradΓ is the surface gradient on Γ with respect to the metric induced by
the Euclidean metric on Ω. Note that, by (4) and (5),

∂yv = ∂νu, v = ϕ∗u. (7)

Set Γy := ϕ−1
(
{y} × Γ

)
. Then gradΓy

= gradΓ. Hence we obtain from (6)
and (7) that

a gradu = (a∂νu)ν ⊕ a gradΓ u on S. (8)

Thus, if we want to achieve that the flux j(u) = −a gradu decays in the normal
direction, but not necessarily in directions parallel to the boundary, we have
to replace (8) by

(a1∂νu)ν ⊕ a gradΓ u,

where a1 tends to zero as x approaches Γ. This we effectuate by replacing j(u)
by

js(u) := −
(
(aρ2s∂νu)ν ⊕ a gradΓ u

)
, u ∈ C1(S), (9)

for some s ≥ 1, where 0 < ρ ≤ 1 on S and ρ(x) = dist(x,Γ) for x near Γ. Then,
irrespective of the size of gradu, js(u) decays to zero as we approach Γ. The
‘speed’ of this decay increases if s gets bigger. Note, however, that the com-
ponent orthogonal to ν is the same as in (8). This reflects the fact, known
to everyone who has been hiking in high mountains—in the Swiss Alps, for
example(!)—that one can move forward along a level line path in front of a
steep slope with essentially the same speed as this can be done in the flat
country. On the other hand, one slows down drastically—and eventually gives
up—if one tries to go to the top along a line of steepest ascent.

In the next section we give a precise definition of the class of degenerate
equations which we consider. Section 3 contains the definition of the appro-
priate weighted Sobolev spaces. In addition, we present the basic maximal
regularity theorem for linear degenerate parabolic initial value problems.

The main result of this paper is Theorem 4.5 which is proved in Section 4. It
guarantees the local well-posedness of quasilinear degenerate reaction-diffusion
systems. In the last section we present some easy examples, discuss the dif-
ferences between the present and the classical approach, and suggest possible
directions of further research.

2. Degenerate reaction-diffusion operators

Let (M, g) be a Riemannian manifold. Then gradg, resp. divg, denotes the
gradient, resp. divergence, operator on (M, g). The Riemannian metric on Γ,
induced by the Euclidean metric on Ω, is written h. Then N = [0, ε]× Γ is
endowed with the metric gN := dy2 + h.
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We fix χ ∈ C∞
(
[0, ε], [0, 1]

)
satisfying

χ(y) =

{
1, 0 ≤ y ≤ ε/3,
0, 2ε/3 ≤ y ≤ ε.

Then

r(y) := χ(y)y + 1− χ(y), 0 ≤ y ≤ ε.

We set

S(j) := ϕ−1
(
(0, jε/3]× Γ

)
, j = 1, 2,

and ρ := ϕ∗r = r ◦ ϕ−1. Then ρ ∈ C∞
(
S, (0, 1]

)
and

ρ(x) =

{
dist(x,Γ), x ∈ S(1),

1, x ∈ S\S(2).
(10)

Given a linear differential operator B on S, we denote by ϕ∗B its ‘repre-
sentation in the variables (y, q) ∈ N ’. Thus ϕ∗B, the push-forward of B, is the
linear operator on N defined by

(ϕ∗B)w := ϕ∗
(
B(ϕ∗w)

)
, w ∈ C∞(N).

First we consider a single linear operator, that is, n = 1 and

Av := − div(a grad v)

with

a ∈ C1(Ω), a(x) > 0 for x ∈ Ω. (11)

We set a := ϕ∗a ∈ C1(N) and A := ϕ∗A. Then we find

Aw = −divgN (a gradgN w) = −∂y(a∂yw)− divh(a gradh w)

for w ∈ C2(N). By pulling A back to S we obtain the representation

Au = −∂ν(a∂νu)− divh(a gradh u), u ∈ C2(S), (12)

of A|S.

We put

U := Ω\S(2) (13)

and fix s ∈ [1,∞). Then we define a linear operator As on Ω by setting

Asv := −divs(a grads v), v ∈ C2(Ω), (14)
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where

divs(a grads v) :=

{
div(a grad v), v ∈ C2(U),

ρs∂ν(aρs∂νv) + divh(a gradh v), v ∈ C2(S).

It follows from (10), (12), and (13) that Asv is well-defined for v ∈ C2(Ω). The
map As is said to be a linear s-degenerate reaction-diffusion (or divergence
form) operator on Ω.

Remark 2.1: It has been shown in [5] that the right approach to study differ-
ential operators which are s-degenerate, is to endow S with the metric

gs := ϕ∗(r−2sdy2 ⊕ h).

Then
a gradgs u = (aρ2s∂νu)ν ⊕ a gradh u, u ∈ C1(S),

which equals −js(u) of (9). Furthermore,

Asu = −divgs(a gradgs u), u ∈ C2(S).

Thus As is a ‘standard’ linear reaction-diffusion operator if S is endowed with
the metric gs.

3. The Isomorphism Theorem

The natural framework for an efficient theory of strongly degenerate reaction-
diffusion systems are weighted function spaces which we introduce now. We
assume throughout that

• 1 < p <∞.

Suppose s ≥ 1 and k ∈ N. For u ∈ Ck(S) set

v(y, q) := ϕ∗u(y, q) = u
(
q + yν(q)

)
and

‖u‖Wk
p (S;s) :=

k∑
i=0

(∫ ε

0

∥∥(r(y)s∂y
)i
v(y, ·)

∥∥p
Wk−i

p (Γ)
r(y)−s dy

)1/p

.

Then the weighted Sobolev space W k
p (S; s) is the completion in L1,loc(S) of

the subspace of smooth compactly supported functions with respect to the
norm ‖·‖Wk

p (S;s). The weighted Sobolev space W k
p (Ω; s) consists of all u be-

longing to L1,loc(Ω) with

u |S ∈W k
p (Ω; s), u |U ∈W k

p (Ω).
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It is a Banach space with the norm

u 7→ ‖u |S‖Wk
p (S;s) + ‖u |U‖Wk

p (U),

and Lp(Ω; s) := W 0
p (Ω; s). Of course, W k

p (U) is the usual Sobolev space.

To define weighted spaces of bounded Ck functions we set

‖u‖BCk(S;s) :=

k∑
i=0

sup
0<y<ε

∥∥(r(y)s∂y
)i
v(y, ·)

∥∥
Ck(Γ)

. (15)

The weighted space BCk(S; s) is the linear subspace of all u ∈ Ck(S) for which
the norm (15) is finite. Then BCk(Ω; s) is the linear space of all u ∈ Ck(Ω)
with

u |S ∈ BCk(S; s), u |U ∈ BCk(U).

It is a Banach space with the norm

u 7→ ‖u |S‖BCk(S;s) + ‖u |U‖BCk(U). (16)

The topologies of the weighted spaces W k
p (Ω; s) and BCk(Ω; s) are indepen-

dent of the particular choice of S (that is, of ε > 0) and the cut-off function χ.

Let 0 < T <∞ and set J := [0, T ]. We introduce anisotropic weighted
Sobolev spaces on Ω× J by

W (2,1)
p (Ω× J ; s) := Lp

(
J,W 2

p (Ω; s)
)
∩W 1

p

(
J, Lp(Ω; s)

)
.

We denote by (·, ·)θ,p the real interpolation functor of exponent θ ∈ (0, 1).
Then we institute a Besov space by

B2−2/p
p (Ω; s) :=

(
Lp(Ω; s),W 2

p (Ω; s)
)

1−1/p,p
.

Lemma 3.1. The weighted spaces possess the same embedding and interpolation
properties as their non-weighted versions. In particular,

BC1(Ω) ↪→ BC1(Ω; s) ↪→ BC(Ω). (17)

Proof. The first assertion is a consequence of Theorems 3.1 and 6.1 of [5]. The
first embedding of (17) is obvious from |ρs∂νu| ≤ |∂νu| and (16). It remains to
observe that BC(Ω; s) = BC(Ω).

The following theorem settles the well-posedness problem for the linear
initial value problem

∂tu+Asu = f on Ω× J,
γ0u = u0 on Ω× {0},

where γ0 is the trace operator at t = 0 and As is given by (14).
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Theorem 3.2. Let 1 ≤ s <∞ and 0 < T <∞. Assume that there exists α > 0
such that

a ∈ BC1(Ω; s) and a ≥ α. (18)

Then the map (∂t +As, γ0) is a topological isomorphism from

W (2,1)
p (Ω× J ; s) onto Lp(Ω× J ; s)×B2−2/p

p (Ω; s).

Proof. Note that

div(a grad v) = a∆v + 〈da, grad v〉 on U, (19)

where 〈·, ·〉 stands for duality pairings. On S we get

ρs∂ν(aρs∂νv) = a(ρs∂ν)2v + (ρs∂νa)ρs∂νv (20)

and
divh(a gradh v) = a∆hv + 〈da, gradh v〉, (21)

where ∆h is the Laplace–Beltrami operator on Γ.

Set R(t) := ts for 0 ≤ t ≤ 1. Then we deduce from (18)–(21) and from
Theorems 6.1 and 7.2 of [5] that As is a bc-regular R-degenerate uniformly
strongly elliptic differential operator on Ω in the sense of [5, (1.6)]. (Observe
that the regularity condition (1.9) in that paper is only sufficient and stronger
than (18).) Hence the assertion follows from Theorem 1.3 of [5].

Corollary 3.3. As has maximal Lp(Ω; s) regularity.

Proof. [4] or [5].

4. Quasilinear degenerate systems

Now we turn to systems and consider quasilinear differential operators. Thus
we assume:

(i) 1 ≤ s <∞.
(ii) X is a nonempty open subset of Rn.

(iii) ai ∈ C2
(
Ω×X, (0,∞)

)
, 1 ≤ i ≤ n.

(22)

Given u ∈ C1(Ω, X),

ai(u)(x) := ai
(
x, u(x)

)
, x ∈ Ω. (23)

Then
Ai,s(u)vi := −divs

(
ai(u) grads vi

)
, vi ∈ C2(Ω),

and, setting a := (a1, . . . , an),

As(u)v := −divs
(
a(u) grads v

)
:=
(
A1,s(u)v1, . . . ,An,s(u)vn

)
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for v = (v1, . . . , vn) ∈ C2(Ω,Rn). Note that As(u) is a diagonal operator whose
diagonal elements are coupled by the u-dependence of their coefficients.

If F(Ω; s) stands for one of the spaces

W k
p (Ω; s), BCk(Ω; s), or B2−2/p

p (Ω; s), then F(Ω,Rn; s) := F(Ω; s)n.

Given subsets A and B of some topological spaces, A b B means that A is
compact and contained in the interior of B.

We define
V :=

{
v ∈ B2−2/p

p (Ω,Rn; s) ; v(Ω) b X
}
. (24)

Lemma 4.1. If p > m+ 2, then V is open in B
2−2/p
p (Ω,Rn; s).

Proof. It follows from Lemma 3.1 that

B2−2/p
p (Ω,Rn; s) ↪→ BC1(Ω,Rn; s) ↪→ BC(Ω,Rn). (25)

Denote the embedding operator which maps the leftmost space into the right-
most one by ι. Let u0 ∈ V so that u0(Ω) b X.

Fix1 0 < r < dist
(
u0(Ω), ∂X

)
and set

K :=
{
x ∈ X ; dist

(
x, u0(Ω)

)
< r

}
b X (26)

and
B(u0, r) :=

{
u ∈ BC(Ω,Rn) ; ‖u− u0‖∞ < r

}
.

Then u(Ω) ⊂ K for u ∈ B(u0, r). Hence B(u0, r) is a neighborhood of u0 in

BC(Ω,K). Thus ι−1
(
BC(Ω,K)

)
is a neighborhood of u0 in B

2−2/p
p (Ω,Rn; s)

and it is contained in V . This proves the claim.

For abbreviation,

E0 := Lp(Ω,Rn; s), E1 := W 2
p (Ω,Rn; s), E := B2−2/p

p (Ω,Rn; s).

As usual, L(E1, E0) is the Banach space of bounded linear operators from E1

into E0, and C1- means ‘locally Lipschitz continuous’.

Lemma 4.2. Suppose p > m+ 2. Then

(i) As(u0) has maximal Lp(Ω,Rn; s) regularity for u0 ∈ V.
(ii)

(
u 7→ As(u)

)
∈ C1-

(
V,L(E1, E0)

)
.

1dist
(
u0(Ω), ∅

)
:= ∞.
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Proof. We denote by c constants ≥ 1 which may be different from occurrence
to occurrence and write BC1

s := BC1(Ω,Rn; s) and BC := BC(Ω,Rn).

Let u0 ∈ V . Fix a bounded neighborhood VK of u0 in ι−1
(
BC(Ω,K)

)
⊂ E.

This is possible by the preceding lemma.

Step 1. It is a consequence of (22-iii) and (26) that

1/c ≤ ai(u) ≤ c, i = 1, . . . , n, u ∈ VK . (27)

Moreover, (22-iii) also implies that ai and its Fréchet derivative ∂ai are locally
Lipschitz continuous. Hence

ai and ∂ai are bounded and uniformly
Lipschitz continuous on Ω×K (28)

(e.g., [2, Proposition 6.4]). From this and (25) we infer that

‖ai(u)− ai(v)‖∞ ≤ c ‖u− v‖E , 1 ≤ i ≤ n, u, v ∈ VK . (29)

Step 2. Let i and j run from 1 to n and α from 1 to m. Then, using the
summation convention writing u = (u1, . . . , un),

∂α
(
ai(u)

)
(x) = (∂αai)

(
x, u(x)

)
+ (∂m+jai)

(
x, u(x)

)
∂αu

j(x) (30)

for x ∈ Ω. By (25), VK is bounded in BC1
s . From this, (30), and (28) it follows

sup
U

∣∣∂α(ai(u)
)∣∣ ≤ c, u ∈ VK . (31)

Similarly, by employing local coordinates on Γ,

sup
S

∣∣ gradΓ

(
ai(u)

)∣∣
TΓ
≤ c, u ∈ VK , (32)

where |·|TΓ is the vector bundle norm on the tangent bundle TΓ of Γ.

Let x ∈ S and α = 1 in (30). Then we get from 0 < ρs(x) ≤ 1, the bound-
edness of VK in BC1

s , and (29) that

sup
S

∣∣ρs∂ν(ai(u)
)∣∣ ≤ c(1 + sup

S
|ρs∂νu|) ≤ c, u ∈ VK . (33)

By collecting (27) and (31)–(33), we find (cf. (15) and (16))

a(u) ∈ BC1
s , ‖a(u)‖BC1

s
≤ c, u ∈ VK . (34)

Now (i) follows from (27) and Corollary 3.3.
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Step 3. Let u, v ∈ V . Then

∂α
(
ai(u)− ai(v)

)
= ∂α(ai)(u)− (∂αai)(v)

+
(
(∂m+ja)(u)− (∂m+ja)(v)

)
∂αu

j

+ (∂m+ja)(v)(∂αu
j − ∂αvj).

Using (28) and (25), we obtain

sup
U
|(∂αa)(u)− (∂αa)(v)| ≤ c ‖u− v‖E , u, v ∈ VK .

Similarly, employing also the boundedness of VK in E and (34),

sup
U

∣∣(∂m+ja)(u)− (∂m+ja)(v)
)
(∂αu

j)
∣∣ ≤ c ‖u− v‖E

and

sup
U
|(∂m+ja)(v)(∂αu

j − ∂αvj)| ≤ c ‖u− v‖E

for u, v ∈ VK . Consequently,

sup
U

∣∣∂α(a(u)− a(v)
)∣∣ ≤ c ‖u− v‖E , u, v ∈ VK .

By analogous arguments we obtain, as in step (1),

sup
S

∣∣ gradΓ

(
a(u)− a(v)

)∣∣
TΓ
≤ c ‖u− v‖E

and

sup
S

∣∣ρs∂ν(a(u)− a(v)
)∣∣ ≤ c ‖u− v‖E

for u, v ∈ VK . In summary and recalling (29),

‖a(u)− a(v)‖BC1
s
≤ c ‖u− v‖E , u, v ∈ VK .

This implies claim (ii).

We also suppose

g ∈ C1(Ω×X, Rn×n) (35)

and define g(u) analogously to (23). Then, using obvious identifications,

f(u) := g(u)u, u ∈ C(Ω, X). (36)
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Remark 4.3: This assumption on the production rate in (1) is motivated by
models from population dynamics. It means that the reproduction (birth or
death) rate is proportional to the size of the actually present crowd. Already
the diagonal form

fi(u) = gi(u)ui, 1 ≤ i ≤ n,

comprises the most frequently studied ecological models, namely the stan-
dard (two-population) models with competing (predator–prey or cooperative)
species, for example. In those cases the gi are affine functions of u.

Lemma 4.4. Let p > m+ 2. Then(
u 7→ f(u)

)
∈ C1-

(
V,Lp(Ω× Rn; s)

)
.

Proof. Let u0 ∈ V and fix VK as in the preceding proof. Then it is obvious
from (25) and (35) that

‖g(u)‖∞ ≤ c, u ∈ VK ,

and
‖g(u)− g(v)‖∞ ≤ c ‖u− v‖E , u, v ∈ VK .

Thus, since E ↪→ Lp(Ω,Rn; s) =: Lp,s,

‖f(u)‖Lp,s ≤ ‖g(u)‖∞ ‖u‖Lp,s ≤ c, u ∈ VK ,

and

‖f(u)− f(v)‖Lp,s ≤ ‖g(u)− g(v)‖∞ ‖u‖Lp,s + ‖g(v)‖∞ ‖u− v‖Lp,s

≤ c ‖u− v‖E

for u, v ∈ VK .

Now we can prove the main result of this paper, a general well-posedness
theorem for strong Lp(Ω,Rn; s) solutions, by simply referring to known results.
The reader may consult [2] or [3] for definitions and the facts on semiflows to
which we appeal.

Theorem 4.5. Let (22), (35), and (36) be satisfied and assume p > m+ 2. De-
fine V by (24). Then the initial value problem for the s-degenerate quasilinear
reaction-diffusion system

∂tu− divs
(
a(u) grads u

)
= f(u) on Ω× R+,

γ0u = u0 on Ω× {0},
(37)

has for each u0 ∈ V a unique maximal solution

u(·, u0) ∈W (2,1)
p

(
Ω× [0, t+(u0)), X; s

)
.
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The map (t, u0) 7→ u(t, u0) is a locally Lipschitz continuous semiflow on V . The
exit time t+(u0) is characterized by the following three (non mutually exclusive)
alternatives:

(i) t+(u0) =∞.
(ii) lim inf

t→t+(u0)
dist

(
u(t, u0)(Ω), ∂X

)
= 0.

(iii) lim
t→t+(u0)

u(t, u0) does not exist in B2−2/p
p (Ω,Rn; s).

Proof. Due to Lemmas 4.1, 4.2, and 4.4, this follows from Theorem 5.1.1 and
Corollary 5.1.2 in J. Prüss and G. Simonett [18].

Remarks 4.6: (a) It is obvious from the above proofs that the regularity as-
sumptions for a and g, concerning the variable x ∈ Ω, are stronger than actually
needed. We leave it to the interested reader to find out the optimal assump-
tions.

(b) Suppose that ai(u) is independent of uj for j 6= i. Then the theorem
remains true, with the obvious definitions of the weighted spaces, if we re-
place Ai,s(u) by Ai,si(ui) with 1 ≤ si <∞ for 1 ≤ i ≤ n.

Proof. This follows by an inspection of the proof of Lemma 4.2.

(c) For simplicity, we have assumed that Γ = ∂Ω. It is clear that we can
also consider the case where Γ is a proper open and closed subset of ∂Ω and
regular boundary conditions are imposed on the remaining part.

(d) Similar results can be proved for strongly coupled systems, so-called
cross-diffusion equations.

5. Examples and remarks

We close this paper by presenting some easy examples. In addition, we in-
clude some remarks on open problems and suggestions for further research.
Throughout this section,

• 1 ≤ s <∞ and p > m+ 2.

Example 5.1: (Two-population models) Let

a, b ∈ C2(Ω,R+), ai, bi ∈ C1(Ω), i = 0, 1, 2, α, β, γ, δ ∈ R.

Consider the s-degenerate quasilinear system

∂tu− divs
(
(a+ uαvβ) grads u

)
= (a0 + a1u+ a2v)u,

∂tv − divs
(
(b+ uγvδ) grads v

)
= (b0 + b1v + b2u)v

(38)

on Ω× R+.
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Suppose ε > 0 and

(u0, v0) ∈W 2
p (Ω; s), u0, v0 ≥ ε.

Then there exist a maximal t+ = t+(u0, v0) ∈ (0,∞] and a unique solution

(u, v) ∈W (2,1)
p

(
Ω× [0, t+),R2; s

)
of (38) satisfying u(t)(x) > 0 and v(t)(x) > 0 for x ∈ Ω and 0 ≤ t < t+.

Proof. Theorem 4.5 with X = (0,∞)2.

Observe that the right side of (38) encompasses standard predator–prey as
well as cooperation models, depending on the signs of the coefficient functions.

In the following examples we restrict ourselves to scalar equations.

Examples 5.2: (a) (Porous media equations) Let α ∈ R\{0} and assume
that g ∈ C1(Ω× R). Then

∂tu− divs(u
α grads u) = g(u)u in Ω× R+

has for each u0 ∈W 2
p (Ω; s) with u0 ≥ ε > 0 a unique maximal solution

u ∈W (2,1)
p

(
Ω× (0, t+); s

)
satisfying u(t)(x) > 0 for x ∈ Ω and 0 ≤ t < t+.

Proof. Theorem 4.5 with X := (0,∞).

(b) (Diffusive logistic equations) Assume α, λ ∈ R with α > 0. Let a ≥ 0.
Set

∆s := divs grads .

If

u0 ∈W 2
p (Ω; s), u0 ≥ ε > 0,

then there exist a maximal t+ ∈ (0,∞] and a unique solution

u ∈W (2,1)
p

(
Ω× [0, t+); s

)
of

∂tu− α∆su = (λ− au)u on Ω× R+, (39)

satisfying u(t)(x) > 0 for x ∈ Ω and 0 ≤ t < t+.

Proof. This is essentially a subcase of Example 5.2.
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The most natural question which now arises is:

• How can we prove global existence?

An attempt to tackle this challenge, which is already hard in the case of stan-
dard boundary value problems, is even more demanding in the present setting.
To point out where some of the difficulties originate from, we review in the
following remarks some of the well-known techniques, which have successfully
been applied to parabolic boundary value problems, and indicate why they do
not straightforwardly apply to s-degenerate problems.

Remark 5.3: (Maximum principle techniques) First we look at the diffusive
logistic equation (39) and contrast it with the simple classical counterpart

∂tu− α∆u = (λ− u)u on Ω× R+,

u = 0 on Γ× R+.
(40)

Suppose λ > 0. Then (40) has for each sufficiently smooth initial value u0

satisfying 0 ≤ u0 ≤ λ a unique global solution obeying the same bounds as u0.
This is a consequence of the maximum principle, since (0, λ) is a pair of sub-
and supersolutions. For the validity of this argument it is crucial that we deal
with a boundary value problem.

In the s-degenerate case there is no boundary. Hence the preceding argu-
ment does not work, since there is no appropriate maximum principle.

Remark 5.4: (Methods based on spectral properties) A further important
technique, which is useful in the case of boundary value problems, rests on
spectral properties of the linearization of associated stationary elliptic equa-
tions. The most prominent case is supposedly the ‘principle of linearized sta-
bility’ (and its generalizations to non-isolated equilibria, see [18, Chapter 5]).
In addition, the better part of the qualitative studies on semi- and quasilinear
parabolic boundary value problems, as well for a single equation as for systems,
is based on spectral properties, in particular on the existence and the nature
of eigenvalues.

In the case of boundary value problems, the associated linear elliptic oper-
ators have compact resolvents, due to the compactness of Ω. In our situation,
Ω, more precisely, the Riemannian manifold Ωs = (Ω, gs) introduced in Re-
mark 2.1, is not compact. If s = 1, then it is a manifold with cylindrical ends
in the sense of R. Melrose [14] and others2. For manifolds of this type—and
more general ones—much is known about the (L2) spectrum of the Laplace–
Beltrami operator. In particular, the essential spectrum is not empty.

Nevertheless, we are in a simpler situation. In fact, the normal collar S
can be represented as a half-cylinder over the compact manifold (Γ, h) and the

2I am grateful to Victor Nistor for pointing this out to me.
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remaining ‘interior part’ U is flat (cf. [5, Section 5]). Thus there is hope to get
sufficiently detailed information on the Lp spectrum of linear divergence form
operators.

In particular, suppose u0 ∈ V ∩W 2
p (Ω,Rn; s) is a stationary point of (37).

If it can be shown that the spectrum of A(u0) is contained in an interval
[α,∞) with α > 0, then, using the decay properties of the analytic semigroup
generated by −A(u0), it can be shown that u0 is an asymptotically stable
critical point of (37).

Remark 5.5: (The technique of a priori estimates) The general version of
[18, Theorem 5.1.1] exploits the regularization properties of analytic semi-
groups. Suppose that alternative (ii) of Theorem 4.5 does not occur. Also
assume that there can be established a uniform a priori bound in a Besov

space B
σ−2/p
p,s := B

σ−2/p
p (Ω,Rn; s) with 2/p < σ < 2. Then we have global ex-

istence, provided the embedding B
2−2/p
p,s ↪→ B

σ−2/p
p,s is compact (see [18, Theo-

rem 5.7.1]). Hence this technique is also not applicable to our equations.

However, we still have the possibility to use the interpolation-extrapolation
techniques developed in [3] and [4] to switch to weak formulations. Then it
might be possible to prove global existence by more classical techniques using
a priori estimates with respect to suitable integral norms.
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[6] D. Daners and J. López-Gómez, Global dynamics of generalized logistic equa-
tions, Adv. Nonlinear Stud. 18 (2018), no. 2, 217–236.

[7] S.R. de Groot and P. Mazur, Non-equilibrium thermodynamics, Dover Pub-
lications Inc., New York, 1984.

[8] W.S.C. Gurney and R.M. Nisbet, The regulation of inhomogeneous popula-
tions, J. Theor. Biol. 52 (1975), 441–457.

[9] M.E. Gurtin and R.C. MacCamy, On the diffusion of biological populations,
Math. Biosci. 33 (1977), no. 1-2, 35–49.

[10] E.E. Holmes, M.A. Lewis, J.E. Banks, and R.R. Veit, Partial differential
equations in ecology: spacial interactions and population dymamics, Ecology
75(1) (1994), 17–29.



POPULATION DYNAMICS IN HOSTILE NEIGHBORHOODS 43
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Global structure of bifurcation curves
related to inverse bifurcation problems
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Dedicated to Professor Julián López-Gómez on his sixtieth birthday

Abstract. We consider the nonlinear eigenvalue problem

[D(u(t))u(t)′]′ + λg(u(t)) = 0,

u(t) > 0 , t ∈ I := (0, 1) , u(0) = u(1) = 0,

which comes from the porous media type equation. Here, D(u) = pu2n+
sinu (n ∈ N, p > 0: given constants), g(u) = u or g(u) = u + sinu.
λ > 0 is a bifurcation parameter which is a continuous function of
α = ‖uλ‖∞ of the solution uλ corresponding to λ, and is expressed as
λ = λ(α). Since our equation contains oscillatory term in diffusion
term, it seems significant to study how this oscillatory term gives effect
to the structure of bifurcation curves λ(α). We propose a question from
a view point of inverse bifurcation problems and show that the simplest
case D(u) = u2 + sinu and g(u) = u gives us the most impressible
asymptotic formula for global behavior of λ(α).

Keywords: precise structure of bifurcation curves, oscillatory nonlinear diffusion, inverse
bifurcation problems.
MS Classification 2010: 34C23, 34F10.

1. Introduction

We study the following nonlinear eigenvalue problems

[D(u(t))u(t)′]′ + λg(u(t)) = 0, t ∈ I := (0, 1), (1)

u(t) > 0, t ∈ I, (2)

u(0) = u(1) = 0, (3)

where D(u) := pu2n + sinu (n ∈ N, p > 0: given constants), g(u) = u or
g(u) = u+sinu, and λ > 0 is a bifurcation parameter. We assume the following
condition (A.1).
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(A.1) D(u) > 0 for u > 0.

Under the condition (A.1), we know from [11] that for a given α > 0, there is
a unique solution pair (uα, λ) of (1)–(3) satisfying α = ‖uα‖∞. Moreover, λ is
parameterized by α > 0 as λ(α) and is continuous for α > 0.

The purpose of this paper is to show how the oscillatory diffusion term D(u)
gives effect to the structure of bifurcation curves λ(α). To clarify our intention,
let n = p = 1 in (1) for simplicity. Then (A.1) is satisfied and we have the
equation

[{u(t)2 + sinu(t)}u′(t)]′ + λu(t) = 0, t ∈ I. (4)

The other equations similar to (4) are

[u(t)2u(t)′]′ + λ(u(t) + sinu(t)) = 0, t ∈ I, (5)

[{u(t)2 + sinu(t)}u(t)′]′ + λ(u(t) + sinu(t)) = 0, t ∈ I. (6)

We propose the following question from a view point of inverse bifurcation
problems

Question A. Consider (4), or (5), or (6) with (2)–(3). Then is it possible to
distinguish (4), (5) and (6) from the asymptotic behavior of λ(α) for α� 1 or
not?

We explain the back ground of Question A more precisely. Bifurcation
problems with D(u) ≡ 1 are one of the main interest in the study of differential
equations, and many results have been established concerning the asymptotic
behavior of bifurcation curves from mathematical point of view. We refer to
[1, 2, 3, 4, 9, 10, 12, 13, 14] and the references therein. Besides, the bifurcation
problems with nonlinear diffusion appear in the various fields. The case D(u) =
uk (k > 0) appears as the porous media equation in material science and logistic
type model equation in population dynamics. In the latter case, it implies
that the diffusion rate D(u) depends on both the population density u and a
parameter 1/λ. We refer to [11, 15, 19] and the references therein. Added to
these, there are several papers studying the asymptotic behavior of oscillatory
bifurcation curves. We refer to [6, 7, 8, 9, 16, 17, 18] and the references therein.

Recently, the following equation has been considered in [18].

[D(u(t))u(t)′]′ + λg(u(t)) = 0, t ∈ I (7)

with (2)–(3). Here, D(u) = uk, g(u) = u2m−k−1 + sinu, and m ∈ N, k
(0 ≤ k < 2m− 1) are given constants. In particular, if we put m = k = 2, then
we have the equation (5). In [18], the following result has been obtained.
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Theorem 1.1 ([18]). Consider (7) with (2)–(3). Then as α→∞,

λ(α) = 4mα2k+2−2m
{
A2
k,m − 2Ak,m

√
π

2m
αk+(1/2)−2m sin

(
α− π

4

)
+ o(αk+(1/2)−2m)

}
, (8)

where

Ak,m =

∫ 1

0

sk√
1− s2m

ds.

If m = k = 2 in (8), then the asymptotic formula for λ(α) as α→∞ for (5)
is given by

λ(α) = 8α2
{
A2

2,2 −A2,2

√
πα−3/2 sin

(
α− π

4

)
+ o(α−3/2)

}
. (9)

Moreover, it was shown in [18] that if m = k = 2, then λ(α) = 4B2
0α

2(1 +o(1))
as α→ 0, where B0 is a positive constant. Therefore, the rough picture of λ(α)
in (5) is depicted in Figure 1.

Figure 1: The graph of λ(α) for (5).

We understand from Theorem 1.1 that, by the effect of sinu, λ(α) in Fig-
ure 1 oscillates and crosses the curve λ = 8A2,2α

2, which are the original
bifurcation curve obtained from the equation (5) without sinu, infinitely many
times. Motivated by this, we would like to study how oscillatory nonlinear
diffusion influences on the structure of λ(α). The question we have to ask here
is whether the oscillatory term sinu in D(u) gives the same influence on the
asymptotic behavior of λ(α) as (8) or not.

Now we state our main results which give us the answer to this question.
We begin with the typical case n = 1 and g(u) = u, since in this case, we are
able to obtain up to the third term of λ(α). This fact seems to be a signifgicant
progress in the study of asymptotic behavior of λ(α) as α→∞.
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Theorem 1.2. Assume (A.1). Let n = 1. Consider (1)–(3) with g(u) = u.

(i) As α→∞,

λ(α) = 8pA2
2,2α

2 +
8(p− 1)

p
A2,2

√
πα−1/2 sin

(
α− π

4

)
+

8

p
{2A2,2 (p− 2B) cosα}α−1 +O(α−3/2), (10)

where

B := 2

∫ π/2

0

sin2 θ

(1 + sin2 θ)5/2

(
1− 1

2
sin2 θ

)
dθ. (11)

In particular, let p = 1. Then (10) is represented as

λ(α) = 8A2
2,2α

2 + (16A2,2 (1− 2B) cosα)α−1 +O(α−3/2). (12)

(ii) As α→ 0,
λ(α) = 6α(C2

0 + 2pC0C1α+O(α2)),

where

C0 :=

∫ 1

0

s√
1− s3

ds, C1 :=

∫ 1

0

1√
1− s3

(
s2 − 3s(1− s4)

8(1− s3)

)
ds.

Therefore, our first conclusion is that the the shape of the second term
of (12) is completely different from that of (9), since we are able to show
by direct calculation that B 6= 1/2. Namely, the answer to Question A is
affirmative. The global structures of the bifurcation curves for (4) and (5) do
not coincide each other.

For the case n ≥ 2, we obtain up to the second term of λ(α).

Theorem 1.3. Assume (A.1). Let n ≥ 2. Consider (1)–(3) with g(u) = u.
Then as α→∞,

λ(α) =
4(n+ 1)

p

(
p2A2

2n,n+1α
2n + 2A2n,n+1(p− 1)

×
√

π

2(n+ 1)
α−1/2 sin

(
α− π

4

)
+O(α−1)

)
.

In particular, let p = 1. Then as α→∞,

λ(α) = 4(n+ 1)A2
2n,n+1α

2n +O(α−1). (13)

Remark 1.4: (i) Certainly, the future direction of this study will be to ob-
tain the exact second term of (13), although it seems very difficult to get
it technically.
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(ii) Theorem 1.2-(ii) is only proved for the case n = 1 to show that the rough
picture of λ(α) is almost the same as that of Fig. 1 if p 6= 1. Certainly,
we easily obtain Theorem 1.2-(ii) for the case n ≥ 2.

The following Theorem 1.5 gives us the negative answer to Question A.

Theorem 1.5. Consider (6) with (2)–(3).

(i) The asymptotic formula (9) holds as α→∞.

(ii) The following asymptotic formula holds as α→ 0.

λ(α) = 3α
(
C2

0 + 2C0C1α+O(α2)
)
.

We find from Theorems 1.2–1.5 that sinu in diffusion term has deep influ-
ences on the global behavior of λ(α).

We prove our results by using time-map method and stationary phase
method.

2. Proof of Theorem 1.3-(i)

In this section, let D(u) = pu2n + sinu, g(u) = u and α� 1. We denote by C
the various positive constants independent of α� 1. We put

Λ :=

{
α > 0 | g(α) > 0,

∫ α

u

g(t)D(t)dt > 0 for all u ∈ [0, α)

}
.

It follows from [11, (2.7)], that if α ∈ Λ, then λ(α) is well defined. By (A.1),
we have D(t) > 0, g(t) > 0 for t > 0. So g(t)D(t) > 0 for t > 0 holds. Hence,
Λ ≡ R+. By this and the generalized time-map in [9, (2.5)] (cf. (15) below) and
the time-map argument in [10, Theorem 2.1], we find that for any given α > 0,
there is a unique solution pair (uα, λ) ∈ C2(I)

⋂
C(Ī)×R+ of (1)–(3) satisfying

α = ‖uα‖∞. Moreover, λ is parameterized by α as λ = λ(α) and is a continuous
function for α > 0. It is well known that if (uα, λ(α)) ∈ C2(I)

⋂
C(Ī) × R+

satisfies (1)–(3), then

uα(t) = uα(1− t), 0 ≤ t ≤ 1,

uα

(
1

2

)
= max

0≤t≤1
uα(t) = α,

u′α(t) > 0, 0 < t <
1

2
.

We put

G(u) :=

∫ u

0

D(x)g(x)dx =

∫ u

0

(px2n + sinx)xdx (14)

=
p

2n+ 2
u2n+2 − u cosu+ sinu,
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M1 := α cosα− αs cos(αs), M2 := sinα− sin(αs) (0 ≤ s ≤ 1).

For 0 ≤ s ≤ 1 and α� 1, we have

|M1|+ |M2|
α2n+2(1− s2n+2)

≤ Cα−2n. (15)

By this, Taylor expansion and putting u = sα, we have from [9] that√
λ

2
=

∫ α

0

D(u)√
G(α)−G(u)

du (16)

= α

∫ 1

0

pα2ns2n + sin(αs)√
p

2n+2α
2n+2(1− s2n+2)− (M1 −M2)

ds

=

√
2n+ 2

p
α−n

∫ 1

0

pα2ns2n + sin(αs)
√

1− s2n+2
√

1− 2n+2
pα2n+2(1−s2n+2){M1 −M2}

ds

=

√
2n+ 2

p
α−n

∫ 1

0

pα2ns2n + sin(αs)√
1− s2n+2

×
(

1 +
n+ 1

pα2n+2(1− s2n+2)
{M1 −M2}(1 +O(α−2n))

)
ds.

This implies that√
λ

2
=

√
2n+ 2

p
α−n{J1 + J2 + J3 + J4 + J5}(1 +O(α−2n)), (17)

where

J1 := pα2n

∫ 1

0

s2n√
1− s2n+2

ds = pA2n,nα
2n,

J2 :=

∫ 1

0

sin(αs)√
1− s2n+2

ds, (18)

J3 :=
n+ 1

pα

∫ 1

0

s2n

(1− s2n+2)3/2
(cosα− s cos(αs))ds, (19)

J4 := −n+ 1

pα2

∫ 1

0

s2n

(1− s2n+2)3/2
(sinα− sin(αs))ds,

J5 :=
n+ 1

pα2n+2

∫ 1

0

sin(αs)

(1− s2n+2)3/2
{M1 −M2}ds. (20)

To calculate J2 ∼ J5, we use the following equality.
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Lemma 2.1 ([7, Lemma 2], [9, Lemma 2.25]). Assume that the function f(r) ∈
C2[0, 1], w(r) = cos(πr/2). Then as µ→∞

∫ 1

0

f(r)eiµw(r)dr = ei(µ−(π/4))
√

2

µπ
f(0) +O

(
1

µ

)
. (21)

In particular, by taking the real and imaginary parts of (21), as µ→∞,

∫ 1

0

f(r) cos(µw(r))dr =

√
2

µπ
f(0) cos

(
µ− π

4

)
+O

(
1

µ

)
,∫ 1

0

f(r) sin(µw(r))dr =

√
2

µπ
f(0) sin

(
µ− π

4

)
+O

(
1

µ

)
.

Lemma 2.2. As α→∞,

J2 =

√
π

2(n+ 1)α
sin
(
α− π

4

)
+O(α−1).

Proof. Putting s = sin θ, θ = π
2 (1− x) and using Lemma 2.1, we have

J2 =

∫ 1

0

sin(αs)√
1− s2

√
1 + s2 + · · ·+ s2n

ds (22)

=

∫ π/2

0

1√
1 + sin2 θ + · · ·+ sin2n θ

sin(α sin θ)dθ

=
π

2

∫ π/2

0

1√
1 + cos2

(
π
2x
)

+ · · ·+ cos2n
(
π
2x
) sin

(
α cos

(π
2
x
))

dx

=

√
π

2(n+ 1)α
sin
(
α− π

4

)
+O(α−1).

Thus the proof is complete.

Lemma 2.3. As α→∞,

J3 = −1

p

√
π

2(n+ 1)α

{
sin
(
α− π

4

)
− α−1 cos

(
α− π

4

)}
+O(α−1). (23)

Proof. We put J3 = (n+1)J31/(pα), s = sin θ and K(θ) := sin2n θ/(1+sin2 θ+
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· · ·+ sin2n θ)3/2. Then by integration by parts,

J31 =

∫ 1

0

s2n

(1− s2)3/2(1 + s2 + · · ·+ s2n)3/2
(cosα− s cos(αs))ds (24)

=

∫ π/2

0

1

cos2 θ
K(θ)(cosα− sin θ cos(α sin θ))dθ

= [tan θK(θ)(cosα− sin θ cos(α sin θ))]
π/2
0

−
∫ π/2

0

tan θK ′(θ)(cosα− sin θ cos(α sin θ))dθ

−
∫ π/2

0

tan θK(θ){− cos θ cos(α sin θ) + α sin θ cos θ sin(α sin θ)}dθ

:= J311 − J312 + J313.

By using l’Hôpital’s rule, we have

lim
θ→π/2

cosα− sin θ cos(α sin θ)

cos θ

= lim
θ→π/2

− cos θ cos(α sin θ) + α sin θ cos θ sin(α sin θ)

− sin θ
= 0.

We see from this that J311 = 0. Moreover, by direct calculation, we see that
J312 = O(1). Now, putting θ = π

2 (1− x) and using Lemma 2.1, we have

J313 =

∫ π/2

0

sin θK(θ) cos(α sin θ)dθ (25)

− α
∫ π/2

0

K(θ) sin2 θ sin(α sin θ)dθ

=
π

2

∫ 1

0

cos2n+1
(
π
2x
)(

1 + cos2
(
π
2x
)

+ · · ·+ cos2n
(
π
2x
))3/2 cos

(
α cos

(π
2
x
))

dx

− π

2
α

∫ 1

0

cos2n+2
(
π
2x
)(

1 + cos2
(
π
2x
)

+ · · ·+ cos2n
(
π
2x
))3/2 sin

(
α cos

(π
2
x
))

dx

= (n+1)−3/2
√

π

2α
cos
(
α− π

4

)
− (n+1)−3/2

√
πα

2
sin
(
α− π

4

)
+O(1).

This implies (23). Thus the proof is complete.

Lemma 2.4. As α→∞,

J4 = −1

p

√
π

2(n+ 1)α
α−1 cos

(
α− π

4

)
+O(α−2). (26)
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Proof. We put J4 = −(n + 1)J41/(pα
2) and s = sin θ. Then by the same

argument as that to obtain J31 in (25), we obtain

J41 =

∫ 1

0

s2n

(1− s2n+2)3/2
(sinα− sin(αs))ds

=

∫ π/2

0

1

cos2 θ
K(θ)(sinα− sin(α sin θ))dθ

= [tan θK(θ)(sinα− sin(α sin θ))]
π/2
0

−
∫ π/2

0

tan θK ′(θ)(sinα− sin(α sin θ))dθ

+ α

∫ π/2

0

sin θK(θ) cos(α sin θ)dθ

=
π

2
α

∫ 1

0

cos2n+1
(
π
2x
)(

1 + cos2
(
π
2x
)

+ · · ·+ cos2n
(
π
2x
))3/2 cos

(
α cos

(π
2
x
))

dx

+O(1)

= (n+ 1)−3/2
√
πα

2
cos
(
α− π

4

)
+O(1).

By this, we obtain (26). Thus the proof is complete.

Proof of Theorem 1.3-(i). By (15) and (20), we see that J5 = O(α−2n). By
this, (17) and Lemmas 2.2–2.4, we obtain√

λ

2
=

√
2n+ 2

p
α−n

[
pA2n,nα

2n +

(
1− 1

p

)
×
√

π

2(n+ 1)α
sin
(
α− π

4

)
+O(α−1)

]
.

By this, we obtain

λ =
4(n+ 1)

p
α−2n

[
p2A2

2n,n+1α
4n + 2 (p− 1)A2n,n+1 (27)

× α2n−(1/2)
√

π

2(n+ 1)
sin
(
α− π

4

)
+O(α2n−1)

]
.

This implies Theorem 1.3-(i). Thus the proof is complete.

3. Proof of Theorem 1.2-(i)

Let n = 1 in this section. Based on the calculation in the previous section and
the argument of stationary phase method (cf. [9, Lemmas 2.24 and 2.25]), we
calculate the third term of (10).
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Lemma 3.1. Let α� 1. Then

Φ(α) :=

∫ 1

0

e−iαx
2

dx =
1

2

√
π

α
e−iπ/4 +

i

2α
e−iα +O(α−3/2). (28)

Proof. We put t =
√
αx. Then by integral by parts, we obtain

Φ(α) =
1√
α

∫ √α
0

e−it
2

dt (29)

=
1√
α

{∫ ∞
0

e−it
2

dt−
∫ ∞
√
α

e−it
2

dt

}
=:

1√
α

{√
π

2
e−iπ/4 − Φ0(α)

}
.

Then by integration by parts,

Φ0(α) =

∫ ∞
√
α

1

−2it
(e−it

2

)′dt (30)

=

[
1

−2it
e−it

2

]∞
√
α

+
i

2

∫ ∞
√
α

(
−1

t

)′
e−it

2

dt

=:
1

2i
√
α
e−iα +

i

2
Φ1(α).

Then

Φ1(α) =

∫ ∞
√
α

1

t2
e−it

2

dt =

∫ ∞
√
α

1

t2

(
1

−2it

)
(e−it

2

)′dt (31)

=

[
i

2

1

t3
e−it

2

]∞
√
α

+
3i

2

∫ ∞
√
α

1

t4
e−it

2

dt = O(α−3/2).

By (29)–(31), we obtain (28). Thus the proof is complete.

Lemma 3.2. Let α � 1, g(x) := cos(πx/2) and k(x) ∈ C3([0, 1]). Then as
α→∞,

I :=

∫ 1

0

k(x)eiαg(x)dx (32)

=
4

π
eiα
∫ 1

0

k

(
2

π
cos−1(1− t2)

)
1√

2− t2
e−iαt

2

dt.

Proof. We put t =
√

1− cos
(
π
2x
)
. Then by direct calculation, we obtain (32).
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Lemma 3.3. Let f(x) ∈ C3[0, 1]. Then as α→∞,

II :=

∫ 1

0

f(x)e−iαx
2

dx (33)

= f(0)

{
1

2

√
π

α
e−iπ/4 +

i

2α
e−iα

}
+

i

2α
(h(1)e−iα − h(0)) +O(α−3/2),

where h(x) := (f(x)− f(0))/x.

Proof. We have

II =

∫ 1

0

(f(0) + h(x)x)e−iαx
2

dx (34)

= f(0)

∫ 1

0

e−iαx
2

dx+ III

:= f(0)

∫ 1

0

e−iαx
2

dx+

∫ 1

0

h(x)xe−iαx
2

dx.

By Lemma 3.1, we have

III =

∫ 1

0

h(x)

(
1

−2iα
e−iαx

2

)′
dx

=

[
h(x)

(
1

−2iα
e−iαx

2

)]1
0

+
1

2iα

∫ 1

0

h′(x)e−iαx
2

dx

=
i

2α
(h(1)e−iα − h(0)) +

1

2iα

(
h′(0)

∫ 1

0

e−iαx
2

dx+O(α−1)

)
=

i

2α
(h(1)e−iα − h(0)) +O(α−3/2).

By this, Lemma 3.1 and (34), we obtain (33). Thus the proof is complete.

Lemma 3.4. Consider J2 defined in (18). Then as α→∞,

J2 =
1

2

√
π

α
sin
(
α− π

4

)
+

1

α
+O(α−3/2). (35)

Proof. Since n = 1, by (22), we have

J2 =
π

2

∫ 1

0

1√
1 + cos2

(
π
2x
) sin

(
α cos

(π
2
x
))

dx :=
π

2
J21. (36)
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We put g(x) = cos
(
π
2x
)

and k(x) = 1/
√

1 + cos2
(
π
2x
)
. Then by using

Lemma 3.2, we have

J21 = Im

(
4

π
eiα
∫ 1

0

1√
2− 2t2 + t4

1√
2− t2

e−iαt
2

dt

)
. (37)

We put m(t) := 4− 6t2 + 4t4 − t6. Then we have

K(t) :=
1√

2− 2t2 + t4
1√

2− t2
=

1√
m(t)

, (38)

h(t) :=
K(t)−K(0)

t
=

6t− 4t3 + t5

2
√
m(t)(

√
m(t) + 2)

. (39)

Clearly, h(t) ∈ C3[0, 1]. By (38) and (39), we have

m(0) = 4, m(1) = 1, K(0) =
1

2
, h(0) = 0, h(1) =

1

2
.

By this and Lemma 3.2, we obtain

J21 =
4

π
eiα
[ √

π

4
√
α
e−iπ/4 +

i

2α
e−iα +O(α−3/2)

]
,

ImJ21 =
1√
απ

sin
(
α− π

4

)
+

2

απ
+O(α−3/2).

By this and (36), we obtain (35). Thus the proof is complete.

Lemma 3.5. Consider J3 defined in (19). Let B be the constant defined in (11).
Then as α→∞,

J3 = − 1

2p

√
π

α
sin
(
α− π

4

)
− 2B

pα
cosα+O(α−3/2).

Proof. We use the same notation as those in Lemma 2.3. We have J3 = 2
pαJ31

and J31 = −J312 + J313. Since n = 1, we have K(θ) = sin2 θ/(1 + sin2 θ)3/2.
We have

K ′(θ) =
2 sin θ cos θ

(1 + sin2)5/2

(
1− 1

2
sin2 θ

)
.

By this and Lemma 2.1, we obtain

J312 =

∫ 1

0

2 sin2 θ

(1 + sin2 θ)5/2

(
1− 1

2
sin2 θ

)
(cosα− sin θ cos(α sin θ))dθ

= B cosα+O(α−1/2).
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Next, by (24) and (25), we have

J313 = 2−3/2
√

π

2α
cos
(
α− π

4

)
− π

2
α

∫ π/2

0

cos4
(
πθ
2

)(
1 + cos2

(
πθ
2

))3/2 sin

(
α cos

(
πθ

2

))
dθ.

For g(θ) = cos(πθ/2), let

N :=

∫ 1

0

cos4
(
πθ
2

)(
1 + cos2

(
πθ
2

))3/2 e−iαg(θ)dθ.
Then by the same calculation as that in (37), we have

N =
4

π
eiα
∫ 1

0

1√
m(t)

(1− t2)4

2− 2t2 + t4
e−iαt

2

dt.

We put

K(t) :=
1√
m(t)

M(t), M(t) :=
(1− t2)4

2− 2t2 + t4
, H(t) :=

K(t)−K(0)

t
. (40)

Let X := (1− t2)2. Then by direct calculation, we have

H(t) = M(t)h(t) +
(2X + 1)(−2t+ t3)

4(1 +X)
,

where h(t) is a function defined in (39). By this and (40), we have

K(1) = 0, K(0) =
1

4
, X(1) = 0, X(0) = 1, M(1) = 0, M(0) =

1

2
,

h(1) =
1

2
, h(0) = 0, H(1) = −1

4
, H(0) = 0.

By this and Lemmas 3.2 and 3.3, we obtain

N =
1

2
√
απ

ei(α−π/4) +O(α−3/2),

ImN =
1

2
√
απ

sin
(
α− π

4

)
+O(α−3/2),

J313 = −πα
2

(
1

2
√
απ

sin
(
α− π

4

)
+O(α−3/2)

)
.
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Then

J3 =
2

pα
(−J312 + J313) = − 1

2p

√
π

α
sin
(
α− π

4

)
− 2B

pα
cosα+O(α−3/2).

Thus the proof is complete.

Proof of Theorem 1.2-(i). We know from Lemma 2.4 and the first line of the
proof of Theorem 1.3-(i) that J4 = O(α−3/2) and J5 = O(α−2). Then by (17)
and Lemmas 3.4 and 3.5, we obtain

√
λ

2
=

2
√
p
α−1

[
pA2,2α

2 +
p− 1

2p

√
π

α
sin
(
α− π

4

)
+

1

pα
(p− 2B cosα) +O(α−3/2)

]
.

By this and direct calculation, we obtain (10). Thus the proof of Theorem
1.2-(i) is complete.

4. Proof of Theorem 1.5-(i)

In this section, let D(u) = u2 + sinu and g(u) = u+ sinu. It follows from [11,
(2.7)], we also find, as in Section 2, that for any given α > 0, there is a unique
classical solution pair (λ, uα) of (1)–(3) satisfying α = ‖uα‖∞. Moreover, λ is
parameterized by α as λ = λ(α) and is a continuous function for α > 0. Let
u ≥ 0. We put

G(u) :=

∫ u

0

g(y)D(y)dy

=
1

4
u4 − u cosu+ sinu+ (2u sinu− (u2 − 2) cosu− 2)

+
1

2

(
u− 1

2
sin 2u

)
:=

1

4
u4 +G1(u).
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For 0 ≤ s ≤ 1 and α� 1, we have

G(α)−G(αs) =
1

4
α4(1− s4) +G1(α)−G1(αs) (41)

=
1

4
α4(1− s4)− (α cosα− αs cos(αs)) + (sinα− sin(αs))

+ 2(α sinα− αs sin(αs))− (α2 cosα− α2s2 cos(αs))

+ 2(cosα− cos(αs)) +
1

2
α(1− s)− 1

4
(sin 2α− sin 2αs))

:=
1

4
α4(1− s4)− I1 + I2 + I3 − I4 + I5 + I6 − I7.

It is easy to see that for 0 ≤ s ≤ 1,∣∣∣∣ I4
α4(1− s4)

∣∣∣∣ ≤ Cα−1, (42)∣∣∣∣ I1
α4(1− s4)

∣∣∣∣ , ∣∣∣∣ I3
α4(1− s4)

∣∣∣∣ ≤ Cα−2, (43)∣∣∣∣ I2
α4(1− s4)

∣∣∣∣ , ∣∣∣∣ I5
α4(1− s4)

∣∣∣∣ , ∣∣∣∣ I6
α4(1− s4)

∣∣∣∣ , ∣∣∣∣ I7
α4(1− s4)

∣∣∣∣ ≤ Cα−3. (44)

By putting u = αs, (42)–(44) and Taylor expansion, we have from [11, (2.5)]
that √

λ(α)

2
=

∫ α

0

D(u)√
G(α)−G(u)

du (45)

=

∫ α

0

u2 + sinu√
1
4 (α4 − u4) +G1(α)−G1(u)

du

= α

∫ 1

0

α2s2 + sinαs√
α4(1− s4)/4 +G1(α)−G1(αs)

ds

= 2α−1
∫ 1

0

α2s2 + sinαs
√

1− s4
√

1 + 4
α4(1−s4) (G1(α)−G1(αs))

ds

= 2α−1
∫ 1

0

1√
1− s4

(α2s2 + sinαs)

×
{

1− 2

α4(1− s4)
(G1(α)−G1(αs))(1 +O(α−1))

}
ds.

Now we show that the leading and second terms of the right hand side of
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(45) are

L1 := 2α

∫ 1

0

s2√
1− s4

ds = 2A2,2α, (46)

L4 := 4α−5
∫ 1

0

s2

(1− s4)3/2
I4ds.

Indeed, by (42)–(44), we obtain

2α−1
∫ 1

0

|α2s2 + sinαs|√
1− s4

· 1

α4(1− s4)
|I1 + I3 + I5 + I6 + I7|ds = O(α−1).

Furthermore, by Lemma 2.2,

L2 := 2α−1
∫ 1

0

sin(αs)√
1− s4

ds = (1 + o(1))
√
πα−3/2 sin

(
α− π

4

)
.

We calculate L4 by Lemma 2.1.

Lemma 4.1. As α→∞,

L4 = −
√
πα−1/2 sin

(
α− π

4

)
+O(α−1). (47)

Proof. We put s = sin θ. Then

L4 = 4α−1
∫ 1

0

s2(cosα− s2 cos(αs))

(1− s2)3/2(1 + s2)3/2
ds

= 4α−1
∫ π/2

0

1

cos2 θ
Y (θ)(cosα− sin2 θ cos(α sin θ))dθ,

where Y (θ) = sin2 θ/(1 + sin2 θ)3/2. By Integration by parts, we have

L4 = 4α−1
[
tan θY (θ)(cosα− sin2 θ cos(α sin θ))

]π/2
0

(48)

− 4α−1
∫ 1

0

tan θ
{
Y (θ)(cosα− sin2 θ cos(α sin θ))

}′
dθ

= 4α−1(L41 − L42).

By using l’Hôpital’s rule, we have

lim
θ→π/2

cosα− sin2 θ cos(α sin θ)

cos θ

= lim
θ→π/2

−2 sin θ cos θ cos(α sin θ) + α sin2 θ cos θ sin(α sin θ)

− sin θ
= 0.
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By this, we see that L41 = 0. It is easy to see that

∫ 1

0

tan θ
{
Y (θ)′(cosα− sin2 θ cos(α sin θ))

}
dθ = O(1).

By this, putting θ = π
2 (1− x) and using Lemma 2.1, we have

L42 =

∫ 1

0

tan θY (θ)(cosα− sin2 θ cos(α sin θ))′dθ +O(1)

= α

∫ π/2

0

sin5 θ

(1 + sin2 θ)3/2
sin(α sin θ)dθ +O(1)

=
π

2
α

∫ 1

0

cos5
(
π
2x
)

(1 + cos2
(
π
2x
)
)3/2

sin
(
α cos

(π
2
x
))

dx+O(1)

=

√
πα

4
sin
(
α− π

4

)
+O(1).

By this and (48), we obtain (47). Thus the proof is complete.

Proof of Theorem 1.5-(i). By (45), (46), Lemma 4.1, we obtain

√
λ

2
= 2A2,2α−

√
πα−1/2 sin

(
α− π

4

)
+ o(α−1/2).

This implies (9). Thus the proof of Theorem 1.5-(i) is complete.

5. Proofs of Theorems 1.2-(ii) and 1.5-(ii)

In this section, let 0 < α� 1.

Proof of Theorem 1.2-(ii). Let n = 1, namely, D(u) = pu2 + sinu. By (14),
Taylor expansion and direct calculation, for 0 ≤ s ≤ 1, we have

G(α)−G(αs) =
1

3
α3(1− s3) +

p

4
α4(1− s4) +O(α5)(1− s5).
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By this, putting θ = αs and (16), we obtain√
λ

2
= α

∫ 1

0

αs+ pα2s2 +O(α3)√
1
3α

3(1− s3) + p
4α

4(1− s4) +O(α5)(1− s5)
ds (49)

=
√

3α

∫ 1

0

s+ pαs2 +O(α2)√
(1− s3) + 3p

4 α(1− s4) +O(α2)(1− s5)
ds

=
√

3α

∫ 1

0

1√
1− s3

(s+ pαs2 +O(α2))

(
1− 3p(1− s4)

8(1− s3)
α+O(α2)

)
ds

=
√

3α

{∫ 1

0

s√
1− s3

ds+ pα

∫ 1

0

1√
1− s3

(
s2 − 3s(1− s4)

8(1− s3)

)
ds+O(α2)

}
.

By this, we obtain Theorem 1.2-(ii). Thus the proof is complete.

Proof of Theorem 1.5-(ii). By (41), Taylor expansion and direct calculation,
for 0 ≤ s ≤ 1, we have

G(α)−G(αs) =
2

3
α3(1− s3) +

1

2
α4(1− s4) +O(α5)(1− s5).

By this, putting θ = αs and (49), we obtain√
λ

2
= α

∫ 1

0

α2s2 + sin(αs)√
2
3α

3(1− s3) + 1
2α

4(1− s4) +O(α5)(1− s5)
ds

=

√
3

2α

∫ 1

0

αs+ α2s2 +O(α3)s3

√
1− s3

√
1 + 3

4α
1−s4
1−s3 +O(α2) 1−s5

1−s3

ds

=

√
3α

2

∫ 1

0

1√
1− s3

(s+ αs2 +O(α2))

(
1− 3

8
α

1− s4

1− s3
+O(α2)

)
ds

=

√
3α

2

(∫ 1

0

s√
1− s3

ds+ α

{∫ 1

0

s2√
1− s3

ds− 3

8

∫ 1

0

s(1− s4)

(1− s3)3/2
ds

}
+O(α2)

)
.

By this, we obtain Theorem 1.5-(ii). Thus the proof is complete.
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[2] S. Cano-Casanova and J. López-Gómez, Existence, uniqueness and blow-up
rate of large solutions for a canonical class of one-dimensional problems on the
half-line, J. Differential Equations 244 (2008), 3180–3203.

[3] S. Cano-Casanova and J. López-Gómez, Blow-up rates of radially symmetric
large solutions, J. Math. Anal. Appl. 352 (2009), 166–174.

[4] Y.J. Cheng, On an open problem of Ambrosetti, Brezis and Cerami, Differential
Integral Equations 15 (2002), 1025–1044.
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Asymptotic properties of a free
boundary problem for a

reaction-diffusion equation with
multi-stable nonlinearity
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Abstract. This paper deals with a free boundary problem for a
reaction-diffusion equation with moving boundary, whose dynamics is
governed by the Stefan condition. We will mainly discuss the problem
for the case of multi-stable nonlinearity, which is a function with a mul-
tiple number of positive stable equilibria. The first result is concerned
with the classification of solutions in accordance with large-time behav-
iors. As a consequence, one can observe a multiple number of spreading
phenomena corresponding for each positive stable equilibrium. Here it
is seen that there exists a certain group of spreading solutions whose el-
ement accompanies a propagating terrace. We will derive sharp asymp-
totic estimates of free boundary and profile of every spreading solution
including spreading one with propagating terrace.

Keywords: free boundary problem, reaction-diffusion equation, asymptotic profile,
spreading.
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1. Introduction

This paper is concerned with the following free boundary problem for reaction-
diffusion equations:

(FBP)


ut = duxx + f(u), t > 0, 0 < x < h(t),

ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,
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where d, µ and h0 are positive constants and x = h(t) is a free boundary.
Nonlinearity f is a function of class C1[0,∞) satisfying

f(0) = f(u∗) = 0 with some u∗ > 0 and f(u) < 0 for u > u∗ (1)

and u0 is a nonnegative function of class C2[0, h0] such that

u′0(0) = u0(h0) = 0 and u0 6≡ 0. (2)

Since Du and Lin published a pioneer work [4] on (FBP) in 2010, a lot of authors
have studied (FBP) and related free boundary problems. Among them, we
should refer to the paper of Du and Lou [5], who obtained very important results
on large-time behaviors of solution (u(t, ·), h(t)) of (FBP) for typical types of
nonlinearity f such as monostable, bistable and combustion types. Moreover,
we should also note the work of Du, Matsuzawa and Zhou [9], who derived sharp
asymptotic estimates of (u(t, ·), h(t)) as t→∞ in the case limt→∞ h(t) =∞.

The main purpose of the present paper is to study (FBP) when f is a multi-
stable function, that is, f has a multiple number of positive stable equilibria.
For the sake of simplicity, we assume that f ∈ C1[0,∞) satisfies the following
conditions:

(PB) f(u) = 0 has solutions u = 0, u∗1, u
∗
2, u
∗
3 (0 < u∗1 < u∗2 < u∗3),

f ′(0) > 0, f ′(u∗1) < 0, f ′(u∗2) ≥ 0, f ′(u∗3) < 0,

∫ u∗
3

u∗
1

f(u)du > 0,

and f(u) 6= 0 for u 6= 0, u∗1, u
∗
2, u
∗
3.

When f satisfies (PB), we say that f is a function of positive bistable type.
For such nonlinearity, we will show that solutions of (FBP) exhibit interesting
large-time behaviors which are different from those discussed in previous works
(see, e.g., Du and Lou [5] for monostable type and bistable type). Our first
aim is to investigate what kind of asymptotic behaviors can be found for (FBP)
with positive bistable nonlinearity. We will classify all solutions of (FBP) into
the following four types:

(i) lim
t→∞

h(t) <∞ and lim
t→∞

u(t, x) = 0 for x ≥ 0 (vanishing),

(ii) lim
t→∞

h(t) =∞ and lim
t→∞

u(t, x) = u∗1 for x ≥ 0 (small spreading),

(iii) lim
t→∞

h(t) =∞ and lim
t→∞

u(t, x) = u∗3 for x ≥ 0 (big spreading),

(iv) lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = vdec(x) for x ≥ 0, where vdec is a

uniquely determined decreasing function such that limx→∞ vdec(x) = u∗1
(transition).
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For numerical simulations of these typical types of solutions, see Figure 1.
Here, if we consider (FBP) for u0 = σu∗0 with parameter σ ≥ 0 and any
fixed nonnegative function u∗0 satisfying (2), we can prove the existence of two
threshold numbers σ∗1 and σ∗2 (σ∗1 < σ∗2) with the following properties:

The solution of (FBP) satisfies vanishing (i) for all σ ∈ [0, σ∗1 ], small spread-
ing (ii) for all σ ∈ (σ∗1 , σ

∗
2), big spreading (iii) for all σ ∈ (σ∗2 ,∞) and transi-

tion (iv) for exactly σ = σ∗2 . It should be noted that, for any stable equilibrium
of f , one can observe the corresponding spreading phenomenon for (FBP).

Our second aim is to study asymptotic speed of h(t) and asymptotic profile
of u(t, x) as t→∞ when (u(t, x), h(t)) exhibits spreading property (ii) or (iii)
(or (iv)). It is shown by Du and Lou [5] that the study of asymptotic estimates
of u(t, x) and h(t) is closely related with the following problem

(SWP)

{
dq′′ − cq′ + f(q) = 0, q(z) > 0 for z ∈ (0,∞),

q(0) = 0, µq′(0) = c, lim
z→∞

q(z) = u∗,

with u∗ = u∗1 or u∗ = u∗3. When (q(z), c) = (q∗(z), c∗) satisfies (SWP), q∗(z)
is called a semi-wave with speed c∗. Let (u, h) be a solution of (FBP) with
limt→∞ u(t, x) = u∗ (u∗ = u∗1 or u∗3) and let (SWP) possess a solution pair
(q∗, c∗). Then it will be proved that (q∗, c∗) gives sharp estimates in the fol-
lowing sense:

lim
t→∞
{h(t)− c∗t} = H∗ with some H∗ ∈ R,

lim
t→∞

sup
0≤x≤h(t)

|u(t, x)− q∗(h(t)− x)| = 0.

The same estimates have been obtained by Du, Matsuzawa and Zhou [9] in the
case that f is monostable or bistable type of nonlinearity.

The analysis of (SWP) can be carried out by using the phase plane analysis
(see, e.g. [5]). It can be shown that (SWP) with u∗ = u∗1 always has a unique
solution pair, whereas (SWP) with u∗ = u∗3 does not have a solution under
a certain circumstance. Numerical simulations in this situation suggest that
a spreading solution accompanies a propagating terrace (see Figure 2). In
order to estimate such a terrace, we will use a travelling wave for the following
problem:

(TWP)

{
dQ′′ − cQ′ + f(Q) = 0, Q(z) > 0 for z ∈ (−∞,∞),

lim
z→−∞

Q(z) = u∗1, Q(0) = (u∗1 + u∗3)/2, lim
z→∞

Q(z) = u∗3.

We will prove that a semi-wave of (SWP) with u∗ = u∗1 together with a trav-
elling wave of (TWP) gives a good approximation of any spreading solution of
(FBP) with limt→∞ u(t, x) = u∗3 in the case that there exists no solution pair
of (SWP) with u∗ = u∗3.
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The contents of the present paper are as follows. In Section 2 we will
prepare some basic results of solutions for (FBP) with general nonlinearity f .
Section 3 is devoted to the analysis of (FBP) for positive bistable nonlinearity.
We will give a classification theorem and sharp estimates of spreading solutions
when the corresponding semi-wave problem has a unique solution pair. In
Section 4 we will estimate any spreading solution with propagating terrace by
using solutions of (SWP) and (TWP). Finally, in Section 5, we will state two
related topics. The first one is concerned with a free boundary problem in a
radial symmetric environment of RN and the second is the study of (FBP)
with Neumann condition at x = 0 replaced by zero Dirichlet condition.

2. Basic results for (FBP)

In this section, we will collect some basic results on (FBP) with general non-
linearity f . The first result is the existence and uniqueness of a global solution
to (FBP) (see Du-Lin [4, Theorems 2.1, 2.3 and Lemma 2.2] and Du-Lou [5,
Theorem 2.4 and Lemma 2.8]).

Theorem 2.1. Let f and u0 satisfy (1) and (2), respectively. Then (FBP)
admits a unique solution (u, h) in the following class

(u, h) ∈
{
C(1+α)/2,1+α(Ω) ∩ C1+α/2,2+α(Ω)

}
× C1+α/2[0,∞)

for any α ∈ (0, 1) with Ω = {(t, x) ∈ R2| t > 0, 0 < x < h(t)}. Moreover,
(u, h) possesses the following properties:

(i) It holds that

0 < u(t, x) ≤ C1 for t > 0 and 0 < x < h(t),

0 < h′(t) ≤ C2 for t > 0,

where C1 and C2 are positive constants depending only on ‖u0‖C[0,h0] and
‖u0‖C1[0,h0], respectively.

(ii) ux(t, x) < 0 for all t ∈ (0,∞) and x ∈ [h0, h(t)].

The second result is the comparison theorem which is a very important tool
in the analysis of dynamic behavior of solutions of (FBP) (see [4, Lemma 3.5]).

Theorem 2.2. For T > 0, let (u∗, h∗) ∈ {C0,1(Ω∗T )∩C1,2(Ω∗T )}×C1[0, T ] with
Ω∗T = {(t, x) ∈ R2| 0 < t < T, 0 < x < h∗(t)} satisfy

u∗t ≥ du∗xx + f(u∗) for (t, x) ∈ Ω∗T ,

u∗x(0, t) ≤ 0, u∗(t, h∗(t)) = 0 for t ∈ [0, T ],

(h∗)′(t) ≥ −µu∗x(t, h∗(t)) for t ∈ [0, T ].

(3)
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Let (u∗, h∗) ∈ {C0,1(Ω∗,T ) ∩ C1,2(Ω∗,T )} × C1[0, T ] satisfy (3) with inequality
signs replaced by inverse inequality signs, where Ω∗,T = {(t, x) ∈ R2| 0 < t <
T, 0 < x < h∗(t)}. If

h∗(0) ≥ h∗(0) and u∗(0, x) ≥ u∗(0, x) for 0 ≤ x ≤ h∗(0),

then

h∗(t) ≥ h∗(t) for t ∈ [0, T ] and u∗(t, x) ≥ u∗(t, x) for (t, x) ∈ Ω∗,T .

Remark 2.3: If (u∗, h∗) satisfies (3), h∗(0) ≥ h0 and

u∗(0, x) ≥ u0(x) for 0 ≤ x ≤ h0,

then (u∗, h∗) is called a super-solution of (FBP). Similarly, a sub-solution of
(FBP) is defined with obvious modification.

We now introduce the notion of vanishing and spreading of solutions of
(FBP).

Definition 2.4. Let (u, h) be a solution of (FBP). Then (u, h) is called a
vanishing solution if lim

t→∞
‖u(t)‖C[0,h(t)] = 0 and it is called a spreading solution

if
lim
t→∞

h(t) =∞ and lim inf
t→∞

‖u(t)‖C[0,h(t)] > 0.

As an application of the comparison theorem (Theorem 2.2), we will give
one of sufficient conditions for the spreading.

Theorem 2.5. For positive number `, let ϕ be a solution of{
dϕ′′ + f(ϕ) = 0, ϕ > 0 in (0, `),

ϕ′(0) = ϕ(`) = 0.
(4)

Suppose that (u0, h0) satisfies h0 ≥ ` and u0(x) ≥ ϕ(x) for x ∈ [0, `]. Then the
solution (u, h) of (FBP) satisfies

lim
t→∞

h(t) =∞ and lim inf
t→∞

u(t, x) ≥ v∗(x) for all x ≥ 0,

where v∗ is a minimal solution of

(SP)

{
dv′′ + f(v) = 0, v > 0 in (0,∞),

v′(0) = 0

satisfying v∗(x) ≥ ϕ(x) for all x ∈ (0, `).
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This theorem can be proved by repeating the arguments used in the proofs
of Theorem 2.11 and Corollary 2.12 in [17].

The following result gives a necessary and sufficient condition for the van-
ishing of solutions.

Theorem 2.6. Assume f ′(0) 6= 0. Then a solution (u, h) of (FBP) is vanishing
if and only if lim

t→∞
h(t) < ∞. In particular, if f ′(0) > 0, then a vanishing

solution satisfies

lim
t→∞

h(t) ≤ `∗ :=
π

2

√
d

f ′(0)
.

Proof. Let (u, h) be a solution of (FBP) such that limt→∞ h(t) <∞. Then it is
possible to prove the vanishing of the solutions, i.e, limt→∞ ‖u(t)‖C[0,h(t)] = 0
essentially in the same way as the proof of Theorem 2.10 of [17].

As to the necessity part, we will first discuss the case f ′(0) > 0. When (u, h)
is a vanishing solution, assume limt→∞ h(t) > `∗ = (π/2)

√
d/f ′(0) to derive a

contradiction. Then there exists a large number T > 0 such that h(T ) > `∗.
Here it should be noted that, for every ` > `∗ there exists a unique solution
ϕ(x; `) of (4) and that lim

`→`∗
‖ϕ(·; `)‖C[0,`] = 0. Therefore, we can find a suitable

` ∈ (`∗, h(T )) such that u(T, x) ≥ ϕ(x; `) for x ∈ [0, `]. Therefore, it follows
from Theorem 2.5 that

lim
t→∞

h(t) =∞ and lim inf
tto∞

u(t, x) ≥ v∗(x) > 0 for x > 0,

where v∗ is a suitable positive solution of (SP). This is a contradiction to the
vanishing of (u, h); so that h must satisfy limt→∞ h(t) ≤ `∗.

We next consider the case f ′(0) < 0. Note that there exist positive con-
stants η and δ such that

f(u) ≤ −δu for all u ∈ [0, η].

We define (u∗(t, x), h∗(t)) by

h∗(t) = H

(
1− 1

2
e−δt

)
and u∗(t, x) = ρe−δt cos

(
πx

2h∗(t)

)
,

where H and ρ are positive constants to be determined later. We will show
that (u∗, h∗) satisfies (3). If ρ satisfies ρ ≤ η, then

u∗t − du∗xx − f(u∗) = −δu∗ + ρe−δt · πx(h∗)′(t)

2h∗(t)2
· sin

(
πx

2h∗(t)

)
+

π2d

4h∗(t)2
u∗ − f(u∗)

≥ −δu∗ +
π2d

4h∗(t)2
u∗ + δu∗ =

π2

4h∗(t)2
u∗ > 0.



FREE BOUNDARY PROBLEMS 71

Moreover, if H satisfies H2δ ≥ 2µρπ, then

(h∗)′(t) + µu∗x(t, h∗(t)) =
Hδ

2
e−δt − πµρ

2h∗(t)
e−δt

≥ H2δ − 2πµρ

2H
e−δt > 0.

It is easy to see u∗x(t, 0) = 0 and u∗(t, h∗(t)) = 0. Since (u, h) is a vanishing
solution, we can take a sufficiently large T > 0 such that ‖u(T )‖C[0,h(T )] ≤ η.
Furthermore, choose sufficiently large H satisfying h(T ) ≤ h∗(0) = H/2 and
u(T, x) ≤ ρ cos(x/H) for 0 ≤ x ≤ h(T ). Then Theorem 2.2 allows us to
conclude

h(t+ T ) ≤ h∗(t) for t ≥ 0 and u(t+ T, x) ≤ u∗(t, x)

for t ≥ 0 and 0 ≤ x ≤ h(t + T ). The above estimates implies limt→∞ h(t) ≤
limt→∞ h∗(t) = H: so that the free boundary remains bounded.

Theorem 2.7. Assume f ′(0) 6= 0 and let (u, h) be a solution of (FBP) satisfy-
ing limt→∞ h(t) =∞. Then it holds taht for any R > 0

lim
t→∞

u(t, x) = v∗(x) uniformly in x ∈ [0, R], (5)

where v∗ is a non-increasing solution of (SP).

Proof. We consider an even extension of u(t, x) for x ∈ [−h(t), h(t)] and apply
the general convergence theorem due to Du and Lou [5, Theorem 1.1] (see
also [6]). It can be seen from limt→∞ h(t) = ∞ that u(t, x) satisfies (5) for a
nonnegative function v∗, which is a solution of

dv∗xx + f(v∗) = 0 in I := [0,∞) and v∗x(0) = 0.

Suppose v∗(x0) = 0 for some xo ∈ I. Then v∗x(x0) = 0; so that the uniqueness
of solutions for the initial value problem for second-order ordinary differen-
tial equations leads to v∗ ≡ 0 in I. Then it follows that (u, h) must be a
vanishing solution. Therefore, Theorem 2.6 implies limt→∞ h(t) < ∞, which
is a contradiction to the assumption. Thus v must satisfy v∗(x) > 0 for all
x ∈ I; so that v∗ is a solution of (SP). The non-increasing property is an easy
consequence of (ii) of Theorem 2.1.

Let S be the set of non-increasing solutions of (SP). In order to determine
the complete structure of S, we will take two types of typical examples of f :

(M) Monostable type: f ∈ C1[0,∞) and there exists a positive number u∗

such that f(0) = f(u∗) = 0 with f ′(0) > 0, f ′(u∗) < 0, f(u) > 0 for
u ∈ (0, u∗) and f(u) < 0 for u > u∗.
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(B) Bistable type: f ∈ C1[0,∞) and there exist two positive numbers u∗

and θ with 0 < θ < u∗ such that f(0) = f(θ) = f(u∗) = 0, f ′(0) <
0, f ′(u∗) < 0, f(u) > 0 for u ∈ (θ, u∗), f(u) < 0 for u ∈ (0, θ) ∪ (u∗,∞)

and

∫ u∗

0

f(u)du > 0.

When f is a monostable type of function, the phase plane analysis of (SP)
enables us to prove S = {u∗}. Then we can obtain the following result as in [4].

Theorem 2.8. Let f satisfy (M) and let (u, h) be the solution of (FBP). Then
(u, h) satisfies one of the following properties:

(i) Vanishing; lim
t→∞

h(t) ≤ (π/2)
√
d/f ′(0) and lim

t→∞
‖u(t)‖C[0,h(t)] = 0.

(ii) Spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = u∗ uniformly in x ∈ [0, R]

for any R > 0.

When f is a bistable type of function, one can see from the phase plane
analysis that S = {u∗, θ, v̂}. Here v̂ is a monotone decreasing solution of (SP)
satisfying v̂(0) = û and limx→∞ v̂(x) = 0, where û ∈ (θ, u∗) is a unique num-

ber satisfying
∫ û
0
f(u)du = 0. Furthermore, we can exclude the possibility of

limt→∞ u(t, x) = θ by usig the zero number arguments (for details, see the
proof of Theorem 3.1) . More precisely, it is possible to prove the following
(see [5]):

Theorem 2.9. Let f satisfy (B) and let (u, h) be the solution of (FBP). Then
(u, h) satisfies one of the following properties:

(i) Vanishing; lim
t→∞

h(t) <∞ and lim
t→∞

‖u(t)‖C[0,h(t)] = 0.

(ii) Spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = u∗ uniformly in x ∈ [0, R]

for any R > 0.

(iii) Transition; lim
t→∞

h(t) =∞ and lim
t→∞

u(t, x) = v̂(x) uniformly in x ∈ [0, R]

for any R > 0.
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3. Large-time behaviors of solutions for positive bistable
nonlinearity

3.1. Positive bistable nonlinearity and classification of
large-time behaviors

We will take multi-stable nonlinearity f in (FBP), that is, f has a multiple
number of positive stable equilibrium points. A typical example is given by

f(u) = ru

(
1− u

q

)
− u2

1 + u2
, with q, r > 0, (6)

which is a combination of a logistic term ru(1 − u/q) and a predation term
called Holling type III, −u2/(1 + u2). For ecological background of such f and
its analysis, see the paper of Ludwig, Aronson and Weinberger [22]. It is known
that, if q and r satisfy suitable conditions, then above f has two positive stable
equilibria and satisfies (PB) given in Section 1.

In what follows, we always assume that f satisfies (PB). Note that f(u) is
a monostable type for 0 ≤ u ≤ u∗1 and is a bistable type for u∗1 ≤ u ≤ u∗3. Our
first result is the following classification result of solutions of (FBP) based on
their large-time behaviors (see [19, Theorem 3.1]).

Theorem 3.1. Let (u, h) be the solution of (FBP). Then it satisfies one of the
following properties:

(i) Vanishing; lim
t→∞

h(t) ≤ (π/2)
√
d/f ′(0) and lim

t→∞
‖u(t)‖C[0,h(t)] = 0.

(ii) Small spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = u∗1 uniformly in x ∈
[0, R] for any R > 0.

(iii) Big spreading; lim
t→∞

h(t) =∞ and lim
t→∞

u(t, x) = u∗3 uniformly in x ∈ [0, R]

for any R > 0.

(iv) Transition; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = vdec(x) uniformly in x ∈
[0, R] for any R > 0, where vdec is a solution of (SP) satisfying

(vdec)
′(x) < 0 for x > 0 and lim

x→∞
vdec(x) = u∗1.

Proof. Let S be the set of non-increasing solutions of (SP). Using the phase
plane analysis one can show

S = {u∗1, u∗2, u∗3, vdec}.

By virtue of Theorems 2.6 and 2.7, it is sufficient to exclude the possibility
limt→∞ u(t, x) = u∗2 in order to complete the proof.
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Assuming
lim
t→∞

u(t, ·) = u∗2 uniformly in [0, R] (7)

for any R > 0, we will derive a contradiction. Let v be a periodic solution of
(SP) satisfying v(0) = maxx≥0 v(x) > u∗2. The phase plane analysis yields

u∗1 < min
x≥0

v(x) < u∗2 < max
x≥0

v(x) < u∗3.

Set w(t, x) = u(t, x)− v(x). Then

wt = dwxx + c(t, x)w,

where c(t, x) =

∫ 1

0

f ′(θu(t, x) + (1 − θ)v(x))dθ is a bounded and continuous

function. For a continuous function ϕ(x) defined in a closed interval I, we
denote by ZI(ϕ) the number of zero-points of ϕ in I. Setting I(t) = [0, h(t)]
we consider ZI(t)(w(t)). Note that w(t, h(t)) = −v(h(t)) < 0 and w(t, 0) =
u(t, 0)− v(0) < 0 for t ≥ T with sufficiently large T > 0. Then it follows from
the zero number result of Angenent [1, Theorems C and D] that t→ ZI(t)(w(t))
is finite and non-increasing for t ≥ T . However,

ZI(t2)(w(t2)) > ZI(t1)(w(t1)) for t2 > t1 ≥ T

if t2 − t1 is large because limt→∞ h(t) =∞, u satisfies (7) and v(x) is periodic
with respect to x. This result contradicts to the non-increasing property of
ZI(t)(w(t)); so that (7) never happens.

Remark 3.2: We consider (FBP) with initial condition replaced by

h(0) = h0, u(0, x) = σu∗0(x), 0 ≤ x ≤ h0,

where σ ≥ 0 is a parameter and u∗0 is a nonnegative function satisfying (2).
Denote by (uσ(t, x), hσ(t)) the solution of the above problem. By virtue of
Theorems 3.7 and 3.8 in [19] there exist two threshold numbers σ∗1 and σ∗2
(σ∗1 < σ∗2) with the following properties:

• For σ ∈ [0, σ∗1 ], (uσ, hσ) is a vanishing solution.

• For σ ∈ (σ∗1 , σ
∗
2), (uσ, hσ) is a small spreading solution.

• For σ = σ∗2 , (uσ, hσ) is a transition solution.

• For σ > σ∗2 , (uσ, hσ) is a big spreading solution.

As a result, the transition is a special solution which occurs as a borderline
behavior between the small spreading and the big spreading.
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(a) Vanishing (b) Small spreading

(c) Big spreading (d) Transition

Figure 1: Four types of large-time behaviors of u(t, x) for (FBP) are shown as
(a) vanishing, (b) small spreading, (c) big spreading and (d) transition. The
right-end point of each curve represents h(t) and moves forward as t goes on.

Numerical simulations for (FBP) are shown in Figure 1 for d = 1, µ = 0.1
and f given by (6) with q = 40/3 and r = 0.3. As to small spreading, big
spreading and transition of solutions, these simulations suggest that u(t, x)
proceeds like a “ travelling wave ” near the spreading front x = h(t) for large t.
We will investigate asymptotic behaviors of (u(t, x), h(t)) as t → ∞ in the
subsequent subsections.

3.2. Large-time behaviors of solutions and semi-wave
problem

We will study large-time behaviors of solutions of (FBP) which possess prop-
erties (ii) and (iii) of Theorem 3.1. In the case limt→∞ h(t) =∞, we infer from
the preceding numerical simulations that such a spreading solution converges
to a pair (u(t, x), h(t)) of the following form as t→∞:

h(t) = ct+H (H : constant), u(t, x) = q(h(t)− x), 0 ≤ x ≤ h(t), (8)

where c is a positive constant and q = q(z) is a positive function defined for
z ≥ 0. Substitution of (8) into the first equation of (FBP) yields

dq′′ − cq′ + f(q) = 0, q(z) > 0 for z > 0. (9)
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At x = h(t) in (FBP), we get

q(0) = 0 and µq′(0) = c. (10)

Moreover, since limt→∞ u(t, x) = u∗i (i = 1, 3) uniformly in x ∈ [0, R] for any
R > 0, q must satisfy

lim
z→∞

q(z) = u∗i (i = 1, 3). (11)

Summarizing (9), (10) and (11) we arrive at (SWP) given in Section 1. This
problem was first introduced by Du and Lou [5] and it is called a semi-wave
problem. They have shown the existence of a unique solution pair (q, c) =
(q∗, c∗) when f is a monostable type or a bistable type.

Let f satisfy (PB) and consider a small spreading solution or a big spreading
solution of (FBP). When we discuss a small (resp. big) spreading solution, the
corresponding semi-wave problem (SWP) with u∗ = u∗1 (resp. u∗ = u∗3) is
denoted by (SWP-1) (resp. (SWP-3)). The solvability of these problems has
been established by Kawai and Yamada [19, Theorem 4.1].

Proposition 3.3. (i) For every µ > 0, (SWP-1) has a unique solution pair
(q, c) = (qS , cS).

(ii) Case A: For every µ > 0, (SWP-3) has a unique solution pair (q, c) =
(qB , cB).
Case B: There exists a positive number µ∗ such that (SWP-3) has a unique
solution pair (q, c) = (qB , cB) for µ ∈ (0, µ∗), whereas (SWP-3) has no
solution for µ ∈ [µ∗,∞).

(iii) q′S(z) > 0, q′B(z) > 0 for z ≥ 0 and cB > cS when (qB , cB) exists.

The semi-wave of (SWP) is useful for the study of asymptotic behaviors of
spreading solutions as t → ∞. The following result gives a rough estimate of
the spreading speed of h(t) (see [19, Theorem 4.2]).

Proposition 3.4. Let cS , cB and µ∗ be positive constants given in Proposi-
tion 3.3.

(i) If (u, h) is a small spreading solution of (FBP), then

lim
t→∞

h(t)

t
= cS .

(ii) Let (u, h) be a big spreading solution of (FBP). Then

lim
t→∞

h(t)

t
=

{
cB if (SWP-3) has a solution pair (qB , cB),

cS if (SWP-3) has no solution pair.

(iii) If (u, h) is a transition solution of (FBP), then

lim
t→∞

h(t)

t
= cS .
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3.3. Sharp asymptotic estimates of spreading solutions

We will show that the unique solution pair of (SWP) with u∗ = u∗1 or u∗3 gives
a good approximation of any spreading solution of (FBP) for large t whenever
the corresponding semi-wave exists.

We begin with the analysis of a small spreading solution (u(t, x), h(t)) of
(FBP). The following result gives a rough estimate of (u, h) with use of (qS , uS).

Lemma 3.5. Let (u, h) be a small spreading solution of (FBP). Then there exist
positive constants δ,M1, T1 and H1 such that

h(t) ≤ cSt+H1,

u(t, x) ≤ (1 +M1e
−δt)qS(cSt+H1 − x),

for all t ≥ T1 and 0 ≤ x ≤ h(t).

Proof. Define (u∗, h∗) by{
h∗(t) = cS(t− T ) + ρ(e−δT − e−δt) +H, t ≥ T,
u∗(t, x) = (1 +Me−δt)qS(h∗(t)− x), t ≥ T, 0 ≤ x ≤ h∗(t),

where δ is a positive constant satisfying

f ′(u) ≤ −δ for u ∈ [u∗1 − η, u∗1 + η]

with some η > 0 and ρ,M, T and H are constants to be determined later. We
will show that (u∗, h∗) is a super-solution of (FBP) for t ≥ T ; that is,

u∗t ≥ du∗xx + f(u∗), t ≥ T, 0 ≤ x ≤ h∗(t), (12)

u∗x(t, 0) ≤ 0, u∗(t, h∗(t)) = 0, t ≥ T, (13)

(h∗)′(t) ≥ −µu∗x(t, h∗(t)), t ≥ T, (14)

h∗(T ) ≥ h(T ), u∗(T, x) ≥ u(T, x), 0 ≤ x ≤ h(T ). (15)

Clearly, (13) holds and, moreover,(14) is satisfied if ρδ ≥ McS . If we follow
the arguments in the work of Du, Matsuzawa and Zhou [9, Lemma 3.2], we
can prove (12) provided that ρ is sufficiently large. Finally, taking sufficiently
large T such that u(T, x) ≤ u∗1 + ε for 0 ≤ x ≤ h(T ) with sufficiently small
ε > 0 and choosing sufficiently large M and H such that

h∗(T ) = H ≥ h(T ) and u∗(T, x) = (1 +Me−δT )qS(H − x) ≥ u(T, x),

for 0 ≤ x ≤ h(T ), one can verify (15).
The application of Theorem 2.2 leads to

h(t) ≤ h∗(t) and u(t, x) ≤ u∗(t, x) (16)

for t ≥ T and 0 ≤ x ≤ h(t). Since qS(z) is strictly increasing in z ≥ 0, it is
easy to derive the assertion from (16).
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Similarly, one can also show the following rough estimate from below.

Lemma 3.6. Let (u, h) be a small spreading solution of (FBP). Then there exist
positive constants δ,M2, T2 and H2 ∈ R such that

h(t) ≥ cSt+H2,

u(t, x) ≥ (1−M1e
−δt)qS(cSt+H2 − x),

for all t ≥ T2 and 0 ≤ x ≤ cSt+H2.

For the proof of this lemma, see, e.g. [9, Lemma 3.3].

We can get sharper estimates than Lemmas 3.5 and 3.6 if we repeat the
arguments in [9] (see also [13, Proposition 1.3]).

Theorem 3.7. Let (u, h) be a small spreading solution of (FBP) and let (qS , cS)
be the solution pair of (SWP-1). Then there exists HS ∈ R such that

lim
t→∞

(h(t)− cSt) = HS and lim
t→∞

h′(t) = cS

and

lim
t→∞

sup
0≤x≤h(t)

|u(t, x)− qS(h(t)− x)| = 0.

Theorem 3.7 shows that (qS , cS) plays a very important role in the estimate
of any small spreading solution (u, h) of (FBP): cS gives an asymptotic constant
speed of the free boundary x = h(t) and a simple function q(z) is enough to
approximate u(t, x) in the form of q(h(t) − x) over the whole interval [0, h(t)]
for large t. An analogous result is also valid for any big spreading solution
when (SWP-3) has a unique solution pair (qB , cB).

Theorem 3.8. Let (u, h) be a big spreading solution of (FBP) and assume that
(SWP-3) admits a unique solution pair (qB , cB). Then there exists HB ∈ R
such that

lim
t→∞

(h(t)− cBt) = HB and lim
t→∞

h′(t) = cB

and

lim
t→∞

sup
0≤x≤h(t)

|u(t, x)− qB(h(t)− x)| = 0.

This theorem gives a sharp estimate of any big spreading solution (u(t, x), h(t))
over the whole interval [0, h(t)] when the corresponding semi-wave exists. We
will discuss its asymptotic estimate for the remaining case in the next section.
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µ = 3 µ = 10

Figure 2: Numerical simulations of (FBP) for d = 1 and f(u) = u(0.5 −
0.055u)− u2/(1 + u2) with u∗1 ≈ 0.672 and u∗3 = 6.258

4. Sharp asymptotic estimates of solutions with
propagating terrace

We will derive asymptotic estimates of a big spreading solution (u, h) of (FBP)
under the following condition

(A) Semi-wave problem (SWP-3) has no solution pair.

By Proposition 3.4 such a big spreading solution satisfies

lim
t→∞

h(t)

t
= cS ,

where cS is the speed of semi-wave qS for (SWP-1). Thus (qS , cS) will be
helpful to approximate (u(t, x), h(t)) around the spreading front x = h(t). On
the other hand,

lim
t→∞

u(t, x) = u∗3 uniformly in x ∈ [0, R]

for any R > 0. Taking account of these facts we guess that there must be a
function like a “travelling wave”, which connects u∗1 with u∗3. Numerical simula-
tions of such big spreading solutions are given in Figure 2 when f satisfies (A).
These simulations suggest the following dynamics:

A big spreading solution proceeds like a small spreading solution around the
spreading front x = h(t) and a propagating function (connecting u∗1 and u∗3)
subsequently appears with slower speed in the intermediate range.
As a candidate of such a connecting function, we will take a travelling wave

for (TWP) (see Section 1). It is known that (TWP) has a unique solution
(Q∗(z), c∗). Moreover, it follows from the result of [19, Remark 4.1] that con-
dition (A) assures

c∗ < cS . (17)

Hereafter we will study a big spreading solution (u, h) by assuming (17).
We will briefly explain the arguments developed by Kaneko, Matsuzawa and
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Yamada [13] to obtain sharp asymptotic estimates for (u(t, x), h(t)) with use
of both (qS , cS) and (Q∗, c∗).

As the first step, define

u∗(t, x) = Q∗(c∗t+H − ρe−δt − x) +Me−δt, (18)

where δ > 0 is a constant satisfying

f ′(u) ≤ −δ for u ∈ [u∗1 − η, u∗1 + η] ∪ [u∗3 − η, u∗3 + η]

with some η > 0. Then one can choose sufficiently small M > 0 and large
positive ρ,H and T such that

u∗t ≥ du∗xx + f(u∗) for t ≥ T, 0 ≤ x ≤ h(t),

u∗x(t, 0) < 0, u∗(t, h(t)) > 0 for t ≥ T,
u∗(T, x) ≥ u(T, x) for 0 ≤ x ≤ h(T ).

The comparison principle for parabolic equations yields

u(t, x) ≤ u∗(t, x)

for t ≥ T and 0 ≤ x ≤ h(t). Since Q∗(z) is strictly increasing in z, the above
estimate together with (18) allows us to show the following result (see [13,
Lemma 3.5]).

Lemma 4.1. Let (u, h) a big spreading solution of (FBP). Then there exist
positive constants δ,M1, H1 and T1 such that

u(t, x) ≤ Q∗(c∗t+H1 − x) +M1e
−δt

for all t ≥ T1 and 0 ≤ x ≤ h(t).

The second step is to derive the following rough estimate for (u, h) from
below.

Lemma 4.2. Let (u, h) be a big spreading solution of (FBP). Then there exists
constants T2 > 0 and H2 ∈ R such that

h(t) ≥ cSt+H2, u(t, x) ≥ qs(cSt+H2 − x)

for all t ≥ T2 and 0 ≤ x ≤ cSt+H2.

Proof. We define

h∗(t) = cSt+H, u∗(t, x) = q∗(cSt+H − x),
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where H is a number to be determined later. It is easy to verify

(u∗)t = d(u∗)xx + f(u∗), t > 0, 0 ≤ x ≤ h∗(t),
u∗(t, h∗(t)) = 0, t > 0,

(h∗)
′(t) = −µ(u∗)x(t, h∗(t)), t > 0.

We can choose a sufficiently large T > 0 such that

u∗(t, 0) < u∗1 < u(t+ T, 0) for t ≥ 0;

then

h∗(0) = H < h(T ), u∗(0, x) = qS(H − x) ≤ u(T, x) for 0 ≤ x ≤ H

with small H > 0. Therefore, the comparison principle allows us to derive

h∗(t) ≤ h(t+ T ), u∗(t, x) ≤ u(t+ T, x)

for t ≥ 0 and 0 ≤ x ≤ h∗(t); so that the assertion follows from the above
inequalities.

In Lemmas 4.1 and 4.2, note (17) and lim
z→−∞

Q∗(z) = u∗1. Therefore, if c

satisfies c∗ < c < cS , then u(t, ct)→ u∗1 as t→∞. More precisely, it is possible
to show the following result from Lemmas 4.1 and 4.2:

Proposition 4.3. Let (u, h) be any big spreading solution of (FBP). Then

lim
t→∞

sup
c1t≤x≤c2t

|u(t, x)− u∗1| = 0

for any c1 and c2 satisfying c∗ < c1 < c2 < cS.

Roughly speaking, Proposition 4.3 implies that u(t, x) stays at almost con-
stant u∗1 when x lies in an intermediate range [c1t, c2t] of (0, h(t)) with c∗ < c1 <
c2 < cS . Taking account of this fact we will be able to obtain a similar result
to Lemma 3.5. As the third step, one can repeat the proof of Lemma 3.5 with
some modification and prove the following lemma (see also [13, Lemma 3.9]).

Lemma 4.4. Let (u, h) be a big spreading solution of (FBP). Then for any
c ∈ (c∗, cS) there exist positive constants δ,M3, T3 and H3 ∈ R such that

h((t) ≤ cSt+H3,

u(t, x) ≤ (1 +M3e
−δt)qS(cSt+H3 − x),

for all t ≥ T3 and ct ≤ x ≤ h(t).
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Lemmas 4.2 and 4.4 yield rough estimates of any big spreading solution
u(t, x) over [ct, h(t)] for any c ∈ (c∗, cS) if t is sufficiently large. Therefore, the
arguments developed by Du, Matsuzawa and Zhou [9] are valid and allow us to
get the following sharp estimate (for details, see the proofs of (1.11) and (1.12)
in [13]).

Theorem 4.5. Let (u, h) be any big spreading solution of (FBP). Then there
exists Hs ∈ R such that

lim
t→∞

(h(t)− cSt) = HS , lim
t→∞

h′(t) = cS

and, for any c ∈ (c∗, cS),

lim
t→∞

sup
ct≤x≤h(t)

|u(t, x)− qS(h(t)− x)| = 0.

The final step is to estimate u(t, x) from below when x lies in [0, ct] for any
c ∈ (c∗, cS).

Lemma 4.6. Let (u, h) be any big spreading solution of (FBP). Then, for any
c ∈ (c∗, cS), there exist positive constants δ,M4, T4 and H4 ∈ R such that

u(t, x) ≥ Q∗(c∗t+H4 − x)−M4e
−δt

for all t ≥ T4 and 0 ≤ x ≤ ct.

For the proof of this lemma, see [13, Lemma 3.8].
Since we have established Lemmas 4.1 and 4.6, we are ready to approxi-

mate u(t, x) over [0, ct] for any c ∈ (c∗, cS) by using travelling wave (Q∗, c∗) of
(TWP). Indeed, we have the following theorem whose proof can be found in
[13, Section 5].

Theorem 4.7. Let (u, h) be any big spreading solution of (FBP). Then there
exists H∗ ∈ R such that for any c ∈ (c∗, cS)

lim
t→∞

sup
0≤x≤ct

|u(t, x)−Q∗(c∗t+H∗ − x)| = 0.

Owing to Theorems 4.5 and 4.7, we have obtained sharp asymptotic esti-
mates of any big spreading solution under assumption (A). In this situation,
the semi-wave of (SW-1) gives a good approximation of u(t, x) near the spread-
ing front x = h(t), whereas u(t, x) is sharply estimated by the travelling wave
of (TWP) over the other range in [0, h(t)]. In particular, we can say that for
large t a big spreading solution proceed at almost constant speed cS and it is
accompanied by a propagating terrace with slower speed c∗.
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Remark 4.8: It is also possible to derive sharp estimates for a transition so-
lution. Indeed, a transition solution (u, h) satisfies the same assertion as The-
orem 4.5 for any c ∈ (0, cS) and, furthermore,

lim
t→∞

sup
0≤x≤ct

|u(t, x)− vdec(x)| = 0

for any c ∈ (0, cS) (see [13, Theorem C]).

5. Concluding remarks

5.1. Free boundary problem in RN

In this subsection we will consider a free boundary problem for a reaction-
diffusion equation in RN . We focus on the problem in a radially symmetric
environment. So it is formulated in the following form for a pair of unknown
function u = u(t, r) with r = |x| (x ∈ RN ) and h = h(t):

ut = d∆u+ f(u), t > 0, 0 < r < h(t),

ur(t, 0) = u(t, h(t)) = 0, t > 0,

h′(t) = −µur(t, h(t)), t > 0,

h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,

(19)

where d, µ and h0 are positive constants, ∆u = urr + (N − 1)ur/r and u0 is
a nonnegative function satisfying (2). When f satisfies (1), it is shown by Du
and Guo [2] that (19) admits a unique global solution which possesses sim-
ilar properties to those in Theorem 2.1. Moreover, basic properties on the
comparison principle and large-time behaviors of solutions hold true as in the
one-dimensional case (see [2], [7] and [12]). In particular, if f satisfies (M)
(resp. (B)), it is also possible to show the same classification result as The-
orem 2.8 (resp. Theorem 2.9) established for N = 1. For the study of free
boundary problems for general domain, see, for instance, [3], [7] and [8].

We will investigate (19) for positive bistable nonlinearity. In addition
to (PB), we put the following condition on f :

(PB-1) f(u)/(u− u) is non-increasing for u ∈ (u, u∗3), where u ∈ (u∗2, u
∗
3) is a

unique number determined by

∫ u

u∗
2

f(s)ds = 0.

Then it is possible to prove the following classification theorem which cor-
responds to Theorem 3.1 (see [14, Theorem A]).

Theorem 5.1. Let f satisfy (PB) and (PB-1). Then the solution (u, h) of (19)
satisfies one of the following properties:
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(i) Vanishing; lim
t→∞

h(t) ≤
√
dλ1/f ′(0) and lim

t→∞
‖u(t)‖C[0,h(t)] = 0, where λ1

is the principal eigenvalue of{
−∆ϕ = λϕ in Ω := {x ∈ RN | |x| < 1},
ϕ = 0 on ∂Ω := {x ∈ RN | |x| = 1}.

(ii) Small spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, r) = u∗1 uniformly in r ∈
[0, R] for any R > 0.

(iii) Big spreading; lim
t→∞

h(t) =∞ and lim
t→∞

u(t, r) = u∗3 uniformly in r ∈ [0, R]

for any R > 0.

(iv) Transition; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, r) = Vdec(r) uniformly in r ∈
[0, R] for any R > 0, where Vdec is a decreasing solution of{

dVrr + (N − 1)Vr/r + f(V ) = 0, V (r) > 0 for r > 0,

Vr(0) = 0,
(20)

and it satisfies lim
r→∞

Vdec(r) = u∗1.

Note that (20) corresponds to stationary problem (SP) for N = 1. In
the proof of Theorem 5.1, it is important to study the set of non-increasing
solutions of (20). We need to take a different approach from the phase plane
analysis which is efficient for N = 1.

As to large-time behaviors of spreading solutions (u(t, r), h(t)) of (19), semi-
waves for (SWP) are still available in the analysis. Indeed, rough estimates of
the free boundary are given by the following result (see [14, Theorem C]).

Proposition 5.2. Assume that f satisfies (PB) and (PB-1). Let (u, h) be the
solution of (19). Then the same conclusions as Proposition 3.4 hold true.

This proposition implies that there is no difference between N = 1 and
N ≥ 2 in order to give rough estimates of h(t)→∞ as t→∞.

The dependence on the space dimension N appears in sharp estimates of
h(t) of spreading solutions. They have been obtained by Du, Matsuzawa and
Zhou [10] in the case that f satisfies (M) or (B). When f is positive bistable
nonlinearity satisfying (PB) and (PB-1), we can prove similar results for small
spreading solutions or big spreading solutions. Let (u, h) be a small spreading
solution or a big spreading solution of (19) and let the corresponding semi-wave
problem (SWP) possess a solution pair (q∗(z), c∗) for u∗ = u∗1 or u∗ = u∗3. Then
it is possible to show the following estimate ([15]):
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There exists a constant R∗ ∈ R such that

lim
t→∞
{h(t)− c∗t+ (N − 1)c∗ log t} = R∗,

lim
t→∞

sup
0≤r≤h(t)

|u(t, r)− q∗(h(t)− r)| = 0,

where c∗ = 1/(ζc∗),

ζ = 1 +
c∗

µ2
∫∞
0
{(q∗)′(z)}2e−c∗zdz

(see also [10, Theorem 4.1]). For a big spreading solution (u, h) whose corre-
sponding semi-wave problem (SWP-3) has no solution pair, we can also give
sharp estimates with use of semi-wave (qS , cS) of (SWP-1) and travelling wave
(Q∗, c∗) of (TWP):
There exist RS , RB ∈ R such that

lim
t→∞
{h(t)− cSt+ (N − 1)cS∗ log t} = RS

with cS∗ = 1/(ζcS),

ζ = 1 +
cS

µ2
∫∞
0
{(qS)′(z)}2e−cSzdz

and, for sufficiently large L > 0,

lim
t→∞

sup
cSt−L log t≤r≤h(t)

|u(t, r)− qS(h(t)− r)| = 0,

lim
t→∞

sup
0≤r≤cSt−L log t

sup

∣∣∣∣u(t, r)−Q∗
(
c∗t− N − 1

c∗
log t+RB − r

)∣∣∣∣ = 0.

For details of these results, see [15].

5.2. Free boundary problem with Dirichlet boundary
condition

In this subsection we will consider (FBP) with zero Neumann condition at
x = 0 replaced by zero Dirichlet condition. The problem is written as follows:

ut = duxx + f(u), t > 0, 0 < x < h(t),

u(t, 0) = u(t, h(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

(21)
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where f is a function satisfying (1) and u0 is a nonnegative function of class
C2[0, h0] such that

u0(0) = u0(h0) = 0 and u0 6≡ 0. (22)

Basic results such as the existence and uniqueness of global solutions (Theo-
rem 2.1) and the comparison principle (Theorem 2.2) are valid with obvious
modification (see Kaneko and Yamada [17]). The notion of vanishing and
spreading of solutions to (21) is the same as Definition 2.4. It should be noted
that the following theorem holds true in place of Theorem 2.6 (see [16] and [17]).

Theorem 5.3. Assume f ′(0) 6= 0. Then a solution (u, h) of (21) is vanishing
if and only if lim

t→∞
h(t) < ∞. Moreover, if f ′(0) > 0, a spreading solution

satisfies
lim
t→∞

h(t) ≤ π
√
d/f ′(0).

For the case lim
t→∞

h(t) =∞, it is also possible to prove the following theorem

similarly to Theorem 2.7 (see [11, Proposition 4.7]).

Theorem 5.4. Assume f ′(0) 6= 0 and let (u, h) be the solution of (21) satisfying
lim
t→∞

h(t) =∞. Then it holds that for any R > 0

lim
t→∞

u(t, x) = v∗(x) uniformly in x ∈ [0, R],

where v∗ is a bounded solution of{
dv′′ + f(v) = 0, v(x) > 0 for x ∈ (0,∞),

v(0) = 0.
(23)

We now consider positive bistable nonlinearity f , which satisfies (PB). Let
S be the set of bounded solutions of stationary problem (23). The phase plane
analysis is available to get

S = {v1, v3},

where vi is an increasing solution of (23) satisfying

lim
x→∞

vi(x) = u∗i

for each i = 1, 3. Therefore, Theorems 5.3 and 5.4 enable us to show the follow-
ing classification theorem (see Endo, Kaneko and Yamada [11, Theorem 4.1]).

Theorem 5.5. Under assumption (PB), the solution (u, h) of (21) satisfies
one of the following properties:

(i) Vanishing; lim
t→∞

h(t) ≤ π
√
d/f ′(0) and lim

t→∞
‖u(t)‖C[0,h(t)] = 0.
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(ii) Small spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = v1(x) uniformly in

x ∈ [0, R] for any R > 0.

(iii) Big spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = v3(x) uniformly in x ∈
[0, R] for any R > 0.

Remark 5.6: Differently from the classification result for the Neumann bound-
ary condition (Theorem 3.1), a transition solution does not appear as a bor-
derline one in Theorem 5.5. But small spreading solutions can be divided into
two subgroups;

(a) small spreading solutions with lim inf
t→∞

‖u(t)‖C[0,h(t)] < u∗2,

(b) small spreading solutions with lim inf
t→∞

‖u(t)‖C[0,h(t)] ≥ u∗2

(see [11, Remark 5]). We have a conjecture that a small spreading solution
in the latter subgroup exhibits a borderline behavior between small spreading
solutions in the former subgroup and big spreading solutions. For the related
problem, see the works of Liu and Lou [20, 21]. They discussed the existence
of a transition solution with a moving peak as a borderline behavior for f
satisfying (B).

In the study of large-time behaviors of solutions with limt→∞ h(t) = ∞,
semi-waves of (SWP) also play a crucial role. Indeed, we can obtain the fol-
lowing result (see [11, Theorems 5.3 and 5.5]).

Theorem 5.7. Under assumption (PB), let (u, h) be a small spreading solution
of (21) satisfying lim inf

t→∞
‖u(t)‖C[0,h(t)] < u∗2 and let (qS , cS) be the solution pair

of (SWP-1). Then there exists hS ∈ R such that

lim
t→∞
{h(t)− cSt} = hS and lim

t→∞
h′(t) = cS

and
lim
t→∞

sup
h(t)/2≤x≤h(t)

|u(t, x)− qS(h(t)− x)| = 0.

Moreover, for any c ∈ (0, cS),

lim
t→∞

sup
0≤x≤ct

|u(t, x)− v1(x)| = 0.

Remark 5.8: Let (u, h) be a small spreading solution of (21) sch that u satisfies
lim inft→∞ ‖u(t)‖C[0,h(t)] ≥ u∗2. Then u(t, x) has a moving peak at x = x∗t such
that u(t, x∗t ) ≥ x∗2−δ with some δ > 0 for sufficiently large t. On the other hand,
it satisfies limt→∞ u(t, x) = v1(x) < u∗1 for each x ∈ [0,∞). Therefore, u(t, x)
cannot be estimated by only qS and v1. Approximation of such a spreading
solution is an interesting open problem.
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When (u, h) is a big spreading solution of (21) and (SWP-3) has a solution
pair (qB , cB), it is seen from [18] that similar results to Theorem 5.7 hold true
(see also [11, Theorems 5.4 and 5.5]).

When (SWP-3) has no solution pair, a big spreading solution will be ap-
proximated with use of semi-wave (qS .cS) of (SWP-1), travelling wave (Q∗, c∗)
of (TWP) and stationary solution v3 of (23). We will discuss this problem
elsewhere.
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Abstract. Bifurcation is a very useful method to prove the existence
of positive solutions for nonlinear elliptic equations. The existence of
an unbounded continuum of positive solutions emanating from zero or
from infinity can be deduced in many problems. In this paper, we show
the applicability of this method in some problems where the classical
bifurcation results can not be directly applied.

Keywords: Bifurcation, positive solutions, family of supersolutions.
MS Classification 2010: 35J60, 35B32, 35A16.

1. Introduction

Consider a nonlinear elliptic problem{
−∆u = λu+ b(x)g(u) in Ω,
u = 0 on ∂Ω,

(1)

where Ω ⊂ IRN , N ≥ 1, is a bounded and regular domain, g : IR 7→ [0,∞) is a
continuous map, b ∈ C(Ω) and λ is a real parameter.

The bifurcation method is one of the most well-known tools in order to study
(nonnegative and nontrivial) solutions of (1). In fact, the bifurcation method
provides the existence of an unbounded continuum C0 ⊂ IR×C1

0 (Ω) of solutions
of (1) emanating from the trivial solution at λ = λ1, where λ1 stands for the
principal eigenvalue of the Laplacian under homogeneous Dirichlet boundary
conditions, under the condition

lim
s→0+

g(s)

s
= 0 (H0)
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see for instance [25] and [19].
In a similar way, if g verifies

lim
s→+∞

g(s)

s
= 0 (H∞)

then an unbounded continuum C∞ of solutions of (1) emanates from infinity at
λ = λ1, [26]. In both cases, the results are similar if the limits are finite and
not necessarily zero, see [4]. We point out that when (H0) and (H∞) are both
satisfied, C0 and C∞ do not have necessarily to coincide, see for instance [6].

We assume now that g verifies only (H0) and not (H∞). Then, the global
behaviour of the continuum C0 depends strongly on g and the sign of b. Let us
summarize the main results in this case. For that, we need to introduce some
notation. Define the sets

B+ := {x ∈ Ω : b(x) > 0},
B− := {x ∈ Ω : b(x) < 0},
B0 = int(Ω \ (B+ ∪B−)),

for which we will assume for simplicity that they are regular sets and that B0

is also connected.
Given a subdomain D ⊂ Ω, we denote by λD1 the principal eigenvalue of the

Laplacian under homogeneous Dirichlet boundary conditions. Moreover, given
(λ, u) ∈ C0 we define ProjIR(λ, u) = λ.

Finally, assume that there exists p > 1 such that

lim
s→+∞

g(s)

sp
= g0 > 0. (S∞)

Hence, when g verifies only (H0) and not (H∞), the main results can be sum-
marized as follows:

1. If b(x) ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR, then ProjIR(C0) = (λ1,+∞)
and as consequence there exists at least a positive solution for λ > λ1.

2. If b ≤ 0, b 6= 0 in Ω and B0 6= ∅, then ProjIR(C0) = (λ1, λ
B0
1 ). In this

case, a bifurcation to infinity appears at λ = λB0
1 . Moreover, there exists

at least a positive solution for λ ∈ (λ1, λ
B0
1 ).

3. Assume that b changes sign, (S∞) and that p < p∗, for some p∗ < (N +
2)/(N − 2). Then, (−∞, λ1) ⊂ ProjIR(C0) ⊂ (−∞, λ), for some λ < ∞.
In this case, there exists at least a positive solution for λ < λ1.

There is a large literature on the above problem. Let us focus on those papers
that mainly use the bifurcation technique to get the results. Thanks to the a
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priori bounds and the non-existence of positive solutions for λ ≤ λ1, the case
b(x) ≤ b1 < 0 is the simplest one. For the case b < 0 and B0 6= ∅ we refer to [21]
as a general reference, see also [3, 14, 15, 16, 23] and the references therein.
For the case b changing sign, see for instance [2, 8, 22].

A similar study could be done if g verifies (H∞) and not (H0). However,
in this case, the behaviour of C∞ is less known in general. Let us focus on the
particular case g(u) = uq, 0 < q < 1. Hence, we have the following results:

1. If b ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR, then ProjIR(C∞) = (λ1,+∞).

2. If b(x) ≥ b0 > 0 for all x ∈ Ω for some b0 ∈ IR, then ProjIR(C∞) =
(−∞, λ1).

See for instance [7, 12, 13, 24, 26].
In this paper, our main goal is to study the set of nonnegative and nontrivial

solutions of (1) when conditions (H0) and (H∞) are not fullfilled. For that, we
are going to study the following specific equation{

−∆u = λu+ b(x)(uq + up) in Ω,
u = 0 on ∂Ω,

(2)

where
0 < q < 1 < p

although most of the results obtained here are also true for more general set of
functions.

Problem (2) can be included in a more general problem{
−∆u = λu+ a(x)uq + b(x)up in Ω,
u = 0 on ∂Ω,

(3)

for a and b verifying several structural assumptions. Problem (3) has been
analyzed in [1] when b(x) = γ ≥ 0 under homogeneous Neumann boundary
conditions. In [10] the author studied (3) when b changes sign and some further
conditions on a and b. The author proved the existence of two nonnegative and
nontrivial solutions when λ < λ∗ for some λ∗ ∈ IR. First, the sub-supersolution
method is used to prove the existence of a solution, which is a local minimum
of the associated functional. Finally, using mainly the mountain pass theorem
the existence of the second solution is shown. The case λ = 0 and a(x) = γc(x),
regarding now γ as a real parameter, has been studied for many authors from
the pioneering work [5], see for instance [9, 11, 18] and references therein.

We will study (2) for different conditions on b using bifurcation methods.
In the first results, we deal with the case b changing sign and b negative,
respectively. In both cases, we can not apply directly the bifurcation method,
but we can consider a truncated problem where the bifurcation method can be
applied and then use a compactness method. Our main results can be stated
as follows (see Figure 1):
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Figure 1: Minimal bifurcation diagrams of (2) in the cases b changing sign and
b negative, respectively.

Theorem 1.1. Assume that 0 < q < 1 < p.

1. Assume that b changes sign and that for x close ∂B+,

b+(x) ≈ [dist(x, ∂B+)]γ , γ ≥ 0,

and

1 < p < min{(N + 2)/(N − 2), (N + 1 + γ)/(N − 1)}. (4)

Then, there exists λ∗ ∈ IR such that for (2) possesses at least two non-
negative and nontrivial solutions for λ < λ∗.

2. Assume that b(x) ≤ b1 < 0 for all x ∈ Ω and for some b1 ∈ IR. Then,
there exists λ∗ ∈ IR such that for (2) possesses at least two nonnegative
and nontrivial solutions for λ > λ∗.

Surprisingly, in the case b ≤ 0 and B0 6= ∅, we obtain the existence of two
continua bifurcating from the trivial solution and from infinity at the same
point λ = λB0

1 . The main result is (see Figure 2):

Theorem 1.2. Assume that b ≤ 0, b 6= 0 in Ω and B0 6= ∅. If λ ≤ λ1, (2) does
not possess nonnegative and nontrivial solutions. Moreover:

1. From the trivial solution emanates at λ = λB0
1 an unbounded continuum

C0 ⊂ IR×L∞(Ω) of nonnegative and nontrivial solutions of (2). Moreover,
λB0

1 is the unique bifurcation point from the trivial solution.

2. λ = λB0
1 is a bifurcation point from infinity of nonnegative and nontrivial

solutions, and it is the only one. Moreover, there exists an unbounded
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Figure 2: Minimal bifurcation diagrams of (2) when b ≤ 0 and B0 6= ∅. In
the first case both continua C0 and C∞ are different; in the second one both
coincide.

continuum C∞ of nonnegative and nontrivial solutions of (2) such that

D∞ =

{
(λ, u) : u 6= 0,

(
λ,

u

‖u‖2∞

)
∈ C∞

}
∪ {(λB0

1 , 0)}

is connected and unbounded.

In this case, we are not able to ascertain the global behaviour of these
continua, mainly to the lack of the strong maximum principle in (2).

An outline of this work is as follows: Section 2 contains some properties of
the principal eigenvalue of an elliptic problem. Section 3 is devoted to show
the relative position between a family of supersolutions and a continuum of
solutions of a nonlinear elliptic problem. In Section 3 we study in detail the
truncated problems using the bifurcation method. In Sections 4 and 5 the main
results are proved.

2. Eigenvalue problems

In this section we recall some useful properties of elliptic eigenvalue problems.
Given a subdomain D ⊂ Ω we consider{

−∆u+m(x)u = λu in D,
u = 0 on ∂D,

(5)

where m ∈ L∞(Ω). The following result is well-known (see [20], where a
detailed study of (5) and more general eigenvalue problems can be found)
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Lemma 2.1. There exists a principal eigenvalue of (5), denoted by λD1 (−∆+m).
It is simple and isolated, and it is the only one whose eigenfunction associated
can be chosen to be positive in D. If we denote by ϕ1 a positive eigenfunction
associated to λD1 (−∆ +m), then ϕ1 ∈ C1,α(D), α ∈ (0, 1) and ∂ϕ1/∂n < 0 on
∂D where n is the outward unit vector normal to ∂D.

Moreover, the following properties hold:

1. Asume that m changes sing. Then t 7→ λD1 (−∆ + tm) is continuous,
concave and

lim
t→±∞

λD1 (−∆ + tm) = −∞.

2. Assume that m(x) ≤ m0 < 0 for all x ∈ D. Then, t 7→ λD1 (−∆ + tm) is
continuous, decreasing and

lim
t→±∞

λD1 (−∆ + tm) = ∓∞.

When D = Ω, we omit the superscript and we denote λ1(−∆ + m) =
λΩ

1 (−∆ +m). Moreover, when m ≡ 0 we simply write λD1 instead of λD1 (−∆).

3. Relative position between a subcontinuum of solutions
and a continuous family of supersolution

The main goal of this section is to generalize some results of [15]. Consider the
general elliptic problem {

−∆u = f(x, u) in Ω,
u = 0 on ∂Ω,

(6)

where f : Ω × IR 7→ IR is a continuous function and locally Lipschitz in the
second variable.

We define the positive cone in C1(Ω)

Q := {u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω},

whose interior and exterior are

int(Q) = {u ∈ C1(Ω) : u(x) > 0 for all x ∈ Ω},

and

ext(Q) = C1(Ω) \ Q.

We have the following result
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Lemma 3.1. Let u ∈ C1(Ω) be a supersolution of (6) with u > 0 on ∂Ω and
u ∈ C1

0 (Ω) a solution of (6). Then,

u− u 6∈ ∂Q.

Proof. By contradiction assume that u− u ∈ ∂Q = Q \ int(Q). Then,

w(x) = u(x)− u(x)

verifies that w(x) ≥ 0 for all x ∈ Ω and w(x0) = 0 for some x0 ∈ Ω. Observe
that, {

−∆w +Mw ≥ f(x, u) +Mu− (f(x, u) +Mu) ≥ 0 in Ω,
w > 0 on ∂Ω,

for some M > 0 large enough. The strong maximum principle asserts that
w(x) > 0 for all x ∈ Ω. This is a contradiction.

The main result of this section reads as follows:

Theorem 3.2. Let C be a subcontinuum of solutions C ⊂ I × C1
0 (Ω) of (6),

where I ⊂ IR is a real interval. Let U : I 7→ C1(Ω) a continuous family
of supersolutions of (6) with U(λ) > 0 on ∂Ω. If for some (λ0, u0) ∈ C,
u0 ≤ U(λ0), then u < U(λ) for all (λ, u) ∈ C.

Proof. Consider the continuous map T : I × C1(Ω) 7→ C1(Ω) given by

T (λ, u) := U(λ)− u. (7)

Since T is continuous, then T (C) is connected. By Lemma 3.1 we conclude that
T (C) ∩ ∂Q = ∅. Then, either T (C) is completely inside int(Q) or completely
outside. Since T (λ0, u0) ∈ int(Q), we deduce that T (C) ⊂ int(Q).

In fact, from the proof of Theorem 3.2, we obtain:

Corollary 3.3. Let C ⊂ I ×C1
0 (Ω) a subcontinuum of solutions of (6) and T

the map defined in (7). Then, either

1. T (C) ⊂ int(Q), and therefore, u < U(λ), or

2. T (C) ⊂ ext(Q).
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4. Study of the truncated problems

For δ > 0 we define

fδ(s) :=

{
δq−1s if s ∈ [0, δ],
sq if s > δ.

Let us consider now the truncated problem{
−∆u = λu+ b(x)(fδ(u) + up) in Ω,
u = 0 on ∂Ω.

(8)

We point out that the nonlinear term is locally Lipschitz continuous in the
second variable, and then by the strong maximum principle, any nonnegative
and nontrivial solution of (8) is positive in all Ω.

4.1. b changes sign

First, we prove a non-existence result.

Lemma 4.1. Consider (λ, u) a positive solution of (8). Then

λ ≤ λ for some λ <∞.

Moreover, if B0 6= ∅, then
λ ≤ λB0

1 .

Proof. Take a ball B ⊂ B+ such that b(x) ≥ b0 > 0 for x ∈ B. Let ϕB1 be a
positive eigenfunction associated to λB1 and consider

ϕ =

{
ϕB1 in B,
0 in Ω \B.

Since ϕ ∈ H1
0 (Ω), then on multiplying (8) by ϕ and using that ∂ϕB1 /∂n < 0 on

∂B, we deduce that

0 ≥
∫
B

(
λ− λB1 + b0

fδ(u) + up

u

)
uϕB1 ,

which is a contradiction for λ large, for instance, for λ ≥ λB1 .
Assume now that B0 6= ∅. Let ϕB0

1 be a positive eigenfunction associated
to λB0

1 and consider

ϕ =

{
ϕB0

1 in B0,
0 in Ω \B0.

Now, we can follow the previous argument and conclude that

λ ≤ λB0
1 .
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In the following theorem we show a priori bounds for the solutions of (8).
In the first part, we obtain a priori bounds with respect to the parameter λ,
and then, for a fix λ, with respect to δ. These results will be crucial in order
to pass to the limit as δ → 0. For its proof, we will closely follow [2].

Theorem 4.2. Assume that for x close ∂B+,

b+(x) ≈ [dist(x, ∂B+)]γ , γ ≥ 0,

and

1 < p < min{(N + 2)/(N − 2), (N + 1 + γ)/(N − 1)}. (9)

1. Then, for every bounded interval Λ ⊂ IR there exists a positive constant
M such that

‖u‖∞ ≤M

for any positive solution (λ, u) of (8), with λ ∈ Λ.

2. Fix λ ∈ IR and consider a sequence δn → 0. Denote by un a positive
solution of (8). Then, there exists a positive constant C > 0 such that

‖un‖∞ ≤ C.

Proof. 1. This paragraph follows by Theorem 4.3 in [2].

2. In this case we can follow again the proof of Theorem 4.3 in [2], using a
Gidas-Spruck argument [17] taking into account that

fδ(u) ≤ uq.

We are ready to show the main result in this case (see Figure 3):

Theorem 4.3. Assume that b changes sign, 0 < q < 1 < p and p verifying
(9). Then, there exists an unbounded continuum Cδ in IR × C1

0 (Ω) of positive
solutions of (8) emanating from u ≡ 0 at

λ = λ1(δ) := λ1(−∆− b(x)δq−1).

For any δ < 1.

1. There exists λ+
1 (δ) < λ1(δ) such that (8) does not possess positive solution

(λ, u) for λ ≤ λ+
1 (δ) with ‖u‖∞ ≤ δ.
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Figure 3: Minimal bifurcation diagram of (8) when b changes sign.

2. There exist a real value λ∗ ∈ IR and two continuous families of su-
persolutions u+, U+ : (−∞, λ∗) 7→ C1(Ω), all independent of δ, with
u+(λ) > 0, U+(λ) > 0 on ∂Ω. Moreover, u+(λ) < U+(λ) for λ < λ∗ and
u+(λ∗) = U+(λ∗). Furthermore,

u+(λ)→ 0 and U+(λ)→ +∞ in L∞(Ω) as λ→ −∞.

3. For any λ ∈ (λ1(δ), λ∗) there exist at least two solutions u+
δ and U+

δ of
(8) with (λ, u+

δ ), (λ,U+
δ ) ∈ Cδ such that

u+(λ)− u+
δ ∈ int(Q) and U+(λ)− U+

δ ∈ ext(Q).

Proof. Since

lim
s→0+

fδ(s)

s
= δq−1,

it follows the existence of an unbounded continuum Cδ in IR×C1
0 (Ω) of positive

solutions of (8) emanating from the trivial solution at λ = λ1(−∆−b(x)δq−1) =
λ1(δ).

Thanks to Lemma 4.1 and the first paragraph of Theorem 4.2, we conclude
the existence of λ+ ∈ IR such that

(−∞, λ+) ⊂ ProjIR(Cδ) ⊂ (−∞, λ). (10)

For any 0 < δ < 1 consider a positive solution u of (8) such that ‖u‖∞ ≤
δ < 1. Observe that up ≤ u because p > 1. Then,

−∆u = λu+ b(x)(fδ(u) + up) = λu+ b(x)(δq−1u+ up) ≤ u(λ+ bM (δq−1 + 1)),
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where bM = maxx∈Ω b(x), and hence

λ ≥ λ1(−∆− bM (δq−1 + 1)) = λ1 − bM (δq−1 + 1).

It suffices to take
λ+

1 (δ) := λ1 − bM (δq−1 + 1).

We now build the families of supersolutions. Notice that K > 0 is a super-
solution of (8) if

0 ≥ λK + b(x)(fδ(K) +Kp).

Observe that

b(x)(fδ(K)+Kp) ≤ bM (δq−1Kχ{K≤δ}+K
qχ{K>δ}+K

p) ≤ bM (δq+Kq+Kp).

Using now that δ < 1, we have that K is supersolution of (8) if

bM (K−1 +Kq−1 +Kp−1) ≤ −λ.

The function
h(x) := bM (x−1 + xq−1 + xp−1)

attains a minimum at xmin > 0, h(xmin) = h0 > 0 and h′(x) < 0 if x < xmin
while that h′(x) > 0 if x > xmin. Then, taking λ∗ = −h0 for any λ < λ∗ there
exist two positive constants Ki, i = 1, 2, such that h(Ki) = −λ, with K1 < K2

and K1(λ)→ 0 and K2(λ)→ +∞ as λ→ −∞. Then, it suffices to take

u+(λ) = K1(λ), U+(λ) = K2(λ).

Now, we apply Theorem 3.2 with I = (−∞, λ∗]. By (10), the nonexistence of
positive solutions with ‖u‖∞ ≤ δ for λ ≤ λ+

1 (δ), that Cδ bifurcates at λ = λ1(δ)
and u+(λ1(δ)) > 0, it follows the existence of a positive solution u+

δ of (8) for
any λ ∈ (λ1(δ), λ∗] with (λ, u+

δ ) ∈ Cδ such that

u+(λ)− u+
δ ∈ int(Q).

Moreover, we can conclude the existence of a positive solution of (8) for some
λ > λ∗.

Now, we claim that there exists a subcontinuum Dδ ⊂ Cδ such that

U+(λ)− U+
δ ∈ ext(Q) (λ,U+

δ ) ∈ Dδ, λ ∈ (−∞, λ∗]. (11)

It is already known the existence of positive solutions (λ, u) ∈ Cδ of (8) for
all λ ∈ (−∞, λ∗]. Moreover, it is not posible that u+(λ) − u ∈ int(Q) for all
(λ, u) ∈ Cδ. Hence, there exists (λ0, u0) ∈ Cδ such that u+(λ0)− u0 ∈ ext(Q).
Thus, from Corollary 3.3, there exists a subcontinuum Dδ such that u+(λ)−u ∈
ext(Q) for all (λ, u) ∈ Dδ. Again, by Corollary 3.3, this subcontinuum has two
possibilities, either
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1. U+(λ)− u ∈ ext(Q) for all (λ, u) ∈ Dδ, or

2. U+(λ)− u ∈ int(Q) for all (λ, u) ∈ Dδ.

We show that the second possibility is not possible, proving the claim (11).
Indeed, if U+(λ)− u ∈ int(Q) for all (λ, u) ∈ Dδ, since u+(λ)− u ∈ ext(Q) for
all (λ, u) ∈ Dδ, then we have for λ = λ∗ that

U+(λ∗)− uλ∗ ∈ int(Q), u+(λ∗)− uλ∗ ∈ ext(Q),

which is impossible because U+(λ∗) = u+(λ∗). This completes the proof.

4.2. b(x) ≤ b1 < 0 for all x ∈ Ω

First, we show a necessary condition on λ for the existence of positive solution
of (8).

Lemma 4.4. Assume b(x) ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR and consider
(λ, u) a positive solution of (8). Then,

λ ≥ λ1.

Proof. In this case, we have that −∆u ≤ λu in Ω, whence we deduce the
result.

With respect to the a priori bounds, we have:

Lemma 4.5. Assume b(x) ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR and consider
(λ, u) a positive solution of (8). Then, there exists C(λ) > 0 such that

‖u‖∞ ≤ max{δ, C(λ)}. (12)

Proof. Let xM ∈ Ω be such that uM = u(xM ) = maxx∈Ω u(x). Assume that
uM > δ. Then,

λuM + b(xM )(uqM + upM ) ≥ 0,

and hence
−bL(uq−1

M + up−1
M ) ≤ λ,

where bL = minx∈Ω b(x). This finishes the result.

Our main result is the following (see Figure 4):

Theorem 4.6. Assume that b(x) ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR.
Then, there exists an unbounded continuum Cδ in IR× C1

0 (Ω) of positive solu-
tions of (8) emanating from u ≡ 0 at

λ = λ1(δ) := λ1(−∆− b(x)δq−1).

Moreover, there exists δ0 such that for 0 < δ < δ0, we have:
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Figure 4: Minimal bifurcation diagram of (8) when b is negative.

1. The existence of λ−1 (δ) > λ1(δ) such that (8) does not possess positive
solution (λ, u) for λ ≥ λ−1 (δ) with ‖u‖∞ ≤ δ.

2. There exist a real value λ∗ ∈ IR, independent of δ, and two continuous
families of supersolutions u−, U− : [λ∗,Λ(δ)] 7→ C1(Ω) with u−, U− > 0
on ∂Ω, where Λ(δ) = δq−1 + δp−1. Such families satisfy

u−(λ) < U−(λ) for λ ∈ [λ∗,Λ(δ)] and u−(λ∗) = U−(λ∗), u−(Λ(δ)) = δ.

Furthermore, U−(Λ(δ))→ +∞ and u−(Λ(δ))→ 0 in L∞(Ω) as δ → 0.

3. For λ ∈ (λ∗, λ1(δ)) there exist at least two solutions u−δ and U−δ of (8)
such that

u−(λ)− u−δ ∈ int(Q) and U
−
δ − U−δ ∈ ext(Q).

Proof. The proof is rather similar to the one of Theorem 4.3. We point out
only the main differences.

Assume that ‖u‖∞ ≤ δ, then

−∆u = λu+ b(x)(δq−1u+ up) ≥ λu+ b(x)(δq−1 + 1)u.

Therefore
λ ≤ λ−1 (δ) := λ1(−∆− b(x)(δq−1 + 1)).

Taking K > 0, we have that K is a supersolution of (8) provided that

hδ(K) := (δq−1χ{K≤δ} +Kq−1χ{K>δ} +Kp−1) ≥ λ

−bM
.



104 W. CINTRA ET AL.

Observe that hδ(K) can be rewritten as

hδ(K) =

{
δq−1 +Kp−1 if K ≤ δ,
Kq−1 +Kp−1 if K > δ.

A detailed study of hδ(K) leads to the result. Indeed, since the infimum of the
map x 7→ h(x) := xq−1 + xp−1 is attained in xmin = ((p − 1)/(1 − q))1/(p−q)

and its value is h(xmin) = h0 > 0, then, for δ small, xmin is also the minimum
of hδ(K). Then, for δ small, we have that the function hδ has the following
properties:

1. x ∈ [0, δ] 7→ hδ(x) ∈ [δq−1, δq−1 + δp−1] is increasing.

2. x ∈ [δ, xmin] 7→ hδ(x) ∈ [h0, δ
q−1 + δp−1] is decreasing.

3. x ∈ [xmin,+∞) 7→ hδ(x) ∈ [h0,+∞) is increasing.

Hence, taking Λ(δ) = δq−1 + δp−1, for

λ

−bM
∈ [h0,Λ(δ)],

there exist K1(λ) < K2(λ) such that hδ(Ki(λ)) = λ
−bM with δ < K1(λ) <

K2(λ). In fact, observe that in this region, hδ(x) = xq−1 + xp−1, and therefore
Ki(λ) does not depend on δ. Moreover,

K1(λ)→ δ as −λ/bM → Λ(δ).

5. Proof Theorem 1.1

1. Let us fix λ < λ∗. By Lemma 2.1, λ1(δ) → −∞ as δ → 0. Hence,
there exists δ0 such that for δ ≤ δ0 we have that λ1(δ) < λ. Then,
λ ∈ (λ1(δ), λ∗)) and by Theorem 4.3 there exist two positive solutions,
u+
δ < U+

δ of (8) for δ ≤ δ0.

On the other hand, thanks to the a priori bound given by the second
paragraph of Theorem 4.2, we get that ‖U+

δ ‖∞ ≤ M for a constant M
that does not depend on δ. Observe that

fδ(U
+
δ ) ≤ (U+

δ )q,

and then {U+
δ } is bounded in W 2,r(Ω) for any r > 1. Hence, we can pass

to the limit and conclude that U+
δ → U+

0 in C1(Ω) as δ → 0, with U+
0
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a nonnegative solution of (2). Moreover, since U+(λ)− U+
δ ∈ ext(Q) for

all δ ≤ δ0, it follows the existence of x0 ∈ Ω such that

U+
0 (x0) ≥ U+(λ)(x0) > 0. (13)

Hence, U+
0 is a nonnegative and nontrivial solution of (2).

On the other hand, since u+
δ < u+(λ) we can conclude that u+

δ → u+
0 ≥ 0

in C1(Ω) as δ → 0. We will prove that u+
0 6= 0. Assume by contradiction

that u+
δ → 0 in C1(Ω). Take a ball B ⊂ B+ such that b(x) ≥ b0 > 0

in B. Since λ is fixed, let us take M large enough such that

λB1 − λ ≤ b0M.

For this M , let us take δ small such that uqδ ≥Muδ and

λB1 − λ ≤ b0 min{δq−1,M}.

On multiplying (8) by ϕB1 and integrating in B, we obtain

−
∫
B

∆u+
δ ϕ

B
1 = λ

∫
B

u+
δ ϕ

B
1 +

∫
B

b(x)(fδ(u
+
δ ) + (u+

δ )p)ϕB1 .

Then,

λB1

∫
B

u+
δ ϕ

B
1 +

∫
∂B

∂ϕB1 /∂nu
+
δ > λ

∫
B

u+
δ ϕ

B
1

+ b0

∫
B

(
δq−1u+

δ χ{u+
δ ≤δ}

+Mu+
δ χ{u+

δ >δ}
)
ϕB1 .

Using that ∂ϕB1 /∂n < 0 on ∂Ω, we conclude that

λB1 > λ+ b0 min{δq−1,M},

a contradiction. Hence, u+
0 is a nontrivial and nonnegative solution of (2).

Moreover, since

u+
0 ≤ u+(λ) < U+(λ),

and (13), it follows that u+
0 6= U+

0 . Thus, there exist at least two positive
solutions of (2).

2. Assume that b(x) ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR. Let us fix
λ > λ∗. Let us take δ0 > 0 small such that

λ < min{λ1(δ),Λ(δ)} for any δ ≤ δ0.
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Observe that this is possible thanks to the expression of Λ(δ) and Lem-
ma 2.1.

Then, by Theorem 4.6 there exist two positive solutions u−δ < U−δ of (8).
With a similar argument to the one used in the first paragraph, we can
show that U−δ → U−0 in C1(Ω) as δ → 0, where U−0 is a nonnegative
solution of (2) and U−0 6= 0 in Ω.

On the other hand, we have that u−δ → u−0 ≥ 0 in C1(Ω) as δ → 0 and
u−0 6= 0. Indeed, arguing by contradiction, assume that u−δ → 0 in C1(Ω).
Then, for M > 0 we have that for 0 < δ close to zero that (u−δ )q ≥Mu−δ .
Hence,

−∆u−δ ≤ λu
−
δ + bM

(
δq−1u−δ χ{u−

δ ≤δ}
+ (u−δ )qχ{u−

δ >δ}
)

= (λ+ bM min{δq−1,M})u−δ ,

whence

λ1 ≤ λ+ bM min{δq−1,M},

again a contradiction for M large and δ sufficiently close to zero.

6. The case with bifurcation

Finally, we deal with the case b ≤ 0, b 6= 0 in Ω and B0 6= ∅. For that, we
will prove directly that from the trivial solution and from infinity emanate
unbounded continua of nonnegative and nontrivial solutions of (2).

We will use the Leray-Schauder degree of Kλ in Bρ := {u ∈ C(Ω) : ‖u‖∞ <
ρ}, with respect to zero, denoted by deg(Kλ, Bρ). The isolated index of u of
Kλ is denoted by i(Kλ, u). Let us define the map

Kλ : C0(Ω)→ C0(Ω); Kλ(u) := u− T (λ, u)

where

T (λ, u) := (−∆)−1(λu+ + b(x)((u+)q + (u+)p)),

u+ := max{u, 0}, C0(Ω) := {u ∈ C(Ω) : u = 0 on ∂Ω} and (−∆)−1 denotes
the inverse of the laplacian-operator under homogeneous Dirichlet boundary
conditions.

It is easy to show that u is nonnegative solution of (2) if and only if u is
zero of the map Kλ. Moreover, by the standard regularization properties of T ,
T is a compact operator on C0(Ω).
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6.1. Bifurcation from zero

Lemma 6.1. If λ < λB0
1 , then i(Kλ, 0) = 1.

Proof. Define the map H1 : [0, 1]× C0(Ω)→ C0(Ω) by

H1(t, u) = (−∆)−1(t(λu+ + b(x)((u+)q + (u+)p))).

We show now that H1 is an admisible homotopy, for which it is sufficient to
show that there exists γ > 0 such that

u 6= H1(t, u) ∀u ∈ Bγ , u 6= 0 and t ∈ [0, 1].

Assume that there exist un ∈ C0(Ω)\{0} with ‖un‖∞ → 0 and tn ∈ [0, 1], such
that

un = H1(tn, un).

This is,

−∆un = tn(λu+
n + b(x)((u+

n )q + (u+
n )p)) in Ω, un = 0 on ∂Ω.

On multiplying the above equality by u−n := min{un, 0} and integrating in Ω,
we infer that un ≥ 0 in Ω.

Let us define
zn =

un
‖un‖2

.

Then, zn verifies

−∆zn = tn(λzn + b(x)(‖un‖q−1
2 zqn + ‖un‖p−1

2 zpn)) in Ω, zn = 0 on ∂Ω. (14)

Since b ≤ 0, on multiplying the above equality by zn and integrating in Ω, we
obtain that

‖zn‖H1
0
≤ C for some C > 0,

and hence, up a subsequence,

zn ⇀ z in H1
0 (Ω),

zn → z in L2(Ω),

for some z ∈ H1
0 (Ω), z ≥ 0 and ‖z‖2 = 1.

Next, we show that
tn‖un‖q−1

2 →∞. (15)

Assume that for a subsequence tn‖un‖q−1
2 → r∗ ∈ [0,∞). In such case, since

‖un‖2 → 0 and q < 1 we obtain that tn → 0. Then, passing to the limit in (14),
we obtain that

−∆z = r∗b(x)zq in Ω, z = 0 on ∂Ω,
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whence we deduce that z = 0, a contradiction.
We have that z ≡ 0 in Ω\B0. Indeed, assume that z(x) > 0 in D ⊂ Ω\B0.

Take ϕ ∈ C∞c (D), then

−
∫
D

zn∆ϕ = tn

(
λ

∫
D

znϕ+ ‖un‖q−1
2

∫
D

b(x)zqnϕ+ ‖un‖p−1
2

∫
D

b(x)ϕzpn

)
.

Since zn → z in L2(Ω), we deduce that∫
D

b(x)zqnϕ→
∫
D

b(x)zqϕ < 0,

whence using (15)

−
∫
D

zn∆ϕ→ −∞,

a contradiction.
For any ϕ ∈ H1

0 (B0), prolongating this function by zero, and passing to the
limit in (14), we get that ∫

B0

∇z · ∇ϕ = t∗λ

∫
B0

zϕ,

where tn → t∗ ∈ [0, 1], and then

t∗λ = λB0
1 .

Hence, λ ≥ λB0
1 , a contradiction.

Take ε ∈ (0, δ], we have

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H1(1, ·), Bε)
= deg(I −H1(0, ·), Bε) = deg(I,Bε) = 1,

where I denotes the identity map. The proof is complete.

Lemma 6.2. If λ > λB0
1 , then i(Kλ, 0) = 0.

Proof. Let us take a positive and regular function ϕ > 0 in Ω. Let us define
the map H2 : [0, 1]× C0(Ω)→ C0(Ω) by

H2(t, u) = (−∆)−1(λu+ + b(x)((u+)q + (u+)p) + tϕ).

We show now that H2 is an admisible homotopy, for which it is sufficient to
prove that there exists γ > 0 such that

u 6= H2(t, u) ∀u ∈ Bγ , u 6= 0 and t ∈ [0, 1].
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Assume that there exist un ∈ C0(Ω)\{0} with ‖un‖∞ → 0 and tn ∈ [0, 1], such
that

un = H2(tn, un).

This is,

−∆un = λu+
n + b(x)((u+

n )q + (u+
n )p) + tnϕ in Ω, un = 0 on ∂Ω.

Again, it can be shown that un ≥ 0 in Ω. Let us define

zn =
un
‖un‖2

.

Hence, zn verifies that

−∆zn = λzn+b(x)(‖un‖q−1
2 zqn+‖un‖p−1

2 zpn)+
tn
‖un‖2

ϕ in Ω, zn = 0 on ∂Ω.

(16)
Now, on multiplying (16) by ψ ∈ C∞c (B0), the formula of integration by parts
gives

tn
‖un‖2

∫
B0

ϕψ = −λ
∫
B0

znψ −
∫
B0

zn∆ψ.

Since ‖zn‖2 = 1 it follows that

tn
‖un‖2

≤ C (17)

and then, for a subsequence, tn/‖un‖2 → t∗ ≥ 0.
Since ‖zn‖2 = 1 and b ≤ 0, it follows from (16) and (17) that

‖zn‖H1
0
≤ C.

Arguing as in Lemma 6.1 we deduce that z = 0 in Ω \ B0. Moreover, passing
to the limit in B0 we conclude that

−∆z = λz + t∗ϕ in B0, z = 0 on ∂B0.

Since t∗ ≥ 0, we get that λ ≤ λB0
1 and a contradiction arises immediately.

Take ε ∈ (0, γ], we have that

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H2(0, ·), Bε)
= deg(I −H2(1, ·), Bε) = 0.

This last equality holds because we have proved that the equation

−∆u = λu+ b(x)(uq + up) + ϕ

has not solution in Bε.
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6.2. Bifurcation from infinity

Lemma 6.3. Assume that λ < λB0
1 . Then, there exists R > 0 such that for any

u ∈ C0(Ω) with ‖u‖∞ ≥ R and for any t ∈ [0, 1],

u 6= (−∆)−1(t(λu+ + b(x)((u+)q + (u+)p))).

Proof. Assume by contradiction that there exist two sequences ‖un‖∞ → ∞
and tn ∈ [0, 1] such that

−∆un = tn(λu+
n + b(x)((u+

n )q + (u+
n )p)) in Ω, un = 0 on ∂Ω.

Using elliptic regularity results, it is not hard to show that ‖un‖2 →∞. Now,
the proof follows exactly as in Lemma 6.1, arguing now with tn‖un‖p−1

∞ instead
of tn‖un‖q−1

∞ .

Lemma 6.4. Assume that λ > λB0
1 and let ϕ ∈ C1

0 (Ω), ϕ > 0 in Ω. Then, there
exists R > 0 such that for any u ∈ C0(Ω) with ‖u‖∞ ≥ R and for any t ∈ [0, 1],

u 6= (−∆)−1(λu+ + b(x)((u+)q + (u+)p) + tϕ).

Proof. In this case, the proof is rather similar to the proof of Lemma 6.2.

Proof of Theorem 1.2. From Lemmas 6.1 and Lemma 6.2, it follows the exis-
tence of a continuum C0 of nonnegative and nontrivial solution of (2) emanating
from the trivial solution at λ = λB0

1 . Moreover, it can be shown that this is
the unique point of bifurcation form zero, and hence we can conclude that C0
is unbounded.

For the existence of C∞ we perform the change of variable z = u/‖u‖2∞
(u 6= 0). See, for instance [26] and [6]. Now, thanks to Lemmas 6.3 and 6.4,
the existence of C∞ can be deduced. We omit the details.
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[3] A. Ambrosetti and J. L. Gámez, Branches of positive solutions for some
semilinear Schrödinger equations, Math. Z. 224 (1997), no. 3, 347–362.

[4] A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic
eigenvalue problems, J. Math. Anal. Appl. 73 (1980), no. 2, 411–422.

[5] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and
convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2,
519–543.

[6] D. Arcoya, J. Carmona and B. Pellacci, Bifurcation for some quasilinear
operators, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 4, 733–765.
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Abstract. Consider the Oldroyd-B system on exterior domains with
nonzero external forces f . It is shown that this system admits under
smallness assumptions on f a bounded, global solution (u, τ), which is
stable in the sense that any other global solution to this system start-
ing in a sufficiently small neighborhood of (u(0), τ(0)) is tending to
(u, τ). In addition, if the outer force is T -periodic and small enough,
the Oldroyd-B system admits a T -periodic solution. Note that no small-
ness condition on the coupling coefficient is assumed.

Keywords: Oldroyd-B fluids, periodic solutions, exterior domains, asympotic stability.
MS Classification 2010: 76A10, 35B10, 76D03, 35Q3.

1. Introduction

In this note we consider stability and periodicity questions related to viscoelas-
tic fluids of Oldroyd-B type with non vanishing external forces on exterior
domains. This type of fluids are described by the following set of equations

Re(ut+(u · ∇)u)− (1−α)∆u+∇p = div τ+f in Ω× (0,∞),
∇ · u = 0 in Ω× (0,∞),

We(τt + (u · ∇)τ + ga(τ,∇u)) + τ = 2αD(u) in Ω× (0,∞),
u = 0 on ∂Ω× (0,∞),

u(0) = u0 in Ω,
τ(0) = τ0 in Ω.

(1)

Here Ω ⊂ R3 denotes a domain with smooth boundary ∂Ω, u the velocity
of the fluid, and the tensor τ represents the elastic part of the stress tensor.
Furthermore, Re and We denote the Reynolds and Weissenberg number of the
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fluid, respectively. The term ga is given by

ga(τ,∇u) := τW (u)−W (u)τ − a(D(u)τ + τD(u)) (2)

for some a ∈ [−1, 1] and D(u) = 1
2 (∇u+ (∇u)T ) and W (u) = 1

2 (∇u− (∇u)T )
denote the deformation and vorticity tensors, respectively. The constant α ∈
(0, 1) is the coupling coefficient between the two equations and represents in
particular the strengthness of the coupling between the parabolic fluid type
equation for u and the hyperbolic transport type equation for τ .

This set of equations has been introduced first by J.G. Oldroyd [24] and the
analysis of this set of equations for viscoelastic fluids gained a lot of attention
since then.

If Ω ⊂ R3 is a bounded domain with smooth boundary, Guillopé and
Saut [13] proved the existence and uniqueness and exponential stability of small
solutions to (1) in the case of small coupling parameters α. They further proved
the existence of periodic and stationary solutions to (1) by adapting Serrin’s
method to this situation. For extensions of this results to the Lp-setting we
refer to the work of Fernandez-Cara et al [9]. Molinet and Talhouk [23] ex-
tended the result of Guillopé and Saut [13] to the case of non small coupling
parameters α ∈ (0, 1). For results concerning the critical Lp-framework, we
refer to the work of Zi, Fang, and Zhang [25].

For the case Ω = R3, Lions and Masmoudi [21] proved the existence of
global weak solutions provided a = 0. For further results in this direction
we refer to the works [4] and [19]. Blow-up criteria for Oldroyd-B type fluids
were developed by Kupfermann, Mangoubi and Titi [18] in the case where the
Navier-Stokes equation is replaced by the stationary Stokes system and in the
general case by Lei, Masmoudi and Zhou [20] as well as by Feng, Zhu and
Zi [8]. For global regularity results in the two dimensional setting, we refer to
the work of Constantin and Kriegl [5].

If Ω ⊂ R3 is an exterior domain, existence and uniqueness of solutions
to (1) for small data were proved by Hieber, Naito and Shibata in [14] for small
coupling parameter α and by Fang, Hieber and Zi in [7] for any α ∈ (0, 1). For
optimal decay rates for the case Ω = R3, see [16].

For recent results on ill-posedness of these equations within the L∞-setting
we refer to the work of Elgindi and Masmoudi [6].

In this article we are interested in the global existence, stability and pe-
riodicity of solutions to the Oldroyd-B equations in exterior domains in the
presence of external forces f of the form f = divF for certain F . One might
think of applying the method developed in [11] to the given situation, how-
ever, it is unclear whether the Oldroyd semigroup constructed in [10] satisfies
suitable decay estimates.

Note that the methods for obtaining results on stability, bifurcation and
periodicity of solutions for viscoelastic fluids are quite different from the ones
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often used in the theory of second order parabolic equations, where comparison
principles allow to develop a very rich and powerful theory. For beautiful results
in this direction, we refer to the work of Julian Lopez-Gomez and mention here
only his book [22] as well as the recent articles [2] and [1].

2. Existence of Bounded Solutions

We consider the Oldroyd-B equation with an external force f of the form f =
divF

ut+(u · ∇)u− (1−α)∆u+∇p = div τ + divF in Ω× (0,∞),
∇ · u = 0 in Ω× (0,∞),

τt + (u · ∇)τ + ga(τ,∇u) + τ = 2αD(u) in Ω× (0,∞),
u = 0 on ∂Ω× (0,∞),

u(0) = u0 in Ω,
τ(0) = τ0 in Ω,

(3)

where Ω ⊂ R3 is an exterior domain with boundary of class C3. Let A := −P∆
be the Stokes operator in the solenoidal space L2

σ(Ω) with domain D(A) =
H2(Ω)∩H1

0 (Ω)∩L2
σ(Ω) and set V := H1

0 (Ω)∩L2
σ(Ω). For fixed T > 0 we put

E1(T ) := L2(0, T ;H3(Ω)) ∩ L∞(0, T ;D(A)),

E2(T ) := L2(0, T ;V ) ∩ L∞(0, T ;L2
σ(Ω)),

G1(T ) := L∞(0, T ;H2(Ω)),

G2(T ) := L∞(0, T ;H1(Ω)).

Our first result concerns the local existence of a unique, strong solution
to (3) under certain conditions on F .

Proposition 2.1 (Local Existence). Let Ω be an exterior domain with C3-
boundary and let u0 ∈ D(A) and τ0 ∈ H2(Ω). Then there exist T∗ > 0
and M > 0 such that for F ∈ G1(T∗) and F ′ ∈ G2(T∗) with ‖F‖G1(T∗) +
‖F ′‖G2(T∗) < M , equation (3) has a unique solutions (u, p, τ) on (0, T∗) with

u ∈ E1(T∗) ∩ C([0, T∗], D(A)),

u′ ∈ E2 ∩ C([0, T∗], D(A))),

p ∈ L2(0, T∗;H
2
loc(Ω)) with ∇p ∈ L2(0, T∗;H

1(Ω)),

τ ∈ C([0, T∗];H
2(Ω)) with τ ′ ∈ C([0, T∗];H

1(Ω)).

In order to prove Proposition 2.1 we make use of the following version of
Banach’s fixed point theorem, see [17].
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Lemma 2.2 ([17]). Let X be either reflexive Banach space or have a separable
pre-dual. Let K be a convex, closed and bounded subset of X and assume that
X is continuously embedded into a Banach space Y . Let Φ : X → X maps K
into K and assume there is 0 < q < 1 such that

‖Φ(x)− Φ(y)‖Y 6 q‖x− y‖Y for all x, y ∈ K.

Then there exists a unique fixed point of Φ in K.

Proof of Proposition 2.1. The proof follows the strategy described in [7, Prop.
3.1], however with a forcing term of the form f = divF . For the reader’s
convenience we give here a short outline of the proof. For real numbersB1, B2 >
0 we set

K(T ) :={(v, θ) ∈ E1(T )×G1(T ) : v′ ∈ E2(T ), θ′ ∈ G2(T ), v(0) = u0, θ(0) = τ0

and ‖v‖2E1(T ) + ‖v′‖2E2(T ) 6 B1, ‖θ‖G1(T ) 6 B1, ‖θ′‖G2(T ) 6 B2}

Then, for (v, θ) ∈ K(T ) we define the mapping

Φ(v, θ) := (u, τ),

where (u, τ) is the unique solution of the linearized problem of (3), i.e.,
ut + (1−α)Au = −Pdiv (v ⊗ v) + Pdiv θ + PdivF in Ω× (0,∞),
τt+(u · ∇)τ+τ = 2αD(v)− ga(τ,∇v)) in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0) = u0 in Ω,
τ(0) = τ0 in Ω.

(4)

Regularity results for the Stokes and the transport equation imply the existence
of a constant C > 0 such that

‖u‖2L2(H3)∩L∞(D(A)) + ‖u′‖2L2(V )∩L∞(L∞σ )

6 C
[
‖u0‖2H2 + ‖v(0)‖2H2 + ‖v‖2L2(H3) + ‖v′‖L∞(H1)‖v‖L2(H3)

+ ‖θ + F‖L∞(H2) + ‖θ′ + F ′‖L∞(H1)

]
and

‖τ‖L∞(H2) + ‖τ ′‖L∞(H1) 6 [2 + C‖v‖L∞(H2)]
(
‖τH2 +

2α

C

)
expC‖v‖L1(H3).

Hence, choosing B1, B2 and T1 appropriately, we see that Φ maps K(T1) into
K(T1).
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Next, similarly as in [7], for two solutions (ui, τi) corresponding to given
(vi, θi) for i = 1, 2 we verify that

‖u1 − u2‖2L∞(L2) + ‖τ1 − τ2‖2L∞(L2) +

∫ T

0

(‖∇u1 −∇u2‖2L2 + ‖τ1 − τ2‖2L2)dt

6
1

4

(
‖v1 − v2‖2L∞(L2) + ‖θ1 − θ2‖2L∞(L2)

+

∫ T

0

(‖∇v1 −∇v2‖2L2 + ‖θ1 − θ2‖2L2)dt
)

provided T 6 T∗ := min
{
T1,

δ
1+2B2

1
, 1
B1
, 1−α

4C(1+2B1)(1+2C exp(2C))

}
with δ :=

1−α
4+8C exp(2C) . Therefore, the mapping Φ is a contraction from

Y (T∗) :=
{

(v, θ) ∈ L∞(0, T ;L2(Ω))2,∇v ∈ L∞(0, T ;L2(Ω))
}

into itself and the assertion of Proposition 2.1 follows from Lemma 2.2.

Our global existence result to (3) in the presence of outer forces f of the
form f = divF reads as follows.

Theorem 2.3 (Global Existence). Let F ∈ L∞(0,∞;H2(Ω)) such that F ′ ∈
L∞(0,∞;H1(Ω)). Then there exists ε0 > 0 such that if

‖u0‖D(A) + ‖τ0‖H2 < ε0 and

max{‖F‖L∞(H2), ‖F ′‖L∞(H1)} < min{ε0, 1− α},

then equation (3) admits a unique, global strong solution (u, p, τ) on (0,∞)
satisfying

u ∈ Cb([0,∞);D(A)) with ∇u ∈ L2([0,∞);H2(Ω)) and

u′ ∈ L2([0,∞);H1
0 (Ω) ∩ L2

σ(Ω)),

∇p ∈ L2([0,∞), H1(Ω)) ∩ L∞([0,∞), H1(Ω)),

τ ∈ Cb([0,∞);H2(Ω)) ∩ L2([0,∞);H2(Ω)) and τ ′ ∈ L2([0,∞);L2(Ω)).

Proof. The proof of Theorem 2.3 follows essentially the lines of the proof of
Theorem 1.1 in [7], but we need to take into account the contributins due to
the external force divF . For the convenience of the reader, we sketch the main
ideas of the proof here. Let (u, τ) be the local solution of (3) constructed in
Proposition 2.1. Our aim is to to derive a priori estimates for u, τ, u′ and τ ′.
Since the norms of F are assumed to be small, our strategy is to absorb these
terms into the left-hand sides of the equations thanks to energy-type estimates.
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Since the equation (3)2 for τ does not contain external forces, estimates
(4.1) and (4.2) of [7] yield

d

dt
‖τ‖2H2 + ‖τ‖2H2 6 Cα2‖∇u‖2H2 +

C

α2
‖τ‖4H2 .

Applying the Helmholtz projection P to the second line of (3) gives

ut + P(u · ∇)u+ (1− α)Au = Pdiv τ + PdivF. (5)

Similarly as in [7] we obtain

‖∇u‖2H2 6 C
(
‖Au‖2H2 + ‖∇u‖2L2 +

1

(1−α)2
‖∇ut‖2L2 +

1

(1−α)2
‖∇Pdiv τ‖2L2

+
1

(1−α)2
‖∇PdivF‖2L2 +

1

(1−α)2
‖Au‖4L2 +

1

(1−α)2
‖∇u‖4L2

)
.

Next, taking the inner product of (5) with u yields

1

2

d

dt
‖u‖2L2 + (1− α)‖∇u‖2L2 = (div τ | u) + (divF | u).

Similarly as in [7] we arrive at

d

dt

(
‖u‖2L2 +

1

2
‖τ‖2L2

)
+ (1− α− ‖F‖L2)‖∇u‖2L2 +

1

2α
‖τ‖2L2

6
C

(1− α)α2
‖τ‖4H2 +

1

2α
‖F‖L2

and obtain the differential inequality

d

dt
U(t) + V (t) 6 CH(t)V (t),

where

U(t) :=(1− α)(κ4C0 + 1)(‖Pdiv τ‖2L2 + ‖ curl div τ‖2L2) +
κ6 + 1

1− α
‖u‖2L2

+
κ6 + 1

2α(1− α)
‖τ‖2L2 + ‖τ‖2H2 +

1

2
‖F‖L2

+
(κ1 + 1)(3− α− ‖F‖2L2)

1− α
‖∇u‖2L2

+
κ5 + 1

1− α
‖ut‖2L2 +

κ5 + 1

2α(1− α)
‖τt‖2L2 ,
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V (t) :=
κ1 + 1

1− α
‖ut‖2L2 + ‖Au‖2L2 + ‖τ‖2H2 + ‖∇u‖2H2 + ‖∇ut‖2L2

+
κ5 + 1

α(1− α)
‖τt‖2L2 + ‖∇u‖2L2 + ‖τ‖2L2 + ‖Pdiv τ‖2L2

+ ‖ curl div τ‖2L2 + ‖F‖2L2 ,

H(t) :=‖ut‖2L2 + ‖Au‖2L2 + ‖τ‖2H2 + ‖τt‖2L2 + ‖∇u‖2L2 + ‖∇u‖4L2 .

Following (4.28) in [7], there is a constant M1 = M1(α) > 0 such that

H(t) 6M1

(
U(t) + U(t)2 + U(t)3

)
, t ≥ 0. (6)

Arguing as in (4.28) in [7] we see that for δ0 > 0 with δ + δ2 + δ3 < 1
2CM1

and

for ε0 > such that C(ε40 + ε40) < δ0 we have

sup
06t6T∗

U(t) +
1

2

∫ T∗

0

V (s)ds 6 δ0.

Hence,

sup
06t6T∗

(
‖u(t)‖2D(A) + ‖u′(t)‖2L2 + ‖τ(t)‖2H2 + ‖τ ′(t)‖2L2

)
+

1

2

∫ T∗

0

(
‖∇u(t)‖2H2 + ‖∇u′(t)‖2L2 + ‖τ(t)‖2H2 + ‖τ ′(t)‖2L2

)
dt 6 C,

and the local solution (u, p, τ) can be extended to all t > 0.

3. Stability of the Oldroyd-B Equations with Small
External Forces

In this section we consider the stability of bounded solutions to the system (3).
Applying the Helmholtz projection to (3) we obtain

ut + (u · ∇)u+ (1− α)Au = Pdiv τ + PdivF,
τt + (u · ∇)τ + ga(τ,∇u) + τ = 2αD(u),

u(0) = u0,
τ(0) = τ0,

(7)

In the following we will prove that the bounded global solution (u, τ) to (7)
obtained in Theorem 2.3 is stable in the sense that any other global solution
to (3) starting in a sufficiently small neighborhood of (u(0), τ(0)) is tending to
(u, τ). To this end, we introduce the spaces

W1 := H3(Ω) ∩H1
0 (Ω) ∩ L2

σ(Ω), W2 := H2(Ω)
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and set W := W1 ×W2. Moreover, for r > 0 and (x1, x2) ∈W we set

B(x1, x2, r) := {(y1, y2) ∈W : ‖(y1, y2)− (x1, x2)‖W 6 r}.

The following stability result is the first main result of this article.

Theorem 3.1. There exist constants δ0, A,R > 0 such that for a solution (u, τ)
to equation (7) with ‖(u(0), τ(0))‖W 6 δ0 and any solution (v, µ) to equation
(7) with α 6 A and initial data (v(0), µ(0)) ∈ B(u(0), τ(0), r) for r 6 R, the
equality

lim
t→∞

‖v(t)− u(t)‖L2 = lim
t→∞

‖µ(t)− τ(t)‖L2 = 0

holds.

In order to prove Theorem 3.1 we make use of Hölder’s and Young’s inequal-
ity in weak Lp-spaces. For proofs, see e.g., Section 1 of [12]. More specifically,
for 1 < p <∞ we denote by Lpw := Lpw(R) the space of all measurable functions
f on R with norm

‖f‖p,w = sup
0<|E|<∞

|E|−1+ 1
p

∫
E

|f |ds <∞, (8)

where |E| denotes the Lebesgue measure of a measurable set E ⊂ R.

Lemma 3.2 ([12], Section 1). Let p ∈ [1,∞), q, r ∈ (1,∞). Then the following
assertins hold.

a) If f ∈ Lpw, g ∈ Lqw and 1
p + 1

q = 1
r , then fg ∈ Lrw and

‖fg‖r,w 6 C‖f‖p,w‖g‖q,w

for some constant C depending only on p and q.

b) If f ∈ Lpw, g ∈ Lqw and 1
p + 1

q = 1 + 1
r , then f ∗ g ∈ Lrw and there is a

constant C, depending only on p and q, such that

‖f ∗ g‖r,w 6 C‖f‖p,w‖g‖q,w.

c) If f ∈ Lpw, g ∈ L1, then f ∗ g ∈ Lpw and there is a constant C, depending
only on p, such that

‖f ∗ g‖p,w 6 C‖f‖p,w‖g‖L1 .
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Proof of Theorem 3.1. The strategy of our proof follows to a certain extent the
one of Theorem 3.2 in [10]. In the present case, we need to deal, however, with
two non trivial solutions to (7).

Let (u, τ) and (v, µ) be two solutions to (7) as in Theorem 3.1. Setting
ũ := v − u and τ̃ := µ− τ , we obtain from (7)

ũt + (ũ · ∇)ũ+ (u · ∇)ũ+ (ũ · ∇)u+ (1− α)Aũ = Pdivτ̃ ,
τ̃t + (ũ · ∇)τ̃ + (ũ · ∇)τ + (u · ∇)τ̃ + ga(τ̃ ,∇ũ)

+ga(τ̃ ,∇u) + ga(τ,∇ũ) + τ̃ = 2αD(ũ),
ũ(0) = v(0)− u(0),
τ̃(0) = µ(0)− τ(0).

(9)

We first estimate τ̃ by the second equation of system (9). Denote by ‖ · ‖ the
norm of L2(Ω). Taking the scalar product in the second equation of (9) with
τ̃ we obtain

d

dt
‖τ̃‖2 + 2 〈(ũ · ∇)τ, τ̃〉+ 2 〈ga(τ̃ ,∇ũ), τ̃〉+ 2 〈ga(τ̃ ,∇u), τ̃〉

+2 〈ga(τ,∇ũ), τ̃〉+ 2‖τ̃‖2 = 4α 〈D(ũ), τ̃〉 , t ≥ 0.

Integrating we obtain by Gronwall’s lemma

‖τ̃(t)‖2 6 e−2t‖τ̃(0)‖2 + 2

∫ t

0

e−2(t−s)
(
|〈ga(τ̃(s),∇ũ), τ̃(s)〉|

+ |〈ga(τ̃(s),∇u(s)), τ̃(s)〉|+ |〈ga(τ(s),∇ũ(s)), τ̃(s)〉|

+ |〈(ũ · ∇)τ, τ̃(s)〉|+ 2α |〈D(ũ(s)), τ̃(s)〉|
)
ds, t ≥ 0.

For ‖u‖W1 6 r we thus obtain

‖τ̃(t)‖2 6 e−2t‖τ̃(0)‖2 + 8rC(|a|+ 1)

∫ t

0

e−2(t−s)‖τ̃(s)‖2ds

+ Cr(4|a|+ 5)

∫ t

0

e−2(t−s)‖τ̃(s)‖‖τ(s)‖ds

+ 4α

∫ t

0

e−2(t−s)‖D(u(s))‖‖τ̃(s)‖ds

6 e−2t‖τ̃(0)‖2 + 8rC(|a|+ 1)

∫ t

0

e−2(t−s)‖τ̃(s)‖2ds

+ Cr(4|a|+ 5)

∫ t

0

e−2(t−s)( 1
2‖τ̃(s)‖2 + 1

2‖τ(s)‖2
)
ds

+ 2α

∫ t

0

e−2(t−s)(‖D(u(s))‖2 + ‖τ̃(s)‖2)ds, t ≥ 0,
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where C denotes the constant in Sobolev’s embedding. Therefore,

‖τ̃(t)‖2 6 e−2t‖τ̃(0)‖2 +
4α+ 8rC(6|a|+ 7)

2

∫ t

0

e−2(t−s)‖τ̃(s)‖2ds

+

∫ t

0

e−2(t−s)
(

2α‖D(u(s))‖2 +
Cr(4|a|+ 5)

2
‖τ(s)‖2

)
ds, t ≥ 0.

Choosing r so small that K := 4−4α−8rC(6|a|+7)
2 > 0, Gronwall’s inequality

yields for t ≥ 0

‖τ̃(t)‖2 6 e−Kt‖τ̃(0)‖2

+

∫ t

0

e−K(t−ξ)
(

2α‖D(u(ξ))‖2 +
Cr(4|a|+ 5)

2
‖τ(s)‖2

)
dξ. (10)

In a second step we take the inner product of the first equation in (9) with
ũ and obtain

1

2

d

dt
‖ũ(t)‖2 + (1− α)‖∇ũ(t)‖2 = 〈Pdiv τ(t), u(t)〉 − 〈(ũ · ∇)u, ũ〉

= 〈Pdiv τ(t), u(t)〉+ 〈(ũ · ∇)ũ, u〉 .

Integrating from s to t yields

‖ũ(t)‖2 + 2(1− α)

∫ t

s

‖∇ũ(t)‖2dt

6 ‖ũ(s)‖2 + 2

∫ t

s

‖τ̃(t)‖‖∇ũ(ξ)‖dξ +

∫ t

s

‖(ũ(ξ) · ∇)ũ(ξ)‖‖u(ξ)‖dξ

6 ‖ũ(s)‖2 + 2

∫ t

s

‖τ̃(t)‖‖∇ũ(ξ)‖dξ

+ 2C̃

∫ t

s

‖ũ(ξ)‖L6‖∇ũ(ξ)‖L3‖u(ξ)‖dξ

6 ‖ũ(s)‖2 + 2

∫ t

s

‖τ̃(t)‖‖∇ũ(ξ)‖dξ

+ 2C

∫ t

s

‖∇ũ(ξ)‖‖∇ũ(ξ)‖1/2‖∇2ũ‖1/2‖u(ξ)‖dξ

6 ‖ũ(s)‖2 + 2

∫ t

s

‖τ̃(t)‖‖∇ũ(ξ)‖dξ + 2C‖u‖Cb
∫ t

s

‖∇ũ(ξ)‖2H1dξ

6 ‖ũ(s)‖2 +

∫ t

s

‖τ̃(t)‖2dτ + (1 + 2C‖u‖Cb)
∫ t

s

‖∇ũ(ξ)‖2H1dξ
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where C̃ and C are the constants arising in Gagliardo-Nirenberg and Sobolev
inequalities and ‖u‖Cb := ‖u‖Cb([0,∞),L2). Summing up, we obtain

‖ũ(t)‖ 6 ‖ũ(s)‖+
(∫ t

s

‖τ̃(ξ)‖2dξ
)1/2

+(1+2C‖u‖Cb)1/2
(∫ t

s

∇ũ(ξ)‖2H1dξ
)1/2

,

and integrating with respect to s ∈ (0, t) yields

‖ũ(t)‖ 6 1

t

∫ t

0

‖ũ(s)‖ds+
(2

t

)1/2

‖τ̃‖L2(0,∞;H2)

+
(1 + 2C‖u‖Cb

t

)1/2

‖∇ũ‖L2(0,∞;H2). (11)

Theorem 2.3 yields ‖τ̃‖L2(0,∞;H2) <∞ as well as ‖∇ũ‖L2(0,∞;H2) <∞. Hence,
the second and third term on the right-hand side of (11) tend to 0 as t→∞.

We now turn our attention to the first term on the right hand side of (11)
and aim to show that

lim
t→∞

1

t

∫ t

0

‖ũ(s)‖ds = 0. (12)

To this end, we multiply the first line of equation (9) with φ ∈ C(R+, H
1
0 (Ω)∩

L2
σ(Ω)) ∩ C1(R+, L

2
σ(Ω)) and integrate from s to t to obtain

〈ũ(t), φ(t)〉+

∫ t

s

[(1− α) 〈∇ũ,∇φ〉+ 〈(ũ · ∇)ũ, φ〉+ 〈(ũ · ∇)u, φ〉

+ 〈(u · ∇)ũ, φ〉]dξ

= 〈ũ(s), φ(s)〉+

∫ t

s

[〈ũ, φ′〉+ 〈Pdiv τ̃ , φ〉]dξ. (13)

Substituting φ(ξ) = e−(t−ξ)Aψ with ψ ∈ C∞0,σ(Ω) into (13) and setting s = 0
we arrive at

〈ũ(t), ψ〉 =
〈
e−tAũ(0), ψ

〉
−
∫ t

0

[
< (ũ · ∇)ũ(ξ), e−(t−ξ)Aψ >

+ < (ũ · ∇)u(ξ), e−(t−ξ)Aψ >
]
dξ

+

∫ t

0

< (u · ∇)ũ(ξ), e−(t−ξ)Aψ > dξ

+ α

∫ t

0

< ∇ũ(ξ),∇e−(t−ξ)Aψ > dξ

+

∫ t

0

< τ̃(ξ),∇e−(t−ξ)Aψ > dξ.
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We next note the following estimates for the Stokes semigroup on exterior
domains (see e.g. [3], [15])

‖e−tA(w · ∇)v‖ 6 Ct−1/2(‖w‖‖v‖)1/4(‖∇w‖‖∇v‖)3/4,

t > 0, w, v ∈ H1(Ω) ∩ L2
σ(Ω),

‖∇e−tAψ‖ 6 Ct−1/2‖ψ‖ and ‖∇e−tAψ‖L3 6 Ct−3/4‖ψ‖,
t > 0, ψ ∈ C∞0,σ,

(14)

as well as the Gagliardo-Nirenberg inequality

‖∇ũ(s)‖
L

3
2
6 C‖∇ũ(s)‖ 1

2 ‖∇2ũ(s)‖ 1
2 6 C‖∇ũ(s)‖H1 .

Taking the supremum over all ψ ∈ C∞0,σ with ‖ψ‖ 6 1 yields

‖ũ(t)‖ 6 ‖e−tAũ(0)‖+ C

∫ t

0

(t− s)− 1
2

(
‖ũ(s)‖ 1

2 ‖∇ũ(s)‖ 3
2

+ 2(‖ũ(s)‖‖u(s)‖) 1
4 (‖∇ũ(s)‖‖∇u(s)‖) 3

4

)
ds

+ C

∫ t

0

(t− s)− 3
4 ‖∇ũ(s)‖H1ds+ C

∫ t

0

(t− s)− 3
4 ‖τ(s)‖H1ds

6 ‖e−tAũ(0)‖+ Cr
1
2

∫ t

0

(t− s)− 1
2 ‖∇ũ(s)‖ 3

2 ds

+ 2(r‖u‖Cb)
1
4

∫ t

0

(t− s)− 1
2 (‖∇ũ(s)‖‖∇u(s)‖) 3

4 ds

+ C

∫ t

0

(t− s)− 3
4 ‖∇ũ(s)‖H1ds+ C

∫ t

0

(t− s)− 3
4 ‖τ(s)‖H1ds

=: ‖e−tAũ(0)‖+ I(t) + II(t) + III(t) + IV (t).

(15)

By Theorem 2.3, ∇ũ ∈ L2(R+, H
2(Ω)) and hence ‖∇ũ(·)‖3/2 ∈ L4/3(R+). Set-

ting h(t) := t−1/2 and g1(t) :=
∫ t

0
h(t−s)‖∇ũ(s)‖3/2ds, we see by Lemma 3.2b)

that
‖g1‖L4

w(R+) 6 C‖h‖L2
w(R+)‖∇ũ‖L2(R+;L2(Ω)).

Therefore, by (8)

1

t

∫ t

0

g1(s)ds 6
Ct3/4

t
‖g1‖L4

w(R+) =
C1

t1/4
, t > 0.

for suitable constants C,C1 > 0. Next, since ‖∇u(·)‖ and ‖ũ(·)‖ belong
to L2(R+), Hölder’s inequality implies ‖∇u(·)‖‖ũ(·)‖ ∈ L1(R+) and hence

(‖∇ũ(·)‖‖∇u(·)‖) 3
4 ∈ L4/3(R+). Setting h(t) := t−1/2 and g2(t) :=

∫ t
0
h(t −

s)(‖∇ũ(s)‖‖∇u(s)‖) 3
4 ds we see that g2 ∈ L4

w(R+) and satisfies

‖g2‖L4
w(R+) 6 C‖h‖L2

w(R+)‖∇ũ‖L2(R+;L2(Ω))‖∇u‖L2(R+;L2(Ω)).
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Thus, again by (8)

1

t

∫ t

0

g2(s)ds 6
Ct3/4

t
‖g2‖L4

w(R+) =
C2

t1/4
, t > 0.

Theorem 2.3 implies ‖∇ũ(·)‖H1 ∈ L2(R+) and hence for h3 and g3 given by

h3(t) := t−3/4 and g3(t) :=
∫ t

0
h3(t− s)‖∇ũ(s)‖H1ds we obtain

‖g3‖L4
w(R+) 6 C‖h3‖L4/3

w (R+)
‖∇ũ‖L2(R+;H1(Ω)).

This yields

1

t

∫ t

0

g3(s)ds 6
Ct3/4

t
‖g3‖L4

w(R+) =
C3

t1/4
, t > 0.

Similarly, for IV (t) in (15), we have ‖τ̃(·)‖H1 ∈ L2(R+). Therefore the function

g4 given by g4(t) :=
∫ t

0
(t−s)−3/4‖∇ũ(s)‖H1ds belongs to L4

w(R+) and satisfies

‖g4‖L4
w(R+) 6 C‖h3‖L4/3

w (R+)
‖τ̃‖L2(R+;H1(Ω)).

As above
1

t

∫ t

0

g4(s)ds 6
Ct3/4

t
‖g4‖L4

w(R+) =
C4

t1/4
, t > 0.

Summing up we see that

1

t

∫ t

0

‖ũ(s)‖ds 6 1

t

∫ t

0

‖e−sAũ(0)‖ds+
C̃

t1/4
, t > 0. (16)

Since the Stokes semigroup on exterior domain is strongly stable in the sense
that

lim
t→∞

‖e−tAũ(0)‖ = 0,

it follows that limt→∞
1
t

∫ t
0
‖ũ(s)‖ds = 0. Combining this with estimate (11)

we finally obtain
lim
t→∞

‖ũ(t)‖ = 0.

Finally, we prove that limt→∞ ‖τ̃(t)‖ = 0. To this end, assume that f, f ′ ∈
L2(0,∞);L2(Ω)). Then the inequality

‖f(t)‖22 6 ‖f(tn)‖22 + 2
(∫ t

tn

‖f(s)‖22
)1/2(∫ t

tn

‖f ′(s)‖22
)1/2

(17)

yields that ‖f(t)‖2 → 0 as t → ∞ provided (tn) ⊂ (0,∞) is an unbounded
sequence satisfying ‖f(tn)‖2 → 0 as (tn)→∞. By Theorem 2.3, the function τ̃
satisfies (17) and we thus obtain ‖τ̃(t)‖2 → 0 as t→∞. The proof is complete.
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Remark 3.3: Taking into account that ũ(0) ∈ D(A) ⊂ H1
0 (Ω) ⊂ Rg(A

1
2 ) we

see that 1
t

∫ t
0
‖e−sAũ(0)‖ds satisfies a decay rate of the form

1

t

∫ t

0

‖e−sAũ(0)‖ds =
1

t

∫ t

0

‖A 1
2 e−sA(v0−u0)‖ds 6 1

t

∫ t

0

1

s
1
2

‖v0−u0‖ds =
C

t
1
2

for t > 0. In a similar way we obtain a decay rate for τ̃ of the form

‖τ̃(t)‖ 6
( C1

t1/2
+

C2

t1/4

)
‖τ(0)− µ(0)‖, t > 0.

Let us also note that combining Theorem 3.1 on the stability of (u, τ) with
respect to the ‖ · ‖2-norm with Theorem 2.3 and with the estimate (17) yields
a stability result for equation (7) with respect to the ‖ · ‖q-norm for q ∈ (2, 6].
More precisely, the following holds true.

Corollary 3.4. Let q ∈ (2, 6]. Then there exist constants A,R > 0 such that
any solution (u, τ) to equation (7) with α 6 A and with initial data (u0, τ0) ∈
B(0, 0, r) with r 6 R satisfies

lim
t→∞

‖u(t)‖Lq = lim
t→∞

‖τ(t)‖Lq = 0.

Proof. Due to Gagliardo-Nirenberg inequality we have

‖u‖q 6 c‖∇u‖3( 1
2−

1
q )

2 ‖u‖
3
q−

1
2

2 for 2 < q 6 6.

By Theorem 2.3, ∇u,∇ut ∈ L2((0,∞);L2(Ω)) and hence ‖∇u(t)‖2 → 0 as t→
∞ by estimate (17). Since u ∈ L∞((0,∞);L2(Ω)), the assertion for u follows.
The assertion for τ̃ follows similarly by noting that τ̃ ′ ∈ L∞((0,∞);H1(Ω)).

4. Periodic Solutions

In this section we show that the above stability result, Theorem 3.1, implies
also the existence of periodic solutions to (3). More precisely, the following
assertion holds.

Theorem 4.1. Assume in addition to the assumptions in Theorem 2.3 and 3.1
the function F is time T -periodic for some T > 0. Then, if ‖F‖L∞(H2) and
‖F ′‖L∞(H1) are small enough, there exists a T -periodic solution to (3) and this
T -periodic solution is stable in the sense of Theorem 3.1.

Proof. Due to Theorem 2.3, we consider a bounded and small solution

(u, τ) ∈ Cb([0,∞);D(A))× Cb([0,∞);H2(Ω))
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of equation (3). In the following, we prove that
(
u(nT ), τ(nT )

)
n∈N is a Cauchy

sequence in the space X := Cb([0,∞);L2(Ω))× Cb([0,∞);L2(Ω)).
To this end, for m,n ∈ N with m > n we set

(w(t), µ(t)) := (u(t+ (m− n)T ), τ(t+ (m− n)T ).

The periodicity of F implies that (w(t), µ(t)) is again a solution to (3) with
the initial data (w(0), µ(0)) = (u((m − n)T ), τ((m − n)T ). Theorem 3.1 and
Remark 3.3 imply

‖w(t)− u(t)‖+ ‖µ(t)− τ(t)]‖ 6 C̃1

t1/2
+

C̃2

t1/4
, t > 0.

Hence, by taking t := nT in the above inequality we obtain

‖u(mT )− u(nT )‖+ ‖µ(mT )− τ(nT )]‖ 6 C̃1

(nT )1/2
+

C̃2

(nT )1/4
.

Therefore,
(
u(nT ), τ(nT ))

)
n∈N is a Cauchy sequence in X with limit

(u∗, τ∗) := lim
n→∞

(u(nT ), τ(nT )) in X.

Choosing (u∗, τ∗) as initial data, we claim that the solution (û(t), τ̂(t)) of equa-
tion (3) with (û(0), τ̂(0)) = (u∗, τ∗) is T -periodic. To this end, for (u, τ) as
above and n ∈ N we set

(v(t), η(t)) := (u(t+ nT ), τ(t+ nT ))

The periodicity of F implies that (v(t), η(t)) is a solution of (3) with
(v(0), η(0)) = (u(nT ), τ(nT )). We further see that

‖û(t)− v(t)‖+ ‖τ̂(t)− η(t)‖

6
(C1

t
1
2

+
C2

t
3
4

)
‖û(0)− v(0))‖+

(C3

t
1
2

+
C4

t
1
4

)
‖τ̂(0)− η(0)‖.

for t > 0. Taking t = T in the above inequality yields

‖û(T )− u((n+ 1)T )‖+ ‖τ̂(T )− τ((n+ 1)T )‖

6
( C1

T
1
2

+
C2

T
3
4

)
‖û(0)− u(nT ))‖+

( C3

T
1
2

+
C4

T
1
4

)
‖τ̂(0)− τ(nT )‖

for all n ∈ N. Letting n→∞ and using the fact that limn→∞(u(nT ), τ(nT )) =
(u∗, τ∗) = (û(0), τ̂(0)) in X, we obtain

(û(T ), τ̂(T )) = (û(0), τ̂(0)).

Hence, (û(t), τ̂(t)) is T−periodic and the proof is complete.
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Abstract. We consider the Cauchy problem for an attraction-
repulsion chemotaxis system in two-dimensional space. The system
consists of three partial differential equations; a drift-diffusion equa-
tion incorporating terms for both chemoattraction and chemorepulsion,
and two elliptic equations. We denote by β1 the coefficient of the attrac-
tant and by β2 that of the repellent. The boundedness of nonnegative
solutions to the Cauchy problem was shown in the repulsive dominant
case β1 < β2 and the balance case β1 = β2. In this paper, we study the
boundedness problem to the Cauchy problem in the attractive dominant
case β1 > β2.

Keywords: attraction-repulsion chemotaxis system, attractive dominant case, bound-
edness of solutions.
MS Classification 2010: 35B45, 35K15, 35K55.

1. Introduction

We consider the Cauchy problem for the following attraction-repulsion chemo-
taxis system in R2:

∂tu = ∆u−∇ · (β1u∇v1) +∇ · (β2u∇v2), t > 0, x ∈ R2,

0 = ∆vj − λjvj + u, t > 0, x ∈ R2 (j = 1, 2),

u(0, x) = u0(x), x ∈ R2,

(P)

where βj and λj (j = 1, 2) are positive constants. We assume that

u0 ≥ 0 on R2, u0 6≡ 0, u0 ∈ L1 ∩ L∞, (1)
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and consider nonnegative solutions to the Cauchy problem (P). Here, Lp :=
Lp(R2) (1 ≤ p ≤ ∞) stand for the usual Lebesgue spaces on R2 with norm
‖ · ‖Lp , and in what follows, we denote ‖ · ‖Lp by ‖ · ‖p for simplicity.

The system (P) is a simplified mathematical model introduced in [19] to
describe the aggregation of Microglia in the central nervous system. In the
system (P), the functions u, v1 and v2 denote the density of Microglia, the
concentration of attractive and repulsive chemical substances, respectively.

In the case β2 = 0, the system (P) becomes a minimal version of the classical
Keller-Segel model (e.g., [10, 13]):

∂tu = ∆u− β1∇ · (u∇v1), t > 0, x ∈ R2,

0 = ∆v1 − λ1v1 + u, t > 0, x ∈ R2,

u(0, x) = u0(x), x ∈ R2,

(KS)

where λ1 is a nonnegative constant. The mass conservation for u holds and
plays an important role in the existence of nonnegative global solutions to the
Cauchy problem (KS). Indeed, in the case β1

∫
R2 u0 dx ≤ 8π, the nonnega-

tive solutions exist globally in time (e.g., [4, 5, 6, 21, 22, 29]), meanwhile, in
the case β1

∫
R2 u0 dx > 8π, a nonnegative solution may blow up in finite time

(e.g., [2, 5, 15, 29]). The boundedness of nonnegative solutions to the Cauchy
problem (KS) was shown under the assumption β1

∫
R2 u0 dx < 8π by using

rearrangement techniques ([6, 20]). In the critical mass case
∫
R2 u0 dx = 8π to

the Cauchy problem (KS) with β1 = 1 and λ1 = 0, the boundedness of non-
negative solutions has been studied in [3, 18, 23], and it was shown in [23] that
supt>0 ‖u(t)‖∞ <∞ for the nonnegative radial solutions under the assumption
lim infR→∞(R2

∫
|x|>R u0 dx) > 0. We also remark that limt→∞ ‖u(t)‖∞ = ∞

if
∫
R2 |x|2u0(x) dx <∞ ([4]).
The Cauchy problem (P) has a unique nonnegative smooth solution locally

in time for initial data u0 satisfying (1) ([26]). The nonnegative solutions exist
globally in time and are bounded in the repulsive dominant case β1 < β2

([26]) and the balance case β1 = β2 ([12, 24]). In the attractive dominant case
β1 > β2, the nonnegative solutions exist globally in time under the assumption
(β1 − β2)

∫
R2 u0 dx ≤ 8π ([24, 25]), whereas there exists a blowing-up solution

in finite time under the assumption (β1−β2)
∫
R2 u0 dx > 8π ([26]). We remark

that if supt>0 ‖(u(t), v1(t), v2(t))‖∞ <∞, then for all 1 < p ≤ ∞,

‖(u(t), v1(t), v2(t))‖p ≤ C(1 + t)−1+1/p (t > 0)

(see the proof of [26, Theorem 1.3]), and

lim
t→∞

t1−1/p
∥∥∥u(t)−

∫
R2

u0 dxG(t)
∥∥∥
p

= 0,

where G(t, x) = (4πt)−1e−|x|
2/(4t) is the heat kernel (see the proof of Theo-

rem 1.2 and Remark 1.1 in [12]). Concerning the boundedness problem to the
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Cauchy problem for the parabolic system of an attraction-repulsion chemotaxis
model, see, e.g., [12] for the balance case.

The boundedness problem to attraction-repulsion chemotaxis systems has
been studied on a smooth bounded domain under Neumann boundary condi-
tions (e.g., [7, 11, 16, 17, 28]). When the system (P) is considered on a smooth
bounded domain Ω in R2 under Neumann boundary conditions for u and vj
(j = 1, 2), the boundedness of nonnegative solutions in the attractive dominant
case β1 > β2 was obtained in [7] under the assumption (β1− β2)

∫
Ω
u0 dx < 4π

by showing the boundedness of the entropy
∫

Ω
u(t) log u(t) dx with respect to

t ∈ [0,∞). However, the entropy
∫
R2 u(t) log u(t) dx on R2 is not appropriate

to get the boundedness of nonnegative solutions to the Cauchy problem (P).
The reason is that if limt→∞ ‖u(t)‖2 = 0, we observe that∫

R2

u(t) log u(t) dx ≤ ‖u(t)‖1 log
( 1

‖u(t)‖1

∫
R2

u2(t) dx
)

= ‖u0‖1
(

log ‖u(t)‖22 − log ‖u0‖1
)
→ −∞ (t→∞).

Here we used Jensen’s inequality for the concave function log u and ‖u(t)‖1 =
‖u0‖1 (t > 0). For this reason, we introduce the modified entropy

∫
R2(1 +

u(t)) log(1 + u(t)) dx in place of
∫
R2 u(t) log u(t) dx.

For the nonnegative solutions (u, v1, v2) to the Cauchy problem (P), the
following relation is satisfied ([26, Lemma 3.1]): For p > 1,

1

p

d

dt
‖u(t)‖pp +

4(p− 1)

p2
‖∇up/2(t)‖22 + (β2 − β1)

(
1− 1

p

)
‖u(t)‖p+1

p+1

= −β1λ1

(
1− 1

p

)∫
R2

up(t)v1(t) dx+ β2λ2

(
1− 1

p

)∫
R2

up(t)v2(t) dx.

(2)

In the repulsive dominant case β1 < β2, we get the boundedness of ‖u(t)‖p in
t > 0 from (2) thanks to β2 − β1 > 0 in the third term on the left-hand side
of (2). In the attractive dominant case β1 > β2, we need a smallness condition
on initial data to get the boundedness of ‖u(t)‖p in t > 0. Hence, we first study
the boundedness of the modified entropy

∫
R2(1 + u(t)) log(1 + u(t)) dx in t > 0

under the assumption (β1 − β2)
∫
R2 u0 dx < 4π, and then apply (2) to get the

boundedness of ‖u(t)‖p in t > 0.
The a priori estimate of

∫
R2(1 + u(t)) log(1 + u(t)) dx has been studied for

the Keller-Segel model (KS) in [21] and for the Cauchy problem (P) in [24]
by applying the Brezis-Merle type inequality established in [21]. However,
the a priori bound of

∫
R2(1 + u(t)) log(1 + u(t)) dx for 0 < t < T obtained

in [21, 24] depends on T , which does not give the uniform boundedness of
the solutions on [0,∞). Another approach from the application of radially
symmetric decreasing rearrangement does not seem to work for the Cauchy
problem (P) due to the term for chemorepulsion, although it is useful for getting
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the uniform boundedness of the solutions to the Keller-Segel model (KS) (e.g.,
[6, 18, 20]). We prove the boundedness of

∫
R2(1 + u(t)) log(1 + u(t)) dx on

[0,∞) by applying the sharp form of the Gagliardo-Nirenberg inequality under
the assumption (β1 − β2)

∫
R2 u0 dx < 4π, but the uniform boundedness of the

solutions is expected under the assumption (β1 − β2)
∫
R2 u0 dx < 8π.

Theorem 1.1. Let β1 > β2 and assume that

(β1 − β2)

∫
R2

u0 dx < 4π. (3)

Then, supt>0 ‖(u(t), v1(t), v2(t))‖p <∞ for all 1 ≤ p ≤ ∞.

We next study the boundedness of nonnegative radial solutions to the
Cauchy problem (P). For the nonnegative radial initial data u0 satisfying (1),
the uniqueness of solutions to the Cauchy problem (P) ensures that the solution
(u, v1, v2) for the initial data u0 is radial in x. Considering the mass function
U(t, s) =

∫ s
0
ũ(t, σ) dσ of u, where u(t, x) = ũ(t, s) (s = π|x|2), we reduce the

boundedness of u to the following (see Lemma 4.2): There exist s0 > 0 and
C > 0 such that

U(t, s) ≤ C
√
s (t ≥ 0, 0 ≤ s ≤ s0). (4)

Constructing a comparison function and applying the comparison principle for
parabolic equations, we show (4) to have the following.

Theorem 1.2. Let β1 > β2 and assume that the nonnegative initial data u0 is
radial and

(β1 − β2)

∫
R2

u0 dx < 8π. (5)

Then, supt>0 ‖(u(t), v1(t), v2(t))‖p <∞ for all 1 ≤ p ≤ ∞.

We lastly study the boundedness problem to the Cauchy problem (P) in
the critical mass case (β1 − β2)

∫
R2 u0 dx = 8π. Using the idea of getting the

boundedness of radial solutions to the Cauchy problem (KS) in [23], we have
the following theorem under a restricted condition on βj and λj (j = 1, 2).

Theorem 1.3. Let β1 > β2, λ1 ≤ λ2 and β1λ1 ≥ β2λ2. Assume that the
nonnegative initial data u0 is radial and

(β1 − β2)

∫
R2

u0 dx = 8π, (6)

lim inf
R→∞

(
R2

∫
|x|>R

u0 dx
)
> 0. (7)

Then, supt>0 ‖(u(t), v1(t), v2(t))‖p <∞ for all 1 ≤ p ≤ ∞.
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The rest of the paper is organized as follows. In Section 2, we mention
some properties of nonnegative solutions to the Cauchy problem (P) and give
function inequalities on R2 used in the proof of Theorem 1.1. In Section 3, we
give the proof of Theorem 1.1, and in Section 4, the proofs of Theorems 1.2
and 1.3.

Throughout the paper, we use a universal constant C to describe a vari-
ous constant, and C(∗, · · · , ∗) when C depends on the quantities appearing in
parentheses.

2. Preliminaries

For the nonnegative solutions to the Cauchy problem (P), the conservation
of mass is one of important properties, which is obtained by integrating the
equations for u and vj (j = 1, 2) over R2.

Lemma 2.1. Let (u, v1, v2) be the nonnegative solution to the Cauchy prob-
lem (P) with nonnegative initial data u0 satisfying (1). Then,∫

R2

u(t) dx = λ1

∫
R2

v1(t) dx = λ2

∫
R2

v2(t) dx =

∫
R2

u0 dx (t > 0).

For λ > 0 and f ∈ Lp (1 ≤ p ≤ ∞), we denote by (λ−∆)−1f the convolution
of the Bessel kernel Bλ and f , namely,

(λ−∆)−1f = Bλ ∗ f,

where

Bλ(x) =

∫ ∞
0

e−λσG(σ, x) dσ, x ∈ R2

and G(t, x) is the heat kernel given by G(t, x) = (4πt)−1e−|x|
2/(4t). For f ∈ Lp

(1 < p < ∞), the function v := (λ − ∆)−1f on R2 belongs to W 2,p and a
solution of

(λ−∆)v = f in R2.

By the following estimates

‖∂αxBλ‖p <∞ for 1 ≤ p <∞ if |α| = 0 and 1 ≤ p < 2 if |α| = 1,

applying Young’s inequality for convolution gives Lp estimates on (λ−∆)−1f
in Lemma 2.2 below, which are often used in the course of the proof of Theo-
rem 1.1. For the Bessel kernel, see, e.g., [9, 27].



136 T. NAGAI AND T. YAMADA

Lemma 2.2. For λ > 0, it holds that

‖(λ−∆)−1f‖p ≤ C(λ, p, q)‖f‖q, 1 ≤ q ≤ p <∞,
‖(λ−∆)−1f‖∞ ≤ C(λ, q)‖f‖q, 1 < q ≤ ∞,
‖∇(λ−∆)−1f‖∞ ≤ C(λ, q)‖f‖q, 2 < q ≤ ∞.

For later uses, we give some function inequalities on R2. We begin with
the Gagliardo-Nirenberg inequality on R2 (e.g., [8]): For 1 < p <∞, there is a
positive constant C depending on p such that for any f ∈ L1 with |∇f | ∈ L2,

‖f‖p ≤ C‖∇f‖1−1/p
2 ‖f‖1/p1 . (8)

The next inequality is a version of the Gagliardo-Nirenberg inequality on R2:
For any f ∈ L2 with |∇f | ∈ L1,

‖f‖2 ≤
1√
4π
‖∇f‖1. (9)

Here, 1/
√

4π is the best constant (e.g., [30, Theorem 2.7.4]).
We give two lemmas below, which are proven by applying (9).

Lemma 2.3. For 0 < ε < 1 and nonnegative functions g ∈ L1 ∩W 1,2,∫
R2

g2 dx ≤ 1 + ε

4π

(∫
R2

g dx
)(∫

R2

|∇g|2

1 + g
dx
)

+
2

ε

∫
R2

g dx. (10)

Proof. Let α > 1. We have that∫
R2

g2 dx =

∫
g>α

g2 dx+

∫
g≤α

g2 dx =

∫
g>α

{(g − α) + α}2 dx+

∫
g≤α

g2 dx

=

∫
g>α

(g − α)2 dx+ 2α

∫
g>α

(g − α) dx+

∫
g>α

α2 dx+

∫
g≤α

g2 dx

≤
∫
R2

(g − α)2
+ dx+ 2α

∫
g>α

g dx+ α

∫
g≤α

g dx

≤
∫
R2

(g − α)2
+ dx+ 2α

∫
R2

g dx,

where (g − α)+ = max{g − α, 0}. We estimate
∫
R2(g − α)2

+ dx as follows. By
the Gagliardo-Nirenberg inequality (9),∫

R2

(g − α)2
+ dx ≤

1

4π

(∫
R2

|∇(g − α)+| dx
)2

=
1

4π

(∫
g>α

|∇g| dx
)2

=
1

4π

(∫
g>α

√
1 + g

|∇g|√
1 + g

dx
)2

≤ 1

4π

(∫
g>α

(1 + g) dx
)(∫

g>α

|∇g|2

1 + g
dx
)
,
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and then,∫
g>α

(1 + g) dx =

∫
g>α

dx+

∫
g>α

g dx ≤ 1

α

∫
g>α

g dx+

∫
g>α

g dx

=
(

1 +
1

α

)∫
g>α

g dx.

Hence, ∫
R2

(g − α)2
+ dx ≤

1

4π

(
1 +

1

α

)(∫
R2

g dx
)(∫

R2

|∇g|2

1 + g
dx
)
.

Therefore,∫
R2

g2 dx ≤ 1

4π

(
1 +

1

α

)(∫
R2

g dx
)(∫

R2

|∇g|2

1 + g
dx
)

+ 2α

∫
R2

g dx.

By putting ε = 1/α, (10) is derived.

Lemma 2.4. It holds that for any nonnegative function g ∈ L1 ∩W 1,2,∫
R2

g3 dx ≤ ε
(∫

R2

(1 + g) log(1 + g) dx
)(∫

R2

|∇g|2 dx
)

+ C(ε)

∫
R2

g dx,

where ε is any positive number and C(ε)→∞ (ε→ 0).

For the proof of Lemma 2.4, see, e.g., [21, Lemma 2.1].
We lastly mention the following interpolation inequality, which is obtained

by applying Hölder’s inequality: Let 1 ≤ p1 < p2 ≤ ∞ and f ∈ Lp1 ∩ Lp2 .
Then f ∈ Lp for all p with p1 ≤ p ≤ p2 and

‖f‖p ≤ ‖f‖λp1‖f‖
1−λ
p2 where

1

p
=

λ

p1
+

1− λ
p2

, 0 ≤ λ ≤ 1. (11)

3. Boundedness of solutions by entropy estimates

Let (u, v1, v2) be the nonnegative solution to the Cauchy problem (P) corre-
sponding to the initial data u0 satisfying (1). For the proof of Theorem 1.1,
we need the following proposition, which is proven in Subsection 3.1.

Proposition 3.1. Let 0 < T ≤ ∞ and assume that

E := sup
0<t<T

‖(1 + u(t)) log(1 + u(t))‖1 <∞. (12)

Then,
‖u(t)‖∞ ≤ C(‖u0‖1, ‖u0‖∞, E), 0 < t < T.
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Remark 3.2: The assumption β1 > β2 is not required for proving Proposi-
tion 3.1.

We put ψ = β1v1 − β2v2 in the equations of u and vj (j = 1, 2) in (P).
Then,

∂tu = ∆u−∇ · (u∇ψ), −∆ψ = (β1 − β2)u+ h (t > 0, x ∈ R2), (13)

where h = λ2β2v2 − λ1β1v1. As vj = (λj − ∆)−1u (j = 1, 2), applying
Lemma 2.2 as f = u(t), we observe that for j = 1, 2 and t > 0,

‖vj(t)‖p ≤ C(p, q)‖u(t)‖q, 1 ≤ q ≤ p <∞, (14)

‖vj(t)‖∞ ≤ C(q)‖u(t)‖q, 1 < q ≤ ∞, (15)

‖∇vj(t)‖∞ ≤ C(q)‖u(t)‖q, 2 < q ≤ ∞. (16)

Here and in what follows, we drop λj from C(λj , p, q) and C(λj , q) for simplicity.
In particular, thanks to (14) for q = 1 and ‖u(t)‖1 = ‖u0‖1 by Lemma 2.1, we
have

‖vj(t)‖p ≤ C(p)‖u0‖1, 1 ≤ p <∞. (17)

We give the following lemma for the modified entropy.

Lemma 3.3. It holds that

d

dt

∫
R2

(1 + u) log(1 + u) dx+

∫
R2

|∇u|2

1 + u
dx

= −
∫
R2

u∆ψ dx+

∫
R2

log(1 + u) ∆ψ dx,

(18)

where ψ = β1v1 − β2v2.

Proof. Using ∂tu = ∆u − ∇ · (u∇ψ) in (13) and noting
∫
R2 ∂tu dx = 0, by

integration by parts, we have that

d

dt

∫
R2

(1 + u) log(1 + u) dx =

∫
R2

∂tu log(1 + u) dx+

∫
R2

∂tu dx

=

∫
R2

∆u log(1 + u) dx−
∫
R2

∇ · (u∇ψ) log(1 + u) dx

= −
∫
R2

|∇u|2

1 + u
dx+

∫
R2

u

1 + u
∇u · ∇ψ dx

= −
∫
R2

|∇u|2

1 + u
dx+

∫
R2

∇u · ∇ψ dx−
∫
R2

1

1 + u
∇u · ∇ψ dx

= −
∫
R2

|∇u|2

1 + u
dx−

∫
R2

u∆ψ dx−
∫
R2

∇ log(1 + u) · ∇ψ dx

= −
∫
R2

|∇u|2

1 + u
dx−

∫
R2

u∆ψ dx+

∫
R2

log(1 + u)∆ψ dx.
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Thus, we derive (18).

Proof of Theorem 1.1. Since the nonnegative solution exists globally in time
under the assumption (β1−β2)

∫
R2 u0 dx < 8π by [24, Theorem 1.1], all we have

to do is to show boundedness under the assumption (β1 − β2)
∫
R2 u0 dx < 4π

by applying Proposition 3.1 as T =∞.

Since −∆ψ = (β1 − β2)u+ h (h = λ2β2v2 − λ1β1v1) by (13), plugging this
relation into the right-hand side of (18) yields that

d

dt

∫
R2

(1 + u) log(1 + u) dx+

∫
R2

|∇u|2

1 + u
dx

= (β1 − β2)

∫
R2

u2 dx+

∫
R2

uh dx− (β1 − β2)

∫
R2

u log(1 + u) dx

−
∫
R2

log(1 + u)h dx

≤ (β1 − β2)

∫
R2

u2 dx+
ε

2

∫
R2

{
u2 + (log(1 + u))2} dx

− (β1 − β2)

∫
R2

u log(1 + u) dx+ C(ε)

∫
R2

h2 dx,

(19)

where 0 < ε < 1. By log(1 + u) ≤ u, we have that

ε

2

∫
R2

{
u2 + (log(1 + u))2} dx− (β1 − β2)

∫
R2

u log(1 + u) dx

≤ ε
∫
R2

u2 dx− (β1 − β2)

∫
R2

(1 + u) log(1 + u) dx+ (β1 − β2)

∫
R2

u dx.

(20)

Substituting (20) into the right-hand side of (19) and using ‖h‖22 ≤ C‖u0‖21
obtained by (17), we obtain that

d

dt

∫
R2

(1 + u) log(1 + u) dx+

∫
R2

|∇u|2

1 + u
dx

≤ (β1 − β2 + ε)

∫
R2

u2 dx− (β1 − β2)

∫
R2

(1 + u) log(1 + u) dx

+ C(‖u0‖1, ε).

(21)

Applying Lemma 2.3 as g = u(t) yields that∫
R2

u2(t) dx ≤ 1 + ε

4π
‖u0‖1

∫
R2

|∇u(t)|2

1 + u(t)
dx+

2

ε
‖u0‖1.
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Here we used ‖u(t)‖1 = ‖u0‖1. Plugging this inequality into (21), we have that

d

dt

∫
R2

(1 + u) log(1 + u) dx

+
{

1− (β1 − β2 + ε)
1 + ε

4π
‖u0‖1

}∫
R2

|∇u|2

1 + u
dx

≤ −(β1 − β2)

∫
R2

(1 + u) log(1 + u) dx+ C(‖u0‖1, ε).

(22)

Thanks to (β1−β2)‖u0‖1 < 4π by assumption (3), we can take 0 < ε < 1 such
that

1− (β1 − β2 + ε)
1 + ε

4π
‖u0‖1 ≥ 0.

Hence, it follows from (22) that

‖(1+u(t)) log(1+u(t))‖1 ≤ e−(β1−β2)t‖(1+u0) log(1+u0)‖1+C(‖u0‖1), t > 0.

Therefore, we conclude the boundedness of ‖u(t)‖∞ on [0,∞) by Proposi-
tion 3.1.

3.1. Proof of Proposition 3.1

The proof of Proposition 3.1 relies on the following lemma, which is proven by
Moser’s iteration technique (e.g., [1, 14, 26]).

Lemma 3.4. Let 0 < T ≤ ∞ and assume

A := sup
0<t<T

‖∇(β1v1(t)− β2v2(t))‖∞ <∞.

Then, ‖u(t)‖∞ ≤ C(‖u0‖1, ‖u0‖∞, A), 0 < t < T .

To prove Proposition 3.1, we begin with showing

‖u(t)‖2 ≤ C(‖u0‖1, ‖u0‖2, E), 0 < t < T, (23)

where E = sup0<t<T ‖(1 +u(t)) log(1 +u(t))‖1. By (2) for p = 2, we have that

d

dt
‖u(t)‖22 + 2‖∇u(t)‖22 − (β1 − β2)‖u(t)‖33

≤ β2λ2

∫
R2

u2v2 dx ≤ β2λ2‖u(t)‖23‖v2(t)‖3 ≤ β2‖u(t)‖33 + C‖v2(t)‖33,

from which it follows that

d

dt
‖u(t)‖22 + 2‖∇u(t)‖22 − β1‖u(t)‖33 ≤ C‖v2(t)‖33 ≤ C‖u0‖31.
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Here we used ‖v2(t)‖3 ≤ C‖u0‖1 by (17). To control ‖u(t)‖3, we recall the
following inequality on R2 (see Lemma 2.4): For any ε > 0, there exists C(ε) >
0 such that for any nonnegative function g ∈ L1 ∩W 1,2,

‖g‖33 ≤ ε‖(1 + g) log(1 + g)‖1‖∇g‖22 + C(ε)‖g‖1. (24)

Thanks to E = sup0<t<T ‖(1 + u(t)) log(1 + u(t))‖1 < ∞ by assumption (12),
applying (24) as g = u(t) and using ‖u(t)‖1 = ‖u0‖1, we have

‖u(t)‖33 ≤ εE‖∇u(t)‖22 + C(ε)‖u0‖1, 0 < t < T,

and hence,

d

dt
‖u(t)‖22 + (2− εβ1E)‖∇u(t)‖22 ≤ C(‖u0‖1, ε), 0 < t < T,

where 0 < ε < 1. Take ε such as 2 − εβ1E ≥ 1, that is, 0 < ε ≤ 1/(β1E).
Then,

d

dt
‖u(t)‖22 + ‖∇u(t)‖22 ≤ C(‖u0‖1, E), 0 < t < T. (25)

Applying (8) as f = u(t) and using ‖u(t)‖1 = ‖u0‖1 yield that

‖u(t)‖22 ≤ C‖∇u(t)‖2‖u0‖1 ≤ ‖∇u(t)‖22 + C‖u0‖21.

Substituting this inequality into (25), we have that

d

dt
‖u(t)‖22 + ‖u(t)‖22 ≤ C(‖u0‖1, E), 0 < t < T,

from which (23) follows.
We next show that

‖u(t)‖4 ≤ C(‖u0‖1, ‖u0‖4, E), 0 < t < T. (26)

By (2) for p = 4,

d

dt
‖u(t)‖44 + 3‖∇u2(t)‖22 − 3(β1 − β2)‖u(t)‖55

≤ 3β2λ2

∫
R2

u4(t)v2(t) dx ≤ 3β2λ2‖u(t)‖45‖v2(t)‖5 ≤ 3β2‖u(t)‖55 + C‖v2(t)‖55.

Putting w = u2 yields that

d

dt
‖w(t)‖22 + 3‖∇w(t)‖22 − 3β1‖w(t)‖5/25/2 ≤ C‖u0‖51.
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Here we used ‖v2(t)‖5 ≤ C‖u0‖1 by (17). Applying the Gagliardo-Nirenberg
inequality (8) for p = 5/2 and using Young’s inequality, we have that

‖w(t)‖5/25/2 ≤ C‖∇w(t)‖3/22 ‖w(t)‖1 ≤ η‖∇w(t)‖22 + C(η)‖w(t)‖41,

where η is a positive number determined later. Hence, for 0 < t < T ,

d

dt
‖w(t)‖22 + 3(1− β1η)‖∇w(t)‖22 ≤ 3β1C(η)‖w(t)‖41 + C‖u0‖51. (27)

Take η > 0 such that 3(1− β1η) ≥ 1 and note that by (23),

‖w(t)‖1 = ‖u(t)‖22 ≤ C(‖u0‖1, ‖u0‖2, E), 0 < t < T.

Then, as in the proof of the boundedness of ‖u(t)‖2, we derive from (27) that

‖u(t)‖44 = ‖w(t)‖22 ≤ C(‖u0‖1, ‖u0‖4, E), 0 < t < T.

Here we used the fact that ‖u0‖2 is estimated by ‖u0‖1 and ‖u0‖4 by virtue of
interpolation inequality (11). Thus, (26) is derived.

By (15) for q = 2 and (23),

‖vj(t)‖∞ ≤ C‖u(t)‖2 ≤ C(‖u0‖1, ‖u0‖2, E), 0 < t < T,

and by (16) for q = 4 and (26),

‖∇vj(t)‖∞ ≤ C‖u(t)‖4 ≤ C(‖u0‖1, ‖u0‖4, E), 0 < t < T.

Hence, since ‖∇(β1v1(t) − β2v2(t))‖∞ ≤ C(‖u0‖1, ‖u0‖4, E) (0 < t < T ),
Lemma 3.4 ensures that

‖u(t)‖∞ ≤ C(‖u0‖1, ‖u0‖∞, E), 0 < t < T.

Thus, we establish the assertion of Proposition 3.1.

4. Boundedness of radial solutions

In this section, we assume that the nonnegative initial data u0 satisfying (1) is
radial in x. Then, by the uniqueness of solutions to the Cauchy problem (P),
the nonnegative solution (u, v1, v2) corresponding to the initial data u0 is radial
in x.

Define the functions ũ(t, s) and ṽj(t, s) (j = 1, 2) by

u(t, x) = ũ(t, s), vj(t, x) = ṽj(t, s), s = π|x|2
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and ũ0(s) by u0(x) = ũ0(s). We next define U and Vj (j = 1, 2) by

U(t, s) =

∫ s

0

ũ(t, σ) dσ, Vj(t, s) =

∫ s

0

ṽj(t, σ) dσ (28)

and U0(s) =
∫ s

0
ũ0(σ) dσ. By Lemma 2.1, we observe that

U(t,∞) =

∫ ∞
0

ũ(t, s) ds = 2π

∫ ∞
0

ũ(t, πr2) rdr =

∫
R2

u(t, x) dx =

∫
R2

u0(x) dx,

and

Vj(t,∞) =

∫ ∞
0

ṽj(t, s) ds =

∫
R2

vj(t, x) dx =
1

λj

∫
R2

u0(x) dx.

Lemma 4.1. It holds that

∂tU = 4πs∂2
sU+(β1−β2)U∂sU−(β1λ1V1−β2λ2V2)∂sU (t > 0, s > 0). (29)

Proof. Calculating that

∂xj
u = ∂sũ∂xj

s = 2πxj∂sũ, ∂2
xj
u = 4π2x2

j∂
2
s ũ+ 2π∂sũ,

∆u = 4πs∂2
s ũ+ 4π∂sũ = 4π∂s(s∂sũ),

∇ · (u∇vj) = 4πs∂s(ũ∂sṽj) + 4πũ∂sṽj = 4π∂s(sũ∂sṽj),

we have

∂tũ = 4π∂s(s∂sũ)− 4π∂s(sũ∂s(β1ṽ1 − β2ṽ2)), (30)

0 = 4π∂s(s∂sṽj)− λj ṽj + ũ (j = 1, 2). (31)

Integrating (30) and (31) with respect to s, we have that

∂tU = 4πs∂sũ− 4πsũ∂s(β1ṽ1 − β2ṽ2)

= 4πs∂2
sU − ∂sU{4πs∂s(β1ṽ1 − β2ṽ2)},

4πs∂sṽj = −U + λjVj (j = 1, 2).

Hence,

∂tU = 4πs∂2
sU + (β1 − β2)U∂sU − (β1λ1V1 − β2λ2V2)∂sU.

To obtain the boundedness of the solution (u, v1, v2), by Lemma 3.4 it
suffices to show that

sup
t>0
‖∇vj(t)‖∞ <∞ (j = 1, 2). (32)
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Thanks to 4πs∂sṽj = λjVj − U and s = π|x|2, we have that

|∇vj(t, x)| = 2π|x||∂sṽj(t, s)| =
1

2
√
πs
|U(t, s)− λjVj(t, s)|. (33)

By Hölder’s inequality we observe that for 0 < λ < 1,

0 ≤ Vj(t, s) =

∫ s

0

ṽj(t, σ) dσ ≤ sλ
(∫ ∞

0

|ṽj(t, σ)|1/(1−λ) dσ
)1−λ

= sλ‖vj(t)‖1/(1−λ) ≤ C(λ)‖u0‖1sλ.
(34)

Here we used ‖vj(t)‖1/(1−λ) ≤ C(λ)‖u0‖1 (t > 0) by (17). Since 0 ≤ Vj(t, s) ≤
C‖u0‖1

√
s by (34) for λ = 1/2, we have the following lemma by virtue of (33).

Lemma 4.2. If there exist s0 > 0 and C > 0 such that

U(t, s) ≤ C
√
s (t ≥ 0, 0 ≤ s ≤ s0),

then (32) is satisfied. Hence, supt>0 ‖(u(t), v1(t), v2(t))‖∞ <∞.

Proof of Theorem 1.2. By (29) and ∂sU ≥ 0,

∂tU ≤ 4πs∂2
sU + βU∂sU + β2λ2V2∂sU,

where β = β1 − β2 > 0. As V2(t, s) ≤ C(λ)‖u0‖1sλ for 0 < λ < 1 by (34),
putting B(λ) = β2λ2C(λ)‖u0‖1, we have that

∂tU ≤ 4πs∂2
sU + βU∂sU +B(λ)sλ∂sU, t > 0, s > 0.

In what follows, for simplicity we put

N g = 4πs∂2
sg + βg∂sg +B(λ)sλ∂sg, (35)

where 0 < λ < 1. We then get the following:
∂tU ≤ NU, t > 0, s > 0,

U(t, 0) = 0, U(t,∞) = ‖u0‖1, t > 0,

U(0, s) = U0(s), s ≥ 0.

For b > 0 and γ > 0, we define Wb,γ(s) by

Wb,γ(s) =
8π

γ

s

s+ b
(s ≥ 0).
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The function satisfies

4πs
d2Wb,γ

ds2
+ γWb,γ

dWb,γ

ds
= 0 (s > 0). (36)

As β‖u0‖1 < 8π by assumption (5), we can choose γ and λ in (35) such that

1 <
γ

β
< min

{ 8π

β‖u0‖1
, 2
}
,
(1

2
<
)β
γ
< λ < 1,

and as a comparison function we take

W (s) = Wb,γ(sλ) (s ≥ 0).

Take b > 0 so small that

s0 :=
( γ‖u0‖1b

8π − γ‖u0‖1

)1/λ

< 1,
λγ − β
γ

· 8π − γ‖u0‖1
b

≥ B(λ). (37)

Here we used ‖u0‖1 < 8π/γ = Wb,γ(∞) and λγ > β. Since Wb,γ(s) is decreas-
ing in b and converges to 8π/γ as b→ +0 for each s > 0 and W ′b,γ(0) = 8π/(γb)
where ′ = d/ds, we can shorten b such that

U0(s) ≤ ‖u0‖∞s < Wb,γ(s) for 0 < s ≤ s0.

By W (s0) = Wb,γ(sλ0 ) = ‖u0‖1, it is apparent that

U(t, s0) ≤ ‖u0‖1 = W (s0) for t ≥ 0.

As Wb,γ(s) is increasing in s and 0 < s < sλ for 0 < s ≤ s0(< 1), we observe
that for 0 < s ≤ s0,

U0(s) < Wb,γ(s) < Wb,γ(sλ) = W (s).

Since

dW

ds
= λsλ−1 dWb,γ

ds
(sλ), s

d2Wb,γ

ds2
= − γ

4π
Wb,γ

dWb,γ

ds
,

we have

d2W

ds2
= λ2sλ−2 · sλ d

2Wb,γ

ds2
(sλ)− λ(1− λ)sλ−2 dWb,γ

ds
(sλ)

= −λ
2γ

4π
sλ−2Wb,γ(sλ)

dWb,γ

ds
(sλ)− λ(1− λ)sλ−2 dWb,γ

ds
(sλ)

= −λγ
4π
s−1W

dW

ds
− (1− λ)s−1 dW

ds
,
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and

NW = 4πs
d2W

ds2
+ βW

dW

ds
+B(λ)sλ

dW

ds

= −(λγ − β)W
dW

ds
− 4π(1− λ)

dW

ds
+B(λ)sλ

dW

ds

= −4π(1− λ)
dW

ds
− sλ

{
(λγ − β)

8π

γ

1

sλ + b
−B(λ)

}dW
ds

.

Let 0 < s < s0, where s0 is given by (37). As λγ > β, we observe that

(λγ − β)
8π

γ

1

sλ + b
−B(λ) ≥ (λγ − β)

8π

γ

1

sλ0 + b
−B(λ)

=
λγ − β
γ

· 8π − γ‖u0‖1
b

−B(λ)

≥ 0.

Hence, NW < 0 (0 < s < s0) because of dW/ds > 0. Therefore,
∂tU ≤ NU, NW < 0 (t > 0, 0 < s < s0),

U(t, 0) = W (0) = 0, U(t, s0) ≤W (s0) (t ≥ 0),

U(0, s) = U0(s) ≤W (s) (0 ≤ s ≤ s0).

Then, the comparison principle ensures that

U(t, s) ≤W (s) ≤ 8π

γ

sλ

b
(t ≥ 0, 0 ≤ s ≤ s0).

Therefore, as 1/2 < λ < 1, we establish Theorem 1.2 thanks to Lemma 4.2.

Proof of Theorem 1.3. Let U(t, s) and Vj(t, s) (j = 1, 2) be the functions de-
fined by (28). We claim that

V1(t, s) ≥ V2(t, s) (t > 0, s ≥ 0).

In fact, as vj ≥ 0 (j = 1, 2) and λ1 ≤ λ2, by the equations for vj (j = 1, 2),

−∆(v1 − v2) + λ1(v1 − v2) = (λ2 − λ1)v2 ≥ 0 in R2.

By the maximum principle, we have v1 ≥ v2 on R2. Thus V1 ≥ V2.
By Lemma 4.1,

∂tU − 4πs∂2
sU − βU∂sU = (β2λ2V2 − β1λ1V1)∂sU,
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where β = β1 − β2. It follows from V1 ≥ V2 and β1λ1 ≥ β2λ2 that

β2λ2V2 − β1λ1V1 = β2λ2(V2 − V1) + (β2λ2 − β1λ1)V1 ≤ 0.

Hence, as ∂sU ≥ 0, we have

∂tU − 4πs∂2
sU − βU∂sU ≤ 0 (t > 0, s > 0).

We note that assumption (7) is equivalent to

lim inf
s→∞

(
s

∫ ∞
s

ũ0 dσ
)
> 0, (38)

where ũ0 is defined by u0(x) = ũ0(s), s = π|x|2. As in the proof of [23,
Lemma 3.1.(ii)], by assumption (6) and (38) we can choose b > 0 such that

U(0, s) =

∫ s

0

ũ0 dσ ≤Wb,β(s) =
8π

β

s

s+ b
(s ≥ 0).

Since U(t, 0) = Wb,β(0) = 0, U(t,∞) = Wb,β(∞) = 8π/β (t > 0) and

4πs
d2Wb,β

ds2
+ βWb,β

dWb,β

ds
= 0 (s > 0)

by (36), the comparison principle ensures that

U(t, s) ≤Wb,β(s) =
8π

β

s

s+ b
(t > 0, s ≥ 0).

Therefore, Theorem 1.3 is established by Lemma 4.2.
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1. Introduction

Antibiotic drug resistance is a global health problems [11]. Today, clinically
important bacteria are characterized by their drug resistance to single or multi-
ple drug. Historically penicillin- resistant Staphylococcus aureus are discovered
soon after the introduction of penicillin in the 1940s in clinical environments [2]
and still up to now the antibiotic drug resistance is still a subject of intense
research [6, 7, 8, 9, 15, 16]. Most of the experiments on drug resistance in
the laboratory setup are conducted in a well-mixed environment [6, 8]. For
mathematical modeling on the subject of drug-resistance of bacteria, the au-
thors [4, 5] constructed a system of ordinary differential equations with impulse
conditions to study the selection of drug resistance mutants in a device called
“Morbidostat”[4, 5]. In [3] Kishony et al. presented a device for the evolution of
bacteria that allows migration and adaption in a large, spatially structured en-
vironment. The microbial evolution and growth arena(MEGA)-plate consists of
a rectangle acrylic dish 120x60cm, in which successive regions of black-colored
agar containing different concentrations of antibiotics are overlaid by soft agar
allowing bacterial motility. Motile bacteria inoculated at on location on the
plate and spread by chemotaxis to other regions. Only increasing resistant mu-
tants can spread into sections containing higher levels of antibiotic. Interested
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readers can consult the paper for biological details. Based on their experiments,
we shall study the spatiotemporal dynamics of bacteria under antibiotics in-
hibition by constructing a system of reaction-diffusion equations. The rest of
this paper is organized as follows. In Section 2 we describe the mathematical
models with forward mutations and forward-backward mutations. In Section 3
we state our main results. Technical proofs are collected in Section 4. We
analyze the global stability of the extinction state for the case of forward mu-
tations and the coexistence state for the case of forward-backward mutations
respectively. A Lyapunov functional of mixed type is constructed and invari-
ance principle [1] is applied to the establishment of the global stability of the
extinction and coexistence state.

2. Description of our models

In the simplest scenario, we formulate the transition from a wild type popula-
tion u(x, t)(v0 := u) to N mutant strains vi(x, t), i = 1, 2, . . . , N where x ∈ Ω,
Ω is a bounded domain in Rn. Let P (x) be a given distribution of drug in-
hibitor in Ω and U = U(x, t) = u(x, t) +

∑n
i=1 vi(x, t) be the total population

in Ω. For the forward mutation model mutant vi mutates to mutant vi+1 with a
forward mutation rate qi. For the forward - backward mutation model, mutant
vi mutates to mutant vi+1 with a forward mutation rate qi, while mutant vi+1

mutates to mutant vi with a backward mutation rate q̃i. The spatiotemporal
dynamics with forward mutation and forward - backward mutation under the
influence of the drug inhibition P (x) are given by the following models (1)
and (2) respectively.

∂u
∂t = d0∆u+ r0u(1− U

K )f0(P (x))− q0u
∂vi
∂t = di∆vi + rivi(1− U

K )fi(P (x)) + qi−1vi−1 − qivi,
i = 1, 2, . . . , N − 1,

∂vN
∂t = dN∆vN + rNvN (1− U

K )fN (P (x)) + qN−1vN−1

(1)

and
∂u
∂t = d0∆u+ r0u(1− U

K )f0(P (x))− q0u+ q̃0v1

∂vi
∂t = di∆vi+rivi(1− U

K )fi(P (x))+qi−1vi−1−(q̃i−1+qi)vi+q̃ivi+1,

i = 1, 2, . . . , N − 1,
∂vN
∂t = dN∆vN + rNvN (1− U

K )fN (P (x)) + qN−1vN−1 − q̃N−1vN

(2)

The initial conditions and boundary conditions for both of (1) and (2) are given
below in (3) and (4) respectively. The initial conditions are{

u(x, 0) = u0(x) ≤ K, x ∈ Ω

vi(x, 0) = vi0(x) ≡ 0, i = 1, 2, . . . , N, x ∈ Ω
(3)
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and the boundary conditions are{
∂u
∂n (x, t) = 0, x ∈ ∂Ω, t > 0
∂vi
∂n (x, t) = 0, i = 1, 2, . . . , N, x ∈ ∂Ω, t > 0,

(4)

where ∂
∂n denotes the differentiation along the outward normal n to ∂Ω. In (1)

and (2), we assume that the wild type population v0 := u and the mutant
population vi, i = 1, 2, . . . , N share the same carrying capacity K and have
intrinsic growth rate ri, i = 0, 1, . . . , N . In (1) and (2), di > 0 is the diffusion
coefficient for species vi; the mutation rate qi and q̃i are assumed to be small.
The effect of the drug inhibition is described by f0(p) and fi(p) which satisfies
fi(0) = 1, i = 0, 1, . . . , N and f ′i(p) < 0, p > 0.
f ′i(p) < 0 means a larger drug concentration leads to stronger inhibition of
the bacteria species i. Because the mutants have stronger resistance to the
inhibition than wild type, we have the following assumption:

(H1) f0(p) < f1(p) < · · · < fN (p).

The example of fi(p) take the form of Hill function of order L, which are:

fi(p) =
1

1 + ( p
Ki

)L
, i = 0, 1, 2, . . . , N.

Thus, (H1) becomes K0 < K1 < · · · < KN .
It is generally accepted that the bacterial drug resistance comes at the cost

of lower reproductive fitness. The classical trade off is that in the absence of
drug inhibition the wild type has the competitive advantage (hypothesis (H2)
below), whereas when the drug in present, the advantage shifts to the resistant
types (hypothesis (H1)). Thus in addition to hypothesis (H1), we assume that
the intrinsic growth rates ri, i = 0, . . . , N satisfy :

(H2) r0 > r1 > · · · > rN .

Furthermore it is reasonable to assume that the wild type and mutants have
the same diffusion coefficient, i.e.,

(H3) d0 = d1 = · · · = dN =: d.

Now we present the main result of this paper.

Theorem 2.1. Suppose that the assumptions (H1), (H2), (H3) hold and the
initial function u(x, 0) is nontrivial. Then

(i) the solutions u(x, t) and vi(x, t) of (1), (3), (4) satisfy
lim
t→∞

u(x, t) = 0, lim
t→∞

vi(x, t) = 0, i = 1, · · · , N−1 and lim
t→∞

vN (x, t) = K;

and
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(ii) The solutions u(x, t) and vi(x, t) of (2), (3), (4) satisfy

lim
t→∞

u(x, t) = u∗ := v∗0 > 0, lim
t→∞

vi(x, t) = v∗i > 0, i = 1, · · · , N

where

v∗N =
K

q̃0q̃1···q̃N−1

q0q1···qN−1
+ q̃1···q̃N−1

q1···qN−1
+ · · ·+ q̃N−1

qN−1
+ 1

,

v∗N−1 =
q̃N−1

qN−1
v∗N , v∗N−2 =

q̃N−2q̃N−1

qN−2qN−1
v∗N , . . .

. . . , v∗1 =
q̃1 · · · q̃N−1

q1 · · · qN−1
v∗N , u∗ := v∗0 =

q̃0q̃1 · · · q̃N−1

q0q1 · · · qN−1
v∗N .

Remark 2.2: The result is independent of the drug distribution P (x).

3. Proof of the main result

Let RN+1
+ denote the nonnegative orthant of RN+1 and C(Ω̄, RN+1

+ ) the non-
negative value continuous functions space. Set

Λ :=
{
v ∈ RN+1

+ : U :=

N∑
i=0

vi ≤ K
}

and XΛ :=
{
φ ∈ C(Ω̄, RN+1

+ ) : φ(x) ∈ Λ, x ∈ Ω̄
}
.

For φ := (φ0, φ1, · · · , φN ) ∈ C(Ω̄, RN+1
+ ), we denote Φt(φ) the solution of (1)

or (2) with Neumann boundary condition (4) passing through φ. Then we first
prove that both C(Ω̄, RN+1

+ ) and XΛ are positively invariant.

Proposition 3.1. Suppose that the assumptions (H1), (H2) and (H3) hold.
Then both C(Ω̄, RN+1

+ ) and XΛ are positively invariant for the solution semiflow
Φt(φ) of both models of (1) and (2) with Neumann boundary condition (4).
Furthermore, vi(x, t) > 0 for all x ∈ Ω̄, t > 0 and i = 0, 1, · · · , N if φ ∈ XΛ

with φ0 6≡ 0.

Proof. Let w(x, t) := (u(x, t), v1(x, t), · · · , vN (x, t)) and denote the reaction
term of (1) or (2) by F (x,w). Then F : Ω̄×RN+1

+ satisfies

Fi(x,w) ≥ 0 whenever x ∈ Ω̄ and w ∈ RN+1
+ , wi = 0

for i = 0, 1, · · · , N . Applying Corollary 3.2 in [13, p.129], we obtain that
vi(x, t) ≥ 0 for t > 0, x ∈ Ω and i = 0, 1, · · · , N , that is, C(Ω̄, RN+1

+ ) is
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positively invariant for the solution semiflow Φt(φ) of both models of (1) and (2)
with Neumann boundary condition (4).

Let U(x, t) :=
∑N
i=0 vi(x, t) ≥ 0 and

K(x, t) := K−1
N∑
i=0

rifi(P (x))vi(x, t) ≥ 0 .

Assume that U(x, 0) =
∑N
i=0 φi(x) ≤ K for x ∈ Ω. Then U(x, t) satisfies

∂U
∂t = d∆U +K(x, t)(K − U), x ∈ Ω
∂U
∂n = 0, x ∈ ∂Ω, t > 0

U(x, 0) ≤ K, x ∈ Ω.

(5)

It is easy to see that the constant function K is a solution of the equation
in (5). Let V (x, t) := U(x, t)−K. Then V satisfies

∂V
∂t = d∆V −K(x, t)V, x ∈ Ω, t > 0
∂V
∂n = 0, x ∈ ∂Ω, t > 0

V (x, 0) ≤ 0, x ∈ Ω.

(6)

We claim that V (x, t) ≤ 0, x ∈ Ω̄, t ≥ 0. Suppose not. Then there exist
x̄ ∈ Ω̄, t̄ > 0 such that V (x̄, t̄) > 0. Denote M∗ the maximal value of the
function V (x, t) on Ω̄× [0, t̄] and let M∗ = V (x∗, t∗) with x∗ ∈ Ω̄, t∗ ≤ t̄. Then
M∗ > 0. If x∗ ∈ Ω, then it follows from Theorem 2.5 and Remark 2.1 [13,
p.126-127] or Theorem 15, Chapter 3 [12], that V (x, t) ≡M∗ for all x ∈ Ω̄ and
t ≤ t∗. In particular, M∗ = V (x, 0) ≤ 0, a contradiction. This proves x∗ ∈ ∂Ω.
Applying Theorem 2.5 and Remark 2.1 [13, p.126-127] again, we obtain that
∂V
∂n (x∗, t∗) < 0, this contradicts the Neumann boundary condition of (6).

Similarly, we may prove that u(x, t) > 0 for all x ∈ Ω̄, t > 0 if φ ∈ XΛ with
φ0 6≡ 0. In the following, we only consider the system (1), the proof of the
system (2) is similar.

From (1) and the positive invariance of XΛ, we get that

d∆v1 −
∂v1

∂t
− q1v1 = −r1v1

(
1− U

K

)
f1(P (x)) ≤ 0.

We assert that v1(x, t) > 0 for all x ∈ Ω̄, t > 0. Otherwise, there exist x̄ ∈
Ω̄, t̄ > 0 such that v1(x̄, t̄) = 0. Theorem 2.5 and Remark 2.1 [13, p.126-127]
and the Neumann boundary condition imply that x̄ ∈ Ω, and hence v1(x, t) ≡ 0
for all x ∈ Ω̄, t ≤ t̄. From the second equation of (1) it follows that u(x, t) = 0
for all x ∈ Ω̄, t ≤ t̄, a contradiction. Inductively, we can prove that vi(x, t) > 0
for all x ∈ Ω̄, t > 0 for i = 2, · · · , N . This completes the proof.
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Proposition 3.2. (i) The steady state EN = (0, 0, · · · ,K) is locally asymp-
totically stable for the system (1), (3), (4) (Forward mutation model).

(ii) The steady state E∗ = (u∗, v∗1 , · · · , v∗N ) is locally asymptotically stable for
the system (2), (3), (4) (Forward-backward mutation model).

Proof. (i) Let wi = vi, i = 0, 1, · · · , N − 1, wN = vN − K. Then for (1) we
have

∂w0

∂t = d∆w0 + r0w0

(
−

∑N
k=0 wk

K

)
f0(P (x))− q0w0, x ∈ Ω

∂wi

∂t = d∆wi + riwi

(
−

∑N
k=0 wk

K

)
fi(P (x)) + qi−1wi−1 − qiwi,

i = 1, · · · , N − 1, x ∈ Ω,
∂wN

∂t = d∆wN + rN (wN +K)
(
−

∑N
k=0 wk

K )fN (P (x)
)

+ qN−1wN−1,

x ∈ Ω,
∂wi

∂n (x, t) = 0, x ∈ ∂Ω, t > 0, i = 0, 1, 2, · · · , N

(7)

And the linearized system of (7) around EN is

∂w0

∂t = d∆w0 − q0w0, x ∈ Ω
∂wi

∂t = d∆wi + qi−1wi−1 − qiwi, i = 1, · · · , N − 1, x ∈ Ω.

∂wN

∂t = d∆wN − rN
N∑
k=0

wkfN (P (x)) + qN−1wN−1, x ∈ Ω

∂wi

∂n (x, t) = 0, x ∈ ∂Ω, t > 0, i = 0, 1, 2, · · · , N

(8)

Let wi(x, t) = eλtϕi(x), i = 0, 1, 2, , · · · , N . Then it follows that

λϕ0 = d∆ϕ0 − q0ϕ0, x ∈ Ω

λϕi = d∆ϕi + qi−1ϕi−1 − qiϕi, x ∈ Ω.

λϕN = d∆ϕN − rN
N∑
k=0

ϕkfN (P (x)) + qN−1ϕN−1, x ∈ Ω

∂ϕi

∂n (x) = 0, x ∈ ∂Ω

(9)

Then the principal eigenvalue is

λ = inf
ϕ0∈H1(Ω)
ϕ0 6=0

d
∫

Ω
ϕ0∆ϕ0 dx− q0

∫
Ω
ϕ2

0(x) dx∫
Ω
ϕ2

0(x) dx

= inf
ϕ0∈H1(Ω)
ϕ0 6=0

−d
∫

Ω
|∇ϕ0(x)|2 dx− q0

∫
Ω
ϕ2

0(x) dx∫
Ω
ϕ2

0(x) dx
< 0.
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Hence, EN is locally asymptotically stable for the system (1), (2), (3).

(ii) Let E∗ = (v∗0 , v
∗
1 , · · · , v∗N ), wi = vi − v∗i , i = 0, 1, 2, · · · , N . Then

from (2) we have

∂w0

∂t = d∆w0 + r0(w0 + v∗0)
(
−

∑N
k=0 wk

K

)
f0(P (x))

−q0w0 + q̃0w1, x ∈ Ω
∂wi

∂t = d∆wi + ri(wi + v∗i )
(
−

∑N
k=0 wk

K

)
fi(P (x)) + qi−1wi−1

−(q̃i−1 + qi)wi + q̃iwi+1, i = 1, · · · , N − 1, x ∈ Ω
∂wN

∂t = d∆wN + rN (wN + v∗N )
(
−

∑N
k=0 wk

K

)
fN (P (x))

+qN−1wN−1 − q̃N−1wN , x ∈ Ω
∂wi

∂n (x, t) = 0, x ∈ ∂Ω, t > 0, i = 0, 1, 2, · · · , N

(10)

The linearized system of (10) around E∗ is

∂w0

∂t = d∆w0 + r0v
∗
0

(
−

∑N
k=0 wk

K

)
f0(P (x))− q0w0 + q̃0w1, x ∈ Ω

∂wi

∂t = d∆wi + riv
∗
i

(
−

∑N
k=0 wk

K

)
fi(P (x)) + qi−1wi−1

−(q̃i−1 + qi)wi + q̃iwi+1, i = 1, · · · , N − 1, x ∈ Ω
∂wN

∂t = d∆wN + rNv
∗
N

(
−

∑N
k=0 wk

K

)
fN (P (x)) + qN−1wN−1

−q̃N−1wN , x ∈ Ω
∂wi

∂n (x, t) = 0, x ∈ ∂Ω, t > 0, i = 0, 1, 2, · · · , N

(11)

Let wi(x, t) = eλtϕi(x), i = 0, 1, 2, , · · · , N . Then it follows that

λϕ0 = d∆ϕ0 + r0
K v
∗
0

(
−
∑N
k=0 ϕk

)
f0(P (x))− q0ϕ0 + q̃0ϕ1, x ∈ Ω

λϕi = d∆ϕi + ri
K v
∗
i

(
−
∑N
k=0 ϕk

)
fi(P (x)) + qi−1ϕi−1

−(q̃i−1 + qi)ϕi + q̃iϕi+1, x ∈ Ω

λϕN = d∆ϕN + rN
K v∗N

(
−
∑N
k=0 ϕk

)
fN (P (x)) + qN−1ϕN−1

−q̃N−1ϕN , x ∈ Ω
∂ϕi

∂n (x) = 0, x ∈ ∂Ω, i = 0, 1, 2, · · · , N

(12)

Adding the equations in (12) yields

λ

N∑
k=0

ϕk = d∆

(
N∑
k=0

ϕk

)
+

(
−

N∑
k=0

ϕk

)(
N∑
i=0

ri
K
v∗i fi(P (x))

)
.
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Let Φ(x) =

N∑
k=0

ϕk(x). From above we have

λΦ(x) = d∆Φ(x) + (−Φ(x))

(
N∑
i=0

ri
K
v∗i fi(P (x))

)
,

and

λ = inf
Φ∈H1(Ω)

Φ6=0

−d
∫

Ω
|∇Φ|2 dx−

∫
Ω

(Φ2(x))

(
N∑
i=0

ri
K
v∗i fi(P (x))

)
dx∫

Ω
Φ2(x) dx

< 0.

Hence, E∗ = (v∗0 , · · · , v∗N ) is locally asymptotically stable for the system
(2), (3), (4).

Proof of Theorem 2.1. Let w(x, t) = (u(x, t), v1(x, t), · · · , vN (x, t)). Introduce
Lyapunov functional

V (w(·, t)) =

∫
Ω

(
U(x, t)−K −K ln

U(x, t)

K

)
dx,

where U(x, t) = u(x, t) + v1(x, t) + · · ·+ vN (x, t). Then

V̇ (w(·, t)) =
d

dt
V (w(·, t)) =

∫
Ω

∂U

∂t
· U(x, t)−K

U(x, t)
dx

=

∫
Ω

N∑
i=0

(vi)t(x, t) ·
U(x, t)−K
U(x, t)

dx

=

∫
Ω

{
d∆U +

N∑
i=0

rifi(P (x))vi

(
1− U

K

)}
U −K
U

dx

=

∫
Ω

(
d∆U

(
1− K

U

)
− (U −K)2

KU

N∑
i=0

rifi(P (x))vi

)
dx

= d

[∫
∂Ω

∂U

∂v

(
1− K

U

)
dS −

∫
Ω

|∇U |2 K
U2

dx

]
−
∫

Ω

(U −K)2

KU

N∑
i=0

rifi(P (x))vidx

= −d
∫

Ω

|∇U |2 K
U2

dx−
∫

Ω

rNf0(P (x))
(U −K)2

K
dx ≤ 0.
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For the systems (1) and (2), by invariance principle [1] the ω−limit set lies on
the simplex S = {(u, v1, · · · , vN ) : U = u+ v1 + · · ·+ vN = K} ⊂ XΛ.

(i) Forward mutation.
For system (1), (3), (4), the dynamics on S satisfies

ut = d∆u− q0u

(vi)t = d∆vi + qi−1vi−1 − qivi, i = 1, 2, · · · , N − 1.

(vN )t = d∆vN + qN−1vN−1

(13)

Introduce Lyapunov functional on the simplex S,

V (w(·, t)) =

∫
Ω

(
u+ v1 + · · ·+ vN−1 + vN −K −K ln

vN
K

)
dx.

Then

V̇ (w(·, t)) =
d

dt
V (w(·, t))

= −
∫

Ω

(
|∇vN |2

dK

v2
N

+ qN−1K
)
dx < 0.

It follows that EN = (0, 0, · · · ,K) is globally asymptotically stable in S. Since
the ω−limit set of the solution of (1), (3), (4) lies in the maximal invariant set
M in S, from Proposition 3.2(i), EN is locally asymptotically stable for the
system (1), (3), (4), thus EN is globally asymptotically stable for the system
(1), (3), (4). Hence we complete the proof of Theorem 2.1(i).

(ii) Forward - backward mutation.

For the system (2), (3), (4), the dynamics on the simplex S satisfies
ut = d∆u− q0u+ q̃0v1

(vi)t = d∆vi + qi−1vi−1 − (q̃i−1 + qi)vi + q̃ivi+1,

i = 1, 2, · · · , N − 1

(vN )t = d∆vN + qN−1vN−1 − q̃N−1vN

(14)

It is easy to see the linear system(14) is monotone and irreducible and it

possesses the invariant function (see [10]) U =
∑N
i=0 vi which determines

a family of d−hypersurfaces [14]: U ≡ c, c ∈ R. Applying Theorem 6.3
of [10], we know that every solution of (14) is convergent to a steady state in
L := {µE∗ : µ ∈ R}. Precisely, every solution on the invariant d−hypersurface :
U ≡ c converges to the unique steady state c

KE
∗ lying on this d−hypersurface.

In particular, on the simplex S : U ≡ K, all solutions on the simplex S : U ≡ K
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tend to the steady state E∗. This means that E∗ is the unique compact invari-
ant set on the S.

Since the ω−limit set of the solution of (2), (3), (4) lies in the maximal
invariant M in S, from Proposition 3.2 (ii), E∗ is locally asymptotically stable
for the system (2), (3), (4), thus E∗ is globally asymptotically stable for the
system (2), (3), (4). Hence we complete the proof of Theorem 2.1(ii).
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Abstract. In this paper we analyze the influence of the spatial het-
erogeneities in the existence of positive solutions of Logistic problems
with heterogeneous sublinear boundary conditions. We will show that
the relative positions of the vanishing sets of the potentials in front of
the nonlinearities, in the PDE and on the boundary conditions, play a
crucial role as for the amplitude of the range of values of the bifurca-
tion parameter for which the problems possess positive solutions. We
will compare the cases of the logistic problem with linear and nonlinear
boundary conditions. Also, we will show the global bifurcation diagram
of positive solutions of the logistic problem with heterogeneous nonlin-
ear boundary conditions, considering the amplitude of the nonlinearity
in the boundary conditions as bifurcation-continuation parameter.

Keywords: principal eigenvalues, positive solutions, nonlinear mixed boundary condi-
tions, spatial heterogeneities, logistic problems.
MS Classification 2010: 35J65, 35J25, 35B09, 35B35, 35B40.

1. Introduction and Main Result

In this paper we consider the logistic elliptic boundary value problem with
sublinear mixed boundary conditions and spatial heterogeneities given by

−∆u = λu− a(x)up in Ω , p > 1 ,

u = 0 on Γ0 ,

∂νu = −b(x)uq on Γ1 , q > 1 ,

(1)
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where:

i) Ω is a bounded domain of RN , N ≥ 2, with boundary ∂Ω = Γ0 ∪ Γ1,
where Γ0 and Γ1 are two disjoint components of the boundary ,

ii) −∆ stands for the minus Laplacian operator in RN and λ ∈ R is the
bifurcation parameter,

iii) The potential a ∈ C(Ω̄) with a > 0 measures the spatial heterogeneities
in Ω and satisfies that

Ω0 := int {x ∈ Ω : a(x) = 0} 6= 0 , Ω0 ∈ C2

and

a is bounded away from zero in any compact subset of Ω \ Ω̄0 . (2)

In some case, when it is pointed out, we will assume that

a is bounded away from zero in any compact subset of (Ω\Ω̄0)∪Γ1 (3)

instead of (2)

iv) The potential b ∈ C(Γ1) with b > 0 measures the spatial heterogeneities
on Γ1.

v) ∂νu(x) stands for the outward normal derivative of u at each x ∈ Γ1.

By a positive solution of (1) for the value λ of the parameter we mean a strong
positive solution, that is, any positive function u ∈ W 2

r (Ω) for some r > N
which satisfies (1) a.e. in Ω for such a value λ of the parameter.

This kind of elliptic problems has been widely analyzed under linear bound-
ary conditions in some previous works (cf. [4, 6, 13, 14, 15, 18]) and under
nonlinear boundary conditions (cf. [7, 9, 11, 16, 21, 22]).

The main goal of this work is to analyze the existence of positive solutions
of (1) and to ascertain the global bifurcation diagram of positive solutions of
it, depending on the nodal behavior of the spatial heterogeneities a and b, in
the domain and on the boundary conditions, respectively. Namely, as for the
nodal behavior of the potential a we will distinguish the cases

Γ1 ⊂ ∂Ω0 , dist(∂Ω0 ∩ Ω,Γ1) > 0 (4)

and
Ω̄0 ⊂ Ω ∪ Γ0 , (5)

and as for the profile of the potential b we will distinguish the case when

b(x) ≥ b > 0 for all x ∈ Γ1 (6)
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and the case when

b(x) = 0 ∀x ∈ Γ0
1 and b(x) > 0 ∀x ∈ Γ+

1 , (7)

being Γ0
1 and Γ+

1 two disjoint connected pieces of Γ1, closed and open, respec-
tively as N − 1 dimensional manifolds, such that Γ1 = Γ0

1 ∪ Γ+
1 . Hereafter,

assuming that Γ0
1 and Γ+

1 satisfy the previous assumptions, we will denote

C+(Γ+
1 ) :=

{
V ∈ C(Γ1) : V (x) = 0 ∀ x ∈ Γ0

1 and V (x) > 0 ∀ x ∈ Γ+
1

}
. (8)

In Figures 1 and 2 we show two possible configurations of the subdomain Ω0

with respect to Γ1, satisfying (4) in Figure 1 and satisfying (5) in Figure 2. In

Figure 1: Γ1 ⊂ ∂Ω0, b ∈ C+(Γ+
1 ).

Figure 2: Ω̄0 ⊂ Ω ∪ Γ0, b ∈ C(Γ1).

[7, 9] it was analyzed, among other results, the existence of positive solutions
of (1), in the particular case when Ω̄0 ⊂ Ω and the potential a is bounded
away from zero in any compact subset of (Ω \ Ω̄0)∪Γ1. In [10] it was analyzed
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the particular special case when Ω = Ω0 and (6) holds. The results obtained
in this work extend the previous ones obtained in [7, 9], to cover the case
when either (4) or (5) hold, and either (6) or (7) hold. Moreover, it should be
noted that since we assume that (2) holds instead of (3) (as it was assumed
in [7, 9]), now when dist(Ω̄0,Γ1) > 0 we let that a vanishes on Γ1 or in some
subregion of Γ1 and therefore, in this case a is not bounded away from zero in
a neighborhood of Γ1. The extensions carried out in this work are not straight
with respect to the previous results, mainly when (4) and (7) hold, because
to obtain them it is necessary to apply a great variety of very sharp results
about principal eigenvalues. To obtain the new results under conditions (4)
and (7) it is necessary to work with a family of singular boundary eigenvalue
problems which possess Dirichlet and Neumann boundary conditions on the
component Γ1 of ∂Ω in a non-separated way. In this way, the results about
principal eigenvalues recently obtained in [5] play a crucial role to develop our
analysis.

Hereafter we denote by σ∗0 [b,Ω0] the principal eigenvalue defined

σ∗0 [b,Ω0] :=


σΩ0

1 [−∆,D] if (5) and (6) hold,
σΩ0

1 [−∆,D] if (5) and (3) hold,
σΩ0

1 [−∆,D] if (4) and (6) hold,
σΩ0

1 [−∆,B∗(Γ0
1)] if (4) and (7) hold,

(9)

whereD stands for the Dirichlet boundary operator,B∗(Γ0
1) denotes the bound-

ary operator defined

B∗
(
Γ0

1

)
ϕ =


ϕ on Γ0 ,

∂νϕ on Γ0
1 ,

ϕ on Γ+
1 ,

Γ+
1 = Γ1 \ Γ0

1 (10)

(cf. (7)) and where σΩ0
1 [−∆,D] and σΩ0

1 [−∆,B∗(Γ0
1)] stand for the principal

eigenvalues of the problems (−∆,Ω0,D) and
(
−∆,Ω0,B

∗(Γ0
1)
)
, respectively.

It must be pointed out that, as show (9) and (41), when (4) and (7) hold, then

σ∗0 [b,Ω0] = σΩ0
1 [−∆,B∗(Γ0

1)] < σΩ0
1 [−∆,D] .

In (9) we can observe the dependence of σ∗0 [b,Ω0] with respect to the potential
b, since Γ0

1 = b−1(0), and with respect to the relative position of the vanishing
set Ω0 of the potential a with respect to Γ1. When (4) and (7) hold, the
dependence of σ∗0(b,Ω0) with respect to b, is not with respect to the size of
b but with respect to the amplitude of the piece Γ0

1 where b vanishes. That
is, σΩ0

1 [−∆,B∗
(
Γ0

1

)
] is decreasing with respect to the amplitude of Γ0

1 and
however, if bi ∈ C+(Γ+

1 ), i = 1, 2, then we have that σ∗0 [b1,Ω0] = σ∗0 [b2,Ω0] =
σΩ0

1 [−∆,B∗
(
Γ0

1

)
], independently of the size of them.
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Let consider the logistic boundary value problem with linear mixed bound-
ary conditions given by

−∆u = λu− a(x)up in Ω ,

u = 0 on Γ0 ,

∂νu = 0 on Γ1 .

(11)

In the sequel we denote by ΛNL(Ω0, b) and ΛL(Ω0) the ranges of values of λ
for which (1) and (11) possess positive solutions, respectively. Also we denote

σ1 := σΩ
1 [−∆,B(0)] , σ∗0 := σ∗0 [b,Ω0] ,

and we will say that a positive function u is strongly positive in Ω, and we will
denote it by u� 0, if

u(x) > 0 ∀x ∈ Ω ∪ Γ1 and ∂νu(x) < 0 ∀x ∈ Γ0 with u(x) = 0 .

In the sequel we denote

W 2(Ω) :=
⋂
p>1

W 2
p (Ω) , W 2

B(V ) :=
{
u ∈W 2(Ω) : B(V )u = 0

}
,

C∞
Γ0∪Γ+

1
(Ω) :=

{
φ ∈ C∞(Ω) : supp φ ⊂ Ω̄ \ (Γ0 ∪ Γ+

1 )
}

and by H1
Γ0∪Γ+

1

(Ω) the clousure in H1(Ω) of the set of functions C∞
Γ0∪Γ+

1

(Ω).
The following is the main result of this work. It gives the structure of the

global bifurcation diagram of positive solutions of (1) and it compares ΛL(Ω0)
with ΛNL(Ω0, b) depending on the nodal behavior and profiles of the potentials
a and b.

Theorem 1.1. Under any pair of assumptions of (9), the following assertions
are true:

i) (1) possesses a positive solution if, and only if

σ1 < λ < σ∗0 . (12)

Moreover, the positive solution if it exists, it is unique and strongly posi-
tive in Ω. We will denote it by uλ. Moreover,

uλ ∈W 2(Ω) ⊂ C1+α(Ω̄) , ∀α ∈ (0, 1) . (13)

ii) The following hold:

a) If (5) and (6) hold, then

ΛL(Ω0) = ΛNL(Ω0, b) =
(
σ1, σ

Ω0
1 [−∆,D]

)
. (14)
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b) If (4) and (6) hold, then

ΛL(Ω0) =
(
σ1, σ

Ω0
1 [−∆,B(0,Ω0)]

)
, (15)

ΛNL(Ω0, b) =
(
σ1, σ

Ω0
1 [−∆,D]

)
(16)

and therefore,
ΛL(Ω0) ⊂ ΛNL(Ω0, b) . (17)

c) If (4) and (7) hold, then

ΛL(Ω0) =
(
σ1, σ

Ω0
1 [−∆,B(0,Ω0)]

)
, (18)

ΛNL(Ω0, b) =
(
σ1, σ

Ω0
1 [−∆,B∗

(
Γ0

1

)
]
)

(19)

and therefore,
ΛL(Ω0) ⊂ ΛNL(Ω0, b) . (20)

iii) Each positive solution uλ of (1) is linearly asymptotically stable, i.e., the
principal eigenvalue of the linearization of (1) around (λ, uλ) is positive.
Moreover, the function

u̇λ :=
d uλ
dλ
� 0 in Ω (21)

and in particular, for each x ∈ Ω ∪ Γ1 the map (σ1, σ
∗
0)→ (0,∞) defined

λ→ uλ(x)

is strictly increasing.

iv) There exists uniform L∞(Ω) bounds for the positive solutions of (1) in
any compact interval I of values of λ with I ⊂ [σ1, σ

∗
0).

v) The positive solutions of (1) belong to a differentiable continuum C+(σ1)
of positive solutions. It emanates supercritically from the trivial branch
(λ, u) = (λ, 0) at the unique bifurcation value to positive solutions of (1)
λ = σ1, bifurcates from infinity at the unique bifurcation value to positive
solutions from infinity λ = σ∗0 and it is increasing in ‖ · ‖L∞(Ω) with
respect to the λ-parameter. In particular,

Pλ
(
C+(σ1)

)
= [σ1, σ

∗
0) , (22)

and
lim
λ↓σ1

‖uλ‖L∞(Ω) = 0, lim
λ↑σ∗0
‖uλ‖L∞(Ω) =∞ ,

where Pλ (C+(σ1)) denotes the λ-projection of the continuum C+(σ1) over
the λ-axis.
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vi) Let b1, b2 ∈ C(Γ1) be such that

b2 > b1 > 0 , (23)

let λ be satisfying

λ ∈ ΛNL(Ω0, b1) ∩ ΛNL(Ω0, b2) (24)

and let ui, i = 1, 2 denote the unique positive solution of (1) for b = bi,
i = 1, 2. Then,

u1 − u2 � 0 in Ω , (25)
that is,

u1(x) > u2(x) ∀ x ∈ Ω ∪ Γ1 and ∂νu1(x) < ∂νu2(x) ∀ x ∈ Γ0.

vii) Let b ∈ C(Γ1) be such that b > 0, let λ ∈ ΛL(Ω0) be and let ũ, u0 be the
unique positive solution of (1) and (11), respectively, for such a value λ
of the parameter. Then,

u0 > ũ in Ω . (26)

viii) Assume that (4) holds and let b1, b2 ∈ C+(Γ+
1 ) be satisfying (23). Let

λ ∈
(
σ1, σ

Ω0
1 [−∆,B∗(Γ0

1)]
)

be and let ui, i = 1, 2 denote the unique
positive solution of (1) for b = bi, i = 1, 2. Then, (25) holds.

ix) Assume that (4) or (5) holds and let b1, b2 ∈ C(Γ1) be bounded away from
zero satisfying (23). Let λ ∈

(
σ1, σ

Ω0
1 [−∆,D]

)
be and let ui, i = 1, 2

denote the unique positive solution of (1) for b = bi, i = 1, 2. Then, (25)
holds.

Taking into account the results of Theorem 1.1, Figure 3 shows the global
bifurcation diagrams of positive solutions of (1) (red dashed curve) and (11)
(blue curve), constituted by the global continuum C+(σ1) of positive solutions
emanating from λ = σ1, where ΛL(Ω0) = (σ1, σ0) and ΛNL(Ω0, b) = (σ1, σ

∗
0),

with σ0 ≤ σ∗0 . Also, Figure 4 shows the global bifurcation diagrams of positive
solutions of (1) for b1, b2 ∈ C+(Γ+

1 ) satisfying (23). The blue curve stands for
the continuum C+(σ1) of (1) for b = b1 and the the red dashed curve the global
continuum C+(σ1) of (1) for b = b2.

Following similar arguments to the given in the previous works [6, 7, 9,
12, 14], the results obtained in this paper may be generalized to ascertain
the global bifurcation diagram of positive solutions of the following nonlinear
elliptic weighted boundary value problem

−∆u = λW (x)u− a(x)f(x, u)u in Ω ,

u = 0 on Γ0 ,

∂νu+ V (x)u = −b(x)g(x, u)u on Γ1 ,
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Figure 3: C+(σ1) for b = 0 and b > 0.

Figure 4: C+(σ1) for b1, b2 ∈ C+(Γ+
1 ), b2 > b1.

where:

• W ∈ L∞(Ω) and V ∈ C(Γ1) possess arbitrary sign in each point of Ω and
Γ1, respectively.

• The function f ∈ C1(Ω̄× [0,∞);R) satisfies the following assumptions:

f(x, 0) = 0 ,
∂f

∂u
(x, u) > 0 (x, u) ∈ Ω× (0,∞)

and
lim
u↑∞

f(x, u) = +∞ uniformly in Ω̄ .

• The function g ∈ C1(Γ1 × [0,∞);R) satisfies the following assumptions:

g(x, 0) = 0 ,
∂g

∂u
(x, u) > 0 (x, u) ∈ Γ1 × (0,∞)
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and
lim
u↑∞

g(x, u) = +∞ uniformly on Γ1 .

• The piece of the boundary Γ0 possesses finitely many components satis-
fying

Γ0 =

l⋃
k=1

Γk0

m⋃
k=l+1

Γk0 ,

with

Γk0 ∩ ∂Ω0 = ∅ k = 1, . . . , l , Γk0 ∩ ∂Ω0 6= ∅ k = l + 1, . . . ,m .

• The piece of the boundary Γ1 possesses finitely many components, some
of them where the potential b in the nonlinear boundary condition is
bounded away from zero, and the rest where b vanishes in some subregions
of them.

Also, following the arguments and taking into account the results given in [13],
the results of this paper may be generalized to cover the very general case
when the vanishing set Ω0 of the potential a is not a nice subdomain of Ω with
Ω0 ∈ C2, but a very general set with no special restriction on its structure.

The main technical tools used to develop our analysis are bifurcation and
monotonicity techniques.

The distribution of the rest of this paper is the following. Section 2 contains,
without proofs, all the previous results about principal eigenvalues coming from
[5, 12, 17, 20] that we will need to prove the main result. Section 3 contains the
proof of Theorem 1.1. Finally, Section 4 includes without proof, the main result
coming from [11] about the global structure of the diagram of positive solutions
of (1) for a fixed λ in a suitable interval, considering the amplitude of the
potential b on the boundary conditions as bifurcation-continuation parameter.

2. Preliminaries results about principal eigenvalues

In this section we collect the main results about principal eigenvalues coming
from [5, 12, 17, 20] that are going to be used throughout the rest of this paper.

Hereafter, for each k ∈ L∞(Ω), Lk stands for the linear second order differ-
ential operator

Lk : −∆ + k(x) ,

D stands for the Dirichlet boundary operator and for each V ∈ C(Γ1), B(V )
denotes the boundary operator defined

B(V )ϕ =

{
ϕ on Γ0 ,

∂νϕ+ V ϕ on Γ1 ,
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where ∂νϕ stands for the outward normal derivative on Γ1. It is known that
for each r > 1

B(V ) ∈ L
(
W 2
r (Ω),W

2− 1
r

r (Γ0)×W 1− 1
r

r (Γ1)
)

(cf. [2]). Also, given any proper subdomain Ω0 of Ω of class C2 with

dist(Γ1, ∂Ω0 ∩ Ω) > 0 , (27)

we denote B(V,Ω0) the boundary operator built from B(V ) through by

B(V,Ω0)ϕ :=

{
ϕ on ∂Ω0 ∩ Ω ,

B(V )ϕ on ∂Ω0 ∩ ∂Ω .

It should be pointed out that when Ω̄0 ⊂ Ω ∪ Γ0, then B(V,Ω0) = D.
By principal eigenvalue of an eigenvalue problem we mean any eigenvalue

of it which possesses a one-signed eigenfunction, and in particular a positive
eigenfunction.

It follows from [2, Theorem 12.1] that the eigenvalue problem{
Lkϕ = σϕ in Ω ,

B(V )ϕ = 0 on ∂Ω ,
(28)

possesses a unique principal eigenvalue, denoted in the sequel by σΩ
1 [Lk,B(V )],

which is simple and the least eigenvalue of (28). Moreover, the positive eigen-
function ϕ∗ associated to it, unique up multiplicative constant, is strongly
positive in Ω, that is,

ϕ∗(x) > 0 ∀x ∈ Ω ∪ Γ1 and ∂νϕ
∗(x) < 0 ∀x ∈ Γ0 , (29)

and in addition

ϕ∗ ∈W 2
B(V )(Ω) ⊂ C1+α(Ω̄) for all α ∈ (0, 1) . (30)

The following result collects all the monotonicity properties of σΩ
1 [Lk,B(V )]

coming from [17, Proposition 3.2], [12, Propositions 3.1, 3.2, 3.3 and 3.5] and
[20, Chapter 8] that we will use to develop our analysis.

Proposition 2.1. The following monotonicity properties hold:

i) Let k1, k2 ∈ L∞(Ω) and V ∈ C(Γ1) be such that k1 < k2. Then

σΩ
1 [Lk1 ,B(V )] < σΩ

1 [Lk2 ,B(V )] . (31)
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ii) Let V1, V2 ∈ C(Γ1) and k ∈ L∞(Ω) be such that V1 < V2. Then

σΩ
1 [Lk,B(V1)] < σΩ

1 [Lk,B(V2)] . (32)

iii) For any V ∈ C(Γ1) and k ∈ L∞(Ω) the following holds

σΩ
1 [Lk,B(V )] < σΩ

1 [Lk,D] . (33)

iv) Let Ω0 be a proper subdomain of Ω of class C2 satisfying (27). Then, for
any k ∈ L∞(Ω)

σΩ
1 [Lk,B(V )] < σΩ0

1 [Lk,B(V,Ω0)] . (34)

Let Ω0 be a subdomain of Ω of class C2 with boundary ∂Ω0 = Γ0
0 ∪ Γ1

such that Γ0
0 ∩ Γ1 = ∅, where Γ0

0 = ∂Ω0 ∩ Ω, and Ωn, n ≥ 1, a sequence of
bounded domains of RN with boundary ∂Ωn = Γn0 ∪ Γ1 of class C2 such that
Γn0 ∩ Γ1 = ∅, n ≥ 1, where Γn0 = ∂Ωn ∩ Ω. It is said that Ωn converges to Ω0

from the exterior if for each n ≥ 1

Ω0 ⊂ Ωn+1 ⊂ Ωn ,
⋂
n≥1

Ω̄n = Ω̄0 . (35)

The following result collects all the asymptotic behaviors of σΩ
1 [Lk,B(V )],

coming from [17, Theorems 4.2 and 5.1], [12, Theorems 7.1, 8.2, 9.1 and 10.1]
and [20, Chapter 8], that we will need later.

Proposition 2.2. Let k ∈ L∞(Ω) be. Then the following hold:

i) Let B1 := {x ∈ RN : |x| < 1} be, where | · | stands for the Lebesgue
measure of RN , then

lim inf
|Ω|↓0

σΩ
1 [Lk,D] ≥ |B1|

2
N σB1

1 [−∆,D]|Ω|− 2
N . (36)

ii) For any sequence Vn ∈ C(Γ1), n ≥ 1 satisfying

lim
n↑∞

min
x∈Γ1

Vn(x) =∞

yields
lim
n→∞

σΩ
1 [Lk,B(Vn)] = σΩ

1 [Lk,D] . (37)

iii) Let Ω0 be a subdomain of Ω with boundary ∂Ω0 = Γ0
0 ∪ Γ1 such that

Γ0
0 ∩ Γ1 = ∅ where Γ0

0 = ∂Ω0 ∩ Ω, and let Ωn, n ≥ 1 be any sequence of
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bounded domains of RN of class C2 converging to Ω0 from the exterior in
the sense of (35). Then

lim
n→∞

σΩn
1 [Lk,Bn(V )] = σΩ0

1 [Lk,B(V )] , (38)

where Bn(V ) denotes the boundary operator defined

Bn(V )u :=

{
u on Γn0 ,

∂νu+ V u on Γ1 ,
Γn0 := ∂Ωn ∩ Ω .

iv) Let Vn ∈ C(Γ1), n ≥ 1, be an arbitrary sequence satisfying

lim
n→∞

‖Vn − V ‖L∞(Γ1) = 0 ,

with V ∈ C(Γ1). Then,

lim
n→∞

σΩ
1 [Lk,B(Vn)] = σΩ

1 [Lk,B(V )] . (39)

Now, let consider the boundary operator B∗(Γ0
1) defined in (10), where Γ0

1

and Γ+
1 are two disjoint connected pieces of Γ1, closed and open, respectively

as N − 1 dimensional manifolds, such that Γ1 = Γ0
1 ∪ Γ+

1

The following result collects all the properties about the principal eigenvalue
of the problem

(
Lk,Ω,B∗

(
Γ0

1

))
, coming from [5, Th. 1.1, Prop. 3.2, Cor. 3.4

and 3.5], that we will use in the sequel.

Proposition 2.3. Let k ∈ L∞(Ω) be and let consider the eigenvalue problem{
Lkϕ = σϕ in Ω ,

B∗(Γ0
1)ϕ = 0 on ∂Ω ,

(40)

where ∂Ω = Γ0∪Γ1 and Γ1 = Γ0
1∪Γ+

1 , being Γ0
1 and Γ+

1 two disjoint connected
pieces of Γ1, closed and open, respectively as N − 1 dimensional manifolds.
Then, (40) possesses a unique principal eigenvalue, denoted in the sequel by
σΩ

1 [Lk,B∗(Γ0
1)], which is simple and the smallest eigenvalue of all other eigen-

values of (40). Moreover, any eigenfunction of (40) associated to the principal
eigenvalue is one-signed in Ω and if we denote by ϕ1 ∈ H1

Γ0∪Γ+
1

(Ω) the positive
eigenfunction associated to it, unique up multiplicative constant, yields

ϕ1(x) > 0 a.e. in Ω .

In addition:
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i) If ψD denotes the principal eigenfunction associated to σΩ
1 [Lk,D] normal-

ized so that ‖ψD‖L∞(Ω) = 1, then

σΩ
1 [Lk,B∗(Γ0

1)] = σΩ
1 [Lk,D] +

∫
Γ0
1
∂νψ

Dϕ1∫
Ω
ψDϕ1

< σΩ
1 [Lk,D] . (41)

ii) For each V ∈ C+(Γ+
1 ) the following hold

σΩ
1 [Lk,B(0)] < σΩ

1 [Lk,B(V )] < σΩ
1 [Lk,B∗(Γ0

1)] < σΩ
1 [Lk,D] . (42)

iii) The following characterization holds

σΩ
1

[
Lk,B∗(Γ0

1)
]

= sup
V ∈C+(Γ+

1 )

σΩ
1 [Lk,B(V )] . (43)

3. Proof of Theorem 1.1

In this section we prove some previous results that we need to prove Theo-
rem 1.1 and finally we prove it.

Proposition 3.1. Let uλ be a positive solution of (1) for the value λ of the
parameter. Then,

λ = σΩ
1

[
−∆ + a(x)up−1

λ ,B
(
b(x)uq−1

λ

)]
, (44)

λ > σΩ
1 [−∆,B(0)] (45)

and
uλ � 0 in Ω , uλ ∈W 2(Ω) ⊂ C1+α(Ω̄) ∀α ∈ (0, 1) . (46)

Moreover:

i) If either (5) is satisfied or (4) and (6) are satisfied, then

λ < σΩ0
1 [−∆,D] . (47)

ii) If (4) and (7) are satisfied, then

λ < σΩ0
1 [−∆,B∗(Γ0

1)] . (48)

Proof. Let uλ be a positive solution of (1) for the value λ of the parameter.
Then, uλ ∈ W 2

r (Ω) for some r > N and since a ∈ C(Ω̄) and b ∈ C(Γ1), the
following hold 

(
−∆ + a(x)up−1

λ

)
uλ = λuλ in Ω ,

B
(
b(x)uq−1

λ

)
uλ = 0 on ∂Ω ,

(49)
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where
a(x)up−1

λ ∈ C(Ω̄) , b(x)uq−1
λ ∈ C(Γ1) .

Then, (49) fits into the framework of (28) and uλ is a positive eigenfunction
of (49) associated to the eigenvalue λ. Thus, (44) and (46) follow owing to
the existence and uniqueness of the principal eigenvalue of (49), joint with the
strongly positivity and regularity of its principal eigenfunction (cf.(28), (29)
and (30)).

Now, since a > 0 and b > 0, owing to (31) and (32) it follow from (44) that

λ = σΩ
1

[
−∆ + a(x)up−1

λ ,B
(
b(x)uq−1

λ

)]
> σΩ

1 [−∆,B(0)] ,

which proves (45). Also, owing to the monotonicity of the principal eigenvalue
with respect to the domain (cf.(34)) it follows from (44) that

λ = σΩ
1

[
−∆ + a(x)up−1

λ ,B
(
b(x)uq−1

λ

)]
< σΩ0

1

[
−∆,B

(
b(x)uq−1

λ ,Ω0

)]
.

(50)
We now prove (47). Indeed, let assume that (5) holds. Then,

B
(
b(x)uq−1

λ ,Ω0

)
= D (51)

and hence, (50) and (51) imply (47) under condition (5). In the same way, let
assume now that (4) and (6) are satisfied. Then, since b(x)uq−1

λ ∈ C(Γ1), (47)
follows from (50) owing to (33).

Finally we now prove (48). Indeed, let assume that (4) and (7) are satisfied.
Then, since uλ(x) > 0 for all x ∈ Γ1 and b ∈ C+(Γ+

1 ) (cf. (8)), we have that
b(x)uq−1

λ ∈ C+(Γ+
1 ) and hence, (48) follows from (50) owing to (42).

This completes the proof.

Proposition 3.2. For each

λ > σΩ
1 [−∆,B(0)] (52)

(1) possesses a positive strict subsolution arbitrarily small and strongly positive
in Ω.

Proof. Let λ be satisfying (52). Owing to (32) and (39) we have that for each
ε > 0

σΩ
1 [−∆,B(0)] < σΩ

1 [−∆,B(ε)] ,

and
lim
ε↓0

σΩ
1 [−∆,B(ε)] = σΩ

1 [−∆,B(0)] ,
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and therefore since (52) holds, there exists ε1 > 0 such that for each ε ∈ (0, ε1]
the following hold

σΩ
1 [−∆,B(0)] < σΩ

1 [−∆,B(ε)] < λ . (53)

Fix ε ∈ (0, ε1] satisfying (53) and let us denote σε1 := σΩ
1 [−∆,B(ε)] and ϕε the

principal eigenfunction associated to σε1 normalized so that

‖ϕε‖L∞(Ω) = 1 . (54)

Now, let us consider the function

u = αϕε , (55)

where α > 0 is an small constant to determine later.
Since ϕε is strongly positive in Ω, to complete the proof it remains to

prove that there exists α̃ > 0 small enough such that for each α ∈ (0, α̃) the
function (55) provides us with a positive strict subsolution of (1). Indeed, pick
up α̃ satisfying

0 < α̃ < min

{(
λ− σε1
‖a‖L∞(Ω)

) 1
p−1

,

(
ε

‖b‖L∞(Γ1)

) 1
q−1

}
.

Then, taking into account (53) and (54), we find that for each α ∈ (0, α̃] the
following estimate is satisfied in Ω

−∆u− λu+ a(x)up = αϕε
(
σε1 − λ+ a(x)αp−1ϕp−1

ε

)
< αϕε

(
σε1 − λ+ ‖a‖L∞(Ω)α̃

p−1
)
< 0 .

(56)

Also, by construction the following estimate is satisfied on Γ1

∂νu+ b(x)uq = αϕε
(
−ε+ b(x)αq−1ϕq−1

ε

)
< αϕε

(
−ε+ ‖b‖L∞(Γ1)α̃

q−1
)
< 0 .

(57)

Finally the following holds on Γ0

u = αϕε = 0 on Γ0 . (58)

Therefore, (56)-(58) prove that u provides us with a positive strict subsolution
of (1) for each α ∈ (0, α̃], which by construction is strongly positive in Ω.

This completes the proof.

Proposition 3.3. Assume that either

i) (4) and (7), or
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ii) (4) and (6), or

iii) (5) and (6), or

iv) (5) and (3)

hold. Then, for each
λ < σ∗0 [b,Ω0] , (59)

(1) possesses a positive strict supersolution, arbitrarily large and strongly posi-
tive in Ω.

Proof. Taking into account the definition of σ∗0 [b,Ω0] (cf. (9)), we have that
under condition i), (59) becomes

λ < σΩ0
1

[
−∆,B∗(Γ0

1)
]

(60)

and under conditions ii), iii) or iv), (59) becomes

λ < σΩ0
1 [−∆,D] . (61)

We now prove the result under conditon i).
Let us denote σ∗0 := σΩ0

1 [−∆,B∗
(
Γ0

1

)
] and let λ be satisfying (60).

Necessarily, either
∂Ω0 ∩ Γ0 = ∅ (62)

or
∂Ω0 ∩ Γ0 6= ∅ . (63)

Assume (62) holds. Since (7) is satisfied we have that b ∈ C+(Γ+
1 ) and owing

to (42) and (43) it follows from (60) that there exists V ∈ C+(Γ+
1 ) such that

λ < σΩ0
1 [−∆,B(V )] < σ∗0 . (64)

Set for each interval I ⊂ (0,∞)

ΓI1 =
{
x ∈ Γ+

1 : distΓ1(x,Γ0
1) ∈ I

}
,

where distΓ1
(·,Γ0

1) stands for the N−1 dimensional minimal distance along Γ1.
Now, for each ε > 0 sufficiently small, let us take a continuous perturbation
Vε ∈ C+(Γ+

1 \ Γ
(0,ε]
1 ) of V satisfying

Vε(x) ≤ V (x) for all x ∈ Γ1

and
lim
ε→0
‖V − Vε‖L∞(Γ1) = 0 . (65)
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By construction we have that

Vε(x) = 0 ∀x ∈ Γ0
1 ∪ Γ

(0,ε]
1 and Vε(x) > 0 ∀x ∈ Γ+

1 \ Γ
(0,ε]
1 (66)

and
Vε < V on Γ1 . (67)

Owing to (67) and (32) we find that

σΩ0
1 [−∆,B(Vε)] < σΩ0

1 [−∆,B(V )] (68)

and owing to (65), it follows from (39) that

lim
ε↓0

σΩ0
1 [−∆,B(Vε)] = σΩ0

1 [−∆,B(V )] . (69)

Then, (64), (68) and (69) imply the existence of ε1 > 0 such that for each
ε ∈ (0, ε1] the following hold

λ < σΩ0
1 [−∆,B(Vε)] < σΩ0

1 [−∆,B(V )] < σ∗0 . (70)

Fix ε ∈ (0, ε1] satisfying (70). Also, since b ∈ C+(Γ+
1 ), there exists a constant

βε > 0 such that
b(x) ≥ βε > 0 ∀x ∈ Γ+

1 \ Γ
(0,ε)
1 . (71)

On the other hand, for each δ > 0 sufficiently small, let consider the δ-
neighborhoods

Ωδ := (Ω0 +Bδ) ∩ Ω , Nδ := (Γ0 +Bδ) ∩ Ω , (72)

where Bδ ⊂ RN denotes the ball of radius δ centered at the origin, and set

Γδ := ∂Ωδ ∩ Ω .

Then, ∂Ωδ = Γδ ∪ Γ1. Since Γ0 ∩ Γ1 = ∅ and (62) holds, there exists δ0 > 0
such that for each 0 < δ < δ0

Ω̄δ ∩ N̄δ = ∅ . (73)

By construction we have that Ω0 is a proper subdomain of Ωδ and Ωδ converges
to Ω0 from the exterior in the sense of (35). Then, it follows from (34) and (38)
that

σΩδ
1 [−∆,B(Vε)] < σΩ0

1 [−∆,B(Vε)] , 0 < δ < δ0 (74)

and
lim
δ↓0

σΩδ
1 [−∆,B(Vε)] = σΩ0

1 [−∆,B(Vε)] (75)
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and therefore, (70), (74) and (75) imply the existence of δ1 ∈ (0, δ0) such that

λ < σΩδ
1 [−∆,B(Vε)] < σΩ0

1 [−∆,B(Vε)] < σΩ0
1 [−∆,B(V )] < σ∗0 (76)

for each δ ∈ (0, δ1). Let us denote in the sequel σδ,ε1 := σΩδ
1 [−∆,B(Vε)]. Also,

since limδ↓0 |Nδ| = 0, it follows from (36) the existence of δ2 ∈ (0, δ1) such that
for each δ ∈ (0, δ2)

σNδ1 [−∆,D] > σ∗0 . (77)

Now, fix δ∈(0,δ2) satisfying (76) and (77) and let ϕεδ and ηδ denote the principal
eigenfunctions associated with the principal eigenvalues σδ,ε1 and σNδ1 [−∆,D],
respectively, normalized so that ‖ϕεδ‖L∞(Ωδ) = 1 and ‖ηδ‖L∞(Nδ) = 1.

Then, let consider now the positive function

ū := KΦ ,

where K > 0 is a sufficiently large constant to be determined later and Φ :
Ω̄ → [0,∞) is defined by

Φ :=


ϕεδ in Ω̄ δ

2
,

ηδ in N̄ δ
2
,

ξεδ in Ω̄ \
(

Ω̄ δ
2
∪ N̄ δ

2

)
,

where ξεδ is any regular positive extension of ϕεδ and ηδ from Ω̄ δ
2
∪ N̄ δ

2
to Ω̄

which is bounded away from zero in Ω̄ \
(

Ω̄ δ
2
∪ N̄ δ

2

)
. The existence of ξεδ is

guaranteed since the functions

ϕεδ|Γ δ
2

, ηδ|∂N δ
2
∩Ω

are bounded away from zero. Let µδ > 0 be such that

ξεδ(x) ≥ µδ > 0 ∀x ∈ Ω̄ \
(

Ω̄ δ
2
∪ N̄ δ

2

)
. (78)

Also, since a is bounded away from zero in any compact subset of Ω\ Ω̄0, there
exists aδ > 0 such that

a(x) ≥ aδ > 0 ∀x ∈ Ω̄ \
(

Ω̄ δ
2
∪ N̄ δ

2

)
. (79)

To complete the proof it remains to show that there exists κ > 0 sufficiently
large such that ū = KΦ provides us with a positive strict supersolution of (1)
for each K ≥ κ. Indeed, since a > 0 it follows from (76) that in Ω δ

2
the

following estimate is satisfied for eack K > 0

−∆ū− λū+ a(x)ūp = Kϕεδ

(
σδ,ε1 − λ+ a(x)Kp−1(ϕεδ)

p−1
)

≥ Kϕεδ

(
σδ,ε1 − λ

)
> 0 .

(80)
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Similarly, owing to (70) and (77) and since a > 0, the following estimate is
satisfied in N δ

2
for each K > 0

−∆ū− λū+ a(x)ūp = Kηδ

(
σNδ1 [−∆,D]− λ+ a(x)Kp−1ηp−1

δ

)
≥ Kηδ

(
σNδ1 [−∆,D]− λ

)
> 0 .

(81)

Also, owing to (78) and (79) there exists κ1 > 0 such that for any K ≥ κ1 > 0

the following estimate is satisfied in Ω \
(

Ω δ
2
∪N δ

2

)
−∆ū− λū+ a(x)ūp ≥ K

(
−∆ξεδ − λξεδ + a(x) (ξεδ)

p
Kp−1

)
≥ K

(
−∆ξεδ − λξεδ + aδµ

p
δκ
p−1
1

)
≥ K

(
−‖∆ξεδ + λξεδ‖L∞ + aδµ

p
δκ
p−1
1

)
> 0 .

(82)

As for the boundary conditions, on Γ1 we will distinguish two different subre-
gions, Γ0

1 ∪ Γ
(0,ε]
1 and Γ+

1 \ Γ
(0,ε]
1 . Since

Vε(x) = 0, b(x) ≥ 0 ∀x ∈ Γ0
1 ∪ Γ

(0,ε]
1 ,

we find that by construction the following estimate is satisfied for any K > 0

on Γ0
1 ∪ Γ

(0,ε]
1

∂ν ū+ b(x)ūq = K∂νϕ
ε
δ + b(x)Kq (ϕεδ)

q

= −KVεϕεδ + b(x)Kq (ϕεδ)
q

= b(x)Kq (ϕεδ)
q ≥ 0 .

(83)

Also, since ϕεδ is strongly positive in Ωδ yields

mε
δ := min

x∈Γ1

ϕεδ(x) > 0 . (84)

Then, owing to the fact that Vε(x) > 0 for all x ∈ Γ+
1 \Γ

(0,ε]
1 and (71) and (84)

hold, we find that there exists κ2 ≥ κ1 > 0 such that the following estimate is
satisfied on Γ+

1 \ Γ
(0,ε]
1 for each K ≥ κ2 > 0

∂ν ū+ b(x)ūq = Kϕεδ

[
−Vε(x) + b(x)Kq−1 (ϕεδ)

q−1
]

≥ Kϕεδ

[
−‖Vε‖L∞(Γ1) + βεκ

q−1
2

(
mε
δ

)q−1
]
> 0 .

(85)

Finally, by construction
ū|Γ0 = Kηδ|Γ0 = 0 . (86)

Then, (80)-(82) and (83)-(86) prove that, under condition (62), ū provides us
with a positive strict supersolution of (1) for each K ≥ κ2 > 0, which by
construction is strongly positive in Ω.
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This completes the proof of the result under condition (62).
Now, let assume that (63) holds. Then, pick up δ > 0, let denote

Ω̃ := Ω ∪Bδ(Γ0) , Γ̃0 := ∂Ω̃ \ Γ1 .

where Bδ(Γ0) ⊂ RN stands for a δ-neighborhood of Γ0, let consider the auxil-
iary potential

ã =

{
1 in Ω̃ \ Ω ,

a in Ω ,

the auxiliary boundary operator

B̃(b) :=

{
D on Γ̃0 ,

∂ν + b on Γ1 ,

and the associated boundary value problem
−∆u = λu− ã(x)up in Ω̃ ,

u = 0 on Γ̃0 ,

∂νu = −b(x)uq on Γ1 .

(87)

By construction

Ω̃0 = Ω0 , Γ̃0 ∩ ¯̃Ω0 = ∅ , σΩ̃0
1 [−∆,B∗

(
Γ0

1

)
] = σΩ0

1 [−∆,B∗
(
Γ0

1

)
] = σ∗0

and (60) becomes
λ < σΩ̃0

1 [−∆,B∗(Γ0
1)] . (88)

Then, (87) satisfies condition (62), and hence, since (88) holds, we find by
the above arguments that (87) possesses a positive strict supersolution ũ arbi-
trarily large and strongly positive in Ω̃ for each λ satisfying (60). Now, it is
straightforward to prove that the function

ū := ũ|Ω̄

provides us with, for each λ satisfying (60), a positive strict supersolution of (1)
under condition (63), which is arbitrarily large and strongly positive in Ω.

This completes the proof of the result under condition i).
We now prove the result under condition ii). Let us denote σ0 :=σΩ0

1 [−∆,D]
and let λ be satisfying (61). Whithout lost of generality we will assume that
(62) holds. On the contrary we would argue as in case i) when (63) holds.
Owing to (33) and (37) we have that

σΩ0
1 [−∆,B(n)] < σ0 ∀n ∈ N , lim

n↑∞
σΩ0

1 [−∆,B(n)] = σ0 . (89)
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Then, owing to (61) and (89), there exists n ∈ N large enough such that

λ < σΩ0
1 [−∆,B(n)] < σ0 . (90)

Fix n ∈ N satisfying (90). Now, let consider the δ-neighborhoods Ωδ and
Nδ defined in (72). Using the same arguments than in case i), it follows the
existence of δ0 > 0 such that for each δ ∈ (0, δ0) (73) holds and moreover

σΩδ
1 [−∆,B(n)] < σΩ0

1 [−∆,B(n)]

and
lim
δ↓0

σΩδ
1 [−∆,B(n)] = σΩ0

1 [−∆,B(n)] .

Thus, taking into account (90), there exists δ1 ∈ (0, δ0) such that for each
δ ∈ (0, δ1) the following hold

λ < σΩδ
1 [−∆,B(n)] < σΩ0

1 [−∆,B(n)] < σ0 . (91)

Also, arguing as in case i), there exists δ2 ∈ (0, δ1) such that for each δ ∈ (0, δ2)

σNδ1 [−∆,D] > σ0 . (92)

Now, fix δ ∈ (0, δ2) satisfying (91) and (92), let ϕnδ and ηδ denote the principal
eigenfunctions associated with the principal eigenvalues σΩδ

1 [−∆,B(n)] and
σNδ1 [−∆,D] normalized so that ‖ϕnδ ‖L∞(Ωδ) = 1 and ‖ηδ‖L∞(Nδ) = 1 Now, let
consider the positive function

ū = KΦ ,

where K > 0 is a sufficiently large constant to be determined later and Φ :
Ω̄→ [0,∞) is defined by

Φ :=


ϕnδ in Ω̄ δ

2
,

ηδ in N̄ δ
2
,

ξnδ in Ω̄ \
(

Ω̄ δ
2
∪ N̄ δ

2

)
,

being ξnδ any regular positive extension of ϕnδ and ηδ from Ω̄ δ
2
∪N̄ δ

2
to Ω̄ which

is bounded away from zero. Now, taking into account (91) and (92) and the
fact that ϕnδ is strongly positive in Ωδ and arguing as in case i), it is not hard
to prove that there exists κ̃ > 0 such that for each K ≥ κ̃, ū is a positive strict
supersolution of (1), which by construction is strongly positive in Ω.

This completes the proof of the result under condition ii).
Now, taking the notations of the previous cases, the proof of the result

under condition iii) follows arguing as in cases i) and ii), taking ū = KΦ,
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where K > 0 is sufficiently large and

Φ :=


ηδ in N̄ δ

2
,

ϕδ in Ω̄ δ
2
,

ψδ in Ā δ
2
∩ Ω ,

ξδ in Ω̄ \
(
N̄ δ

2
∪ Ω̄ δ

2
∪ (Ā δ

2
∩ Ω)

)
,

being Ωδ := Ω̄0 +Bδ and Aδ := Γ1 +Bδ, for δ > 0 small enough so that

Ω̄δ ∩ N̄δ = ∅ , Ω̄δ ∩ Āδ = ∅ , Āδ ∩ N̄δ = ∅ ,

and where ψδ stands for the principal eigenfunction associated to σAδ1 [−∆,D],
normalized with L∞-norm equals 1 in its domain, and ξδ is any positive regular
extension of ηδ, ϕδ and ψδ from N̄ δ

2
∪ Ω̄ δ

2
∪ (Ā δ

2
∩Ω) to Ω̄, bounded away from

zero.
Finally, taking the notations of the previous cases, the proof of the result

under condition iv) follows arguing in a similar way taking ū = KΦ for K > 0
sufficiently large and

Φ :=


ηδ in N̄ δ

2
,

ϕδ in Ω̄ δ
2
,

ξδ in Ω̄ \
(
N̄ δ

2
∪ Ω̄ δ

2

)
,

where now ξδ is any positive regular extension of ηδ and ϕδ from N̄ δ
2
∪ Ω̄ δ

2
to

Ω̄ bounded away from zero, satisfying

∂νξδ(x) ≥ 0 ∀ x ∈ Γ1 , (93)

whose existence is guaranteed by construction. This completes the proof.

We now prove Theorem 1.1

Proof of Theorem 1.1: We are going to prove i). Indeed, let uλ be a positive
solution of (1) for the value λ of the parameter. Then, taking into account the
definition of σ∗0 [b,Ω0] (cf.(9)), the necessary condition (12) for the existence of
positive solution follows from (45), (47) and (48).

To prove the sufficient condition (12) for the existence of positive solution
of (1) we will use the sub-supersolution method (cf. [1]). Let λ be satisfy-
ing (12). Then owing to Proposition 3.2, (1) possesses a positive strict sub-
solution uλ, arbitrarily small and strongly positive in Ω. On the other hand,
it follows from Proposition 3.3 that for each λ satisfying (12), (1) possesses
a positive strict supersolution ūλ, arbitrarily large and strongly positive in Ω.
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Then, since both of them, the subsolution uλ and the supersolution ūλ, are
strongly positive in Ω, it is possible to take them satisfying uλ < ūλ in Ω, and
owing to the sub-supersolution method we find that (1) possesses a positive
solution uλ, with uλ < uλ < ūλ, for each λ satisfying (12).

The proof of the uniqueness of positive solution, if it exists, is obtained
following the same arguments than in [9, Theorem 3.1].

The fact that any positive solution uλ of (1) is strongly positive in Ω and
that (13) holds, follow from (46).

We now prove ii) The results about the structure of ΛL(Ω0) in (14), (15)
and (18) follow from [14, Theorem 3.5] and [6, Theorem 3.4]. The results about
the structure of ΛNL(Ω0, b) in (14), (16) and (19) follow from (12), taking into
account the definition of σ∗0 [Ω0, b]. Finally, (17) and (20) follow from (33)
and (42).

We now prove iii) Let uλ be a positive solution of (1) for the value λ of the
parameter. Then, (12) and (44) hold and differentiating (1) with respect to λ
we find that u̇λ := duλ

dλ satisfies the following problem
(
−∆ + pa(x)up−1

λ − λ
)
u̇λ = uλ > 0 in Ω ,

B
(
qb(x)uq−1

λ

)
u̇λ = 0 on ∂Ω .

(94)

Also, since a > 0 and uλ > 0 in Ω, b > 0 on Γ1 and p, q > 1, owing to (31)
and (32) it follows from (44) that

σΩ
1

[
−∆+paup−1

λ −λ,B(qbuq−1
λ )

]
> σΩ

1

[
−∆+aup−1

λ −λ,B(buq−1
λ )

]
= 0 , (95)

that is, uλ is linearly asymptotically stable. Moreover, owing to the Charac-
terization of the Strong Maximum Principle given by H. Amann and J. López-
Gómez in [3, Theorem 2.4], it follows from (95) that (94) satisfies the strong
maximum principle, and hence (21) holds.

We now prove iv). Let I = [α, β] be, with β > σ1, a compact interval with
I ⊂ [σ1, σ

∗
0) and let uβ the unique positive solution of (1) for λ = β, whose

existence and uniqueness are guaranteed by i). Then, owing to (21) we have
that uλ ≤ uβ for all λ ∈ I and therefore, ‖uλ‖L∞(Ω) ≤ ‖uβ‖L∞(Ω) for all λ ∈ I
which proves iv).

We now prove v) The fact that λ = σ1 is the unique bifurcation value
to positive solutions of (1) from the trivial branch (λ, u) = (λ, 0), and the
existence of a differentiable continuum C(σ1) of solutions of (1) emanating
from the trivial branch at the value λ = σ1, follow from [8, Theorem 1.1]. Now,
let denote by C+(σ1) the maximal subcontinuum of C(σ1) constituted by the
positive solutions of (1) emanating from the trivial branch at (λ, u) = (σ1, 0)
and Pλ (C+(σ1)) its projection on the λ axis. The fact that C+(σ1) emanates
supercritically from the trivial branch follows from (12) or [8, Theorem 1.1].
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Let ϕ1 denote the principal eigenfunction associated to the principal eigenvalue
σ1, normalized such that ‖ϕ1‖L∞(Ω) = 1. It is known that ϕ1 � 0 in Ω. Since
λ = σ1 is a simple eigenvalue of the linearization of (1) around (λ, u) = (σ1, 0)
and owing to the fact that λ = σ1 is the unique bifurcation value to positive
solutions of (1) from the trivial branch, it follows from the updated version of
the Global Alternative of P.H. Rabinowitz [23, Theorem 1.27] given by J. López-
Gómez in [19, Theorem 6.4.3] that either C+(σ1) is unbounded in R×C1

Γ0
, or it

contains a pair (λ̃, ũ) with ũ strongly positive in Ω satisfying
∫

Ω
ũϕ1 = 0, which

is impossible since ϕ1 is strongly positive in Ω. Then, we get that C+(σ1) is
unbounded in R×C1

Γ0
(Ω̄) and since (12) holds, we find that C+(σ1) is bounded

in R and unbounded in L∞(Ω). Now, the existence of uniform L∞(Ω) bounds
for the positive solutions of (1) in compact intervals of values of λ contained
in [σ1, σ

∗
0), guaranteed by iv), joint with the fact that C+(σ1) is unbounded in

L∞(Ω), imply that λ = σ∗0 is the unique bifurcation value to positive solutions
of (1) from infinity and that C+(σ1) bifurcates from infinity to positive solutions
at λ = σ∗0 . In particular, owing to (12) and since C+(σ1) is connected and it
bifurcates to positive solutions from the trivial branch at λ = σ1 and from
infinity at λ = σ∗0 , we find that (22) holds.

Finally, since (12) and (22) hold and taking into account the structure of
C+(σ1), the fact that any positive solution of (1) belongs to C+(σ1) follows
from the uniqueness of positive solution of (1) for any λ satisfying (12). The
fact that C+(σ1) is increasing in ‖ · ‖L∞(Ω) with respect to the λ-parameter
follows from (21) and the uniqueness of positive solution of (1) for each λ
satisfying (12).

We now prove vi) Since (24) holds, the existence and uniqueness of ui,
i = 1, 2, follow from (24) and i). Owing to (44) the following holds

σΩ
1 [−∆− λ+ a(x)up−1

i ,B(biu
q−1
i )] = 0 , i = 1, 2 . (96)

Now, let denote Θ = u1−u2. By construction, Θ satisfies the following problem
(−∆− λ+ a(x)F (x)) Θ = 0 in Ω ,

Θ = 0 on Γ0 ,

(∂ν + b1(x)G(x)) Θ = (b2 − b1)uq2 > 0 on Γ1 ,

(97)

where F ∈ C(Ω̄) and G ∈ C(Γ1) are defined by

F (x) :=


u1(x)p − u2(x)p

u1(x)− u2(x)
if u1(x) 6= u2(x) ,

pup−1
1 (x) if u1(x) = u2(x) ,

and

G(x) :=


u1(x)q − u2(x)q

u1(x)− u2(x)
if u1(x) 6= u2(x) ,

quq−1
1 (x) if u1(x) = u2(x) .
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By construction, and since p, q > 1 and u1 � 0 in Ω we have that

F (x) > up−1
1 , G(x) > uq−1

1

and hence, since a > 0, b1 > 0 and owing to (31), (32) and (96) we find that

σΩ
1 [−∆− λ+ a(x)F (x),B(b1G(x))]

> σΩ
1 [−∆− λ+ a(x)up−1

1 ,B(b1u
q−1
1 )] = 0 . (98)

Then, owing to the Characterization of the Strong Maximum Principle [3, The-
orem 2.4] it follows from (98) that (97) satisfies the strong maximum principle
and therefore Θ := u1 − u2 � 0 in Ω, which proves (25) and completes the
proof of vi).

We now prove vii). The existence and uniqueness of u0 follows from the
fact that λ ∈ ΛL(Ω0) and [6, Theorem 1.5]. The existence of ũ follows from the
fact that owing to ii), we have that λ ∈ ΛL(Ω0) ⊂ ΛNL(Ω0, b). The uniqueness
of ũ follows from i). Finally (26) follows arguing exactly as in vi), taking into
account that b > 0 instead of (23).

We now prove viii). Since (4) holds and bi ∈ C+(Γ+
1 ), i = 1, 2, it follows

from (19) that

ΛNL(Ω0, b1) = ΛNL(Ω0, b2) = (σ1, σ
Ω0
1 [−∆,B∗

(
Γ0

1

)
] ,

and hence,
λ ∈ ΛNL(Ωo, bi) , i = 1, 2 . (99)

Then, the existence and uniqueness of ui, i = 1, 2 is guaranteed by (99) and i).
Now the result follows from vi).

We now prove ix). The result follows from vi), arguing as in viii), taking
into account that now

ΛNL(Ω0, b1) = ΛNL(Ω0, b2) =
(
σ1, σ

Ω0
1 [−∆,D]

)
.

This completes the proof.

4. The amplitude of the nonlinearity in the boundary
conditions as bifurcation parameter

In order to complete the exposition, in this section we consider, under the
general assumptions of this paper, the bi-parameter logistic elliptic problem

−∆u = λu− a(x)up in Ω , p > 1 ,

u = 0 on Γ0 ,

∂νu = γb(x)uq on Γ1 , q > 1 ,

(100)
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where λ, γ ∈ R, a > 0 in Ω and b > 0 on Γ1. The main goal of this section
is to ascertain the global structure of the set of positive solutions of (100)
considering γ as the bifurcation-continuation parameter, for some λ fixed in a
suitable interval. We focus in the particular case when Ω̄0 ⊂ Ω and (3) holds,
and we denote

σ1 := σΩ
1 [−∆,B(0)] , σ̃0 := σΩ

1 [−∆,D] , σ∗0 := σΩ0
1 [−∆,D] ,

where σ1 < σ̃0 < σ∗0 .
The following result collects the main findings about the global structure of

the set of positive solutions of (100) considering γ as bifurcation-continuation
parameter, for some λ fixed in a suitable interval. It is one of the main results
of [11]. We include it without proof and we remit to [11, Theorem 1.2] for the
details of its proof.

Theorem 4.1. Assume λ ∈ (σ1, σ
∗
0), and let u0 denote the unique positive

solution of (100) for γ = 0. Then:

i) For each γ ≤ 0, (100) possesses a unique positive solution uγ , which is
linearly asymptotically stable. Moreover, the map

(−∞, 0] −→ C1
Γ0

(Ω̄)
γ → uγ

is differentiable and u̇γ :=
duγ
dγ
� 0 in Ω , and in particular, the map

(−∞, 0] 7→ CΓ0(Ω̄)
γ 7→ uγ

is strictly increasing.

ii) If (6) holds and λ ∈ (σ1, σ̃0), then there exists D(λ) > 0 such that

‖uγ‖L∞(Ω) ≤ D(λ)

(
1

bγ̃

) 1
q−1

, for all γ < 0 .

In particular
lim
γ↓−∞

‖uγ‖L∞(Ω) = 0 ,

that is, the problem exhibits bifurcation to positive solutions from the triv-
ial branch (γ, u) = (γ, 0) when γ ↓ −∞.

iii) There exists ε0 > 0 and a differentiable map

u : (−ε0, ε0) → C1
Γ0

(Ω̄)
γ 7→ u∗γ
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such that u∗γ = uγ for all γ ∈ (−ε0, 0], there exists a neighborhood U of
(γ, u) = (0, u0) in (−ε0, ε0)×C1

Γ0
(Ω̄) such that if (γ, ũ) ∈ U is a positive so-

lution of (100), then ũ = u∗γ , and in addition (γ, u∗γ) is a positive linearly
asymptotically stable solution of (100) for all γ ∈ (−ε0, ε0). Moreover,

u̇∗γ :=
du∗γ
dγ
� 0 in Ω ,

and in particular the map

(−ε0, ε0) → CΓ0
(Ω̄)

γ 7→ u∗γ

is strictly increasing.

iv) Any positive solution ûγ of (100) for γ > 0 satisfies ûγ � u0 .

v) If p > 2q − 1, then the following hold:

a) For each γ > 0, (100) possesses at least a positive solution.

b) For each γ > 0, (100) possesses a minimal positive solution uminγ

satisfying uminγ � u0 and uminγ = u∗γ for γ ∈ (0, ε0) , where ε0 and
u∗γ are defined by iii).

c) There exist uniform L∞(Ω) bounds for the positive solutions of (100)
in compact intervals of values of γ.

Figure 5: Global bifurcation diagram of positive solutions of (100) in the γ
parameter (λ ∈ (σ1, σ

∗
0)).
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Theorem 4.1 establishes that, for each fixed λ ∈ (σ1, σ
∗
0), the global bifurcation

diagram in the γ-parameter of the positive solutions of (100) should be like
shown by Figure 5, where the continuous line stands for the exact structure of
the set of positive solutions for γ < ε0 and the dashed line stands for a possible
configuration of the set of positive solutions of (100) for γ > ε0.
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Abstract. It is well known that under appropriate conditions on a
double well potential, the associated Hamiltonian system possesses a
pair of heteroclinic solutions joining the minima of the potential in
addition to infinitely many other homoclinics and heteroclinics that os-
cillate between these minima. This paper studies the effect on such
solutions of replacing the temporal domain, R, by a finite but long time
interval.

Keywords: double well potential, variational methods, nondegeneracy condition, hete-
roclitic solutions, homoclinic solutions, multitransition solutions.
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1. Introduction

Consider the Hamiltonian system:

−q̈ + Vq(t, q) = 0, t ∈ R (HS)

where V is a double well potential. Several papers, [8, 9, 11, 12, 15, 19, 34, 35]
have used variational methods to treat the existence and multiplicity of solu-
tions of (HS) that are heteroclinic or homoclinic to the the points a− and a+

corresponding to the bottoms of the potential wells. See also [1–7,10,13,14,16–
18, 20–33] for the use of such methods for related problems. The main goal of
this note is to study (i) the extent to which these solutions persist qualitatively
if (HS) is replaced by a large time boundary value problem with a− and a+ as
boundary states and (ii) the behavior of these finite time solutions as the time
interval tends to R. To be more precise, suppose that V satisfies

(V1) V ∈ C1(R× Rm,R) and is 1-periodic in t ∈ R.

(V2) There are points a−, a+ ∈ Rm such that V (t, q) > V (t, a±) = 0 for any
t ∈ R and q ∈ Rm \ {a−, a+}.

(V3) There is a constant, V0 > 0, such that lim inf |q|→+∞ V (t, q) ≥ V0.
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Associated with (HS) is the Lagrangian, L(q) = 1
2 |q̇|

2 + V (t, q), and the func-
tional

I(q) =

∫
R
L(q) dt.

For i ∈ Z, let Ti = [i, i+ 1]. Set

E ≡
{
q ∈W 1,2

loc (R,Rm) |
∫
R
|q̇|2 dt+

∫
T0

|q|2 dt <∞
}
.

E is a Hilbert space under the inner product associated with the norm

‖q‖2 =

∫
R
|q̇|2 dt+

∫
T0

|q|2 dt.

Consider I on E and set

Γ(a−, a+) =
{
q ∈ E | q(±∞) = a±

}
where by q(±∞) = a± is meant limt→±∞ q(t) = a±. In the present setting, this
condition is equivalent to requiring that, as in [15], limi→±∞ ‖q−a±‖L2(Ti,Rm) =
0. Define

c(a−, a+) = inf
q∈Γ(a−,a+)

I(q). (1)

Let
M(a−, a+) =

{
q ∈ Γ(a−, a+) | I(q) = c(a−, a+)

}
.

It was shown in [15] that M(a−, a+) 6= ∅ and any Q ∈ M(a−, a+) is a C2

solution of (HS) heteroclinic from a− to a+. Likewise reversing the roles of
a− and a+ in Γ(a−, a+), c(a−, a+) and M(a−, a+) yields solutions of (HS)
heteroclinic from a+ to a−.

It was further shown in [15] that there are many other heteroclinics joining
a− and a+ as well as homoclinic solutions to a− and to a+ provided that the
sets, M(a−, a+) and M(a+, a−) are not too degenerate. Indeed, when the
corresponding nondegeneracy condition is satisfied, for any k ∈ N, there are
infinitely many solutions that oscillate k times between small neighborhoods
of a− and a+, the solutions being distinguished by the amount of time they
spend near the intermediate equilibria. Similar statements apply to the other
possibilities for such connecting orbits. The nondegeneracy requirements will
be described more fully in Section 2. These requirements lead to new multi-
transition solutions that are obtained as local minima of I.

Turning now to our main goal, let σ = (σ−, σ+). The analogue of (HS)
that will be studied here is

−q̈ + Vq(t, q) = 0, t ∈ σ, q(σ−) = a−, q(σ+) = a+. (2)
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The corresponding functional is

Iσ(q) =

∫
σ

L(q) dt

where

q ∈ Γσ(a−, a+) ≡
{
q ∈ E | q(t) = a− for t ≤ σ−; q(t) = a+ for t ≥ σ+

}
.

Due to the periodicity of V in t, the problem (2) is equivalent to the analogous
one on the translated interval σ + k for any k ∈ Z. Thus, without loss of
generality, we can normalize the choice of the interval, σ, by assuming that its
center belongs to [0, 1). With this choice, when |σ| > 1, we have σ− < 0 < σ+.

Let
cσ(a−, a+) = inf

q∈Γσ(a−,a+)
Iσ(q) = inf

q∈Γσ(a−,a+)
I(q). (3)

Thus Γσ(a−, a+) ⊂ Γ(a−, a+) and cσ(a−, a+) ≥ c(a−, a+).
In Section 2, it will be shown that for any σ ⊂ R, there is a global minimizer,

Qσ ∈ Γσ(a−, a+), of Iσ. In addition, under the same nondegeneracy condition
on M(a−, a+) and M(a+, a−) that leads to the infinitude of local minima of
I, it will be proved that there are also local minimizers of Iσ whenever |σ| is
sufficiently large. These local minimizers are near elements ofM(a−, a+) since,
as will be proved, the local minimizers converge along subsequences to mem-
bers of M(a−, a+) as |σ| → +∞. Then in Section 3, the same nondegeneracy
assumption leads to analogous results in the setting of multitransition local
minima solutions. In particular as σ+ − σ− increase, there appear more and
more local minima of Iσ and associated multitransition solutions of (2). More-
over as σ+,−σ− →∞, again any corresponding sequence of such solutions has
a subsequence converging to a solution of the same type of (HS).

2. One transition local minima of Iσ

In this section the existence of minima of Iσ and their behavior for large σ will
be studied.

Lemma 2.1. For all σ = (σ−, σ+) with σ+ > σ−, there is a Qσ ∈ Γσ such that
Iσ(Qσ) = cσ(a−, a+). Any such minimizer is a (classical) solution of (HS).

Proof. The existence is immediate since Iσ is weakly lower semicontinuous and
Γσ is weakly closed. That the minimizer is C2 and satisfies (HS) follows from
standard arguments.

To study the behavior of the solutions, Qσ of (2) as σ+,−σ− → ∞, some
a priori bounds for these functions will be obtained. For convenience, suppose
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that σ+ ≥ 1 and σ− ≤ 0. For t ∈ [0, 1], set ϕ(t) = ta+ + (1 − t)a−. Extend
the domain of ϕ to R via ϕ(t) = a− for t ≤ 0 and ϕ(t) = a+ for t ≥ 1. Thus
ϕ ∈ Γσ for all such σ and

cσ(a−, a+) ≤ Iσ(ϕ) =

∫ 1

0

L(ϕ) dt ≡M0 (4)

independently of σ.

Proposition 2.2. There is a constant M > 0 such that

‖Qσ‖W 1,2(Ti,Rm) ≤M (5)

independently of i and σ.

Proof. From (4), we find

‖Q̇σ‖2L2(σ,Rm) ≤ 2M0. (6)

With this initial estimate, the argument of the proof of Proposition 2.24 of [15]
can be followed yielding (5).

Taking advantage of Proposition 2.2, a natural approach to study the be-
havior of the minima, cσ, and minimizers, Qσ, of Iσ for large σ is to begin by
taking any sequence, σk = (σ−k , σ

+
k ) with −σ−k , σ

+
k → ∞ as k → ∞ together

with corresponding sequences, cσk and Qσk . The minima, cσk are easy to deal
with:

Proposition 2.3. Suppose that σk ⊂ σk+1 and σ+
k ,−σ

−
k → ∞ as k → ∞.

Then cσk ≥ cσk+1
→ c(a−, a+) as k →∞.

Proof. Let Qσk ∈ Γσk such that Iσk(Qσk) = cσk . Then, since Γσk ⊂ Γσk+1
,

cσk = Iσk+1
(Qσk) ≥ cσk+1

.

To show that cσk → c(a−, a+) as k → ∞, let q∗ ∈ M(a−, a+) and ε > 0.
Choosing s ∈ N, define q∗s where

q∗s (t) =



a−, t ≤ −s− 1,

(−s− t)a− + (t+ s+ 1)q∗(t), −s− 1 ≤ t ≤ −s,
q∗(t), −s ≤ t ≤ s,
(t− s)a+ + (s+ 1− t)q∗(t), s ≤ t ≤ s+ 1,

a+, s+ 1 ≤ t.
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Then q∗s ∈ Γσ for any σ for which −σ−, σ+ ≥ s + 1. For s = s(ε) sufficiently
large, it can be assumed that∫

s≤|t|≤s+1

L(q∗s ) dt ≤ ε. (7)

Choose k so that −σ−k , σ
+
k ≥ s(ε) + 1. Then q∗σk ∈ Γσk and by (7)

cσk ≤ Iσk(q∗sk) =

∫
|t|<sk

L(q∗) dt+

∫
sk≤|t|≤sk+1

L(q∗sk) dt

≤ I(q∗) + ε = c(a−, a+) + ε (8)

and the Proposition follows from (8) and the fact that cσk ≥ c(a−, a+)

Next we would like to show that a subsequence of the functions, Qσk , con-
verges to a member ofM(a−, a+). The bounds of (5) imply there is a function,
Q ∈ E such that along a subsequence, Qσk converges to Q weakly in E. Un-
fortunately it may be the case that Q = a− or Q = a+. This possibility was
excluded in the proof in [15] showing that I(q) has a minimizer in Γ(a−, a+)
by exploiting the fact that Γ(a−, a+) is invariant under the family of integer
phase shifts q(t)→ q(t+ j) for j ∈ Z. This invariance property no longer holds
for Γσ(a−, a+). Nevertheless as the next result shows, more can be said about
the convergence of the sequence, Qσk . For z ∈ R, let [z] denote the integer part
of z.

Proposition 2.4. Suppose that σk ⊂ σk+1 and σ+
k ,−σ

−
k → ∞ as k → ∞.

Let Qσk ∈ Γσk be such that Iσk(Qσk) = cσk . Then there is a τk ∈ σk for
each k ∈ N, and there is a Q ∈ M(a−, a+) such that along a subsequence,
Qσk(·+ [τk])−Q→ 0 in E as k →∞.

Remark 2.5: Note that Qσk ∈ Γσk ⊂ Γ(a−, a+) and by Proposition 2.3,
I(Qσk) = Iσk(Qσk) = cσk → c(a−, a+). Hence the sequence (Qσk) is a minimiz-
ing sequence for I on Γ(a−, a+). Consequently the conclusion of Proposition 2.4
can be interpreted as a variant of the Palais-Smale condition for minimizing
sequences in the current setting. Similar conclusions have been obtained in
related settings. See e.g. Proposition 2.50 of [31] or Theorem 2.7 of [24].

Proof of Proposition 2.4. As has just been noted, the sequence (Qσk) is a min-
imizing sequence for I on Γ(a−, a+). By Proposition 2.2, for any i ∈ Z,
‖Qσk‖W 1,2((i,i+1),Rm) ≤M .

Choose τk ∈ σk so that |Qσk(τk)− a−| = 1/2|a+ − a−|. Then via (V1),

(i) qk ≡ Qσk(·+ [τk]) ∈ Γ(a−, a+),

(ii) |qk(τk − [τk])− a−| = |Qσk(τk)− a−| = 1/2|a+ − a−|,
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(iii) I(qk) = I(Qσk) = cσk → c(a−, a+),

(iv) ‖qk‖W 1,2((i,i+1),Rm) = ‖Qσk‖W 1,2((i+[τk],i+1+[τk]),Rm) ≤M for any i ∈ Z.

Therefore as in the paragraph before this Proposition, there exists a Q ∈ E
such that along a subsequence still denoted by (qk), as k →∞, qk → Q weakly
in W 1,2(T,Rm) for any bounded interval T ⊂ R. Item (iv) and the fact that∫
R |q̇k|

2 dt ≤ 2I(qk), show (qk) is bounded in E. Hence qk → Q weakly in E.
We claim

Q ∈ Γ(a−, a+). (9)

Assuming (9) for the moment, the rest of Proposition 2.4 follows. Indeed (9)
implies I(Q) ≥ c(a−, a+). By the weak lower semicontinuity of I,

I(Q) ≤ lim inf
k→+∞

I(qk) = c(a−, a+).

Thus I(Q) = c(a−, a+), and Q ∈M(a−, a+).
Next to show that qk −Q→ 0 in E, it suffices to verify that∫

R
|q̇k|2 dt→

∫
R
|Q̇|2 dt (10)

as k →∞. Towards this end, observe that by weak lower semicontinuity again,∫
R
V (t, Q) dt ≤ lim inf

k→+∞

∫
R
V (t, qk) dt

and ∫
R
|Q̇|2 dt ≤ lim inf

k→+∞

∫
R
|q̇k|2 dt.

Thus combining these estimates gives

lim sup
k→+∞

∫
R
|q̇k|2 dt = lim

k→+∞
2I(qk)− 2 lim inf

k→+∞

∫
R
V (t, qk) dt

≤ 2I(Q)− 2

∫
R
V (t, Q) dt =

∫
R
|Q̇|2 dt ≤ lim inf

k→+∞

∫
R
|q̇k|2 dt

from which (10) follows.

It remains to prove (9). To do so, let Br(a
±) denote the open ball of radius

r in Rm centered at a±. Let r0 ∈ (0, 1
2 |a

+ − a−|) be such that

max{V (t, ξ) | t ∈ R, ξ ∈ B̄r0(a+) ∪ B̄r0(a−)} < V0.

For r ∈ (0, r0) set

ωr = min{V (t, ξ) | t ∈ R, ξ ∈ Rm \ (Br(a
+) ∪Br(a−))} and
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ωr = max{V (t, ξ) | t ∈ R, ξ ∈ B̄r(a+) ∪ B̄r(a−)}.

By (V1) − (V3), ωr > 0 and ωr → 0 as r → 0. Moreover if (α, β) ⊂ R is such
that qk(t) ∈ Rm \ (Br(a

+) ∪Br(a−)) for any t ∈ (α, β), then

I(α,β)(qk) = 1
2‖q̇k‖

2 +

∫
(α,β)

V (t, qk) dt (11)

≥ 1
2(β−α) |qk(β)− qk(α)|2 + ωr(β − α) ≥

√
2ωr|qk(β)− qk(α)|.

Set ω = ω|a+−a−|/4 and define a constant, ∆, by

∆ =
√

2ω |a+ − a−|/8.

Since ωε → 0 as ε→ 0, ε can be chosen in (0, |a+ − a−|/8) so that

ε2 + 2ωε < 2∆. (12)

Set C = maxk∈N I(qk) and Tε = 2C/ωε. Due to (ii), qk(τk − [τk]) /∈ Bε(a+) ∪
Bε(a

−). Suppose qk(t) /∈ Bε(a+)∪Bε(a−) for any t ∈ (τk− [τk], τk− [τk] +Tε).
Then by (11),

I(τk−[τk],τk−[τk]+Tε)(qk) ≥ wεTε ≥ 2C. (13)

which is not possible by the definition of C. Hence for any k ∈ N,

there is an `+k ∈ (τk−[τk], τk−[τk]+Tε) with qk(`+k ) ∈ Bε(a+)∪Bε(a−). (14)

Similarly for any k ∈ N

there is an `−k ∈ (τk−[τk]−Tε, τk−[τk]) with qk(`−k ) ∈ Bε(a+)∪Bε(a−). (15)

The next step in proving (9) is to verify that for any k ∈ N,

qk(t) ∈ Rm \Bε(a−) for t ≥ `+k and (16)

qk(t) ∈ Rm \Bε(a+) for t ≤ `−k . (17)

Their proofs being the same, only (16) will be proved. Recall that by definition,
qk(t) = a+ for any t ≥ σ+

k − [τk] and by (ii), |qk(τk − [τk])− a−| = 1
2 |a

+ − a−|,
for any k ∈ N. Arguing indirectly, assume that for some k ∈ N, there exists
an `0 ∈ [`+k , σ

+
k − [τk]) for which qk(`0) ∈ Bε(a−). Since |qk(τk − [τk])− a−| =

1
2 |a

+ − a−| and qk(`0) ∈ Bε(a
−), there is an interval (α, β) ⊂ (τk − [τk], `0)

such that qk(t) /∈ B|a+−a−|/4(a−) ∪ B|a+−a−|/4(a+) for any t ∈ (α, β) and
|q(β) − q(α)| ≥ |a+ − a−|/4. Then, by the definition of ω, V (t, qk(t)) ≥ ω for
any t ∈ (α, β) so by (11),

I(α,β)(qk) ≥
√

2ω |qk(β)− qk(α)| ≥
√

2ω |a+ − a−|/4 = 2∆. (18)
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Thus if qk(`0) ∈ Bε(a−), (18) provides a positive lower bound for I(α,β)(qk).
Next it will be shown that the same is true for I(`0,σ+

k −[τk])(qk). Indeed, consider

the function

q̄k(t) =


a− t ≤ `0 − 1,

(`0 − t)a− + (t+ 1− `0)qk(`0) `0 − 1 ≤ t ≤ `0,
qk(t) `0 ≤ t.

Then q̄k ∈ Γσk+[τk](a
−, a+) and Q̄k(t) ≡ q̄k(t − [τk]) ∈ Γσk(a−, a+). Hence

I(q̄k) = Iσk(Q̄k) ≥ cσk . Since I(q̄k) ≥ I(`0−1,`0)(q̄k) + I(`0,σ+
k −[τk])(qk), it

follows that
I(`0,σ+

k −[τk])(qk) ≥ cσk − I(`0−1,`0)(q̄k). (19)

Using the definition of q̄k on (`0 − 1, `0) and that qk(`0) ∈ Bε(a−) gives

I(`0−1,`0)(q̄k) ≤
∫ `0

`0−1

1
2 |qk(`0)−a−|2+ max

(t,ξ)∈[`0−1,`0]×Bε(a−)
V (t, ξ) dt ≤ 1

2ε
2+ωε.

This estimate together with (12) and (19) implies

I(`0,σ+
k −[τk])(qk) ≥ cσk −∆. (20)

Combining (iii), (18) and (20) then yields

cσk = I(qk) ≥ I(α,β)(qk) + I(`0,σ+
k −[τk])(qk) ≥ 2∆ + cσk −∆,

a contradiction. Thus (16) is proved.
Since −Tε − 1 < `−k < τk − [τk] < `+k < Tε + 1, by (16) and (17),

qk(t) ∈ Rm \Bε(a−) for t ≥ Tε + 1 and qk(t) ∈ Rm \Bε(a+) for t ≤ −Tε − 1.

The convergence of qk(t) to Q(t) for any t ∈ R then shows

Q(t) ∈ Rm \Bε(a−) for t ≥ Tε + 1

and Q(t) ∈ Rm \Bε(a+) for t ≤ −Tε − 1. (21)

But I(Q) < +∞ so by Proposition 2.3 of [15], there are points, ϕ± ∈ {a−, a+}
such that Q(±∞) = ϕ±. Consequently (21) shows ϕ± = a±. Then (9) follows
and the proposition is proved.

In general the sequence (τk) given by Proposition 2.4 may not be bounded.
Thus the sequence Qσk may not converges in E to a Q ∈ M(a−, a+). In
other words we cannot guarantee that the problem (2) has solutions which
approximate fixed elements of M(a−, a+) as |σ| → +∞. We do not know if it
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is essential, but to get around this difficulty, we require a further condition. As
was shown in [15], in order to obtain multitransition solutions of (HS), some
nondegeneracy conditions are required for M(a−, a+) ∪M(a+, a−) and they
also suffice to overcome the present difficulty. To introduce them, some results
from [15] will be recalled. Set

S(a−, a+) = {q|T0 | q ∈M(a−, a+)}.

The subset S(a−, a+) of W 1,2(T0,Rm) possesses the following properties:

• S̄(a−, a+) = S(a−, a+) ∪ {a−} ∪ {a+},

• S̄(a−, a+) is compact in W 1,2(T0,Rm).

For the details, see [15].

Let Ca−(a−, a+) be the component of S̄(a−, a+) containing a− and let
Ca+(a−, a+) be the component of S̄(a−, a+) containing a+. Then from e.g. [15],
we have

Proposition 2.6. Either

(i) Ca−(a−, a+) = Ca+(a−, a+), or

(ii) Ca−(a−, a+) = {a−} and Ca+(a−, a+) = {a+}.

If (ii) holds, there exist nonempty disjoint compact sets,

Ka−(a−, a+),Ka+(a−, a+) ⊂ S̄(a−, a+)

such that

a) a− ∈ Ka−(a−, a+), a+ ∈ Ka+(a−, a+),

b) S̄(a−, a+) = Ka−(a−, a+) ∪Ka+(a−, a+),

c) dist(Ka−(a−, a+),Ka+(a−, a+)) ≡ 5r(a−, a+) > 0.

Remark 2.7: The splitting, Ka−(a−, a+),Ka+(a−, a+), of S̄(a−, a+) is not
unique. Indeed subjecting each of the functions, q that make up these sets to
the same integer phase shift produces a new such splitting. For what follows,
we fix the choice of this splitting.

Remark 2.8: Reversing the roles of a− and a+ yields Ca+(a+,a−), Ca−(a+,a−),
Ka+(a+, a−), Ka−(a+, a−), namely the analogous sets for heteroclinics from
a+ to a− of what we have obtained for heteroclinics from a− to a+.



202 P. MONTECCHIARI AND P.H. RABINOWITZ

The nondegeneracy conditions that we impose are those of alternative (ii) of
Proposition 2.6. They will be used to construct a subset of Γσ(a−, a+) in which
a new family of local minima of Iσ will be found that have the convergence
properties that we were unable to verify for the functions, Qσ.

To carry out the new construction, select a δ ∈ (0, r(a−, a+)) and let q∗ ∈
M(a−, a+). Then with Ka−(a−, a+),Ka+(a−, a+) as in Proposition 2.6, there
is an s0 ∈ N depending on δ and q∗ such that for all i ∈ Z with |i| ≥ s0,

‖q∗ −Ka−(a−, a+)‖L2(T−i), ‖q
∗ −Ka+(a−, a+)‖L2(Ti) ≤ δ. (22)

Fix such an i and choose σ so that [−i, i+ 1] ⊂ σ. Define

Γσ,i(a
−, a+) = {q ∈ Γσ(a−, a+) | q satisfies (22)}.

Then Γσ,i(a
−, a+) 6= ∅. Set

cσ,i(a
−, a+) = inf

q∈Γσ,i(a−,a+)
Iσ(q) (23)

The existence of a minimizer, Qσ,i, in (23) follows as in Lemma 2.1 and stan-
dard regularity arguments imply it is a solution of (2) except possibly in the
constraint intervals, T−i ∪ Ti. Letting σk be as earlier, we will show that for
large k, there is strict inequality for Qσ,i in (22). Towards that end, an analogue
of results from [24] or [15] is needed. Set

Λ(a−, a+) = {q ∈ Γ(a−, a+) | ‖q −Ka−(a−, a+)‖L2(T−i) = δ

or ‖q −Ka+(a−, a+)‖L2(Ti) = δ}.

Note that Λ(a−, a+) also depends on δ. Define

d(a−, a+) = inf
q∈Λ(a−,a+)

I(q). (24)

Then the arguments of Proposition 2.47 of [24] show

d(a−, a+) > c(a−, a+). (25)

Now we have:

Theorem 2.9. Suppose that σk ⊂ σk+1 and σ+
k ,−σ

−
k →∞ as k →∞. Then

cσk,i(a
−, a+) ≥ cσk+1,i(a

−, a+)→ c(a−, a+) as k →∞. (26)

Moreover for any k for which cσk,i(a
−, a+) < d(a−, a+) and in particular for

large k, any minimizer of Iσk in Γσk,i(a
−, a+) is a solution of (2). In addi-

tion, there is a Q ∈ M(a−, a+) such that along a subsequence, Qσk,i → Q in

W 1,2
loc (R,Rm).
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Proof. The argument of Proposition 2.3 shows that (26) holds. To show that
the constraints are satisfied with strict inequality provided that k is sufficiently
large, arguing indirectly, suppose that

‖Qσk,i −Ka−(a−, a+)‖L2(T−i) = δ or ‖Qσk,i −Ka+(a−, a+)‖L2(Ti) = δ.

Then Qσk,i ∈ Λ(a−, a+) and by (23) and (25),

cσk,i(a
−, a+) = Iσ(Qσk,i) = I(Qσk,i) ≥ d(a−, a+). (27)

But (25) and (26) show (27) is not possible.
Thus for any k for which cσk,i(a

−, a+) < d(a−, a+) and in particular for
large k, any minimizer of Iσk in Γσk,i(a

−, a+) is a solution of (2).
It remains to establish the convergence of the solutions, Qσk,i, along a sub-

sequence. By the argument of Proposition 2.24 of [15] again, ‖Qσk,i‖W 1,2(Tj ,Rm)

is bounded independently of k and j. As in Corollary 2.42 of [15], this leads to
a k-independent bound for ‖Qσk,i‖L∞(σk,Rm) and then via (2), a k-independent
bound for ‖Qσk,i‖C2(σk,Rm). Thus by the Arzela-Ascoli Theorem and (2), as
k →∞, for any subsequence of Qσk,i, there is a solution, Q of (HS) such that
along a further subsequence, Qσk,i converges to Q in C2

loc(R,Rm). Moreover
restricting ourselves to this subsequence, for any p ∈ N, by (26),∫ p

−p
L(Q) dt ≤ lim inf

k→∞

∫ p

−p
L(Qσk,i) dt ≤ lim inf

k→∞
Iσk(Qσk,i)

= lim inf
k→∞

cσk,i(a
−, a+) = c(a−, a+).

Letting p→∞ further shows

I(Q) ≤ c(a−, a+) <∞. (28)

Thus by (28) and Proposition 2.3 of [15], there are points, ϕ± ∈ {a−, a+} such
that Q(±∞) = ϕ± .

We claim that ϕ± = a±. It then follows that Q ∈ Γ(a−, a+) with I(Q) =
c(a−, a+) so Q ∈M(a−, a+). Towards proving that ϕ± = a±, let

P = {Qσ,i | cσ,i(a−, a+) < d(a−, a+)}.

Then we have

Proposition 2.10. There is a β = β(δ) > 0 such that

β = inf
q∈P

∫ i+1

−i
L(q) dt. (29)
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Proof. As was noted earlier, the set of functions, P is a bounded subset of
C2([−i, i + 1],Rm). Choose a minimizing sequence (ql) for (29). Therefore as
l→∞, ∫ i+1

−i
L(ql) dt→ β.

By the Arzela-Ascoli Theorem, there is a function , q̂ ∈ C1([−i, i + 1],Rm),
such that along a subsequence, as l→∞,∫ i+1

−i
L(ql) dt→

∫ i+1

−i
L(q̂) dt = β.

Moreover q̂ is a solution of (HS) on [−i, i + 1] and satisfies the constraints
in (22). If β = 0, q̂ ≡ a− or q̂ ≡ a+. But by the choice of δ, the function q̂
cannot satisfy both constraints. Therefore β > 0.

Conclusion of the proof of Theorem 2.9. Returning to our claim that ϕ± = a±,
and arguing indirectly, suppose that the pair of equalities is not satisfied. Then
there are three possibilities: (i) ϕ− = a+ and ϕ+ = a+, (ii) ϕ− = a+ and
ϕ+ = a−, or (iii) ϕ− = a− and ϕ+ = a−. Now a comparison argument will be
employed. Suppose e.g. that (i) occurs. For l ∈ Z, set Xl = ∪l+1

j=l−1Tj . Pick an

ε > 0. Then there is a p = p(ε) ∈ N with p ≤ min(−σ−k , σ
+
k ) such that for all

large k in our subsequence, ‖Qσk,i−a+‖C2(X−p,Rm) ≤ ε. Define vk ∈ Γ(a−, a+)
via modifying Qσk,i in X−p:

vk(t) =


Qσk,i(t), t ≤ −p− 1,

(−p− t)Qσk,i(−p− 1) + (t+ p+ 1)a+, −p− 1 ≤ t ≤ −p,
a+, −p ≤ t.

Then ∫
Xp

L(vk)dt ≤ κ(ε) (30)

where κ(ε)→ 0 as ε→ 0. Now using (30) and Proposition 2.10 yields

cσk,i = I(Qσk,i) =

∫ −p+1

−∞
L(vk) dt−

∫ −p+1

−p−1

L(vk) dt+

∫ ∞
−p−1

L(Qσk,i) dt

≥ c(a−, a+)− κ(ε) + β(δ). (31)

Choose ε so that κ(ε) < 1
2β(δ). Since the first assertion of this theorem shows

cσk,i → c(a−, a+) as k → ∞, (31) and case (i) are not possible. A similar
argument excludes case (ii) and likewise case (iii) is excluded by doing the
cutting and pasting near t =∞. Thus Theorem 2.9 is proved.
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Remark 2.11: There is an analogous result on interchanging the roles of a−

and a+.

Remark 2.12: There is another approach we could have taken to the material
in this section. Replacing S(a−, a+) by

T (a−, a+) = {q(0) | q ∈M(a−, a+)},

then T̄ (a−, a+) = T (a−, a+)∪{a−, a+} and T̄ is compact in Rm. Moreover the
analogue of Proposition 2.6 with T replacing S holds for this new setting. Then
in (22) and the definition of Λ, replace the L2 norm by the Rm norm leading
to a variant of Theorem 2.9 (although one can no longer invoke [15] for part
of the proof). A similar approach using pointwise constraints can likewise be
made the in the next section where local minima of I that are multitransition
solutions of (HS) are obtained. However unfortunately this replacement can
no longer be made when dealing with mountain pass solutions of (HS) and its
finite time relative, (2). The reason it fails is that for mountain pass solutions,
again an appropriate version of Proposition 2.6 is needed. To obtain it, one
has to work with the map from the set of solutions of (HS) in say Γ(a−, a+)
with I(q) ≤ d to

T d(a−, a+) = {q(0) | q ∈ Γ(a−, a+), satisfies (HS), and I(q) ≤ d}

where d is greater than the mountain pass minimax value (see [25, 26]). Un-
fortunately, unlike the case where d = c(a−, a+), this map is not one to one
causing the earlier proof of Proposition 2.6 to break down. This failure does
not occur when working with

Sd(a−, a+) = {q|[0,1] | q ∈ Γ(a−, a+), satisfies (HS), and I(q) ≤ d}.

The analogues of the results of this paper for mountain pass solutions of (2)
will be explored in a future publication.

3. Multitransition local minima

In this section, the existence and multiplicity of solutions of (2) that undergo
multiple transitions will be studied. As in Section 2, the results here will follow
with the aid of comparison arguments involving multitransition local minima
for (HS). Such results were obtained in [15] where it was shown that there is
an infinitude of k−transition solutions of (HS) for each k ∈ N. In [15], the
same ideas were employed to treat k = 2 as for general k > 2. This is also
the case in the current setting. In [15], the main concern was the solution of
a PDE problem in a cylindrical domain for which (HS) occurs as a degenerate
special case. We begin here by stating a slightly stronger version of the result
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of [15] specialized to (HS) when k = 2, show how to use it to obtain a related
result for (2) and then discuss the case of k > 2.

To formulate the result for (HS), choose m = (m1, · · · ,m4) ∈ Z4 and l ∈ N
so that

m1 + 2l < m2 − 2l < m2 + 2l < m3 − 2l < m3 + 2l < m4 − 2l. (32)

The integers mi and l will depend on a parameter, ε, that will be introduced
in the next theorem. For r > 0 and A ⊂W 1,2(T0,Rm), let

Nr(A) ≡ {q ∈W 1,2(T0,Rm) | distW 1,2(T0,Rm)(q, A) ≤ r}.

Set δ = min(ρ, r(a−, a+), r(a+, a−)) where ρ ∈ (0, 1
4 |a
− − a+|). As the class of

admissible functions in which local minima of I will be sought, take

A2 = A2(m, l) = {q ∈ E | q satisfies (33)}

where

q(·+ j)|T0 ∈


Nδ(Ka−(a−, a+)), j < m1 + l,

Nδ(Ka+(a−, a+)), m2 − l ≤ j < m2 + l,

Nδ(Ka+(a+, a−)), m3 − l ≤ j < m3 + l,

Nδ(Ka−(a+, a−)), m4 − l ≤ j.

(33)

Define

b2 = b2(ε) = inf
q∈A2

I(q). (34)

This setting was studied in Section 5 of [15]. As a somewhat more quantitative
version of the result there, we have:

Theorem 3.1. Let (V1) − (V3) and the four conditions Ca±(a−, a+) = {a±},
Ca±(a+, a−) = {a±} be satisfied. For any ε ∈ (0, δ/16), there exists an m0 =
m0(ε) ∈ N, an l = l(ε) ∈ N, l ≥ m0 and a ζ0 = ζ0(ε) > 0 with ζ0 → 0 as ε→ 0
such that

1o for each m = (m1,m2,m3,m4) satisfying

mj+1 −mj − 6l ≥ m0 for j = 1, 2, 3, (35)

the set

M(b2) ≡ {q ∈ A2 | I(q) = b2} 6= ∅.

2o Any Q ∈ M(b2) satisfies the constraints, (33), with strict inequality and is
a classical solution of (HS) that is homoclinic to a−.
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3o If Q ∈M(b2),

‖Q− a−‖L∞((−∞,m1−l],Rm) < ζ0 , ‖Q− a+‖L∞([m2+l,m3−l],Rm) < ζ0

and ‖Q− a−‖L∞([m4−l,+∞),Rm) < ζ0.

4o As ε→ 0, b2(ε)→ c(a−, a+) + c(a+, a−).

Remark 3.2: The statement of Theorem 3.1 is rather technical due to the
presence of so many parameters, but the geometrical content of the result,
both for k = 2 and more generally, is simple. Heuristically the result says that
if the constraint regions are far enough apart, there exists an interior minimizer
of the associated variational problem and this minimizer is a classical solution
of (2). Moreover in the region between each pair of constraint regions involving
the same point, the point being a+ for Theorem 3.1, the solution remains close
to that point.

a+

a−
(m1−l,m1+l) (m2−l,m2+l) (m3−l,m3+l) (m4−l,m4+l)

a−+ε

a+−ε

Nδ(K1)

Nδ(K2) Nδ(K3)

Nδ(K4)

Figure 1: In the diagram K1 = Ka−(a−, a+),K2 = Ka+(a−, a+),K3 =
Ka+(a+, a−),K4 = Ka−(a+, a−)

Proof of Theorem 3.1. Fix m satisfying (35). Both 1o and 2o are either part
of the statement or the proof of Theorem 5.16 of [15]. To verify 3o, note first
that for m0 is sufficiently large, one can choose members of M(a−, a+) and
M(a+, a−), modify them slightly to obtain a member of A2, and use it to find
an upper bound for b2 as in (5.19) of [15]:

b2 < c(a−, a+) + c(a+, a−) + 2 (36)

independently of m. Next we will show that in any interval, I, of length at
least m0, there is a subinterval, Xi = ∪i+2

k=i−2Tk ⊂ I such that either

‖Q− a−‖L∞(Tj ,Rm) < ε or ‖Q− a+‖L∞(Tj ,Rm) < ε (37)

for Tj ∈ Xi. Indeed if both inequalities in (37) fail for some Tj , by (2.12)
ITj (Q) ≥ min(t,ξ)∈Tj×(Rm\Bε(a−)∪Bε(a+)) V (t, ξ) ≡ γ(ε) > 0. Thus if there were
no such Xi ⊂ I,

b2 = I(Q) ≥ 1

5
m0(ε)γ(ε), (38)
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which is contrary to the upper bound for b2 for m0 sufficiently large. It is here
that the dependence of m0 (and hence l) on ε first enters.

Since l ≥ m0, applying this observation to the constraint regions associated
with m1,m2,m3 and m4 yields intervals, X1 ⊂ [m1− l,m1], X2 ⊂ [m2,m2 + l],
X3 ⊂ [m3 − l,m3] and X4 ⊂ [m4,m4 + l] in which (37) holds. In fact due to
the definition of δ in the constraint, (37) can be strengthened to

‖Q(t)−a−‖L∞(Xi,Rm) < ε, i = 1, 4, ‖Q(t)−a+‖L∞(Xi,Rm) < ε, i = 2, 3. (39)

Now we verify 3o, i.e. there is a ζ0 = ζ0(ε) such that ζ0 → 0 as ε→ 0 for which

(i) ‖Q− a−‖L∞((−∞,m1−l],Rm) < ζ0,

(ii) ‖Q− a+‖L∞([m2+l,m3−l],Rm) < ζ0, and

(iii) ‖Q− a−‖L∞([m4−l,+∞),Rm) < ζ0.

We will only prove (ii). The proofs of properties (i) and (iii) are similar and
simpler and will be omitted. Set

ᾱ = supX2, β̄ = inf X3,

and the function

Q̄(t) =



Q(t) t ≤ ᾱ− 1,

Q(ᾱ− 1) + (t+ 1− ᾱ)(a+ −Q(ᾱ− 1)) ᾱ− 1 ≤ t ≤ ᾱ,
a+ ᾱ ≤ t ≤ β̄
a+ + (t− β̄)(Q(β̄ + 1)− a+) β̄ ≤ t ≤ β̄ + 1,

Q(t) t ≥ β̄ + 1.

We claim the function Q̄ satisfies the constraint (33). Indeed on the intervals
Tj for j ≤ ᾱ − 2 or j ≥ β̄ + 1, Q̄(t) = Q(t) so the constraint is satisfied. The
same is true when ᾱ ≤ j ≤ β̄ − 1 since on the corresponding intervals Tj ,
Q̄(t) = a+. If j = ᾱ − 1, then Q̄(t) = Q(ᾱ − 1) + (t + 1 − ᾱ)(a+ − Q(ᾱ − 1))
for t ∈ Tj . Thus by (39)

distW 1,2(T0,Rm)(Q̄(·+ j),Ka+(a−, a+))2 ≤ ‖Q̄(t)− a+‖2W 1,2(Tj ,Rm)

=

∫
Tj

|a+ −Q(ᾱ− 1)|2 + |t− ᾱ|2|Q(ᾱ− 1)− a+|2 ≤ 2ε2 < δ2.

Likewise another application of (39) shows ‖Q̄(t)− a+‖2W 1,2(Tj ,Rm) ≤ 2ε2 < δ2

for j = β. Hence all the inequalities in (33) hold for the function Q̄ so it belongs
to the class A2. Consequently, since Q minimizes I on A2,

0 ≤ I(Q̄)− I(Q) ≤
∫ ᾱ

ᾱ−1

L(Q̄) dt+

∫ β̄+1

β̄

L(Q̄) dt− I(ᾱ,β̄)(Q) (40)
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and so

I(ᾱ,β̄)(Q) ≤
∫ ᾱ

ᾱ−1

L(Q̄) dt+

∫ β̄+1

β̄

L(Q̄) dt. (41)

To conclude (ii) from (41), the definition of Q̄ on the intervals [ᾱ − 1, ᾱ] and
[β̄, β̄ + 1] as well as (39) will be used. Recalling the function, ωε, in the proof
of Proposition 2.4:

ωε = max{V (t, ξ) | t ∈ R, ξ ∈ B̄ε(a+) ∪ B̄ε(a−)},

by (39) we have∫ ᾱ

ᾱ−1

L(Q̄) dt ≤
∫ ᾱ

ᾱ−1

1
2 |a

+ −Q(ᾱ− 1)|2 + max
(t,ξ)∈[ᾱ−1,ᾱ]×Bε(a+)

V (t, ξ) dt

≤ 1
2ε

2 + ωε.

Similarly ∫ β̄+1

β̄

L(Q̄) dt ≤ 1
2ε

2 + ωε

so by (41)

I(ᾱ,β̄)(Q) ≤ ε2 + 2ωε. (42)

To conclude the proof of property (ii), recall the function, ωζ , defined for ζ > 0:

ωζ ≡ min{V (t, ξ) | t ∈ R,dist(ξ, {a−, a+}) ≥ ζ}.

The function ωζ is increasing and continuous on [0, 1
4 |a

+ − a−|). Define ζ0 by

ζ0 = ζ0(ε) = min{ζ ∈ [2ε, 1
4 |a

+ − a−|) |
√

2ωζ/2 ζ ≥ 2(ε2 + 2ωε)}.

Since ωε → 0 as ε → 0, ζ0 is well defined for small ε. Note that ζ0(ε) → 0 as
ε→ 0. Finally to verify Property (ii), i.e.

‖Q− a+‖L∞([m2+l,m3−l],Rm) < ζ0, (43)

we argue indirectly. Assume that there exists a µ ∈ [m2 + l,m3 − l] for which
|Q(µ) − a+| ≥ ζ0. See Figure 3. Since by (39), |Q(ᾱ) − a+| < ε, there exists
an interval (α, β) ⊂ (ᾱ, µ) such that Q(t) /∈ Bζ0/2(a−) ∪ Bζ0/2(a+) for any
t ∈ (α, β) and |Q(β)−Q(α)| ≥ ζ0. Then V (t, Q(t)) ≥ ωζ0/2 for any t ∈ (α, β)
and by (11),

I(α,β)(Q) ≥
√

2ωζ0/2 |Q(β)−Q(α)| ≥
√

2ωζ0/2 ζ0. (44)
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a+

a+ − ε

a+ − ζ0/2

a+ − ζ0

X2 X3µm2 + l m3 − l

Q

α β

Figure 2: The indirect argument

Hence, by (42), (44),
√

2ωζ0/2 ζ0 ≤ I(α,β)(Q) ≤ I(ᾱ,β̄)(Q) ≤ ε2 + 2ωε which is
not possible by the definition of ζ0. This completes the proof of (ii) and of 3o.

It remains to prove 4o. For m0 possibly still larger, there is a q− ∈
M(c(a−, a+)) such that q− satisfies the m1 and m2 constraints in (33) and
there is a q+ ∈M(c(a+, a−)) such that q+ satisfies the m3 and m4 constraints
in (33). Moreover it can be assumed that

‖q− − a+‖L∞([m2+l,∞),Rm) < ε and ‖q+ − a+‖L∞((−∞,m3−l],Rm) < ε.

Therefore appropriately modifying q− for t > m2 + l and q+ for t < m3 − l
yields a function q2 ∈ A2 satisfying the improved version of (36):

I(q2) ≤ c(a−, a+) + c(a+, a−) + κ1(ε)

where κ1(ε)→ 0 as ε→ 0. Hence

b2(ε) ≤ c(a−, a+) + c(a+, a−) + κ1(ε). (45)

To obtain a lower bound for b2(ε), let Q ∈ M(b2(ε)). Define a function, Q̄ as
in the proof of 3o where now ᾱ and β̄ are replaced respectively by α1 and α1 +1
where these points are integers interior to (m2 + l,m3 − l). By its definition,
I(Q̄) ≥ c(a−, a+) + c(a+, a−). Thus in the spirit of (30) and (40), there is a
function, κ2(ε)→ 0 as ε→ 0 with

c(a−, a+) + c(a+, a−)− b2(ε) ≤ I(Q̄)− b2(ε) = I(Q̄)− I(Q) ≤ κ2(ε)

or
c(a−, a+) + c(a+, a−)− κ2(ε) ≤ b2(ε). (46)

Combining (45) and (46) then gives 4o and completes the proof of Theorem 3.1.

Now the results just mentioned for (HS) can be used as a tool to obtain 2-
transition solutions of (2). Continuing with m as in Theorem 3.1, let σ− < m1

and σ+ > m4, and define

A2,σ = A2,σ(m, l) = {q ∈ A2 | q(t) = a− for t /∈ σ}.
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Then for σ+,−σ− sufficiently large, A2,σ 6= ∅. Define

b2,σ = b2,σ(m, l) = inf
q∈A2,σ

I(q). (47)

Then parallelling Theorem 3.1, we have:

Theorem 3.3. Suppose the hypotheses of Theorem 3.1 are satisfied. Then

1o For σ+,−σ− sufficiently large,

M(b2,σ) ≡ {q ∈ A2,σ | I(q) = b2,σ} 6= ∅.

2o Any Qσ ∈M(b2,σ) is a solution of (2).

Proof. The existence of Qσ ∈M(b2,σ) follows as in the proof of Lemma 2.1. As
in earlier arguments, it is a solution of (2) in any of the intervals where there
is no constraint and also in any constraint interval in which the constraint is
satisfied with strict inequality. Thus to complete the proof of item 2o, it must
be shown that strict inequality holds in the 4 constraint regions. The argument
involving (36)-(39) also holds in the current setting so for ε < δ, again there

are intervals, Xj = ∪ij+2
k=ij−2Tk for j = 2, 3 and ij ⊂ [mj − l,mj + l], in which

‖Qσ − a+‖L∞(Ti,Rm) < ε for Ti ∈ Xj . (48)

Now suppose that Qσ satisfies one of the m1 or m2 constraints with equality.
Cutting and pasteing in X3 yields a pair of functions,

f(t) =


Qσ(t), t ≤ i3 − 1,

(i3 − t)Qσ(i3 − 1) + (t− i3 + 1)a+, i3 − 1 ≤ t ≤ i3,
a+, t ≥ i3,

g(t) =


a+, t ≤ i3 + 1,

(i3 + 2− t)a+ + (t− i3 − 1))Qσ(i3 + 2), i3 + 1 ≤ t ≤ i3 + 2,

Qσ(t), t ≥ i3 + 2.

Note that f ∈ Γ(a−, a+), g ∈ Γ(a+, a−) and since Qσ satisfies one of the m1

or m2 constraints with equality, f ∈ Λ(a−, a+). Hence I(g) = I(i3+1,+∞)(g) ≥
c(a+, a−) and by (25), I(f) = I(−∞,i3)(f) ≥ d(a−, a+). Moreover by (48),
arguing as in the proof of Theorem 3.1 for the function Q̄ shows

I(i3−1,≤i3)(f) ≤ e1(ε) and I(i3+1,i3+2)(g) ≤ e1(ε)

with e1(ε)→ 0 as ε→ 0.
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By the above observations

I(−∞,i3−1)(Qσ) = I(−∞,i3−1)(f) ≥ I(f)− e1(ε) ≥ d(a−, a+)− e1(ε) and

I(i3+2,+∞)(Qσ) = I(i3+2,+∞)(g) ≥ I(g)− e1(ε) ≥ c(a+, a−)− e1(ε)

so that

I(Qσ) ≥ I(−∞,i3−1)(Qσ) + I(i3+2,+∞)(Qσ)

≥ d(a−, a+) + c(a+, a−)− 2e1(ε). (49)

On the other hand, by 4o of Theorem 3.1, as ε→ 0, b2 → c(a−, a+)+c(a+, a−).
Thus for small ε and −σ−, σ+ sufficiently large, there is a function, e2(ε) with
e2(ε)→ 0 as ε→ 0 such that

I(Qσ) ≤ c(a−, a+) + c(a+, a−) + e2(ε). (50)

But (49) and (50) are incompatible for small ε since d(a−, a+) > c(a−, a+).
A similar argument establishes the result if Qσ satisfies one of the m3 or m4

constraints with equality and item 2o is proved.

The existence of the 2−transition solutions having been established, now
their behavior as −σ−, σ+ →∞ will be studied. We will show

Theorem 3.4. Let the hypotheses of Theorem 3.3 be satisfied for a fixed ad-
missible ε. If −σ−i , σ

+
i → ∞ as i → ∞, then b2,σi → b2. Moreover if

Qσi ∈ M(b2,σi), then there is a Q ∈ M(b2), such that along a subsequence,
Qσi → Q in C2

loc(R,Rm) as i→∞.

Proof. Since M(b2,σi) ⊂ M(b2), b2 ≤ b2,σi . Let ε̄ > 0 be small. Choose any
Q ∈ M(b2). Then Q can be modified near t = ±∞ to produce Qε̄ ∈ M(b2,σi)
for all large |σ±i | and b2,σi ≤ I(Qε̄) ≤ b2 + ε̄. Thus the first assertion of
the theorem follows. To prove the second assertion, since Qσi ∈ A2, by earlier
arguments, there is an M > 0 such that ‖Qσi‖C2(σi,Rm) ≤M for all i ∈ N. Thus
by the Arzela-Ascoli Theorem, a subsequence of Qσi converges in C2

loc(R,Rm)
to a function Q ∈ C2

loc(R,Rm) ∩ A2 so I(Q) ≥ b2, But along our subsequence,
for any p ∈ N,∫ p

−p
L(Q) dt ≤ lim inf

i→∞

∫ p

−p
L(Qσi) dt ≤ lim inf

i→∞
I(Qσi) = lim inf

i→∞
b2,σi = b2.

Thus I(Q) = b2 and Q ∈M(b2).

Next the case of k > 2 transitions will be discussed briefly. See [24] for a
detailed argument in a related case. Again one takes l ∈ N and now chooses
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m = (m1, · · · ,m2k) ∈ Z2k with mj −mj−1 > 4l for j = 2, · · · , 2k. (We note
at this point a typo in the first line of page 1763 of [15] where > 2l is written
rather than > 4l ). To describe the analogue of the condition, (33), choose
{a1, . . . , a2k} ∈ {a−, a+}2k so that

a1 6= a2 = a3 6= . . . 6= a2k−2 = a2k−1 6= a2k

and define the family of sets {K1, . . . ,K2k} by

K2j−1 = Ka2j−1
(a2j−1, a2j) and K2j = Ka2j (a2j−1, a2j), j = 1, . . . , k.

Then the class of admissible functions for the k−transition problem is

Ak = Ak(m, l) = {q ∈ E | q satisfies (51)}

where

q(·+ p)|T0
∈


Nδ(K1), p ∈ (−∞,m1 + l) ∩ Z,
Nδ(Kj), p ∈ [mj − l,mj + l) ∩ Z, 2 ≤ j ≤ 2k − 1,

Nδ(K2k), p ∈ [m2k − l,+∞) ∩ Z.
(51)

Now set
bk = b(k,m, l) = inf

q∈A(k,m,l)
I(q). (52)

Then we have

Theorem 3.5. Under the hypotheses of Theorem 3.1,

M(bk) ≡ {Q ∈ A(k,m, l) | I(Q) = b(k,m, l)} 6= ∅

and any Q ∈M(bk) is a classical solution of (PDE) satisfying (BC).

Remark 3.6: There are also analogues of 3o − 4o of Theorem 3.1.

To state the result corresponding to Theorem 3.5 for (2), let σ− < m1 and
σ+ > m2k, and set

Ak,σ = Ak,σ(m, l) = {q ∈ Ak | q(t) = a− for t /∈ σ}.

As earlier for σ+,−σ− sufficiently large, Ak,σ 6= ∅. Define

bk,σ = bk,σ(m, l) = inf
q∈Ak,σ

I(q). (53)

Then we have:

Theorem 3.7. Suppose the hypotheses of Theorem 3.5 are satisfied. Then



214 P. MONTECCHIARI AND P.H. RABINOWITZ

1o For σ+,−σ− sufficiently large,

M(bk,σ) ≡ {q ∈ Ak,σ | I(q) = bk,σ} 6= ∅.

2o Any Qσ ∈M(bk,σ) is a solution of (2).

The proof is quite similar to that of Theorem 3.3, relying on (25) and a
cutting and pasteing argument.

Remark 3.8: In conclusion, we note that the natural version of Theorem 3.4
holds in the k > 2 setting.
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Abstract. We review the indefinite sublinear elliptic equation −∆u =
a(x)uq in a smooth bounded domain Ω ⊂ RN , with Dirichlet or Neu-
mann homogeneous boundary conditions. Here 0 < q < 1 and a is
continuous and changes sign, in which case the strong maximum prin-
ciple does not apply. As a consequence, the set of nonnegative solutions
of these problems has a rich structure, featuring in particular both dead
core and/or positive solutions. Overall, we are interested in sufficient
and necessary conditions on a and q for the existence of positive solu-
tions. We describe the main results from the past decades, and combine
it with our recent contributions. The proofs are briefly sketched.
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1. Introduction

Let N ≥ 1, Ω ⊂ RN be a smooth bounded domain, and ∆ the usual Laplace
operator. This article is devoted to the semilinear equation

−∆u = a(x)uq in Ω, (1)

under the condition

(AQ) a changes sign and 0 < q < 1.

This is a prototype of indefinite (due to the change of sign of a) and sublinear
(with respect to u) elliptic pde, which is motivated by the porous medium type
equation [22, 44]

wt = ∆(wm) + a(x)w, m > 1,

after the change of variables u = wm and q = 1/m. Indefinite elliptic problems
have attracted considerable attention since the 70’s, mostly in the linear (q = 1)
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and superlinear (q > 1) cases [2, 4, 7, 13, 18, 24, 37, 39, 40, 43]. We intend
here to give an overview of the main results known in the sublinear case. For
the sign-definite case a ≥ 0 we refer to [3, 11, 10, 35, 36, 42].

We shall consider (1) under Dirichlet and Neumann homogeneous boundary
conditions, i.e. the problems

(PD)


−∆u = a(x)uq in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

and

(PN )


−∆u = a(x)uq in Ω,

u ≥ 0 in Ω,

∂νu = 0 on ∂Ω,

where ∂ν is the exterior normal derivative.

Throughout this article, we assume that a ∈ C(Ω). By a solution of (PD)
we mean a strong solution u ∈W 2,r

D (Ω) for some r > N , where

W 2,r
D (Ω) := {u ∈W 2,r(Ω) : u = 0 on ∂Ω}.

Note that u ∈ C1(Ω), and so the boundary condition is satisfied in the usual
sense. A similar definition holds for (PN ). We say that a solution u is nontrivial
if u 6≡ 0, and positive if u > 0 in Ω. Among positive solutions of (PD), we are
interested in strongly positive solutions (denoted by u� 0), namely, solutions
in

P◦D :=
{
u ∈ C1

0 (Ω) : u(x) > 0 in Ω, and ∂νu(x) < 0 on ∂Ω
}
.

For (PN ), a solution is strongly positive if it belongs to

P◦N :=
{
u ∈ C1(Ω) : u(x) > 0 on Ω

}
.

In case that every nontrivial solution of (PD) (respect. (PN )) is strongly positive
we say that this problem has the positivity property.

The condition (AQ) gives rise to the main feature of this class of problems,
namely, the fact that the strong maximum principle (shortly SMP) does not
apply. Let us recall the following version of this result (for a proof, see e.g. [38,
Theorem 7.10]):

Strong maximum principle: Let u ∈W 2,r(Ω) for some r > N be such that
u ≥ 0 and (−∆ +M)u ≥ 0 in Ω, for some constant M ≥ 0. Then either u ≡ 0
or u > 0 in Ω and ∂νu(x) < 0 for any x ∈ ∂Ω such that u(x) = 0.



INDEFINITE SUBLINEAR ELLIPTIC PROBLEMS 219

Given u satisfying (1), we see that under (AQ) we can’t find in general
some M > 0 such that (−∆ + M)u = a(x)uq + Mu ≥ 0 in Ω, which prevents
us to apply the SMP, unlike when a ≥ 0 (the definite case) or q ≥ 1 (the
linear and superlinear cases). This fact is reinforced by a simple example of
a nontrivial solution u (of both (PD) and (PN )) violating the conclusion of
the SMP (see Example C below), which shows that the positivity property
may fail. Moreover, such example also provides us with nontrivial dead core
solutions of (PD) and (PN ), i.e. solutions vanishing in some open subset of Ω.
The formation of dead cores has already been investigated by Diaz in [16,
Proposition 1.11] for a more general class of problems.

To the best of our knowledge, the study of (PD) and (PN ) in the indefinite
and sublinear case was launched in the late 80’s by Bandle, Pozio and Tesei
[5, 6, 41]. These works were then followed by the contributions of Hernández,
Mancebo and Vega [23], Delgado and Suarez [15], and Godoy and Kaufmann
[20, 21]. We shall review the main results of these papers in the next section and
complement it with our main recent results from [27, 28, 30] in the subsequent
sections. Since the proofs can be found in the aforementioned articles, in most
cases we shall only sketch them here.

2. First results

Let us recall the first existence and uniqueness results for the problems above.
For the Neumann problem, the following condition on a plays an important
role:

(A.0)

∫
Ω

a < 0.

Indeed, we shall see that (A.0) is necessary for the existence of a positive
solution of (PN ), and sufficient for the existence of a nontrivial solution, for
any q ∈ (0, 1). As for the uniqueness results, some merely technical conditions
(see also the beginning of Section 7) on the set

Ω+ := {x ∈ Ω : a(x) > 0}

shall be used, namely:

(A.1) Ω+ has finitely many connected components,

(A.2) ∂Ω+ satisfies an inner sphere condition with respect to Ω+.

The following results were proved by Bandle, Pozio and Tesei [5, 6], and
Delgado and Suárez [15]. Although [5, 6] require that a ∈ Cθ(Ω) for some
0 < θ < 1, one can easily see from the proofs that these results still hold for
strong solutions assuming that a ∈ C(Ω).
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Theorem A. (i) The Dirichlet case:

(a) (PD) has at most one positive solution [15, Theorem 2.1]. Moreover,
if (A.1) and (A.2) hold then (PD) has at most one solution positive
in Ω+ [5, Theorem 2.1].

(b) (PD) has at least one nontrivial solution [5, Theorem 2.2].

(ii) The Neumann case:

(a) (PN ) has at most one solution in P◦N [6, Lemma 3.1]. Moreover, if
(A.1) and (A.2) hold then (PN ) has at most one solution positive in
Ω+ [6, Theorem 3.1].

(b) If (A.0) holds then (PN ) has at least one nontrivial solution. Con-
versely, if (PN ) has a positive solution then (A.0) holds [6, Theo-
rem 2.1].

Sketch of the proof. The uniqueness assertions rely on the following change of
variables: if u > 0 and −∆u = a(x)uq in Ω then v := (1 − q)−1u1−q solves
−∆v = quq−1|∇v|2 + a(x) in Ω. Let u1, u2 be positive solutions of (PD) and
assume that Ω̃ := {x ∈ Ω : u1(x) > u2(x)} is nonempty. We set vi := (1 −
q)−1u1−q

i for i = 1, 2, so that Φ := v1 − v2 > 0 in Ω̃. In addition,

−∆Φ = q
(
uq−1

1 |∇v1|2 − uq−1
2 |∇v2|2

)
< quq−1

1

(
|∇v1|2 − |∇v2|2

)
,

i.e.
−∆Φ− quq−1

1 ∇(v1 + v2)∇Φ < 0 in Ω̃. (2)

Since Φ = 0 on ∂Ω̃, we obtain a contradiction with the maximum principle.
This shows that (PD) has at most one positive solution. Now, if u1, u2 ∈ P◦N
solve (PN ) then Φ satisfies (2) and for any x ∈ ∂Ω̃ we have either Φ(x) = 0
or ∂νΦ(x) = 0. By the maximum principle, we infer that Φ is constant in Ω̃,
which contradicts (2). The proof of the uniqueness of a solution of (PD) positive
in Ω+ (respect. a solution of (PN ) in P◦N ) uses the same change of variables,
but is more involved. We refer to [5, 6] for the details.

The existence results can be proved either by a variational argument or by
the sub-supersolutions method. In the first case, it suffices to show that the
functional

Iq(u) :=

∫
Ω

(
1

2
|∇u|2 − 1

q + 1
a(x)|u|q+1

)
has a negative global minimum in H1

0 (Ω) or H1(Ω). In the latter case the con-
dition (A.0) is crucial. The second approach consists in taking a ball B ⊂ Ω+

and a sufficiently small first positive eigenfunction of −∆ on H1
0 (B) extended

by zero to Ω, to find a (nontrivial) subsolution of both (PD) and (PN ). An
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arbitrary large supersolution of (PD) is given by kz, where z is the unique
solution of −∆z = a+ in Ω, z = 0 on ∂Ω, and k > 0 is large enough (as usual,
we write a = a+ − a−, with a± := max(±a, 0)). The construction of a suitable
supersolution of (PN ) under (A.0) is more delicate, and we refer to [6] for the
details.

Finally, if (PN ) has a positive solution u then, multiplying the equation by
(u+ ε)−q (with 0 < ε < 1) and integrating by parts, we find that∫

Ω

a

(
u

u+ ε

)q
= −q

∫
Ω

(u+ ε)−(q+1)|∇u|2 < −q
∫

Ω

(u+ 1)−(q+1)|∇u|2 < 0.

Letting ε→ 0 we can check that
∫

Ω
a < 0.

Although not stated explicitly in [5, 6], the next corollary follows almost
directly from the existence and uniqueness results in these papers.

Corollary B. Let Ω+ be connected and satisfy (A.2). Then (PD) has a unique
nontrivial solution. The same conclusion holds for (PN ) assuming in addi-
tion (A.0).

Sketch of the proof. It is based on the fact that a nontrivial solution u of (PD)
or (PN ) satisfies u 6≡ 0 in Ω+, which follows from the inequality 0 <

∫
Ω
|∇u|2 ≤∫

Ω
a+(x)uq+1. Since Ω+ is connected, by the maximum principle we find that

u > 0 in Ω+. And there is only one solution having this property, by Theo-
rem A.

Remark 2.1: (i) Let us remark that the nontrivial solutions provided by
Theorem A (i-b) and (ii-b) are not necessarily unique, see e.g. [5, 6].

(ii) Regarding Theorem A (ii-b), it is worth pointing out that (A.0) is not
necessary for the existence of a nontrivial solution of (PN ) for some q ∈
(0, 1), cf. [6, Section 4] and [28, Remark 4.3].

Let us now give an example of a nontrivial solution u 6� 0 of (PD) and (PN ).
It is essentially due to [20], where the case q = 1

2 was considered (see Figure 1).

Example C. Let Ω := (0, π) and q ∈ (0, 1). We choose

r = rq :=
2

1− q
∈ (2,∞) , a(x) = aq(x) := r1− 2

r

(
1− r cos2 x

)
for x ∈ Ω.

Then u(x) := sinr x
r ∈ C2(Ω) satisfies

−u′′ = a(x)uq in Ω,

u > 0 in Ω,

u = u′ = u′′ = 0 on ∂Ω.
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The above example also provides dead core solutions of (PD) and (PN )
both. Indeed, it suffices to consider any bounded open interval Ω′ with Ω′ ⊃ Ω,
and extend u by zero and a in any way to Ω′. Then u is a nontrivial dead core
solution of both (PD) and (PN ), considered now in Ω′.

Since the SMP does not apply and dead core solutions may exist, obtaining
a positive solution for these problems is a delicate issue which has been given
little consideration. Let ϕ ∈ W 2,r

D (Ω) be the unique solution of the Poisson
equation {

−∆ϕ = a(x) in Ω,

ϕ = 0 on ∂Ω,

and S : Lr(Ω) → W 2,r
D (Ω) be the corresponding solution operator, i.e. S(a) =

ϕ. In [23] Hernández, Mancebo and Vega showed that the condition

(A.3) S(a)� 0

implies the existence of a positive solution of (PD) for all q ∈ (0, 1). Later
on Godoy and Kaufmann [20, 21] provided other sufficient conditions, namely,
that a− is small enough, or q is close enough to 1 (for some particular choices
of N , Ω, and a). We shall state a simplified version of these results in the
sequel, and refer to [23, Theorem 4.4], [21, Theorems 3.1 and 3.2], and [20,
Theorems 2.1 (i) and 3.2] for the precise statements.

Theorem D. (i) If a satisfies (A.3) then (PD) has a positive solution for
every q ∈ (0, 1).

(ii) Let q and a+ be fixed. Then there exists a constant C > 0 such that (PD)
has a positive solution if ‖a−‖C(Ω) < C.

(iii) If either N = 1 or Ω is a ball, a is radial, and 0 6≡ a ≥ 0 in some smaller
ball, then there exists q = q(a) such that (PD) has a positive solution for
q < q < 1.

Remark 2.2: Let us mention that Theorem D (i) is still true for a linear
second order elliptic operator with nonnegative zero order coefficient. On the
other side, it may happen that S(a) < 0 everywhere in Ω and yet (PD) admits a
positive solution for some q ∈ (0, 1). Indeed, if we take q = 1

2 in Example C then
S(aq) = x2−πx+1−cos 2x < 0 in (0, π), see Figure 1 (ii). Note also that (A.3)
is not compatible with the existence of a positive solution for (PN ), since it
implies

∫
Ω
a > 0, contradicting (A.0), which is necessary by Theorem A (ii-b).

Sketch of the proof. All assertions follow by the well known sub-supersolutions
method. Let us note that (unlike for (PN )) it is easy to provide arbitrary
big supersolutions for (PD). Indeed, a few computations show that kS (a+)
is a supersolution of (PD) for all k > 0 large enough. So the only task is to
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provide a positive subsolution. In (i), after some computations one can check

that [(1− q)S (a)]
1/(1−q)

is the desired subsolution.
In both (ii) and (iii), the subsolution is constructed by splitting the do-

main in two parts (a ball B in which 0 6≡ a ≥ 0, and Ω \ B), constructing
“subsolutions” in each of them, and checking that they can be glued appro-
priately to get a subsolution in the entire domain (see [8]). This fact depends
on obtaining estimates for the normal derivatives of these subsolutions on the
boundaries of the subdomains. In (iii) these bounds can be computed rather
explicitly using the symmetry of a and the fact that Ω is a ball, while in (ii)
the key tool is an estimate due to Brezis and Cabré [9, Lemma 3.2]. The proof
of both (ii) and (iii) involve several computations, and we refer to [20, 21] for
the details.

(i) (ii) (iii)

Figure 1: (i) The indefinite weight a 1
2
; (ii) S(a 1

2
); (iii) The positive solution

u 6� 0 for a 1
2
.

Godoy and Kaufmann [21] also proved that when a is too negative in a
ball there are no positive solutions of (PD) (see also Remark 2.3 (i) below).
This result, which has been proved in [16, Proposition 1.11] in a more general
setting, can also be seen as a first step towards the construction of dead core
solutions.

Theorem E. Let q and a+ be fixed. Given a ball B = BR(x0) ⊂ Ω \ Ω+ there
exists a constant C = C(Ω, N, q,R, a+) > 0 such that any solution of (PD)
vanishes at x0 if minB a

− > C.

Sketch of the proof. We use a comparison argument: let u be a nontrivial so-
lution of (PD), and a := minB a

−. Set

CN,q :=
(1− q)2

2 (N (1− q) + 2q)
and w(x) :=

(
CN,qa |x− x0|2

) 1
1−q

.
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One can check that ∆w ≤ a−wq in B. On the other hand, note that ∆u = a−uq

in B and ‖u‖∞ ≤ (‖S‖ ‖a+‖∞)
1

1−q , and so u ≤ w on ∂B if

a ≥
‖S‖ ‖a+‖∞
R2CN,q

. (3)

It follows then from the comparison principle that u ≤ w in B. In particular,
u (x0) = 0.

Remark 2.3: (i) The latter proof can be adapted for the Neumann prob-
lem, taking into account the following a priori bound: Under (A.0), there
exists C > 0 (independent of a−) such that ‖u‖C(Ω) ≤ C for every sub-

solution of (PN ).

(ii) Note that CN,q → 0 as q → 1−, i.e. the closer is q to 1, the larger is the
right-hand side in (3), and the more negative a needs to be in BR(x0) to
satisfy (3). This fact is consistent with Theorem D (ii) and (iii).

3. Recent results

Let us now briefly describe our main contributions to the study of (PD) and
(PN ), which can be found in [27, 28, 30]:

(I) We determine the values of q ∈ (0, 1) for which (PD) and (PN ) have the
positivity property. In other words, we provide a characterization of the
following positivity sets:

AD = AD(a) := {q ∈ (0, 1) : u� 0 for any

nontrivial solution u of (PD)},
AN = AN (a) := {q ∈ (0, 1) : u� 0 for any

nontrivial solution u of (PN )}.

Thanks to a continuity argument inspired by Jeanjean [25], and based on
the fact that the SMP applies when q = 1, we shall see in Theorem 4.1
that under (A.1) we have AD = (qD, 1) and, assuming additionally (A.0),
AN = (qN , 1), for some qD, qN ∈ [0, 1) (see also Corollary 4.3 and Theo-
rem 4.2).

Note that in view of the existence and uniqueness results in Theorem A,
the sets AD and AN can also be expressed as follows:

AD={q ∈ (0,1) : (PD) has a unique nontrivial solution u, and u� 0},
AN ={q ∈ (0,1) : (PN ) has a unique nontrivial solution u, and u� 0}.

We also obtain some positivity properties for the ground state solution
of (PD).



INDEFINITE SUBLINEAR ELLIPTIC PROBLEMS 225

(II) By the previous discussion we deduce that (PD) (respect. (PN ), under
(A.0)) has a solution u� 0 for q ∈ AD (respect. q ∈ AN ). Thus, setting

ID = ID(a) := {q ∈ (0, 1) : (PD) has a solution u� 0} ,
IN = IN (a) := {q ∈ (0, 1) : (PN ) has a solution u� 0} ,

we observe that AD ⊆ ID and AN ⊆ IN . We will further investigate ID
(respect. IN ) and analyze how close AD and ID (respect. AN and IN )
can be to each other, see Theorems 5.3, 5.8, and also Proposition 4.4 and
Remark 5.2 (i).

Note that Corollary B tells us that if Ω+ is connected and satisfies (A.2),
thenAD = ID, and if additionally (A.0) holds, thenAN = IN . Assuming
moreover (A.3), we find by Theorem 5.1 (iv-c) that AD = (0, 1).

(III) We consider (PD) and (PN ) via a bifurcation approach, looking at q as
a bifurcation parameter and taking advantage of the fact that (PD) has
a trivial line of strongly positive solutions when q = 1, see Theorems 5.1
and 5.5 for (PD) and (PN ), respectively. We also analyze the structure
of the nontrivial solutions set (with respect to q) of (PD) and (PN ) via
variational methods and the construction of sub and supersolutions, see
Theorem 5.1 and Remark 5.9 for (PD); Remarks 5.7 and 5.9 for (PN ). In
particular, we describe the asymptotic behaviors of nontrivial solutions
as q → 0+ and q → 1−.

(IV) Finally, in Section 6 we present, without proofs, two further kind of re-
sults. On the one hand, we provide explicit sufficient conditions for the ex-
istence of positive solutions for (PD) and (PN ), see Theorems 6.1 and 6.2.
And on the other hand, in Theorem 6.3 we state sufficient conditions for
the existence of dead core solutions for (PN ).

The above issues will be developed in the forthcoming sections. In the last
section we include some final remarks and list some open questions.

4. The positivity property

The next theorem extends Theorem D (iii) under (A.1), showing that (PD),
as well as (PN ) under (A.0), has a positive solution (and no other nontrivial
solution) if q is close enough to 1. In other words, we show that under (A.1)
the positivity property holds for such values of q [27, Theorems 1.3 and 1.7]:

Theorem 4.1. Assume (A.1). Then:

(i) AD = (qD, 1) for some qD ∈ [0, 1).
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(ii) If (A.0) holds then AN = (qN , 1) for some qN ∈ [0, 1).

Sketch of the proof. First we show that AD is nonempty. We proceed by con-
tradiction, assuming that qn → 1− and un are nontrivial solutions of (PD) with
q = qn and un 6� 0. We know that un 6≡ 0 in Ω+, and thanks to (A.1) we can
assume that, for every n ∈ N, un > 0 in some fixed connected component of
Ω+. If {un} is bounded in H1

0 (Ω) then, by standard compactness arguments,
up to a subsequence, we have un → u0 in H1

0 (Ω) and u0 solves −∆u0 = a(x)u0.
Moreover, we can show that {un} is away from zero, so that u0 6≡ 0. By the
SMP we get that u0 � 0. Finally, by standard elliptic regularity, we find that
un → u0 in C1(Ω), up to a subsequence. Thus un � 0 for n large enough, and
we have a contradiction. If {un} is unbounded in H1

0 (Ω) then, normalizing it,
we obtain a sequence vn converging to some v0 6≡ 0 that solves an eigenvalue
problem. Once again, the SMP implies that v0 � 0, a contradiction. A similar
argument shows that AD is open. Indeed, assume to the contrary that there
exist q0 ∈ AD and qn 6∈ AD such that qn → q0. We take nontrivial solutions
un 6� 0 of (PD) with q = qn. It is easily seen that {un} is bounded in H1

0 (Ω).
Up to a subsequence, un → u0 in C1(Ω), where u0 is a nontrivial solution of
(PD) with q = q0. Since q0 ∈ AD, we have u0 � 0, and so un � 0 for n
large enough, which is a contradiction. Thus AD is open. The proof of the
connectedness of AD is more technical, and we refer to [27] for the details. The
proof of (ii) follows similarly, see also [27].

Following a similar strategy, we show that the positivity property also holds
in the Dirichlet case if a− is small enough (assuming now that q ∈ (0, 1) is fixed),
which extends Theorem D (ii) under (A.1). Let us add that this theorem is
also true for some non-powerlike nonlinearities [27, Theorem 1.1].

Theorem 4.2. Assume (A.1). Then there exists δ > 0 (possibly depending on
q and a+) such that every nontrivial nonnegative solution u of (PD) satisfies
that u� 0 if ‖a−‖C(Ω) < δ.

Note that since (A.0) is necessary for the existence of positive solutions of
(PN ), we can’t expect an analogue of the above theorem for this problem.

As an immediate consequence of Theorem 4.1 and Corollary B, we infer:

Corollary 4.3. Assume that Ω+ is connected and satisfies (A.2), and let uq
be the unique nontrivial solution of (PD). Then uq 6� 0 for all q ∈ (0, qD]
and uq � 0 for all q ∈ (qD, 1). A similar result holds for (PN ) assuming, in
addition, (A.0).

Let us mention that, if in addition to the assumptions of Corollary 4.3,
Ω+ includes a tubular neighborhood of ∂Ω (i.e., a set of the form {x ∈ Ω :
d(x, ∂Ω) < ρ}, for some ρ > 0) then the SMP shows that the solution uq
above satisfies either uq � 0 or uq = 0 somewhere in Ω, see Figure 4.
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Although Theorem 4.1 claims that under (A.1) the sets AD and AN are
always nonempty, by Example C we see that given any q ∈ (0, 1), we may
find a = aq satisfying (A.1) and such that (PD) and (PN ) have a nontrivial
solution u 6� 0. In view of Theorem 4.1, this fact shows that AD and AN can
be arbitrarily small for a suitable a.

The next result (cf. [28, Theorem 1.4 (i)], [30, Proposition 5.1 (i)]) shows
that for any q ∈ (0, 1), we may find a such that q ∈ I(a) \ A(a) (and so, in
general, A ( I).

Proposition 4.4. (i) Given Ω ⊂ R and q ∈ (0, 1), there exists a ∈ C(Ω)
such that q ∈ IN \ AN .

(ii) Given Ω ⊂ R and q ∈ (0, 1), there exists a ∈ C(Ω) ∩ Lr (Ω), r > 1, such
that q ∈ ID \ AD.

4.1. The ground state solution

Recall that the Dirichlet eigenvalue problem

(ED)

{
−∆φ = µa(x)φ in Ω,

φ = 0 on ∂Ω.

has a first positive eigenvalue µD(a), which is principal and simple, and a
positive eigenfunction φD(a) � 0 associated with µD(a) and normalized by∫

Ω
φ2
D = 1.

Let Iq : H1
0 (Ω)→ R be given by

Iq(u) :=
1

2

∫
Ω

|∇u|2 − 1

q + 1

∫
Ω

a(x)|u|q+1

for q ∈ [0, 1). It is well-known that nonnegative critical points (in particular
minimizers) of Iq are solutions of (PD). By a ground state of Iq we mean a
global minimizer of this functional.

Proposition 4.5. Iq has a unique nonnegative ground state Uq for every q ∈
(0, 1). In addition:

(i) Uq > 0 in Ω+ and q 7→ Uq is continuous from (0, 1) to W 2,r
D (Ω).

(ii) There exists q0 ∈ (0, 1) such that Uq � 0 for q ∈ (q0, 1).

(iii) As q → 1− we have Uq → 0 in C1
0 (Ω) if µD(a) > 1, whereas ‖Uq‖C(Ω) →

∞ if µD(a) < 1.

(iv) If qn → 0+ then, up to a subsequence, Uqn → U0 in C1
0 (Ω), where U0 is a

nonnegative global minimizer of I0. In particular, if 0 6≡ S(a) ≥ 0 in Ω,
then Uq → S(a) in C1

0 (Ω) as q → 0+.
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Sketch of the proof. By a standard minimization argument, one may easily
prove the existence of a global minimizer of Iq. Moreover, there is a 1 to 1
correspondence between global minimizers of Iq and minimizers of

∫
Ω
|∇u|2

over the C1 manifold
{
u ∈ H1

0 (Ω) :
∫

Ω
a(x)|u|q+1 = 1

}
. By [34, Theorem 1.1],

we infer that if Uq and Vq are global minimizers of Iq then Uq = tVq for some
t > 0. But since Uq and Vq solve (PD), we deduce that t = 1, i.e. Uq is the
unique nonnegative global minimizer of Iq. If Uq(x) = 0 for some x ∈ Ω+

then, by the SMP, Uq vanishes is some ball B ⊂ Ω+. We choose a non-
trivial and smooth ψ ≥ 0 supported in B and extend it by zero to Ω. Then
Iq(Uq + tψ) = Iq(Uq) + Iq(tψ) < Iq(Uq) if t is small enough, which yields a
contradiction. Using standard compactness arguments and the uniqueness of
Uq, we can show that Uq → Uq0 in W 2,r

D (Ω) as q → q0, for any q0 ∈ (0, 1).
Arguing as in the proof of Theorem 4.1 we prove that Uq � 0 for q close to
1, and Uq → 0 in C1

0 (Ω) if µD(a) > 1. If µD(a) < 1 and {un} is bounded in
H1

0 (Ω), where un := Uqn and qn → 1−, then again as in the proof of Theo-
rem 4.1, we find that un → u0 and u0 ≥ 0 solves −∆u0 = a(x)u0 in Ω, u0 = 0
on ∂Ω. Using the fact that un are ground state solutions, we can show that
u0 6≡ 0, so that µD(a) = 1, a contradiction. Finally, we refer to [30] for the
proof of (iv).

Remark 4.6: (i) It is not hard to show that under (A.0) the functional Iq,
considered now in H1(Ω), has a ground state, which is positive in Ω+,
and strongly positive for q close enough to 1.

(ii) Proposition 4.5 (ii) extends Theorem D and Theorem 4.1(i) (as long as
the existence of a positive solution is concerned) without assuming (A.1).

5. Structure of the positive solutions set

This section is devoted to a further investigation of the set ID (respect. IN ),
which provides a rather complete description of the positive solutions set of (PD)
(respect. (PN )). From Theorem 4.1 we observe that (qD, 1) ⊆ ID and (qN , 1) ⊆
IN . Taking advantage of the ground state solution, constructing suitable sub
and supersolutions, and also using a bifurcation approach, we analyze the
asymptotic behavior of the positive solutions as q → 1− and q → 0+.

5.1. The Dirichlet problem

Let us consider (PD), with q ∈ (0, 1) as a bifurcation parameter. To this end,
we introduce two further conditions on a. The first one slightly weakens (A.3)
requiring that

(A.3′) S(a) > 0 in Ω,
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whereas the second one is a technical decay condition near ∂Ω:

(A.4) |a(x)| ≤ Cd(x, ∂Ω)η a.e. in Ωρ0 , for some ρ0 > 0 and η > 1− 1

N
,

where
Ωρ =: {x ∈ Ω : d(x, ∂Ω) < ρ} (4)

is the tubular neighborhood of ∂Ω. It turns out that (A.3′) is sufficient to
deduce the conclusion of Theorem D (i), i.e. that (PD) has a positive solution
for every q ∈ (0, 1). In addition, we shall use (A.3′) to show that this solution
converges to S(a) as q → 0+. On the other hand, (A.4) is needed to obtain
solutions of (PD) bifurcating from tφD, for some t > 0, when µD(a) = 1. Since
φD = 0 on ∂Ω, we assume (A.4) to ensure that aφq−2

D has the appropriate
integrability to carry out this bifurcation procedure, see Subsection 5.1.1.

Denoting by uD(q) the unique positive solution of (PD) for q ∈ (0, 1) when-
ever it exists, we see from Proposition 4.5 (ii) that Uq = uD(q) for q close to 1,
so that Proposition 4.5 (iii) provides the asymptotics of uD(q) when µD(a) 6= 1.
We treat now the case µD(a) = 1 and also provide the asymptotic behavior of
uD(q) as q → 0+, as well as sufficient conditions to have uD(q) � 0 for every
q ∈ (0, 1). Under these conditions, we obtain a rather complete description
of the positive solutions set {(q, uD(q)) : q ∈ (0, 1)} of (PD), see Figure 2. We
shall present here a simplified version of these results. For the precise assump-
tions required in each of following items we refer to [30, Theorems 1.2 and 1.4,
Corollary 1.6]. Under (A.4), let us set

t∗D := exp

[
−
∫

Ω
a(x)φ2

D log φD∫
Ω
a(x)φ2

D

]
. (5)

Theorem 5.1. Let r > N . Assume (A.1), (A.2), (A.3 ′) and (A.4). Then
uD(q) = Uq > 0 in Ω for every q ∈ (0, 1). In addition, if we set uD(0) := S(a)

then q 7→ uD(q) is continuous from [0, 1) to W 2,r
D (Ω). The asymptotic behavior

of uD(q) as q → 1− is characterized as follows:

(i) If µD(a) ≥ 1 and we set

uD(1) :=

{
t∗D φD, if µD(a) = 1,
0, if µD(a) > 1 (bifurcation from zero),

then q 7→ uD(q) is left continuous at q = 1 (see Figure 2 (i), (ii)).

(ii) If µD(a) < 1 then the curve {(q, uD(q)) : q ∈ [0, 1)} bifurcates from
infinity at q = 1 (see Figure 2 (iii)).

Finally, as for the strong positivity of uD(q), we have the following two
assertions:
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(iii) If (A.3) holds then uD(q)� 0 for q close to 0 or 1.

(iv) In the following cases, we have uD(q) � 0 for all q ∈ (0, 1) (and so,
ID = (0, 1)):

(a) a ≥ 0 in Ωρ0 for some ρ0 > 0,

(b) Ω is a ball and a is radial,

(c) (A.3) holds and Ω+ is connected.

(i) (ii) (iii)

Figure 2: The curve of positive solutions emanating from (0,S(a)): Cases (i)
µD(a) = 1, (ii) µD(a) > 1, (iii) µD(a) < 1.

Remark 5.2: (i) From Theorem A and Proposition 4.5 (ii), it suffices to as-
sume (A.1) and (A.2) to have Uq = uD(q) whenever uD(q) exists. More-
over, under these conditions,

ID = {q ∈ (0, 1) : Uq � 0}, (6)

and ID is open.

(ii) The assertion in Theorem 5.1 (i) when µD(a) = 1 also gives a better
asymptotic estimate for Uq as q → 1− if (A.4) holds and µD(a) 6= 1.
Indeed, a rescaling argument yields that

Uq ∼ µD(a)−
1

1−q t∗D φD as q → 1−,

i.e.
µD(a)

1
1−qUq → t∗D φD in W 2,r

D (Ω) as q → 1−.

(iii) As already stated, under (A.3′) we have a positive solution for every
q ∈ (0, 1). Assuming additionally (A.3), we can deduce the conclusion of
Theorem 5.1 (iii), which extends Theorem D (i). Let us add that in some
cases, by Theorem 6.1 below, the condition

∫
Ω
a ≥ 0 (which is weaker

than (A.3′)) is also sufficient to have a positive solution of (PD) for all
q ∈ (0, 1).
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(iv) Under the assumptions of Theorem 5.1 (iv-c), we infer from Corollary B
that AD = (0, 1).

Next we consider the linearized stability of a solution in P◦D of (PD) for
q ∈ ID. Let us recall that a solution u� 0 of (PD) is said to be asymptotically
stable if γ1(q, u) > 0, where γ1(q, u) is the first eigenvalue of the linearized
eigenvalue problem at u, namely,{

−∆ϕ = qa(x)uq−1ϕ+ γϕ in Ω,

ϕ = 0 on ∂Ω.
(7)

Observe that under the decay condition (A.4), given q ∈ [0, 1) and u � 0, we
have auq−1 ∈ Lt (Ω) for some t > N , so that γ1(q, u) is well defined.

The implicit function theorem (IFT for short) provides us with the following
result [30, Theorem 1.5]:

Theorem 5.3. If (A.4) holds then ID is open, and uD(q) is asymptotically
stable for q ∈ ID.

5.1.1. Local bifurcation analysis in the case µD(a) = 1

Let us give a sketch of the proof of Theorem 5.1 (i) when µD(a) = 1. In this
case, (PD) has the trivial line of strongly positive solutions:

Γ1 := {(q, u) = (1, tφD) : t > 0} .

For q ' 1, where q is a bifurcation parameter, we shall construct solutions
of (PD) bifurcating at certain (1, tφD) ∈ Γ1 in R × W 2,ξ

D (Ω), for some fixed
ξ > N . This bifurcation result (Proposition 5.4 below) complements Proposi-
tion 4.5 (iii).

Under (A.4), choose σ0 > 0 such that η > 1 + σ0 − 1
N and set J0 :=

(1− σ0

2 , 1+ σ0

2 ). We fix then ξ ∈ (N, r), depending only on N and σ0, in such a

way that ξ(η+ q− 2) > −1 + σ0N
4 for q ∈ J0. Following the Lyapunov-Schmidt

procedure, we reduce (PD) to a bifurcation equation. Set A := −∆ − a(x)

with domain D(A) := W 2,ξ
D (Ω). Then KerA = {tφD : t ∈ R} and ImA ={

f ∈ Lξ(Ω) :
∫

Ω
fφD = 0

}
. Let Q be the projection of Lξ(Ω) to ImA, given

by Q[f ] := f −
(∫

Ω
fφD

)
φD. As long as we consider solutions u � 0, (PD)

is equivalent to the following coupled equations: for u = tφD + w ∈ D(A) =
KerA+X2 with t =

∫
Ω
uφD and X2 = {u ∈ D(A) :

∫
Ω
uφD = 0},

Q [A(tφD + w)] = Q [a (x) ((tφD + w)q − (tφD + w))] , (8)

(1−Q) [A(tφD + w)] = (1−Q) [a (x) ((tφD + w)q − (tφD + w))] . (9)

Given t0 > 0, first we solve (8) with respect to w at (q, t, w) = (1, t0, 0),
where (1, t0, 0) is a solution of (8). Note that (A.4) gives that (8) is C2 for
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(q, t, w) ' (1, t0, 0), since the choice of ξ ensures that a(tφD+w)q−2 ∈ Lξ(Ω) for
such (q, t, w). An IFT argument shows the existence of a unique w = w(q, t)
for every (q, t) ' (1, t0) such that (q, t, w) solves (8). We plug w(q, t) into (9),
and thus, deduce the desired bifurcation equation

Φ(q, t) :=

∫
Ω

a(x){(tφD + w(q, t))q − (tφD + w(q, t)}φD = 0, (q, t) ' (1, t0),

where we note that Φ is C2 for (q, t) ' (1, t0).
As an application of the IFT, we find that if (1, t0φD) is a bifurcation point

on Γ1 then

∂Φ

∂q
(1, t0) = t0

{
(log t0)

∫
Ω

a(x)φ2
D +

∫
Ω

a(x)φ2
D log φD

}
= 0,

so that t0 = t∗D, given by (5). Conversely, since direct computations [30, Lemma
4.3] provide

∂Φ

∂t
(1, t∗D) =

∂2Φ

∂t2
(1, t∗D) = 0,

∂2Φ

∂t∂q
(1, t∗D) =

∫
Ω

a (x)φ2
D > 0,

the Morse Lemma [17, Theorem 4.3.19] yields the following existence result [30,
Proposition 4.4]:

Proposition 5.4. Suppose (A.4) with µD(a) = 1. Then the set of solutions of

(PD) near (1, t∗DφD) consists of two continuous curves in R ×W 2,ξ
D (Ω) inter-

secting only at (1, t∗DφD) transversally, given by Γ1 ∪ Γ2, where Γ2 for q < 1
represents the ground state solution Uq.

Let us mention that Proposition 5.4 remains true in R×W 2,r
D (Ω) by elliptic

regularity.

5.2. The Neumann problem

Under (A.0), the Neumann eigenvalue problem

(EN )

{
−∆φ = µa(x)φ in Ω,

∂νφ = 0 on ∂Ω.

has a first positive eigenvalue µN (a), which is principal and simple, and an
eigenfunction φN (a)� 0 associated to µN (a) and satisfying

∫
Ω
φ2
N = 1.

The bifurcation scheme from the previous subsection also applies to (PN ),
with the advantage of not requiring the decay condition (A.4), since φN > 0
on Ω. We look at q as a bifurcation parameter in (PN ). Similarly as in the
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Dirichlet case, if µN (a) = 1 then u = tφN solves (PN ) with q = 1, i.e., (PN )
has the trivial line

Γ1 := {(q, u) = (1, tφN ) : t > 0}.

We shall obtain, for q close to 1, a curve of solutions u� 0 bifurcating from Γ1

(see Figure 3).
The definition of asymptotically stable for solutions u� 0 of (PN ) is similar

to the one for (PD), see (7). Setting

t∗N := exp

[
−
∫

Ω
a(x)φ2

N log φN∫
Ω
a(x)φ2

N

]
, (10)

we have the following result [28, Theorem 1.2].

Theorem 5.5. Assume (A.0) and r > N . Then there exists q0 = q0(a) ∈ (0, 1)
such that (PN ) has a solution uq � 0 for q0 < q < 1. Moreover, uq is
asymptotically stable and satisfies

uq ∼ µN (a)−
1

1−q t∗N φN as q → 1−,

i.e. µN (a)
1

1−q uq → t∗N φN in W 2,r(Ω) as q → 1−. More specifically (see
Figure 3):

(i) If µN (a) = 1, then uq → t∗N φN in W 2,r(Ω) as q → 1−.

(ii) If µN (a) > 1, then uq → 0 in W 2,r(Ω) as q → 1−.

(iii) If µN (a) < 1, then min
Ω
uq →∞ as q → 1−.

(i) (ii) (iii)

Figure 3: Bifurcating solutions u� 0 (i) from Γ1 at (1, t∗N φN ) in case µN (a) =
1; (ii) from zero in case µN (a) > 1; (iii) from infinity in case µN (a) < 1.

Let us point out that, in general, it is hard to give a lower estimate for
q0(a), as one can see from Example C. As a direct consequence of Theorem 5.5,
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we complement Theorem A (ii-b) showing that (A.0) is also sufficient for the
existence of a positive solution of (PN ), for some q ∈ (0, 1):

Corollary 5.6. (PN ) has a positive solution (or a solution u � 0) for some
q ∈ (0, 1) if and only if (A.0) holds.

Remark 5.7: Differently from the Dirichlet case, under (A.0) and (A.1) one
may deduce the existence of a dead core limit function for nontrivial solutions of
(PN ) as q → 0+. Indeed, thanks to an a priori bound [28, Proposition 2.1], we
may assume that a nontrivial solution un of (PN ) with q = qn → 0+ converges
to u0 ≥ 0 in C1(Ω). We claim that u0 vanishes somewhere in Ω. Indeed,
if u0 > 0 in Ω then Lebesgue’s dominated convergence theorem shows that∫

Ω
∇u0∇v =

∫
Ω
a(x)v for all v ∈ C1(Ω), i.e. u0 is a nontrivial solution of (PN )

with q = 0, implying
∫

Ω
a = 0, a contradiction. This situation does not occur

in (PD) under (A.3′) (see Theorem 5.1).

The final result of this section is a characterization of the set IN , which is
proved by combining the IFT and the sub-supersolutions method [28, Theo-
rem 1.4 (i)]. Also, using the IFT approach developed by Brown and Hess [12,
Theorem 1], we have a stability result analogous to the one in Theorem 5.3.

Theorem 5.8. Assume (A.0). Then IN = (q̂N , 1) for some q̂N ∈ [0, 1). More-
over, for q ∈ IN , the unique solution in P◦N is asymptotically stable.

In addition to the local result given by Theorem 5.5, we can give a global
description (i.e. for all q ∈ (0, 1)) of the nontrivial solutions set of (PN ) when
Ω+ is connected and satisfies (A.2):

Remark 5.9: If Ω+ is connected and satisfies (A.2), then Corollary 4.3 yields
that uD(q) � 0 for q ∈ (qD, 1), and the unique nontrivial solution of (PD)
does not belong to P◦D for q ∈ (0, qD]. Moreover, if additionally Ω+ includes a
tubular neighborhood of ∂Ω, then this solution vanishes somewhere in Ω. Note
that the asymptotic behavior of uD(q) as q → 1−, i.e. assertions (i) and (ii)
of Theorem 5.1, remain valid, assuming additionally (A.4), see Figure 4. A
similar result holds for (PN ) if we assume, in addition, (A.0). In this case, the
asymptotic behavior of the solution uq � 0 as q → 1−, i.e. assertions (i)-(iii)
of Theorem 5.5, also remain valid without assuming (A.4).

6. Some further results

In this section we present some results (without proofs) on the two following
issues:

- Explicit sufficient conditions for the existence of positive solutions for (PD)
and (PN ).

- Sufficient conditions for the existence of dead core solutions for (PN ).
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Figure 4: The bifurcation curve of the unique nontrivial solution in the case
µD(a) = 1, assuming that Ω+ is connected, satisfies (A.2), and includes a
tubular neighborhood of ∂Ω. Here the full curve represents uD(q)� 0, whereas
the dotted curve represents solutions vanishing somewhere in Ω.

Given 0 < R0 < R, we write BR0
:=
{
x ∈ RN : |x| < R0

}
. When Ω = BR

and a is radial, we shall exhibit some explicit conditions on q and a so that
(PD) and (PN ) admit a positive solution. In Theorem 6.1 below we consider the
case that supp a+ is contained in BR0 and give a condition that guarantees the
existence of a positive solution u (not necessarily � 0), while in Theorem 6.2
we consider the case that supp a− is contained in BR0

and provide a solution
u � 0. These theorems are based on a sub-supersolutions approach and are
inspired in the proofs of [20, Section 3] (see also the proof of Theorem D (iii)).
If f is a radial function, we shall write f (x) := f (|x|) := f (r), and we also set
AR0,R :=

{
x ∈ RN : R0 < |x| < R

}
.

Theorem 6.1. Let a ∈ C(BR) be a radial function such that

• a ≥ 0 in BR0 and a ≤ 0 in AR0,R;

• r → a(r) is differentiable and nonincreasing in (R0, R), and

1− q
1 + q

∫
AR0,R

a− ≤
∫
BR0

a+. (11)

Then, (PD) has a positive solution. If, in addition, (A.0) holds, then
(PN ) has a positive solution.

Note that (11) holds for all q ∈ (0, 1) if
∫
BR

a ≥ 0, and this condition can also
be formulated as

−
∫

Ω
a∫

Ω
|a|
≤ q < 1. (12)
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In particular, we see that (11) is satisfied if q is close enough to 1. Note that
if we replace a by

aδ = a+ − δa−, with δ > δ0 :=

∫
Ω
a+∫

Ω
a−

,

then the left-hand side in (12) approaches 1 as δ → ∞, so that this condition
becomes very restrictive for aδ as δ → ∞. On the other side,

∫
Ω
aδ → 0− as

δ → δ+
0 , so that (12) becomes much less constraining for aδ as δ → δ+

0 .
We denote by ωN−1 the surface area of the unit sphere ∂B1 in RN .

Theorem 6.2. Let a ∈ C(BR) be a radial function satisfying (A.0). Assume
that a ≥ 0 in AR0,R and

1− q
2q +N (1− q)

ωN−1R
N
0

∥∥a−∥∥
C(BR0

)
<

∫
AR0,R

a+. (13)

Then (PN ) has a solution u� 0.

Unlike in Theorem 6.1, we observe that no differentiability nor monotonicity
condition is imposed on a− in Theorem 6.2. Note again that (13) is also clearly
satisfied if q is close enough to 1.

Finally, we consider the existence of nontrivial dead core solutions of (PN ).
From [5, 6] we recall that the set {x ∈ Ω : u(x) = 0} is called the dead core
of a nontrivial solution u of (PN ) if it contains an interior point. Recall that
in Theorem E we have already given sufficient conditions for the existence of a
nontrivial solution of (PN ) vanishing somewhere in Ω. We proceed now with
the construction of dead cores for solutions of (PN ). To this end, let us first
introduce the following assumption:

0 ≤ b1, b2 ∈ C(Ω) and supp b1 ∩ {x ∈ Ω : b2(x) > 0} = ∅. (14)

Given a nonempty open subset G ⊆ Ω and ρ > 0, we set

Gρ := {x ∈ G : dist(x, ∂G) > ρ} . (15)

The following result is based on a comparison argument from [19]:

Theorem 6.3. Let aδ := b1 − δb2, with b1, b2 6≡ 0 satisfying (14), and δ > 0.
If we set G := {x ∈ Ω : b2(x) > 0} then, given 0 < q < 1 and ρ > 0, there
exists δ0 = δ0(ρ, q) > 0 such that any nontrivial solution of (PN ) with a = aδ
and q ∈ (0, q] vanishes in Gρ if δ ≥ δ0.

Theorem 6.3 holds also for the Dirichlet problem (PD). In particular, it
complements Theorem 4.2 as follows: given q ∈ (0, 1) there exist 0 < δ1 < δ0
such that every nontrivial solution u of (PD) with a = aδ satisfies u � 0 for
δ < δ1, whereas u has a nonempty dead core for δ > δ0.
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7. Final remarks

Several conditions in this paper are assumed for the sake of presentation or
technical reasons. As a matter of fact, the results in Sections 4 and 5 remain
true more generally for a ∈ Lr(Ω) with r > N . In this situation, we assume,
instead of (A.1), that

Ω+ is the largest open subset of Ω where a > 0 a.e.,

satisfies |(supp a+) \ Ω+| = 0 and has a finite number

of connected components,

where supp is the support in the measurable sense.
It is also important to highlight that the uniqueness results in Theorem

A hold without assuming (A.1) and (A.2). Indeed, one may prove that the
ground state solution Uq is the only solution of (PD) being positive in Ω+, and
a similar result applies to (PN ) under (A.0), see [33]. A similar situation occurs
in Theorem 5.1: without (A.1) and (A.2) the solution uD(q) still exists for every
q ∈ (0, 1), and satisfies assertions (i)-(iv) in Theorem 5.1 (cf. Remark 5.2 (i)).

Also, let us mention that some of the results in this paper can be extended
to the Robin problem 

−∆u = a(x)uq in Ω,

u ≥ 0 in Ω,

∂νu = αu on ∂Ω,

(16)

with α ∈ R . Some work in this direction has already been done in [31, 32].
Let us note that there are striking differences between (16) and the problems
considered here. For instance, under (A.0)–(A.2) and some additional assump-
tions, for any q ∈ IN fixed, there exists some α > 0 such that (16) has exactly
two strongly positive solutions for α ∈ (0, α), one strongly positive solution for
α = α, and no strongly positive solutions for α > α [32, Theorem 1.3].

It is also worth pointing out that the positivity results in Section 4 can be
applied to the study of positive solutions for indefinite concave-convex equations
of the form −∆u = a(x)uq + b(x)up, where 0 < 1 < q < p, see [27, 29]. Finally,
let us mention that several results presented here can be extended to problems
involving a class of fully nonlinear homogeneous operators [14].

We conclude now with some interesting questions that remain open in the
context of this paper:

(i) Is the set ID connected?

(ii) Is there some a such that IN = (0, 1) ? Let us note that we can construct
a sequence an ∈ L∞(Ω) such that IN (an) = (qn, 1) with qn ↘ 0 [28,
Remark 4.5].
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(iii) Assume IN (a) = (0, 1). Can we characterize the limiting behavior of the
solution uq � 0 of (PN ) as q → 0+ ?

(iv) By Theorem E, we see that we may have qD > 0 or qN > 0. On the other
side, Theorem 5.1 (iv-c) shows a situation in which qD = 0. Can we have
qN = 0 (i.e., AN = (0, 1)) ?

(v) Can we obtain explicit sufficient conditions for the existence of positive
solutions of (PD) and (PN ) (as e.g. the ones in Theorems 6.1 and 6.2
for (PN ); or the ones in Theorem 6.1 and [20, Theorem 3.2 (i)] for (PD))
without assuming that Ω is a ball and a is radial?

(vi) Is it possible to extend the results in this paper to a general operator of
the form

Lu = −div(A(x)∇u) + 〈b(x),∇u〉+ c (x)u,

under suitable assumptions on the coefficients? Let us note that if b 6≡ 0
variational techniques do not apply. Furthermore, the size of the coeffi-
cient c plays an important role: in the one-dimensional Dirichlet case no
positive solutions exist if c > 0 is large enough, cf. [26, Theorem 3.11].
Let us add that the Neumann case with A ≡ 1, b ≡ 0, and c constant has
been treated in [1, 32].

(vii) We believe that many of the resuts and techniques reviewed here also
apply to the corresponding p-Laplacian equation

−∆pu = a(x)uq,

with p > 1 and 0 < q < p − 1. Some progress in this direction has been
achieved in [33].

References

[1] S. Alama, Semilinear elliptic equations with sublinear indefinite nonlinearities,
Adv. Differential Equations 4 (1999), 813–842.

[2] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite
nonlinearities, Calc. Var. Partial Differential Equations 1 (1993), 439–475.

[3] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered
Banach spaces, SIAM Rev. 18 (1976), 620–709.
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Abstract. We consider the problem of existence of a solution u
to ∂tu − ∂xxu = 0 in (0, T ) × R+ subject to the boundary condition
−ux(t, 0) + g(u(t, 0)) = µ on (0, T ) where µ is a measure on (0, T )
and g a continuous nondecreasing function. When p > 1 we study the
set of self-similar solutions of ∂tu − ∂xxu = 0 in R+ × R+ such that
−ux(t, 0) +up = 0 on (0,∞). At end, we present various extensions to
a higher dimensional framework.

Keywords: nonlinear heat flux, singularities, Radon measures, Marcinkiewicz spaces.
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1. Introduction

Let g : R 7→ R be a continuous nondecreasing function. Set QTR+
= (0, T )×R+

for 0 < T ≤ ∞ and ∂`Q
T
R+

= R+ × {0}. The aim of this article is to study the
following 1-dimensional heat equation with a nonlinear flux on the parabolic
boundary

ut − uxx = 0 in QTR+

−ux( · , 0) + g(u( · , 0)) = µ in [0, T )

u(0, · ) = ν in R+,

(1)

where ν, µ are Radon measures in R+ and [0, T ) respectively. A related problem
in Q∞R+

for which there exist explicit solutions is the following,

ut − uxx = 0 in Q∞R+

−ux(t, 0) + |u|p−1u(t, 0) = 0 for all t > 0

lim
t→0

u(t, x) = 0 for all x > 0,

(2)
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where p > 1. Problem (2) is invariant under the transformation Tk defined for
all k > 0 by

Tk[u](t, x) = k
1
p−1u(k2t, kx). (3)

This leads naturaly to look for existence of self-similar solutions under the form

us(t, x) = t−
1

2(p−1)ω

(
x√
t

)
. (4)

Putting η = x√
t
, ω satisfies

−ω′′ − 1

2
ηω′ − 1

2(p− 1)
ω = 0 , in R+ ,

−ω′(0) + |ω|p−1ω(0) = 0 ,

lim
η→∞

η
1
p−1ω(η) = 0 .

(5)

Self-similar solutions of non-linear diffusion equations such as porous-media
or fast-diffusion equation were discovered long time ago by Kompaneets and
Zeldovich and a thourougful study was made by Barenblatt, reducing the study
to the one of integrable ordinary differential equations with explicit solutions.
Concerning semilinear heat equation Brezis, Terman and Peletier opened the
study of self-similar solutions of semilinear heat equations in proving in [5] the
existence of a positive strongly singular function satisfying

ut −∆u+ |u|p−1u = 0 in R+ × Rn, (6)

and vanishing at t = 0 on Rn \ {0}. They called it the very singular solution.
Their method of construction is based upon the study of an ordinary differential
equation with a phase space analysis. A new and more flexible method based
upon variational analysis has been provided by [7]. Other singular solutions of
(6) in different configurations such as boundary singularities have been studied

in [13]. We set K(η) = eη
2/4 and

L2
K(R+) =

{
φ ∈ L1

loc(R+) :

∫
R+

φ2Kdx := ‖φ‖2L2
K
<∞

}
,

and, for k ≥ 1,

Hk
K(R+) =

{
φ ∈ L2

K(R+) :

k∑
α=0

∥∥∥φ(α)∥∥∥2
L2
K

:= ‖φ‖2HkK <∞

}
.

Let us denote by E the subset of H1
K(R+) of weak solutions of (5) that is the

set of functions satisfying∫ ∞
0

(
ω′ζ ′ − 1

2(p− 1)
ωζ

)
K(η)dη +

(
|ω|p−1ωζ

)
(0) = 0,
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and by E+ the subset of nonnegative solutions. The next result gives the
structure of E .

Theorem 1.1. 1. If p ≥ 2, then E = {0}.

2. If 1 < p ≤ 3
2 , then E+ = {0}

3. If 3
2 < p < 2 then E = {ωs,−ωs, 0} where ωs is the unique positive

solution of (5). Furthermore there exists c > 1 such that

c−1η
1
p−1−1 ≤ e

η2

4 ωs(η) ≤ cη
1
p−1−1 for all η > 0. (7)

Whenever it exists the function us defined in (4) is the limit, when `→∞
of the positive solutions u`δ0 of

ut − uxx = 0 in Q∞R+

−ux(t, · ) + |u|p−1u(t, · ) = `δ0 in [0, T )

lim
t→0

u(t, x) = 0 for all x ∈ R+.

When such a function us does not exits the sequence {u`δ0} tends to infin-
ity. This is a charateristic phenomenon of an underlying fractional diffusion
associated to the linear equation

ut − uxx = 0 in Q∞R+

−ux( · , 0) = µ in [0,∞)

u(0, · ) = 0 in R+.

More generaly we consider problem (1). We define the set X(QTR+
) of test

functions by

X(QTR+
) =

{
ζ ∈ C1,2

c ([0, T )× [0,∞)) : ζx(t, 0) = 0 for t ∈ [0, T ]
}
.

Definition 1.2. Let ν, µ be Radon measures in R+ and [0, T ) respectively. A

function u defined in QTR+
and belonging to L1

loc(Q
T
R+

) ∩ L1(∂`Q
T
R+

; dt) such

that g(u) ∈ L1(∂`Q
T
R+

; dt) is a weak solution of (1) if for every ζ ∈ X(QTR+
)

there holds

−
∫ T

0

∫ ∞
0

(ζt + ζxx)udxdt+

∫ T

0

(g(u)ζ) (t, 0)dt

=

∫ ∞
0

ζdν(x) +

∫ T

0

ζ(t, 0)dµ(t). (8)
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We denote by E(t, x) the Gaussian kernel in R+ × R. The solution of

vt − vxx = 0 in Q∞R+

−vx = δ0 in R+

v(0, · ) = 0 in R+,

has explicit expression

v(t, x) = 2E(t, x) =
1√
πt
e−

x2

4t .

If x, y > 0 and s < t we set Ẽ(t − s, x, y) = E(t − s, x − y) + E(t − s, x + y).
When ν ∈Mb(R+) and µ ∈Mb(R+) the solution of

vt − vxx = 0 in Q∞R+

−vx( · , 0) = µ in R+

u(0, · ) = ν in R+,

(9)

is given by

vν,µ(t, x) =

∫ ∞
0

Ẽ(t, x, y)dν(y) + 2

∫ t

0

E(t− s, x)dµ(s)

= ER+
[ν](t, x) + ER+×{0}[µ](t, x) = EQ∞R+ [(ν, µ)](t, x). (10)

We prove the following existence and uniqueness result.

Theorem 1.3. Let g : R 7→ R be a continuous nondecreasing function such that
g(0) = 0. If g satisfies ∫ ∞

1

(g(s)− g(−s))s−3ds <∞, (11)

then for any bounded Borel measures ν in R+ and µ in [0, T ), there exists a
unique weak solution u := uν,µ ∈ L1(QTR+

) of (1). Furthermore the mapping

(ν, µ) 7→ uν,µ is nondecreasing.

When g(s) = |s|p−1s, condition (11) is satisfied if

0 < p < 2.

The above result is still valid under minor modifications if R+ is replaced
by a bounded interval I := (a, b), and problem (1) by

ut − uxx = 0 in QTI
ux( · , b) + g(u( · , b)) = µ1 in [0, T )

−ux( · , a) + g(u( · , a)) = µ2 in [0, T )

u(0, · ) = ν in (a, b),
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where ν, µj (j = 1, 2) are Radon measures in I and (0, T ) respectively.

In the last section we present the scheme of the natural extensions of this
problem to a multidimensional framework

ut −∆u = 0 in QTRn+
−uxn + g(u) = µ in ∂`Q

T
Rn+

u(0, · ) = ν in Rn+,

The construction of solutions with measure data can be generalized but there
are some difficulties in the obtention of self-similar solutions. The equation
with a source flux

ut −∆u = 0 in QTRn+
uxn + g(u) = 0 in ∂`Q

T
Rn+

u(0, · ) = ν in Rn+,
(12)

has been studied by several authors, in particular Fila, Ishige, Kawakami and
Sato [8, 10, 11]. Their main concern deals with global existence of solutions.

2. Self-similar solutions

2.1. The symmetrization

We define the operator LK in C2
0 (R) by

LK(φ) = −K−1(Kφ′)′.

The operator LK has been thouroughly studied in [7]. In particular

inf

{∫ ∞
−∞

φ′2K(η)η :

∫ ∞
−∞

φ2K(η)dη = 1

}
=

1

2
.

The above infimum is achieved by φ1 = (4π)−
1
2K−1 and LK is an isomorphism

from H1
K(R) onto its dual (H1

K(R))′ ∼ H−1K (R). Finally L−1K is compact from
L2
K(R) into H1

K(R), which implies that LK is a Fredholm self-adjoint operator
with

σ(LK) =
{
λj = 1+j−1

2 : j = 1, 2, . . .
}
,

and
ker (LK − λjId) = span

{
φ
(j)
1

}
.

If φ is defined in R+, φ̃(x) = φ(−x) is the symmetric with respect to 0 while
φ∗(x) = −φ(−x) is the antisymmetric with respect to 0. The operator LK re-

stricted to R+ is denoted by L+
K . The operator L+,N

K with Neumann condition
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at x = 0 is again a Fredholm operator. This is also valid for the operator L+,D
K

with Dirichlet condition at x = 0. Hence, if φ is an eigenfunction of L+,N
K ,

then φ̃ is an eigenfunction of LK in L2
K(R). Similarly, if φ is an eigenfunction

of L+,D
K , then φ∗ is an eigenfunction of LK in L2

K(R). Conversely, any even
(resp. odd) eigenfunction of LK in L2

K(R) satisfies Neumann (resp. Dirichlet)
boundary condition at x = 0. Hence its restiction to L2

K(R+) is an eigenfunc-

tion of L+,N
K (resp. L+,D

K ). Since φ
(j)
1 is even (resp. odd) if and only if j is

even (resp. odd), we derive

H1,0
K (R+) =

∞⊕
`=1

span
{
φ
(2`+1)
1

}
,

and

H1
K(R+) =

∞⊕
`=0

span
{
φ
(2`)
1

}
.

Note that φ ∈ H1
K(R+) such that φx(0) = 0 (resp. φ(0) = 0) implies

φ̃ ∈ H1
K(R) (resp. φ∗ ∈ H1

K(R)). Furthermore, φ1 is an eigenfunction of
L+
K in H1

K(Rn+) with Neumann boundary condition on ∂Rn+ while ∂xnφ1 is an
eigenfunction of L+

K in H1
K(Rn+) with Dirichlet boundary condition on ∂Rn+. We

list below two important properties of H1
K(R+) valid for any β > 0. Actually

they are proved in [7, Prop. 1.12] with H1
Kβ (R) but the proof is valid with

H1
Kβ (R+).

(i) φ ∈ H1
Kβ (R+) =⇒ K

β
2 φ ∈ C0, 12 (R+)

(ii) H1
Kβ (R+) ↪→ L2

Kβ (R+) is compact for all n ≥ 1.

2.2. Proof of Theorem 1.1-(i)-(ii)

Assume p ≥ 2, then 1
2(p−1) ≤

1
2 . If ω is a weak solution, then∫ ∞

0

(
ω′2 − 1

2(p− 1)
ω2

)
Kdη + |ω|p+1(0) = 0.

If 1
2 >

1
2(p−1) we deduce that ω = 0. Furthermore, when 1

2 = 1
2(p−1) then

|ω|p+1(0) = 0.

If ω is nonzero, it is an eigenfunction of L+,D
K . Since the first eigenvalue is 1 it

would imply 1 = 1
2(p−1) ≤

1
2 , contradiction.

Assume 1 < p ≤ 3
2 and ω is a nonnegative weak solution. We take ζ(η) =

ηe−
η2

4 = −2φ′1 (η), then∫ ∞
0

(
−ζ ′′ − 1

2(p− 1)
ζ

)
ωK(η)dη + ζ ′(0)ωp(0) = 0.
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Since −ζ ′′ = ζbR+
> 0 and ζ ′(0) = φ1(0) = 1, we derive ωζ = 0 if 1 > 1

2(p−1)
and ω(0) = 0 if 1 = 1

2(p−1) . Hence ω′(0) = 0 by the equation and ω ≡ 0 by the

Cauchy-Lipschitz theorem.

2.3. Proof of Theorem 1.1-(iii)

We define the following functional on H1
K(Rn+)

J(φ) =
1

2

∫ ∞
0

(
φ′2 − 1

2(p− 1)
φ2
)
Kdη +

1

p+ 1
|φ(0)|p+1.

Lemma 2.1. The functional J is lower semicontinuous in H1
K(R+). It tends to

infinity at infinity and achieves negative values.

Proof. We write

J(ψ) = J1(ψ)− J2(ψ) = J1(ψ)− 1

2(p− 1)
‖ψ‖2L2

K
.

Clearly J1 is convex and J2 is continuous in the weak topology of H1
K(R+)

since the imbedding of H1
K(R+) into L2

K(R+) is compact. Hence J is weakly
semicontinuous in H1

K(R+).

Let ε > 0, then

J(εφ1) =

(
1

4
− 1

4(p− 1)

)
ε2
√
π

2
+
εp+1

p+ 1
.

Since 1 < p < 2, 1
4 −

1
4(p−1) < 0. Hence J(εφ1) < 0 for ε small enough, thus J

achieves negative values on H1
K(R+).

If ψ ∈ H1
K(R+) it can be written in a unique way under the form ψ = aφ1 +ψ1

where a = 2
√
πψ(0) and ψ1 ∈ H1,0

K (R+). Hence, for any ε > 0,

J(ψ) =
1

2

∫ ∞
0

(
ψ′21 −

1

2(p− 1)
ψ2
1

)
Kdη +

a2

2

∫ ∞
0

(
φ′21 −

1

2(p− 1)
φ21

)
Kdη

+ a

∫ ∞
0

(
ψ′1φ

′
1 −

1

2(p− 1)
ψ1φ1

)
Kdη +

1

p+ 1
|a|p+1

≥ 2p− 3

4(p− 1)

∫ ∞
0

ψ′21 Kdη −
aε

2

∫ ∞
0

(
ψ′21 +

1

2(p− 1)
ψ2
1

)
Kdη

+
a2(p− 2)

√
π

4(p− 1)
− ap

√
π

4(p− 1)ε
+

1

p+ 1
|a|p+1.
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Note that ‖ψ‖2H1
K
≤ 4

(
‖ψ′1‖

2
L2
K

+ a2
)

. Since 2p − 3 > 0, we can take ε > 0

small enough in order that

lim
‖ψ‖

H1
K
→∞

J(ψ) =∞.

By Lemma 2.1 the functional J achieves its minimum in H1
K(R+) at some

ωs 6= 0, and ωs can be assumed to be nonnegative since J is even. By the
strong maximum principle ωs > 0, and by the method used in the proof of [15,
Proposition 1] is is easy to prove that positive solutions belong to H2

K(R+).
Assume that ω̃ is another positive solution, then∫ ∞

0

(
(Kω′s)

′

ωs
− (Kω̃′s)

′

ω̃s

)
(ω2
s − ω̃2

s)dη = 0.

Integration by parts, easily justified by regularity, yields∫ ∞
0

(
(Kω′s)

′

ωs
− (Kω̃′s)

′

ω̃s

)
(ω2
s − ω̃2

s)dη

=

[
Kω′s

(
ωs −

ω̃2
s

ωs

)
−Kω̃′s

(
ω2
s

ω̃s
− ω̃s

)]∞
0

−
∫ ∞
0

(
ωs −

ω̃2
s

ωs

)′
Kω′sdη +

∫ ∞
0

(
ω2
s

ω̃s
− ω̃s

)′
Kω′sdη

= −
(
ωp−1s − ω̃p−1s

) (
ω2
s − ω̃2

s

)
(0)

−
∫ ∞
0

((
ω′sω̃s − ωsω̃′s

ω̃s

)2

+

(
ωsω̃

′
s − ω̃sω′s
ωs

)2
)
dη.

This implies that ωs = ω̃s. The proof of (7) is similar as the proof of estimate
(2.5) in [13, Theorem 4.1].

2.4. The explicit approach

This part is an adaptation to our problem of what has been done in [9] con-
cerning the blow-up problem in equation (12). Let ω be a solution of

ω′′ +
1

2
ηω′ +

1

2(p− 1)
ω = 0 in R+. (13)

We set

r =
η2

4
and ω(η) = r−

1
4 e−

r
2Z(r).
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Then Z satisfies the Whittaker equation (with the standard notations)

Zrr +

(
−1

4
+
k

r
+

1− 4µ2

4r2

)
Z = 0

where k = 1
2(p−1) −

1
4 and µ = 1

4 . Notice that the only difference with the

expression in [9, Lemma 3.1] is the value of the coefficient k. This equation
admits two linearly independent solutions

Z1(r) = e−
r
2 r

1
2+µU

(
1
2 + µ− k, 1 + 2µ, r

)
,

and

Z2(r) = e−
r
2 r

1
2+µM

(
1
2 + µ− k, 1 + 2µ, r

)
.

The functions U and M are the Whittaker functions which play an important
role not only in analysis but also in group theory. They have the following
asymptotic expansion as r →∞ (see e.g. [1]),

U
(
1
2 + µ− k, 1 + 2µ, r

)
= rk−µ−

1
2

(
1 +O(r−1

)
= r

1
2(p−1)

−1 (1 +O(r−1
)
,

and

M
(
1
2 + µ− k, 1 + 2µ, r

)
=

Γ(1 + 2µ)

Γ( 1
2 + µ− k)

err−(µ+
1
2+k)

(
1 +O(r−1

)
=

Γ( 3
2 )

Γ(1− 1
2(p−1) )

err−
p

2(p−1)
(
1 +O(r−1

)
.

Then

Z1(r) = r
1

2(p−1)
− 1

4 e−
r
2

(
1 +O(r−1

)
,

and

Z2(r) =
Γ( 3

2 )

Γ(1− 1
2(p−1) )

r
1
4−

1
2(p−1)

−e
r
2

(
1 +O(r−1

)
.

To this correspond the two linearly independent solutions ω1 and ω2 of (13)
with the following behaviour as η →∞,

(i) ω1(η) = c1η
1
p−1−1e−

η2

4

(
1 +O(η−2

)
,

(ii) ω2(η) = c2η
− 1
p−1

(
1 +O(η−2

)
.

Clearly only ω1 satisfies the decay estimate ω(η) = o(η−
1
p−1 ) as η →∞. Hence

the solution ω is a multiple of ω1 and the multiplicative constant c is adjusted
in order to fit the condition ω′(0) = ωp(0).
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3. Problem with measure data

3.1. The regular problem

Set G(r) =
∫ r
0
g(s)ds. We consider the functional J in L2(R+) with domain

D(J) = H1(R+) defined by

J(u) =
1

2

∫ ∞
0

u2xdx+G(v(0)).

It is convex and lower semicontinuous in L2(R+) and its subdifferential ∂J
sastisfies ∫ ∞

0

∂J(u)ζdx =

∫ ∞
0

uxζxdx+ g(u(0))ζ(0),

for all ζ ∈ H1(R+). Therefore∫ ∞
0

∂J(u)ζdx = −
∫ ∞
0

uxxζdx+ (g(u(0))− ux(0))ζ(0).

Hence

∂J(u) = −uxx for all u ∈ D(∂J) = {v ∈ H1(R+) : vx(0) = g(v(0))}.

The operator ∂J is maximal monotone, hence it generates a semi-group of
contractions. Furthermore, for any u0 ∈ L2(R+) and F ∈ L2(0, T ;L2(L2(R+))
there exists a unique strong solution to

Ut + ∂J(U) = F a.e. on (0, T )
U(0) = u0.

Proposition 3.1. Let µ ∈ H1(0, T ) and ν ∈ L2(R+). Then there exists a
unique function u ∈ C([0, T ];L2(R+) such that

√
tuxx ∈ L2((0, T )×R+) which

satisfies (14). The mapping (µ, ν) 7→ u := uµ,ν is non-decreasing and u is a
weak solution in the sense that it satisfies (8).

Proof. Let η ∈ C2
0 ([0,∞)) such that η(0) = 0, η′(0) = 1. If f ∈ H1(0, T ),

ν ∈ L2(R+), and u is a solution of

ut − uxx = 0 in QTR+

−ux( · , 0) + g(u( · , 0)) = µ(t) in [0, T )

u(0, · ) = ν in R+,

(14)

where ν ∈ L2(R+), then the function v(t, x) = u(t, x)− µ(t)η(x) satisfies

vt − vxx = F in QTR+

−vx( · , 0) + g(v( · , 0)) = 0 in [0, T )

v(0, · ) = ν − µ(0)η in R+,
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with F (t, x) = −(µ′(t)η(x) + µ(t)η′′(x)). The proof of the existence follows by
using [3, Theorem 3.6].
Next, let (µ̃, ν̃) ∈ H1(0, T ) × L2(R+) such that µ̃ ≤ µ and ν̃ ≤ ν and let
ũ = uµ̃,ν̃ , then

1

2

d

dt

∫ ∞
0

(ũ− u)2+dx+

∫ ∞
0

(∂x(ũ− u)+)
2
dx− (µ̃(t)− µ(t)) (ũ(t, 0)− u(t, 0))+

+ (g(ũ(t, 0))− g(u(t, 0))))(ũ(t, 0)− u(t, 0)) = 0.

Then ∫ ∞
0

(ũ− u)2+dxbt=0 =⇒
∫ ∞
0

(ũ− u)2+dx = 0 on [0, T ].

We can also use (10) to express the solution of (14):

u(t, x) =

∫ ∞
0

Ẽ(t, x, y)ν(y)dy + 2

∫ t

0

E(t− s, x)(µ(s)− g(u(s, 0)))ds.

In particular, if g(0) = 0, then

|u(t, x)| ≤
∫ ∞
0

Ẽ(t, x, y)|ν(y)|dy + 2

∫ t

0

E(t− s, x)|µ(s)|ds.

The proof of (8) follows since u is a strong solution.

Next, we prove that the problem is well-posed if µ ∈ L1(0, T ).

Proposition 3.2. Assume {νn} ⊂ Cc(R+) and {µn} ⊂ C1([0, T ]) are Cauchy
sequences in L1(R+) and L1(0, T ) respectively. Then the sequence {un} of
solutions of

un t − unxx = 0 in QTR+

−unx( · , 0) + g(un( · , 0)) = µn(t) in [0, T )

un(0, · ) = νn in R+,

(15)

converges in C([0, T ];L1(R+) to a function u which satisfies (8).

Proof. For ε > 0 let pε be an odd C1 function defined on R such that p′ε ≥ 0
and pε(r) = 1 on [ε,∞), and put jε(r) =

∫ r
0
pε(s)ds. Then

d

dt

∫ ∞
0

jε(un − um)dx+

∫ ∞
0

(unx − umx)2p′ε(un − um)dx

+ (g(un(t, 0))− g(um(t, 0))) pε(un(t, 0)− um(t, 0))

= (µn(t)− µm(t)) pε(un(t, 0)− um(t, 0)).
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Hence∫ ∞
0

jε(un − um)(t, x)dx+ (g(un(t, 0))− g(um(t, 0))) pε(un(t, 0)− um(t, 0))

≤
∫ ∞
0

jε(νn − νm)dx+ (µn(t)− µm(t)) pε(un(t, 0)− um(t, 0)).

Letting ε→ 0 implies pε → sgn0, hence for any t ∈ [0, T ],∫ ∞
0

|un − um|(t, x)dx+ |g(un(t, 0))− g(um(t, 0)|

≤
∫ ∞
0

|νn − νm|dx+ |µn(t)− µm(t)|.

Therefore {un} and {g(un( · , 0)} are Cauchy sequences in C([0, T ];L1(R+))
and C([0, T ]) respectively with limit u and g(u) and u = uν,µ satisfies (8). If
we assume that (ν, ν̃) and (µ, µ̃) are couples of elements of L1(R+) and L1(0, T )
respectively and if u = uν,µ and ũ = uν̃,µ̃, there holds by the above technique,∫ ∞

0

|u− ũ|(t, x)dx+ |g(u(t, 0))− g(ũ(t, 0)|

≤
∫ ∞
0

|ν̃ − ν̃|dx+ |µ̃(t)− µ̃(t)| for all t ∈ [0, T ]. (16)

The following lemma is a parabolic version of an inequality due to Brezis.

Lemma 3.3. Let ν ∈ L1(R+) and µ ∈ L1(0, T ) and v be a function defined in
[0, T )× R+, belonging to L1(QTR+

) ∩ L1(∂`Q
T
R+

) and satisfying

−
∫ T

0

∫ ∞
0

(ζt + ζxx)vdxdt =

∫ T

0

ζ( · , 0)µdt+

∫ ∞
0

νζdx. (17)

Then for any ζ ∈ X(QTR+
), ζ ≥ 0, there holds

−
∫ T

0

∫ ∞
0

(ζt + ζxx)|v|dxdt ≤
∫ ∞
0

ζ( · , 0)sign(v)µdt+

∫ ∞
0

|ν|ζdx. (18)

Similarly

−
∫ T

0

∫ ∞
0

(ζt + ζxx)v+dxdt ≤
∫ ∞
0

ζ( · , 0)sign+(v)µdt+

∫ ∞
0

ν+ζdx. (19)
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Proof. Let pε be the approximation of sign0 used in Proposition 3.2 and ηε be
the solution of

−ηε t − ηε xx = pε(v) in QTR+

ηε x( · , 0) = 0 in [0, T ]

ηε(0, · ) = 0 in R+.

Then |ηε| ≤ η∗ where η∗ satisfies

−η∗t − η∗xx = 1 in QTR+

η∗x( · , 0) = 0 in [0, T ]

η∗(0, · ) = 0 in R+.

Although ηε does not belong to X(QTR+
) (it is not in C1,2([0, T ) × R+)), it is

an admissible test function and we deduce that there exists a unique solution
to (17). Thus v is given by expression (10).

In order to prove (18), we can assume that µ and ν are smooth, ζ ∈ X(QTR+
),

ζ ≥ 0 and set hε = pε(v)ζ and wε = vpε(v), then∫ ∞
0

hε xxvdx =

∫ ∞
0

(2p′ε(v)vxζx + pε(v)ζxx + ζ(pε(v))xx) vdx

=

∫ ∞
0

(2vp′ε(v)vxζx − wε xζx − (vζ)x(pε(v))x) dx

− ζ(t, 0)v(t, 0)p′ε(v(t, 0))vx(t, 0)

= −
∫ ∞
0

(
ζx(jε(v))x + ζp′(v)εv

2
x

)
dx− ζ(t, 0)v(t, 0)p′ε(v(t, 0))vx(t, 0)

= −
∫ ∞
0

(
ζp′(v)εv

2
x − jε(v)ζxx

)
dx− ζ(t, 0)v(t, 0)p′ε(v(t, 0))vx(t, 0),

and ∫ T

0

hε tvdt =

∫ T

0

(pε(v)ζt + p′ε(v)ζvt)vdt.

Since v is smooth

0 =

∫ T

0

∫ ∞
0

(vt − vxx)hεdxdt

= −
∫ T

0

∫ ∞
0

(hε t + hε xx)vdxdt−
∫ ∞
0

hε(0, x)ν(x)dx

−
∫ T

0

[pε(v(t, 0))− v(t, 0)p′ε(v(t, 0))] ζ(t, 0)µ(t)dt.
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Therefore, using (18) and (19),

−
∫ T

0

∫ ∞
0

(jεv)ζxx + vpε(v)ζt) dxdt

+

∫ T

0

∫ ∞
0

(
ζp′ε(v)v2x − vp′ε(v)vtζ

)
dxdt

=

∫ ∞
0

hε(0, x)ν(x)dx+

∫ T

0

hε(t, 0)µ(t)dt. (20)

Put `ε(s) =
∫ s
0
rp′ε(r)dr, then |`ε(s) ≤ cε−1s2χ[−ε,ε](s)|. Since∫ T

0

∫ ∞
0

ζvp′ε(v)vtdxdt = −
∫ ∞
0

`ε(v(0, x))ζ(x)dx−
∫ T

0

∫ ∞
0

ζt`ε(v)dxdt,

and ζ has compact support, it follows that

lim
ε→0

∫ T

0

∫ ∞
0

ζvp′ε(v)vtdxdt = 0.

Letting ε → 0 in (20), we derive (18) for smooth v. Using Proposition 3.2
completes the proof of (18). The proof of (19) is similar.

Remark 3.4: Inequalities (18) and (19) hold if ζ(t, x) does not vanish if |x| ≥ R
for some R but if it satisfies

lim
x→∞

sup
t∈[0,T ]

(ζ(t, x) + |ζx(t, x)|) = 0. (21)

The proof follows by replacing ζ(t, x) by ζ(t, x)ηn(x) where ηn ∈ C∞c (R+) with
0 ≤ ηn ≤ 1, ηn(x) = 1 on [0, n], ηn(x) = 0 on [n + 1,∞), |η′n| ≤ 2, |η′′n| ≤ 4.
Then ηnζ ∈ X(QTR+

) by letting n→∞ and the proof follows by letting n→∞.

3.2. Proof of Theorem 1.3

We give first some heat-ball estimates relative to our problem. For r > 0,
x ∈ R+ and t ∈ R we set

e(t, x; r) =
{

(s, y) ∈ (0, T )× R+ : s ≤ t, Ẽ(t− s, x, y) ≥ r
}
.

Since
e(t, x; r) ⊂ [t− 1

4πer2 , t]× [x− 1
r
√
πe
, x+ 1

r
√
πe

],

there holds

|e(t, x; r)| ≤ 1

2r3(πe)
3
2

,
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and if
e∗(t; r) = {s ∈ (0, T ) : s ≤ t, E(t− s, 0, 0) ≥ r} ,

then we have

e∗(t; r) ⊂ [t− 1
4πer2 , t] =⇒ |e∗(t; r)| ≤ 1

4r2πe
. (22)

If G is a measured space, λ a positive measure on G and q > 1, Mq(G,λ) is
the Marcinkiewicz space of measurable functions f : G 7→ R satisfying for some
constant c > 0 and all measurable set E ⊂ G,∫

E

|f |dλ ≤ c (λ(E))
1
p′ ,

and
‖f‖Mq(G,λ) = inf{c > 0 s.t. (22) holds}.

Lemma 3.5. Assume µ,ν are bounded measure in R+ and R+ respectively and
u is the solution of (9) given by (10) and vν,µ is the solution of (9). Then

‖vν,µ‖M3(QTR+
) +

∥∥∥vν,µb∂QTR+∥∥∥M2(∂QTR+
)
≤ c

(
‖µ‖M(∂QTR+

) + ‖ν‖M(QTR+
)

)
.

Proof. First we consider v0,µ

v0,µ(t, x) = 2

∫ t

0

E(t− s, x)dµ(s).

If F ⊂ [0, T ] is a Borel set, than for any τ > 0∫
F

E(t− s, 0)ds =

∫
F∩{E≤τ}

E(t− s, 0)ds+

∫
F∩{E>τ}

E(t− s, 0)ds

≤ τ |F |+
∫
{E>τ}

E(t− s, 0)ds

≤ τ |F | −
∫ ∞
τ

λd|e∗(t, λ)|

≤ τ |F |+
∫ ∞
τ

λd|e∗(t, λ)|

≤ τ |F |+ 1

4πeτ
.

If we choose τ2 = 1
4πe|F | , we derive∫

F

E(t− s, 0)ds ≤ |F |
1
2

√
πe
.
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If F ⊂ (0, T ) is a Borel set then∣∣∣∣∫
F

v0,µ(t, 0)dt

∣∣∣∣ = 2

∣∣∣∣∫ t

0

∫
F

E(t− s, 0)dtdµ(s)

∣∣∣∣ ≤ 2|F | 12√
πe
‖µ‖M(∂QTR+

) .

This proves that ∥∥∥v0,µb∂QTR+∥∥∥M2(∂QTR+
)
≤ c ‖µ‖M(∂QTR+

) .

Similarly, if G ⊂ [0, T ]× [0,∞) is a Borel set, then∫
G

Ẽ(t− s, x, 0)ds ≤ 2|G| 13√
πe

,

and
‖v0,µ‖M3(QTR+

) ≤ c ‖µ‖M(∂QTR+
) .

In the same way we prove that

‖vν,0‖M3(QTR+
) +

∥∥∥vν,0b∂QTR+∥∥∥M2(∂QTR+
)
≤ c ‖ν‖M(QTR+

) .

This ends the proof of the lemma.

Proof of Theorem 1.3. Uniqueness. Assume u and ũ are solutions of (1), then
w = u− ũ satisfies

wt − wxx = 0 in QTR+

−wx( · , 0) + g(u( · , 0))− g(ũ( · , 0)) = 0 in [0, T )

w(0, · ) = 0 in R+.

Applying (18), we obtain

−
∫ T

0

∫ ∞
0

(ζt + ζxx)|w|dxdt+

∫ ∞
0

(g(u( · , 0))− g(ũ( · , 0)))sign(w)ζ(t, 0)dt ≤ 0,

for any ζ ∈ XTR+
with ζ ≥ 0. Let θ ∈ C1

c (QTR+
), η ≥ 0, we take ζ to be the

solution of
−ζt − ζxx = θ in (0, T )× R+

ζx( · , 0) = 0 in (0, T )
ζ(T, · ) = 0 in (0,∞).

Then ζ satisfies (21), hence∫ T

0

∫ ∞
0

θ|w|dxdt+

∫ ∞
0

(g(u( · , 0))− g(ũ( · , 0)))sign(w)ζ(t, 0)dt ≤ 0.
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This implies w = 0.

Existence. Without loss of generality we can assume that µ and ν are nonneg-
ative. Let {νn} ⊂ Cc(R+) and {µn} ⊂ Cc([R+]0, T )) converging to ν and µ in
the sense of measures and let un be the solution of (15). Then from (16),∫ T

0

∫ ∞
0

|un|dxdt+

∫ T

0

|g(un(t, 0))|dt ≤ T
∫ ∞
0

|νn|dx+

∫ T

0

|µn|dt.

Therefore un and g(un( · , 0)) remain bounded respectively in L1(QTR+
) and in

L1(0, T ). Furthermore, by Lemma 3.5, un remains bounded in M3(QTR+
) and

in M2(∂QTR+
). We can also write un under the form

un(t, x) =

∫ ∞
0

Ẽ(t, x, y)µn(y)dy + 2

∫ t

0

E(t− s, x)(νn(t)− g(un(t, 0)))ds

= An(t, x) +Bn(t, x). (23)

Since we can perform the even reflexion through y = 0, the mapping

(t, x) 7→ An(t, x) :=

∫ ∞
0

Ẽ(t, x, y)µn(y)dy,

is relatively compact in Cmloc(Q
T
R+

) for any m ∈ N∗. Hence we can extract

a subsequence {unk} which converges uniformly on every compact subset of
(0, T ] × [0,∞), hence a.e. on (0, T ] for the 1-dimensional Lebesque measure.
Concerning the boundary term

(t, x) 7→ Bn(t, x) :=

∫ t

0

E(t− s, x)(νn(t)− g(un(t, 0)))ds,

it is relatively compact on every compact subset of [0, T ] × (0,∞). If x = 0,
then

Bn(t, 0) =

∫ t

0

(νn(t)− g(un(t, 0)))
ds√

π(t− s)
.

Since ‖νn( · )− g(un( · , 0))‖L1(0,T ), t 7→ Bn(t, 0) is uniformly integrable on

(0, T ), hence relatively compact by the Frechet-Kolmogorov Theorem. There-
fore there exists a subsequence, still denoted by {nk} such that Bnk(t, 0) con-
verges for almost all t ∈ (0, T ). This implies that the sequence of function

{unk} defined by (23) converges in QTR+
up to a set Θ ∪ Λ where Θ ⊂ QTR+

is

neglectable for the 2-dimensional Lebesgue measure and Λ ⊂ ∂`QTR+
neglectable

for the 1-dimensional Lebesgue measure.
From Lemma 3.5, (un,kbQTR+ , ub∂`QTR+ ) converges in L1

loc(Q
T
R+

)×L1(∂`Q
T
R+

)

and the convergence of each of the components holds also almost everywhere
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(up to a subsequence). Since un,k is a weak solution, it satisfies for any ζ ∈
X(QTR+

)

−
∫ T

0

∫ ∞
0

(ζt + ζxx)un,kdxdt+

∫ T

0

(g(un,k)ζ) (t, 0)dt

=

∫ ∞
0

ζνn,k(x)dx+

∫ T

0

ζ(t, 0)µn,k(t)dt.

In order to prove the convergence of g(un,k(t, 0)), we use Vitali’s convergence
theorem and the assumption (11). Let F ⊂ [0, T ] be a Borel set. Using the
fact that 0 ≤ un,k ≤ vνn,k,µn,k and the estimate of Lemma 3.5, we have for any
λ > 0, ∫

F

|g(un,k(t, 0))|dt ≤
∫
F∩{un,k(t,0)≤λ}

|g(un,k(t, 0))|dt

+

∫
{un,k(t,0)>λ}

|g(un,k(t, 0))|dt

≤ g(λ)|F | −
∫ ∞
λ

σd|{t : |g(un,k(t, 0))| > σ}|

≤ g(λ)|F |+ c

∫ ∞
λ

|g(σ)|σ−3ds,

where c depends of ‖µ‖M(∂QTR+
) +‖ν‖M(QTR+

). For ε > 0 given, we chose λ large

enough so that the integral term above is smaller than ε and then |F | such that
g(λ)|F |+ ≤ ε. Hence {g(un,k( · , 0))} is uniformly integrable. Therefore up to
a subsequence, it converges to g(u( · , 0)) in L1(0, T ). Clearly u satisfies

−
∫ T

0

∫ ∞
0

(ζt + ζxx)udxdt+

∫ T

0

(g(u)ζ) (t, 0)dt

=

∫ ∞
0

ζν(x)dx+

∫ T

0

ζ(t, 0)µ(t)dt,

which ends the existence proof.

Monotonicity. If ν ≥ ν̃ and µ ≥ µ̃; we can choose the approximations such that
νn ≥ ν̃n and µn ≥ µ̃n. It follows from (19) that uνn,µn ≥ uν̃n,µ̃n . Choosing the
same subsequence {nk}, the limits u, ũ are in the same order. The conclusion
follows by uniqueness.

3.3. The case g(u) = |u|p−1u

Condition (11) is satisfied if p < 2. If this condition holds there exists a solution
u`δ0 = u0,`δ0 and the mapping ` 7→ u`δ0 is increasing.
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Theorem 3.6. (i) If 1 < p ≤ 3
2 , u`δ0 tends to ∞ when k →∞.

(ii) If 3
2 < p < 2, u`δ0 converges to Uωs defined by

Uωs(t, x) = t−
1

2(p−1)ωs(
x√
t
),

when k →∞.

Proof. By uniqueness and using (3), there holds

Tk[u`δ0 ] = u
k

2−p
p−1

`
δ0
,

for any k, ` > 0. Since ` 7→ u`δ0 is increasing, its limit u∞, when ` → ∞,
satisfies

Tk[u∞] = u∞.

Hence u∞ is a positive self-similar solution of (2), provided it exists. Hence
u∞ = Uωs if 3

2 < p < 2. If 1 < p ≤ 3
2 , ukδ0 admits no finite limit when k →∞

which ends the proof.

Remark 3.7: As a consequence of this result, no a priori estimate of Brezis-
Friedman type (parabolic Keller-Osserman) exists for a nonnegative function
u ∈ C2,1(Q∞R+

\ {(0, 0)}) solution of

ut − uxx = 0 in Q∞R+

−ux( · , 0) + |u|p−1u( · , 0) = 0 for all t > 0

u(0, · ) = 0 for all x > 0.

when 1 < p ≤ 3
2 . When 3

2 < p < 2 it is expected that

u(t, x) ≤ c

(|x|2 + t)
1

2(p−1)

.

The type of phenomenon (i) in Theorem 3.6 is characteristic of fractional dif-
fusion. It has already been observed in [6, Theorem 1.3] with equations

ut + (−∆)αu+ tβup = 0 in R+ × RN
u(0, · ) = kδ0 in RN ,

when 0 < α < 1 is small and p > 1 is close to 1.

4. Extension and open problems

The natural extension is to replace a one dimensional domain by a mutidime-
nional one. The main open problem is the question of a priori estimate as
stated in the last remark above.
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4.1. Self-similar solutions

Let η = (η1, . . . , ηn) be the coordinates in Rn and denote

Rn+ = {η = (η1, . . . , ηn) = (η′, ηn) : ηn > 0} .

We set K(η) = e
|η|2
4 and K ′(η′) = e

|η′|2
4 . Similarly to Section 2 we define LK

in C2
0 (Rn) by

LK(φ) = −K−1div(K∇φ). (24)

If α = (α1, . . . , αn) ∈ Nn, we set |α| = α1 + α2 + . . . + αn. We denote by φ1
the function K−1. Then the set of eigenvalues of LK is the set of numbers{
λk = n+k

2 : k ∈ N
}

with corresponding set of eigenspaces

Nk = span {Dαφ1 : |α| = k} .

The operators L+,N
K and L+,D

K are defined accordingly in H1
K(Rn+) and

H1,0
K (Rn+) respectively, and

σ(L+,N
K ) =

{
n+ k

2
: k ∈ N

}
and σ(L+,D

K ) =

{
n+ k

2
: k ∈ N∗

}
.

Furthermore

Nk,N = ker
(
L+,N
K − n+k

2 Id

)
= span {Dαφ1 : |α| = k, αn = 2` , ` ∈ N} ,

and

Nk,D = ker
(
L+,D
K − n+k

2 Id

)
= span {Dαφ1 : |α|=k, αn=2`+1 , ` ∈ N} .

Since L+,N
K and L+,D

K are Fredholm operators,

H1
K(Rn+) =

∞⊕
k=0

Nk,N and H1,0
K (Rn+) =

∞⊕
k=1

Nk,D.

We define the following functional on H1
K(Rn+)

J(φ) =
1

2

∫
Rn+

(
|∇φ|2 − 1

2(p− 1)
φ2
)
Kdη +

1

p+ 1

∫
∂Rn+
|φ|p+1K ′dη′.

The critical points of J satisfies

−∆ω − 1

2
η.∇ω − 1

2(p− 1)
ω = 0 in Rn+

−ωηn + |ω|p−1ω = 0 in ∂Rn+.
(25)
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If ω is a solution of (25), the function

uω(t, x) = t−
1

2(p−1)ω

(
x√
t

)
satisfies

uω t −∆uω = 0 in Q∞Rn+
:= (0,∞)× Rn+

−uω xn + |uω|p−1uω = 0 in ∂`Q
∞
Rn+

:= (0,∞)× ∂Rn+.

Here we have set Rn+ = {x = (x1, . . . , xn) = (x′, xn) : xn > 0}. We denote by
E the subset H1

K(Rn+)∩Lp(∂Rn+; dη′) of solutions of (25) and by E+ the subset
of positive solutions. As for the case n = 1 we have the following non-existence
result

Proposition 4.1. 1. If p ≥ 1 + 1
n , then E = {0}.

2. If 1 < p ≤ 1 + 1
n+1 , then E+ = {0}.

The proof is similar to the one of Theorem 1.1. Hence the existence is to
be found in the range 1 + 1

n+1 < p < 1 + 1
n .

Conjecture 4.2. Assume 1 + 1
n+1 < p < 1 + 1

n , then the functional J is

bounded from below in H1
K(Rn+)∩LpK′(∂Rn+). Furthermore J(φ) tends to infinity

when ‖φ‖H1
K(Rn+) +

∥∥∥φb∂Rn+∥∥∥Lp+1

K′ (∂Rn+)
tends to infinity.

4.2. Problem with measure data

The method for proving Theorem 1.3 can be adapted to prove the following
n-dimensional result

Theorem 4.3. Let g : R 7→ R be a nondecreasing continuous function such that
g(0) = 0 and ∫ ∞

1

(g(s)− g(−s))s−
2n+1
n ds <∞,

then for any bounded Radon measures ν in Rn+ and µ in (0, T ) × ∂Rn+, there

exists a unique Borel function u := uν,µ defined in Q
Rn+
T := [0, T ] × Rn+ such

that u ∈ L1(Q
Rn+
T ), ub(0,T )×∂Rn+∈ L

1((0, T )×∂Rn+) and g(u) ∈ L1((0, T )×∂Rn+)
solution of

ut −∆u = 0 in QTRn+
−uxn + g(u) = µ in ∂`Q

T
Rn+

u(0, · ) = ν in Rn+,
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in the sense that∫ ∫
QTRn

+

(−∂tζ −∆ζ)udxdt+

∫ ∫
∂`QTRn

+

g(u)ζdx′dt

=

∫
Rn+
ζdν +

∫ ∫
∂`QTRn

+

ζdµ,

for all ζ ∈ C1,2
c (QTRn+

) such that ζxn = 0 on (0, T ) × ∂Rn+ and ζ(T, · ) = 0.

Furthermore (ν, µ) 7→ uν,µ) is nondecreasing.
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Existence of attractors when diffusion
and reaction have polynomial growth
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Abstract. We study an interesting model, with reaction terms
of Lotka-Volterra type, where diffusion and reaction have polynomial
growth of any order. We establish existence of global attractors as well
as exponential attractors. In the sequel we study the long time dynam-
ics of an appropriate semigroup and show that it possesses a global
attractor (and exponential attractors) in a certain Banach space.
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1. Introduction

Consider the following model introduced in [16]:{
ut = div[∇(a1u+ α11u

2 + α12uv) + b1u∇Φ(x)] + f1(u, v),

vt = div[∇(a2v + α21uv + α22v
2) + b2v∇Φ(x)] + f2(u, v),

(1)

where fi(u, v) are reaction terms of Lotka-Volterra type and quadratic in u, v.
The unknowns u(x, t), v(x, t) denote the densities of two species at time t and
location x ∈ Ω, a bounded domain in IR2. Dirichlet or Neumann boundary
conditions were usually assumed for (1). This model was used to describe
the population dynamics of the species u, v which move under the influence of
population pressures and of the environmental potential Φ(x).

Under suitable assumptions on the coefficients in (1), Yagi [18] proved the
global existence of strong solutions (their first derivatives are bounded and their
second spatial derivatives exist) to the above system for a planar domain Ω
(i.e. n = 2).

Let us consider the following system of m equations (m ≥ 2)

ut = ∆(P(u)) + f̂(u,Du) , (x, t) ∈ Q = Ω× (0, T ), (2)
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where u : Ω → IRm, P : IRm → IRm and f : IRm × IRnm → IRm are vector
valued functions. It is clear that (1) is a special case of the above when m = 2,

the components of P(u), f̂(u,Du) are quadratic in u and the terms with the

potential Φ(x) are incorporated in f̂(u,Du), which has linear growth in Du.
For simplicity, we assume the homogeneous Dirichlet boundary condition

for u (see Section 6 for other boundary conditions) and rewrite (2) as
ut = div(A(u)Du) + f̂(u,Du) (x, t) ∈ Q = Ω× (0, T ),

u(x, 0) = U0(x) x ∈ Ω ,

u = 0 on ∂Ω× (0, T ) .

(3)

Here, Ω is a bounded domain with smooth boundary ∂Ω in IR2; A(u) =

∂uP(u) is a full matrix m ×m and f̂ : IRm × IR2m → IRm. The initial data
U0 is given in W 1,p0(Ω) for some p0 > 2, the dimension of Ω. In this paper we

will allow P, f̂ to have polynomial growth of any order in u. We then refer to
the above system as the generalized (1) system.

We will show that (3) defines a global semiroup {S(t)}t≥0 in the Banach
space X = W 1,p0(Ω), namely

S(0)U0 = U0, S(t)U0(x) = u(x, t)

is defined for all t > 0 with u being the solution of (3). Moreover, this semigroup
possesses a global attractor and exponential attractors – a result that, to the
best of our knowledge, is established for the first time for (SKT) systems under
such general setting.

Let us recall the definition of a global attractor. The notion and conditions
for the existence of exponential attractors in Hilbert spaces were introduced
in [4]: a set A ⊂ X is an exponential attractor if 1) A is a positively invariant
set (S(t)A ⊂ A, ∀t ≥ 0), 2) For any U0 ∈ X, S(t)U0 converges expontiallly
to A as t → ∞. We refer the readers to [12] for the notion and existence of
exponential attractors of semigroups in Banach spaces.

First of all, we need to establish the global existence result for (3) in order
to verify that the associated semigroup is global. In the last few decades,
papers concerning strongly coupled parabolic systems like (3) usually relied on
a result of Amann in [1, 2] which showed that a solution to (3) exists globally if
its W 1,p0(Ω) norm does not blow up in finite time. This requires the existence
of a continuous function C on (0,∞) such that for p0 > n, the dimension of Ω,

‖u(·, t)‖W 1,p0 (Ω) ≤ C(t) , ∀t ∈ (0, T0). (4)

The checking of (4) is very difficult and equivalently requires Hölder con-
tinuity of the solution u. The latter is a hard problem in the theory of PDEs
as known techniques for the regularity of solutions to scalar equations could
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not be extended to systems and counterexamples were available. Maximum or
comparison principles for systems are also unavailable so that the boundedness
of solutions to (3) are generally unknown. The conditions for comparison prin-
ciples in [14, 15] do not apply to the structure of (2) or even (1). In a recent
work by the second author [11], he considered (3) on a domain in IRn (n ≥ 2)
and was able to relax the condition (4) by

‖u(·, t)‖W 1,n(Ω) ≤ C(t) , ∀t ∈ (0, T0). (5)

By checking this condition when n = 2 in [13], he established the global ex-
istence of classical solutions for the generalized (SKT) systems (3) on bounded
planar domains. Obviously, (5) does not imply that |u| is bounded so that (3)
is not necessarily regularly elliptic, i.e. eigenvalues of A(u) can be unbounded.
In fact, in [11] we allowed A(u) to have a polynomial growth of any order and
assumed that the eigenvalues of A(u) grow like (λ0 + |u|)k for any positive
reals λ0, k.

In this paper, we study long time dynamics of the semigroup defined in (2),
a special case of (3), and show that it possesses a global attractor (and expo-
nential attractors) in the Banach space X = W 1,p0(Ω), for some p0 > 2, if λ0

is sufficiently large.
To that aim we will make use of the following well known result (e.g., see [4]).

Theorem 1.1. Let X be a Banach space. The semigroup {S(t)}t≥0 on X
possesses a global attractor A if

i) there exists an absorbing ball B0 contained in X for {S(t)}t≥0. That is,
B0 is bounded and for any bounded subset B of X there exists T (B) such
that S(t)(B) ⊂ B0 for t ≥ T (B),

ii) for some t1 > 0, S(t1) : X → X is compact.

Our paper is organized as follows. In Section 2 we introduce some notations,
assumptions, and the statement of our main result on the existence of global
attractors. Section 3 establishes uniform estimates for various weighted norms
of the solutions in W 1,2(Ω). Since we have to work in the space X = W 1,p0(Ω)
with p0 > 2, we establish similar uniform estimates for the norm in X; thus
giving the existence of an absorbing ball required by i) of Theorem 1.1. The
proof is fairly technical and will be presented in Section 4. Finally, we establish
the required compactness in ii) and prove our main result in Section 5. We also
show that the global existence result for (3) can be obtained by modifying some
of our argument.

2. Preliminaries and Main Results

Throughout this paper, Ω is a bounded domain with smooth boundary in IR2.
For any smooth (vector valued) function u defined on Ω × (0, T ), T > 0, its
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temporal and spatial derivatives are denoted by ut, Du respectively. If A is
a C1 function in u then we also abbreviate ∂A

∂u by Au. In the sequel, we
will write a ∼ b if there are two generic positive constants C1, C2 such that
C1b ≤ a ≤ C2b.

As usual, W 1,p(Ω, IRm), p ≥ 1, will denote the standard Sobolev spaces
whose elements are vector valued functions u : Ω→ IRm with finite norm

‖u‖W 1,p(Ω,IRm) = ‖u‖Lp(Ω) + ‖Du‖Lp(Ω).

We assume the following structural conditions.

(A) A(u) is C1 in u. Moreover, there are constants λ0, C, k > 0 and a scalar C1

function λ(u) such that λ(u) ∼ (λ0 + |u|)k for all u ∈ IRm. Furthermore,
for any ζ ∈ IRnm

λ(u)|ζ|2 ≤ 〈A(u)ζ, ζ〉 and |A(u)| ≤ Cλ(u). (6)

We also assume |Au| ≤ C|λu| and

|λu(u)| ∼ C(λ0 + |u|)k−1. (7)

For the sake of simplicity, we will consider first the case where the reaction
term f̂ in (3) does not depend on Du. That is f̂(u,Du) = f(u), satisfying the
following growth condition.

(F) There are positive constants ε0, C and nonnegative C1 functions P, F :
IRm → IR+ satisfying F (0) = P (0) = 0 and for all u ∈ IRm

|Fu(u)| ≤ Cλ 1
2 (u), (8)

|Pu(u)| ≤ Cλ(u) (9)

such that
|f(u)||u| ≤ ε0F

2(u) + C, (10)

λ
1
2 (u)|f(u)|
P (u) + 1

≤ C(F (u) + 1). (11)

More generally, we can replace f(u) by a function f̂ depending on u,Du
and satisfying a linear growth in Du. Namely, we will assume the following.

(F’) There exist a constant C and a function f(u) satisfying (F) such that

|f̂(u,Du)| ≤ Cλ 1
2 (u)|Du|+ f(u), (12)

|fu(u)| ≤ Cλ(u). (13)
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Our main result is the following.

Theorem 2.1. Assume that (A) and (F’) hold. Then there exists p0 > 2 such
that (3) defines a semigroup {S(t)}t≥0 on X = W 1,p0(Ω), namely

S(0)U0 = U0, S(t)U0(x) = u(x, t)

and (u(x, t), the solution of (3), is defined for all t > 0. Furthermore, if we
assume that either ε0 (see (10)) or the diameter d(Ω) is small, then for λ0

is sufficiently large in term of the geometry of Ω and other parameters in (A)
and (F), this semigroup possesses a global attractor in X.

Let us discuss some situations where the conditions (A) and (F) can be
verified for the generalized (SKT) model, with A(u), f(u) having polynomial
growths in u. In many applications, in particular if the components of u are
all nonnegative densities of species or chemicals, we have nonnegative numbers
k and λ0 > 0 such that λ(u) ∼ (λ0 + |u|)k and |f(u)| ∼ (λ0 + |u|)k+1. It is
reasonable to assume the growth of |λu| to be like (7) in (A). Concerning (F),

we can take F (u) = |u| k+2
2 and P (u) = |u|k+1. It is clear that (8) and (9) hold

for such choices of F, P . We also have |f(u)||u| ≤ (λ0 + |u|)k+2 ∼ (F (u) + 1)2.
Thus, (10) is satisfied with ε0 being the coefficient of the highest power of u in
f(u). The (SKT) system{

ut = div[∇(a1u+ α11u
2 + α12uv) + b1u∇Φ(x)] + f1(u, v),

vt = div[∇(a2v + α21uv + α22v
2) + b2v∇Φ(x)] + f2(u, v)

introduced in the Introduction section is a special case when k = 1.
We easily see that (11) is satisfied because

λ
1
2 (u)|f(u)|
P (u) + 1

≤ C (1 + |u|) k
2 +k+1

(1 + |u|)k+1
∼ (1 + |u|)k+1− k

2−1

≤ C(1 + |u|) k
2 +1 = C(F (u) + 1).

Hence, it is clear that the main assumptions in (F) and (13) in (F’) are
verified.

3. Uniform Estimates in W 1,2(Ω)

In this section, we will consider a classical solution to (3) that exists in its
maximal time interval (0, T0). Refering to the results in [13], or Section 5 of
this work, we see that T0 =∞ under the assumptions (A) and (F’).

In the proof, when there is no ambiguity C,Ci will denote universal con-
stants that can change from line to line in our argument. Furthermore, C(· · · )
is used to denote quantities which are bounded in terms of theirs parameters.
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For any T1, T2, T3 > 0 such that 0 < T1 < T2 < T3 we will say that η
is a cutoff function for [T1, T2] and [T1, T3] if η is a nonnegative C1 function
satisfying η(s) ∈ [0, 1] for all s and

η(s) =

{
0 s ≤ T1,

1 s ≥ T2,
and |η′(s)| ≤ 1

T2 − T1
. (14)

In particular, for T2 = (T1 + T3)/2 we simply say that such η is a cutoff
function for [T1, T3].

Lemma 3.1. Assume that F satisfies (8) and (10)); and let T, τ0 > 0. If either
ε0 or d(Ω) is sufficiently small, then then there is a constant C(|Ω|, r), which
depends also on the parameters in (A) and (F) but not on λ0, such that∫∫

Ω×[T+τ0,T+2τ0]

λ(u)|Du|2 dz ≤ C(|Ω|, τ0), (15)

∫∫
Ω×[T+τ0,T+2τ0]

λ2(u)|Du|2 dz ≤ C(|Ω|, τ0)(λk0 + 1). (16)

Proof. For any l ∈ [0, k] we multiply the ith equation of the system for u
with |u|luiηp(t), where η is a cutoff function for [T, T + 2τ0] and p > 1 to be
determined later, and integrate over Q = Ω× [T, T + 2τ0]. Integrating by parts
in x, adding the results and using the fact that |ηt| ≤ 1/τ0, we easily obtain

2

l + 2
sup

t∈[T+τ0,T+2τ0]

∫
Ω

|u|l+2 dx+

∫∫
Q

〈
A(u)Du,D(|u|lu)

〉
ηp dz

≤ C
∫∫
Q

[〈
f(u), |u|lu

〉
ηp +

1

τ0
|u|l+2ηp−1

]
dz. (17)

Since n = 2, we have
〈
A(u)Du,D(|u|lu)

〉
≥ C(l)λ(u)|u|l|Du|2 for some

positive constant C(l) (see also (37) below).

By (8) and (10) of (F) we can take F (u) ∼ |u| k+2
2 and then find a constant

C such that ∫
Ω

〈
f(u), |u|lu

〉
ηp dx ≤ ε0

∫
Ω

|u|k+l+2ηp dx+ C|Ω|.

Here, |Ω| is the Lebesgue measure of Ω. Using Poincaré’s inequality for |u| k+l
2 +1

and the fact that λ(u) ∼ (λ0 + |u|)k, we have∫
Ω

|u|k+l+2ηp dx ≤ Cd2(Ω)

∫
Ω

|u|k+l|Du|2ηp dx

≤ Cd2(Ω)

∫
Ω

|u|lλ(u)|Du|2ηp dx. (18)
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On the other hand, since k > 0, if we now fix a p such that k+ 2 < (p− 1)k
then l+2 < (p−1)k for all l ∈ [0, k]. For such p, it is clear that p−1 > p l+2

k+l+2

so that we can write p − 1 = p l+2
k+l+2 + ε(p) k

k+l+2 for some ε(p) > 0. Hence,
we can use Young’s inequality to find some positive constant C(ε0, k, τ0) such
that

1

τ0
|u|l+2ηp−1 ≤ ε0|u|k+l+2ηp + C(ε0, k, τ0)ηε(p) ≤ ε0|u|k+l+2ηp + C(ε0, k, τ0).

The integral of the first term on the right can be treated by Poincaré’s inequality
as before.

Therefore, if either ε0 or d(Ω) is sufficiently small then we can deduce
from (17) the following estimate.

sup
t∈[t+τ0,t+2τ0]

∫
Ω

|u|l+2 dx+

∫∫
Q

|u|lλ(u)|Du|2ηp dz ≤ C(|Ω|, τ0). (19)

For l = 0 the above implies (15) of the lemma, using the property of η.
Multipyling (19) when l = 0 with λk0 and add the result to (19) with l = k, we
get ∫∫

Ω×[T+τ0,T+2τ0]

(λk0 + |u|k)λ(u)|Du|2 dz ≤ C(|Ω|, τ0)(λk0 + 1).

Because λ(u) ∼ (λ0 + |u|)k, we can use Young’s inequality to see that
λ(u) ≤ C(λk0 + |u|k) for some constant C depending on k. The above then
yields ∫∫

Ω×[T+τ0,T+2τ0]

λ2(u)|Du|2 dz ≤ C(|Ω|, τ0)(λk0 + 1).

This gives (16) and the proof is then complete.

To proceed, we need the following elementary fact. If U = 0 on the bound-
ary ∂Ω then the Sobolev’s imbedding theorem for planar domains gives(∫

Ω

|U |4 dx
) 1

2

≤
∫

Ω

|DU |2 dx. (20)

Hence, if U, V vanish on the boundary ∂Ω then

∫
Ω

|U |2|V |2 dx ≤
(∫

Ω

|U |4 dx
) 1

2
(∫

Ω

|V |4 dx
) 1

2

≤ C
∫

Ω

|DU |2 dx
∫

Ω

|DV |2 dx. (21)
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We also note that λ(u) is the smallest eigenvalue of (A + AT )/2 and Λ(u)
is the smallest eigenvalue of ATA. Thus, if µ(u) is the eigenvalue of A with
smallest real part then λ(u) = <(µ(u)) and Λ(u) = |µ(u)|2. Therefore,

|A(u)ζ|2 =
〈
AT (u)A(u)ζ, ζ

〉
≥ Λ(u)|ζ|2 ≥ λ2(u)|ζ|2. (22)

Lemma 3.2. Under the assumptions of Lemma 3.1, there exists a constant
C(|Ω|, τ0), which depends also on the parameters in (A) and (F) but not on
λ0, such that∫

Ω×{T}
λ2(u)|Du|2 dx ≤ C(|Ω|, τ0)(λk0 + 1) , ∀T > 2τ0. (23)

Proof. For any t > 0 we test the system for u by A(u)ut (i.e. multiplying the
ith equation of (3) by

∑
j aij(u)(uj)t, A(u) = (aij(u)), integrating over Ω and

summing the results) and integrate by parts to get∫
Ω

(〈A(u)ut, ut〉+ 〈A(u)Du,D(A(u)ut)〉) dx =

∫
Ω

〈f(u), A(u)ut〉 dx. (24)

Because A(u) = Pu, we have 〈A(u)Du,D(A(u)ut)〉 = 1
2
∂
∂t |DP(u)|2. Thus,

we can rewrite (24) as∫
Ω

(
〈A(u)ut, ut〉+

1

2

∂

∂t
|ADu|2

)
dx =

∫
Ω

〈f(u), A(u)ut〉 dx.

The ellipticity of A(u) then gives∫
Ω

λ(u)|ut|2 dx+
1

2

d

dt

∫
Ω

|ADu|2 dx ≤ C
∫

Ω

λ(u)|f(u)||ut| dx.

Using Young’s inequality, we find a constant C(ε) such that for any ε > 0

|f(u)|λ(u)|ut| ≤ ελ(u)|ut|2 + C(ε)λ(u)|f(u)|2.

For sufficiently small and fixed ε we then have

d

dt

∫
Ω

|ADu|2 dx ≤ C
∫

Ω

λ(u)|f(u)|2 dx. (25)

Now, let U = P (u) be the function described in (F) and V = λ
1
2 (u)|f(u)|
P (u)+1 .
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Then (11) gives |V | ≤ CF (u) (F (u) was also defined in (A)). We observe that∫
Ω

λ(u)|f(u)|2 dx ≤ C
∫

Ω

(U2 + 1)(F (u)2 + 1) dx

= C

∫
Ω

P (u)2F (u)2 dx+ C

∫
Ω

P (u)2 dx+ C

∫
Ω

F (u)2 dx+ C(|Ω|)

≤ C
∫

Ω

|DP (u)|2 dx
∫

Ω

|DF (u)|2 dx

+ C

∫
Ω

(|DP (u)|2 + |DF (u)|2) dx+ C(|Ω|),

where we used (21) and then Poincaré’s inequality for P (u), F (u) in the last
estimate, noting that P (u), F (u) vanish on the boundary of Ω. By (9) and (22),
we have

|DP (u)|2 ≤ |Pu(u)|2|Du|2 ≤ Cλ2(u)|Du|2

≤ C
〈
AT (u)A(u)Du,Du

〉
= C|A(u)Du|2.

Since |DF (u)|2 ≤ Cλ(u)|Du|2 by (8), we can use the above estimates in (25)
to get

d

dt

∫
Ω

|ADu|2 dx ≤ C
[∫

Ω

λ(u)|Du|2 dx+ 1

] ∫
Ω

|A(u)Du|2 dx

+

∫
Ω

λ(u)|Du|2 dx+ C(|Ω|). (26)

We now set

y(t) =

∫
Ω

|A(u)Du(x, t)|2 dx, α(t) =

∫
Ω

λ(u)|Du(x, t)|2 dx+ C(|Ω|),

and

β(t) =

∫
Ω

λ(u)|Du(x, t)|2 dx+ 1.

From (26) we obtain

y′(t) ≤ α(t) + Cβ(t)y(t) ∀t ∈ (0,∞).

By (15) and (16), we have, for any τ0 > 0 and t > τ0, the followings∫ t+τ0

t

β(s)ds ≤ a1,

∫ t+τ0

t

α(s)ds ≤ a2, and

∫ t+τ0

t

y(s)ds ≤ a3,

where a1 = a2 = C(|Ω|, τ0) and a3 = C(|Ω|, τ0)(λk0 + 1).
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The uniform Gronwall inequality (see [17, Lemma 1.1] which was used in [5]
in the context of Navier Stokes equation) then gives

y(t+ τ0) ≤
[
a3

τ0
+ a2

]
exp(a1) ≤ C(|Ω|, τ0)(λk0 + 1) , ∀t > τ0.

Using the definition of y(t+ r) and (22) we complete the proof.

Remark 3.3: If we asume (F’) and replace f(u) by f̂(u,Du) satisfying

|f̂(u,Du)| ≤ Cλ 1
2 (u)|Du|+ f(u)

then the result continues to hold. Firstly, by Young’s inequality and (F’)〈
f̂(u,Du), |u|lu

〉
≤ ελ(u)|u|l|Du|2 + C(ε)|u|l+2 + |f(u)||u|l+1.

For suficiently small ε, there will be an extra term |u|l+2 in the last integral
of (17) in the argument in the proof of Lemma 3.1. Since k > 0 we can use
Young’s inequality again to have |u|l+2 ≤ ε|u|k+l+2 + C(ε) and to obtain (19)
again. The proof continues as before.

Next,

|f̂(u,Du)|λ(u)|ut| ≤ Cλ
1
2 (u)λ(u)|Du||ut|+ C|f(u)|λ(u)|ut|

≤ ελ(u)|ut|2 + C(ε)λ2(u)|Du|2 + C|f(u)|λ(u)|ut|.

As f(u) satisfies (F), for small ε in the above, the proof of Lemma 3.2 can
continue.

4. Absorbing Balls in W 1,p0(Ω)

In this section we will establish a uniform bound for the W 1,p0(Ω) norms of
solutions when t is sufficiently large. To begin, let us fix a number R > 0 such
that

(C) Ω can be covered by finitely many balls BR
4

(xi), i = 1, . . . , n(R), with the

property that either xi ∈ ∂Ω or xi ∈ Ω and B2R(xi) ⊂ Ω.

The main result of this section is the following.

Proposition 4.1. For any T, r0 > 0 and p > 1, if p is close to 1 and λ0 is
sufficiently large ( in terms of |Ω|, r0 and the parameters in (A) and (F)) then
there is a constant C(Ω, r0, p) such that

sup
t∈[T,T+r0]

∫
Ω

|Du|2p dx+

∫∫
Ω×[T,T+r0]

λ(u)|Du|2p−2|D2u|2 dz

≤ C(Ω, r0, p). (27)
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The constant C(Ω, r0, p) depends on the geometry of Ω as well, namely, the
numbers R and n(R) in (C).

We will establish local estimates for the gradients of our solutions in these
balls and then add up the results to obtain their global estimates. In the proof,
we will only consider the case when B2R(xi) ⊂ Ω. The boundary case (xi ∈ ∂Ω)
is similar, invoking a reflection argument and using the fact that ∂Ω is smooth.

In the sequel, we will denote Φ(u) = |λu(u)|2
λ(u) . Before going to the proof of

the proposition, we need some estimates for the integral of Φ(u)|Du|4.

Lemma 4.2. Assume (7) in (A). For any R, r > 0 and any nonnegative function
ψ ∈ C1

0 (BR) there is a constant C(|Ω|, r), as in (23) of Lemma 3.2, such that
for t > r∫

BR

Φ(u)|Du|4ψ4 dx ≤ C(|Ω|, r)
λk+2

0

∫
BR

(λ(u)|D2u|2ψ2 + Φ(u)|Du|4ψ2) dx

+
C(|Ω|, r)
λk+2

0

∫
BR

λ(u)|Dψ|2|Du|2 dx. (28)

Furthermore,∫
BR

λ2(u)|Du|4ψ4 dx ≤ C(|Ω|, r)
∫

Ω

[
λ(u)|D2u|2ψ2 + Φ(u)|Du|4ψ2

+λ(u)|Dψ|2|Du|2
]
dx. (29)

Proof. We establish (29). First we recall Ladyzhenskaya’s inequality(∫
Ω

|U |4 dx
) 1

2

≤ C
(∫

Ω

|U |2 dx
) 1

2
(∫

Ω

|DU |2 dx
) 1

2

, (30)

if U = 0 on ∂Ω. Using the above with Ω = BR and U = λ
1
2 (u)ψDu we have∫

BR

λ2(u)|Du|4ψ4 dx =

∫
BR

|U |4 dx ≤ C
∫
BR

|U |2 dx
∫
BR

|DU |2 dx

≤ C
∫
BR

λ(u)|Du|2ψ2 dx

∫
BR

|D(λ
1
2 (u)ψDu)|2 dx.

It is clear that there is a constant C2 such that

|D(λ
1
2 (u)ψDu)|2 ≤ C2

[
λ(u)|D2u|2ψ2 +

|λu(u)|2

λ(u)
|Du|4ψ2 + λ(u)|Dψ|2|Du|2

]
.

Since λ(u) ∼ (λ0 + |u|)k and |λu(u)| ∼ (λ0 + |u|)k−1, we have λ(u) ≤
Cλ−k0 λ2(u), and (23) implies∫

BR

λ(u)|Du|2ψ2 dx ≤ Cλ−k0

∫
BR

λ2(u)|Du|2ψ2 dx ≤ C(|Ω|, r) (31)
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for all t > r. We then obtain∫
BR

λ2(u)|Du|4ψ4 dx

≤ C(|Ω|, r)
∫

Ω

[
λ(u)|D2u|2ψ2 + Φ(u)|Du|4ψ2 + λ(u)|Dψ|2|Du|2

]
dx.

The above is (29). We also note that

Φ(u) =
|λu(u)|2

λ(u)
=
|λu(u)|2

λ3(u)
λ2(u) ≤ C

λk+2
0

λ2(u).

Using (29) and the above estimate, we obtain (28) and prove the lemma.

In the sequel, let B2R(x0) be a fixed ball in the condition (C). For any s, t
such that 0 ≤ s < t ≤ 2R, let ψ be a cutoff function for two balls Bs, Bt
centered at x0. That is, ψ is nonnegative, ψ ≡ 1 in Bs and ψ ≡ 0 outside Bt
with |Dψ| ≤ 1/(t − s). We also let r0 > 0 be a positive constant. For any
T > r0 let η be a cutoff function for [T − r0, T + r0], see (14).

For any p ≥ 1 and t > 0 we denote Qt = Bt × [T − r0, T + r0] and

Ap(t) = sup
τ∈[T−r0,T+r0]

∫
Bt

|Du|2pη dx, Hp(t)

=

∫∫
Qt

λ(u)|Du|2p−2|D2u|2η dz, (32)

Bp(t) =

∫∫
Qt

Φ(u)||Du|2p+2η dz, Gp(t)

=

∫∫
Qt

λ(u)|Du|2p dz, Jp =
1

r0

∫∫
Qt

|Du|2p dz. (33)

We then have the following local energy estimate result.

Lemma 4.3. For any p ≥ 1 and sufficiently close to 1 such that (36) holds,
there is a constant C1 depending on p such that

Ap(s) +Hp(s) ≤ C1Bp(t) +
C1

(t− s)2
Gp(t) + C1Jp(t) , 0 < s < t ≤ 2R. (34)

Proof. Since u is a strong solution, we can differentiate (3) with respect to x
to get

(Du)t = div((A(u)D2u+Au(u)DuDu) +Df(u,Du). (35)

By the uniform ellipticity of A(u), we can find a constant C such that
|A(u)ζ| ≤ Cλ(u)|ζ|. Thus, for some p > 1 and sufficiently close to 1 there is
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δ ∈ (0, 1) such that α = 2p− 2 satisfies

α

2 + α
=

2p− 2

2p
= δC−1. (36)

We then recall the following simple algebraic fact in [3, Lemma 2.1]. If A
is a matrix satisfying λ0|ζ|2 ≤ 〈Aζ, ζ〉 and |Aζ| ≤ Λ0|ζ| then for any α > 0 if
the number δα := α

2+α
Λ0

λ0
∈ (0, 1) then

〈ADζ,D(|ζ|αζ)〉 ≥ λ̂|ζ|α|Dζ|2, λ̂ = (1− δ2
α)λ0. (37)

We test (35) with |Du|2p−2Duψ2η and integration by parts in x. By (36)
and (37), with ζ = Du, it is standard to see that there is a positive constant
C(p) such that for Q = Ω× [T − r0, T + r0]

sup
τ∈(T−r0,T+r0)

∫
Ω

|Du|2pψ2η dx+ C(p)

∫∫
Q

λ(u)|Du|2p−2|D2u|2ψ2η dz

≤
∫∫
Q

|A(u)||D2u||Du|2p−1ψ|Dψ|η dz

−
∫∫
Q

Au(u)DuDuD(|Du|2p−2Duψ2)η dz

+

∫∫
Q

Df̂(u,Du)|Du|2p−2Duψ2η dz +
1

r0

∫∫
Q

|Du|2pψ2 dz.

For simplicity, we will assume in the sequel that f̂ ≡ 0. The presence of f̂
will be discussed later in Remark 4.4. For any given positive ε we use Young’s
inequality to find a constant C(ε) such that

|A(u)||D2u||Du|2p−1ψ|Dψ|
≤ ελ(u)|Du|2p−2|D2u|2ψ2 + C(ε)λ(u)|Du|2p|Dψ|2,

|Au(u)DuDuD(|Du|2p−2Duψ2)|
≤ |Au(u)||Du|2p|D2u|ψ2 + |Au(u)||Du|2p+1ψ|Dψ|

≤ ελ(u)|Du|2p−2|D2u|2 + C(ε)
|Au|2

λ(u)
|Du|2p+2ψ2

+ C(ε)λ(u)|Du|2p|Dψ|2.

Therefore, taking ε small and using the above two inequalities in the pre-
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vious one, we easily deduce

sup
τ∈[T−r0,T+r0]

∫
Bs

|Du|2pη dx+

∫∫
Qs

λ(u)|Du|2p−2|D2u|2η dz

≤ C1

∫∫
Qt

Φ(u)|Du|2p+2ψ2η dz

+ C1

∫∫
Qt

(
1

(t− s)2
λ(u) +

1

r0

)
|Du|2p dz. (38)

Here, we used the definition of ψ and Φ(u) and the fact that |Au| ∼ λu.
From the notations (32) and (33), the above gives the lemma.

Remark 4.4: If we replace f(u) by a function f̂ depending on u,Du and satis-
fying a linear growth in Du then the proof can go on with minor modification.
Namely, there exist a constant C and a function f(u) satisfying (F) such that

|f̂(u,Du)| ≤ Cλ 1
2 (u)|Du|+ f(u).

Formally, we can assume that |Df̂(u,Du)| ≤ C|D(λ
1
2 (u)|Du|+ |fu(u)||Du| so

that by Young’s inequality (Φ(u) = |λu(u)|2
λ(u) )

|Df̂(u,Du)| ≤ Cλ 1
2 |D2u|+ CΦ

1
2 (u)|Du|2 + |fu(u)||Du|.

Therefore, the extra term |Df̂(u,Du)||Du|2p−1ψ2 in the proof can be handled
by using the following estimates, which are the results of a simple use of Young’s
inequality.

|Df̂(u,Du)||Du|2p−1 ≤ C[λ
1
2 |D2u|+ CΦ

1
2 (u)|Du|2 + |fu(u)||Du|]|Du|2p−1

≤ ελ|Du|2p−2|D2u|2 + C(ε)λ|Du|2p

+ CΦ(u)|Du|2p+2 + C|Du|2p + C|fu||Du|2p.

We can then assume that |fu| ≤ Cλ(u) for some constant C and see that
the proof can continue to obtain the energy estimate (38).

Next, we also need the following elementary iteration result (e.g., see [8,
Lemma 6.1, p.192]).

Lemma 4.5. Let f, g, h be bounded nonnegative functions in the interval [ρ,R]
with g, h being increasing. Assume that for ρ ≤ s < t ≤ R we have

f(s) ≤ [(t− s)−αg(t) + h(t)] + εf(t)

with α > 0 and 0 ≤ ε < 1. Then

f(ρ) ≤ c(α, ε)[(R− ρ)−αg(R) + h(R)].
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The constant c(α, ε) can be taken to be (1 − ν)−α(1 − ν−αν0)−1 for any ν
satisfying ν ∈ (0, 1) and ν−αν0 < 1.

We then have

Lemma 4.6. If λ0 is sufficiently large such that for some µ0 ∈ (0, 1)

C1
C(|Ω|, r0)

λk+2
0

≤ µ0

2
, (39)

where C1, C(|Ω|, r0) are the constants in (34) and (28) (with r = r0), then
there is a constant C such that∫∫

QR
2

Φ2(u)|Du|4 dz ≤ C

λ4
0

∫∫
Q′2R

(
1

R2
λ(u) +

1

r0

)
|Du|2 dz , ∀T > 2r0. (40)

Here, QR/2 = BR/2 × [T − r0, T + r0] and Q′2R = B2R × [T − 2r0, T + r0].

Proof. Let ψ be the cutoff function for Bs(x0), Bt(x0) in Lemma 4.2. Fix a
number µ0 ∈ (0, 1). Multiplying (28) by η and integrating the result over
[T − r0, T + r0] we see that if λ0 satisfies (39) then, with the notations (32)
and (33), we have

C1B1(s) ≤ µ0

2

(
H1(t) + B1(t) +

1

(t− s)2
G1(t)

)
(41)

for all s, t such that 0 < s < t < R.
For p = 1, (34) gives

H1(s) ≤ C1B1(t) +
C1

(t− s)2
G1(t) + C1J1(t), 0 < s < t < R.

Let t1 = (s + t)/2 and use (41) with s being t1 and the above with t being t1
to obtain

H1(s) ≤ µ0

2
[H1(t) + B1(t)] +

C2

(t− s)2
G1(t) + C2J1(t). (42)

Obviously, we can assume that C1 ≥ 1. Thus, we can add (41) and (42) to
have

H1(s) +B1(s) ≤ µ0[H1(t) +B1(t)] +
C3

(t− s)2
G1(t) +C3J1(t), 0 < s < t < R.

Since µ0 ∈ (0, 1), we can use Lemma 4.5 with f(t) = H1(t) + B1(t), h(t) =
J1(t), g(t) = G1(t) and α = 2 to obtain a constant C4 depending on µ0, C3

such that

H1(s) + B1(s) ≤ C4

(t− s)2
G1(t) + C4J1(t), 0 < s < t < R.
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For s = R and t = 2R the above gives

H1(R) + B1(R) ≤ C4

∫∫
Q2R

(
1

R2
λ(u) +

1

r0

)
|Du|2 dz. (43)

Now, if T > 2r0 and η is a cutoff function for [T−2r0, T ] (η ≡ 1 in [T−r0, T ])
then the above and the definitions (32) and (33) give the estimate∫∫

BR×[T−r0,T+r0]

[λ(u)|D2u|2 + Φ(u)|Du|4] dz

≤ 2C4

∫∫
Q′2R

(
1

R2
λ(u) +

1

r0

)
|Du|2 dz,

where Q′2R = B2R × [T − 2r0, T + r0].
Integrating (29) over [T − r0, T + r0] and using the above estimate in the

result with s = R/2 and t = R, we have∫∫
QR

2

λ2(u)|Du|4 dz ≤ 2C5

∫∫
Q′2R

(
1

R2
λ(u) +

1

r0

)
|Du|2 dz , ∀T > 2r0. (44)

Because Φ2(u) = |λu(u)|4
λ2(u) = |λu(u)|4

λ4(u) λ2(u) ≤ C
λ4
0
λ2(u), we have∫∫

QR
2

Φ2(u)|Du|4 dz ≤ C

λ4
0

∫∫
QR

2

λ2(u)|Du|4 dz.

Combining the above with (44), we obtain the lemma.

Remark 4.7: We can choose r0 = R2 to obtain a uniform bound for the
integral on the right of (40).

We are now giving the uniform estimate for W 1,p(Ω) of our solutions.

Proof of Proposition 4.1. For any p > 1 we have by Hölder’s inequality∫∫
Qt

Φ(u)|Du|2p+2ψ2η dz

≤
(∫∫

Qt

Φ2(u)|Du|4 dz
) 1

2
(∫∫

Qt

|Du|4pψ4η2 dz

) 1
2

. (45)

Using Ladyzhenskaya’s inequality (30) with U = |Du|p−1Duψ, multiplying
the result with η2 and integrating over [T − r0, T + r0], we have∫∫

Qt

|Du|4pψ4η2 dz ≤ C sup
τ∈[T−r0,T+r0]

∫
Bt

|Du|2pψ2η dx

∫∫
Qt

|DU |2η dz.
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Since λ(u) ∼ (λ0 + |u|)k there is a constant C such that

|DU |2 ≤ C

λk0
[λ(u)|Du|2p−2|D2u|2ψ2 + λ(u)|Du|2p|Dψ|2].

Therefore,∫∫
Qt

|Du|4pψ4η2 dz ≤ C

λk0
Ap(t)

[
Hp(t) +

1

(t− s)2
Gp(t)

]
≤ C

λk0

[
Ap(t) +Hp(t) +

1

(t− s)2
Gp(t)

]2

.

Here, Cauchy’s inequality was used in the last inequality.
We now assume T > 2r0, p > 1 sufficiently close to 1, and λ0 is sufficiently

large as in Lemma 4.6. Applying the above inequality in (45) for t ∈ (0, R/2)
we derive, using (40) of Lemma 4.6 to estimate the first factor on the right
of (45),∫∫

Qt

Φ(u)|Du|2p+2ψ2 dz

≤ C
(
C∗(u,R, r0)

λ4
0

) 1
2

λ
−k
2

0

[
Ap(t) +Hp(t) +

1

(t− s)2
Gp(t)

]
, (46)

where we denote

C∗(u,R, r0) = C

∫∫
Q′2R

(
1

R2
λ(u) +

1

r0

)
|Du|2 dz.

By (15) of Lemma 3.1 we can find a constant C(|Ω|, r0) such that

C∗(u,R, r0) ≤ max

{
1

R2
,

1

r0

}
C(|Ω|, r0).

Recall that C(|Ω|, r0) does not depend on λ0. Hence, for any given µ1 ∈
(0, 1) and k ≥ 0 if λ0 is sufficiently large such that, with C1 being the constant
in (38),

C1C

(
max

{
1

R2
,

1

r0

}
C(|Ω|, r0)

) 1
2

λ
−k
2 −2

0 ≤ µ1, (47)

then (46) gives

C1

∫∫
Qt

Φ(u)|Du|2p+2ψ2 dz

≤ µ1

[
Ap(t) +Hp(t) +

1

(t− s)2
Gp(t)

]
0 < s < t <

R

2
. (48)
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If p > 1 and satisfies (36), we then have from (38) and the above inequality the
following.

Ap(s)+Hp(s) ≤ µ1(Ap(t)+Hp(t))+
C2

(t− s)2
Gp(t)+C2Jp(t), 0 < s < t <

R

2
.

For f(t) = Ap(t) +Hp(t), h(t) = Jp(t), g(t) = Gp(t) and α = 2 we can use
Lemma 4.5, as µ1 ∈ (0, 1), to obtain

f(s) ≤ C3(µ1)

(t− s)2
Gp(t) + C3(µ1)Jp(t), 0 < s < t <

R

2
.

For s = R/4 and t = R/2 the above yields, recalling η ≡ 1 in [T, T + r0],

sup
t∈[T,T+r0]

∫
BR

4

|Du|2p dx+Hp(R4 ) ≤ C3(µ1)

R2
Gp(R2 ) + C3(µ1)Jp(R2 ). (49)

If 2p < 4 then a simple use of Hölder’s inequality and the uniform bound in
Lemma 4.6 for ‖Du‖L4(BR×[T−r0,T+r0]) show that the right hand side can be
bounded by a constant depending only on R, r0. Thus, for some p such that
p ∈ (1, 2) a finite covering of Ω with balls BR/4 as in (C) yields

sup
t∈[T,T+r0]

∫
Ω

|Du|2p dx+

∫∫
Ω×[T,T+r0]

λ(u)|Du|2p−2|D2u|2 dz ≤ C(Ω, R, r0).

This is (27) of the proposition and completes the proof.

5. Proof of the Main Result

We are now ready to present the proof of our main result, Theorem 2.1, by
verifying the conditions of Theorem 1.1 giving the existence of global attractors.

Proof of Theorem 2.1. By Amann’s results in [1, 2], (3) defines a local semi-
group on W 1,p(Ω) for any p > 2. By the proof of Proposition 4.1, the norm
‖u‖W 1,p(Ω) never blows up in any finite interval (0, T ) so that u exists globally
. Thus, under the assumption (A) and (F’), (3) defines a semigroup {S(t)}t≥0

on X = W 1,p0(Ω), with p0 = 2p for some p > 1.
The existence of an absorbing ball in i) of Theorem 1.1 is also established by

Proposition 4.1. Indeed, as the solutions of (3) exist globally, we can choose a
uniform r0 = R2, where R is described in (C). Hence, the key assumption on the
existence of µ0, µ1 in (39) and (47) can be guaranteed if λ0 is sufficiently large
in terms the parameters in (A), (F) and R, or the geometry of Ω. Therefore,
for any solution u of (3) Proposition 4.1 shows that there is a uniform constant
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C depending only on the geometry of Ω such that ‖u(·, t)‖W 1,p0 (Ω) ≤ C if t is
sufficiently large. We have proved the existence of an absorbing ball in X.

Concerning the compactness of the S(t1) in ii) of Theorem 1.1, we fix a
t1 > 0. By (27), with p = 1 and p > 1, we have the bound for the following
quantities

sup
t∈[t1,2t1]

∫
Ω

|Du|2 dx, sup
t∈[t1,2t1]

∫
Ω

|Du|2p dx,
∫∫

Ω×[t1,2t1]

λ(u)|D2u|2 dz

≤ C(Ω, t1, p).

From the system for u we can estimate |ut|p in terms of |Du|2p, |D2u|p and
powers of |u|. Since 2p > 2, the above and Sobolev’s imbedding theorem show
that u(·, t) is Hölder continuous in x and thus bounded. Therefore, by the
above estimates, ut is in Lp(Q). It is now standard to show that u is Hölder
in (x, t) and then Du is Hölder continuous (see [6]). The compactness of S(t1)
then follows.

6. Mixed and Neumann Boundary Conditions

We notice that the only place in the proof we need the boundary condition
u = 0 is the validity of the Poincaré inequality∫

Ω

|U |2 dx ≤ Cd2(Ω)

∫
Ω

|DU |2 dx, U ∈W 1,2
0 (Ω), (50)

in the proof of Lemma 3.1. The above inequality also yields Sobolev’s inequality
of the form (20) and Lemma 3.2 to obtain the key uniform Gronwall inequality
(26).

It is well known that (50) continues to hold if U = 0 on a nonempty relatively
open set ∂Ω1 of ∂Ω and Ω is starshaped with respect to ∂Ω1. This comes from a
simple modification of the proof of [7, Lemma 7.14] and then the use of Riesz’s
potential estimates in [7, Lemma 7.12]. Hence, we can assume mixed boundary
conditions for (3). Namely, u satifies the homogenous Dirichlet condition on a
nonempty relatively open set ∂Ω1 of ∂Ω, Ω is starshaped with respect to ∂Ω1

and the homogeneous Neumann condition on ∂Ω \ ∂Ω1. We then see that our
results still hold in this case.

On the other hand, if u satifies the homogenous Neumann condition on the
boundary ∂Ω then we have to assume that the semigroup defined by (3) has
an absorbing ball in L1(Ω). That is, for any bounded set B ⊂ W 1,p0(Ω) there
are T (B) > 0 and a universal constant C such that

∀U0 ∈ B, ‖S(t)U0‖L1(Ω) ≤ C t ≥ T (B). (51)
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Indeed, by the compactness of the imbedding W 1,2(Ω)→ Lp(Ω) (n = 2, p >
1) and a simple argument by contradiction shows that for any positive reals
ε, q there is a constant C(ε, q) such that(∫

Ω

|U |p dx
) 1

p

≤ ε
(∫

Ω

|DU |2 dx
) 1

2

+ C(ε, p, q)

(∫
Ω

|U |q dx
) 1

q

. (52)

Therefore, if U0 belongs to a bounded set in W 1,p0(Ω) and U is a polynomial
in u, with u being the solution to (3), then by choosing q small in the above
and using (51) we can easily see that(∫

Ω

|U |p dx
) 1

p

≤ ε
(∫

Ω

|DU |2 dx
) 1

2

+ C(ε, p, q, B). (53)

Using the above for p = k + l+ 2 and U = u in the proof of Lemma 3.1 we
see that the proof can go on. Similarly, we use the above for p = 4 and U being
P (u) or F (u) in the proof of Lemma 3.2, the uniform Gronwall inequality (26).
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Abstract. We consider a superlinear indefinite problem with homo-
geneous Neumann boundary conditions and a parameter appearing in
the domain of the differential equation. Such a problem is an extension
of the one studied in [33], in the sense that also negative values of the
parameter are allowed.
First, we show how to discretize the problem in a way that is suitable
to perform numerical continuation methods and obtain the associated
bifurcation diagrams. Then, we analyze the results of the simulations,
also studying the stability of the solutions.

Keywords: Superlinear indefinite problems, numerical global bifurcation diagrams, high
multiplicity of positive solutions, stability, Neumann boundary conditions.
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1. Introduction

The term superlinear indefinite problems is used in the literature to refer to
nonlinear boundary value problems of elliptic type which are characterized by
the presence of a sign-changing nonlinearity. These problems have attracted
the attention of many researches in the last decades, since they have revealed
a wide phenomenology of multiplicity of positive solutions. We refer to [1,
3–6, 16, 20, 21, 29, 31] for some pioneering works, to the book [22] for some
related results (see, in particular, Chapter 9), and to the monograph [10] for
an extended review on the existing literature, up to the most recent one.

In [28], we have considered, together with J. López-Gómez and F. Zanolin,
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the following one-dimensional problem with Dirichlet boundary conditions{
−u′′ = λu+ a(t)up, t ∈ (0, 1),
u(0) = u(1) = M,

(1)

with λ < 0, p > 1 (which makes the problem superlinear), and the weight a(t)
defined as the piecewise constant function

a(t) =

{
−c, for t ∈ (0, α) ∪ (1− α, 1),
b, for t ∈ (α, 1− α),

(2)

where α ∈
(
0, 12
)

and b, c > 0. Thus, it is apparent that problem is indefinite.
As for the boundary condition, M is taken in (0,+∞] and, when M = +∞,
the condition is understood in the limiting sense and gives rise to the so called
large or blow-up solutions.

The main result of [28] is that problem (1) admits, for certain values of
the parameters, an arbitrarily high number of positive solutions. We mention
that a different mechanism for obtaining high multiplicity of positive solutions
for superlinear indefinite problems had been previously observed numerically
in [16], and analytically proved - in a different setting - in [7, 8, 12, 13, 15].
Nonetheless, these results substantially differ from the one of [28], since the
multiplicity was originated by the high number of positive parts of the weight.
Instead, [28] is the first work where a high multiplicity result has been obtained
with weights having only one positive part (cf. (2)).

In addition, the fact of considering the piecewise constant weight (2) allowed
us in [28] to determine the structure of the global bifurcation diagrams, which
become more and more complex (i.e., they exhibit an increasing number of
turning points and secondary bifurcations) as the number of solutions increases.
Such bifurcation diagrams have been obtained analytically, and the value of the
weight in the positive part, b, has been used as a main continuation parameter,
an idea that originally goes back to [21].

To complete the reference to previous results related to problem (1), we
mention [27], where with J. López-Gómez we considered, in place of (2), an
asymmetric weight, which entailed a break-up of the bifurcation diagrams into
several connected components, and [32], where we studied the relation be-
tween the symmetric and asymmetric case in a neighborhood of the bifurcation
points. Finally, in [24], together with J. López-Gómez and M. Molina-Meyer,
we considered the same problem in a bounded domain Ω ⊂ RN , N ≥ 1, and
obtained general (minimal) multiplicity results in that context, also studying
the stability of the solutions.

The numerical computation of the complex bifurcation diagrams arising in
such situation has turned to be an intricate question, since the increasing num-
ber of singular points (secondary bifurcations and turning point) which were
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closer and closer one to each other required some refinements in the algorithms.
We refer to [23,25,26] for these numerical aspects.

In [33], instead, we have considered the superlinear indefinite problem with
homogeneous Neumann boundary conditions{

−u′′ = λu+ a(t)up, for t ∈ (0, 1),
u′(0) = u′(1) = 0,

(3)

This change made the use of b as a continuation parameter no longer possible.
Instead, we used the parameter α, which measures the amplitude of the positive
part of the weight; this idea was suggested by [18]. The main results of [33]
can be summarized as follows (see also Figure 1, which is taken from [33]).

Theorem 1.1 ([33], Theorem 5.1). Let λn := − (nπ)2

p−1 , n ∈ N, and assume that

λ ∈ [λn+1, λn) for some n ∈ N. Then:

(i) if n = 0, the minimal bifurcation diagram in α for problem (3) consists
of a curve starting from {α = 0} and bifurcating from +∞ at α = 1/2.
Such a curve, that contains symmetric solutions, will be referred to as
principal curve (see Figure 1(A));

(ii) if n = 1, the minimal bifurcation diagram in α for problem (3) con-
sists of one component containing the principal curve with two additional
branches, containing asymmetric solutions, that start from {α = 0} and
merge in a bifurcation point on the principal curve (see Figure 1(B));

(iii) if n = 2k + 1, k ∈ N∗, the minimal bifurcation diagram in α for problem
(3) consists of k+ 1 components: one, as in (ii), containing the principal
curve with two branches bifurcating from it and reaching the axis {α = 0},
plus k additional bounded components, each formed by four branches (two
with symmetric solutions and two with asymmetric solutions) that start
from the axis {α = 0} and three of which merge in a bifurcation point,
while (at least) two of them merge in a subcritical turning point (see Figure
1(D));

(iv) if n = 2k, k ∈ N∗, the minimal bifurcation diagram in α for problem (3)
consists of k+1 components: one, as in (ii), containing the principal curve
with two branches bifurcating from it and reaching the axis {α = 0}, k−1
bounded components as in (iii), each consisting of four branches (two with
symmetric solutions and two with asymmetric solutions) that start from
{α = 0} and form a subcritical turning point and a bifurcation point, and
an additional bounded component formed by two branches of symmetric
solutions that start from the axis {α = 0} and merge in a subcritical
turning point (see Figure 1(C));
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1/2
α

u(α)
(A)

1/2
α

u(α)
(B)

1/2
α

u(α)
(C)

1/2
α

u(α)
(D)

Figure 1: Bifurcation diagrams in α for problem (3) corresponding to the follow-
ing cases: (A) λ ∈ [λ1, λ0), (B) λ ∈ [λ2, λ1), (C) λ ∈ [λ3, λ2), (D) λ ∈ [λ4, λ3).
The blue branches are formed by symmetric solutions, the red ones by asym-
metric solutions.

In particular, the previous result establishes that the bifurcation diagrams in
α, with α ≥ 0, are always non connected for sufficiently negative λ’s (precisely,
for λ < λ2), which was not the case in [28]. However, one may think that
this non-connectedness is only apparent and is due to the fact that in [33] we
only considered α ≥ 0. Indeed, one can extend the problem also for negative
α’s, and might think that the several branches combine to form a connected
diagram, like the ones of [28].

One of the main goals of this work is to give numerical evidence that this
does not happen, and the global diagrams of the extended problem remain dis-
connected. In addition, with our numerical study, we will analyze the stability
of the solutions of the problem.

In order to extend problem (3) for α < 0, first of all, we extend the weight
as follows

a1(t) =

{
−c, for t ∈ (α, 0) ∪ (1, 1− α),
b, for t ∈ (0, 1),

α < 0.
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Then, we impose the Neumann boundary conditions on the boundary of the
new domain, arriving at{

−u′′ = λu+ a1(t)up, t ∈ (α, 1− α),
u′(α) = 0 = u′(1− α),

α < 0. (4)

A motivation for considering such a boundary condition arises from the bio-
logical interpretation of superlinear indefinite problems, which can be used to
describe the stationary states of the evolution of the density of a population,
taking into account intra-specific competition, according to the classical logistic
model, in the regions where the weight is negative, and intra-specific facilita-
tive effects in the region where the weight is positive. Under this perspective,
Neumann boundary conditions describe the fact that the habitat is isolated
and no inner or outer flux of individuals takes place.

One of the main issues to numerically deal with problems (3) and (4) is the
fact that the bifurcation parameter does not appear explicitly in the differential
equations, but only implicitly in its domain. Indeed, for the numerical continu-
ation methods one has to differentiate the approximating problem with respect
to the bifurcation parameter. For this to be possible, one cannot use the collo-
cation procedure, used in [23, 25, 26] to compute the bifurcation diagrams in b
for problem (1), which is very efficient from the computational point of view.
Instead, as suggested by [30], one can use a Galerkin method which makes the
differentiation with respect to α treatable, but entails the disadvantage of being
much slower for the computations.

In Section 2 we present such a method to discretize problem (4) and in
Section 3 we present the results of the numerical experiments that we have
performed, using the obtained discretization. Finally, in Section 4, we present
some remarks on two different extensions of problem (3) for α < 0.

2. Discretization of problem (4)

One of the main difficulties to study problem (4) as α < 0 varies is the fact that
the domain grows without restrictions as α becomes more and more negative.
For this reason, first of all, we perform the change of variable x = t−α

1−2α to
transform (4) into the following equivalent problem, which is set in a domain
of fixed size: {

− 1
(1−2α)2u

′′ = λu+ a2(x)up, x ∈ (0, 1),

u′(0) = 0 = u′(1),
(5)

where the ′ now indicates derivatives with respect to x and

a2(x) := a1(t(x)) =

 −c, for x ∈
(

0, −α1−2α

)
∪
(

1−α
1−2α , 1

)
,

b, for x ∈
(
−α

1−2α ,
1−α
1−2α

)
,

α < 0.
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We observe that problem (5) shares some features with (3): both are super-
linear indefinite problems set in (0, 1) with homogeneous Neumann boundary
conditions, and in both cases the position of the points of discontinuity of the
weight varies with α. Moreover, for α = 0, both problems reduce to the same
purely superlinear one, i.e., with a positive weight. Nonetheless, their behavior
with respect to α might be substantially different, since the coefficient in front
of the second derivative in (5) also depends on α, while it is constant in (3).
Equivalently, (5) can be seen as a variant of (3) in which λ and the values of
the weight depend on α. In the light of Theorem 1.1, the number of solutions
of (3) depends on the value of λ, thus it is not easy to relate one problem to
the other.

Since the analysis is not easy, we perform numerical simulations to get
insight into problem (5) and, hence, on the equivalent problem (4). To do so,
we have to discretize (5). We consider p = 2 and, as suggested by [30], we
apply a Fourier–Galerkin method. It consists in approximating a solution u(x)
by the truncated Fourier series

u(x) =

n∑
j=1

ujφj(x), where φj(x) := cos((j − 1)πx), (6)

in multiplying the differential equation of (5) by the i-th element of the Fourier
basis φi(x), and in integrating over (0, 1). In this way, we obtain the i-th
equation of the discretized problem, which will be denoted by Fi, and the
unknown is now the vector of Fourier coefficients u = (uj)

n
j=1 ∈ Rn, considered

as a column vector. The fact of taking only cosine terms in (6) is due to the
boundary conditions in (5). Hence, the equation Fi, 1 ≤ i ≤ n, reads

n∑
j=1

(
λ−

(
(j − 1)π

1− 2α

)2
)
uj

∫ 1

0

φj(x)φi(x) dx

− c
∫ −α

1−2α

0

 n∑
j=1

ujφj(x)

2

φi(x) dx+ b

∫ 1−α
1−2α

−α
1−2α

 n∑
j=1

ujφj(x)

2

φi(x) dx

− c
∫ 1

1−α
1−2α

 n∑
j=1

ujφj(x)

2

φi(x) dx. (7)

On the one hand, the orthogonality conditions give

∫ 1

0

φj(x)φi(x) dx =


1 if i = j = 1,

1/2 if i = j > 1,

0 otherwise,
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on the other one we observe that n∑
j=1

ujφj(x)

2

=

 n∑
j=1

ujφj(x)

( n∑
k=1

ukφk(x)

)
=

n∑
j=1

n∑
k=1

ujukφj(x)φk(x),

and that

4φi(x)φj(x)φk(x) = cos((i+ j + k − 3)πx) + cos((i+ j − k − 1)πx)

+ cos((i− j + k − 1)πx) + cos((i− j − k + 1)πx);

thus, if we set

hi,1jk (x) =

{
x if i+j+k=3,
sin((i+j+k−3)πx)

(i+j+k−3)π otherwhise,

hi,2jk (x) =

{
x if i+j−k=1,
sin((i+j−k−1)πx)

(i+j−k−1)π otherwhise,

hi,3jk (x) =

{
x if i−j+k=1,
sin((i−j+k−1)πx)

(i−j+k−1)π otherwhise,

hi,4jk (x) =

{
x if i−j−k=−1,
sin((i−j−k+1)πx)

(i−j−k+1)π otherwhise,

we have that a primitive of φi(x)φj(x)φk(x) is

hijk(x) :=
1

4

(
hi,1jk (x) + hi,2jk (x) + hi,3jk (x) + hi,4jk (x)

)
.

As a consequence, (7) reads

n∑
j=1

(
λ−

(
(j − 1)π

1− 2α

)2
)
uj

∫ 1

0

φj(x)φi(x) dx

− c

 n∑
j=1

n∑
k=1

uj

(
hijk

(
−α

1− 2α

)
− hijk(0)

)
uk


+ b

 n∑
j=1

n∑
k=1

uj

(
hijk

(
1− α
1− 2α

)
− hijk

(
−α

1− 2α

))
uk


− c

 n∑
j=1

n∑
k=1

uj

(
hijk(1)− hijk

(
1− α
1− 2α

))
uk


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and, observing that hijk(0) = 0, it reduces to

n∑
j=1

(
λ−

(
(j − 1)π

1− 2α

)2
)
uj

∫ 1

0

φj(x)φi(x) dx

+ (b+ c)

 n∑
j=1

n∑
k=1

uj

(
hijk

(
1− α
1− 2α

)
− hijk

(
−α

1− 2α

))
uk


− c

n∑
j=1

n∑
k=1

ujh
i
jk(1)uk,

which leads to

F1 = λu1 + (b+ c) ut
(
H1

(
1− α
1− 2α

)
−H1

(
−α

1− 2α

))
u− cutH1(1) u,

and, for i > 1,

Fi =

(
λ−

(
(i− 1)π

1− 2α

)2
)
ui
2

+ (b+ c) ut
(
Hi

(
1− α
1− 2α

)
−Hi

(
−α

1− 2α

))
u

− cutHi(1) u,

where we have set Hi(x) := (hijk(x))nj,k=1 and ut denotes the transposed of
vector u. As a consequence, the discretized problem is

F (u, α) = 0, F = (Fi)
n
i=1.

Before concluding this section, we remark that, for the numerical bifurca-
tion algorithms that we use in our simulations, it is necessary to differentiate
the discretized equations also with respect to the parameter α. The advan-
tage of employing the Fourier–Galerkin method described above consists in the
fact that such a derivative can be easily computed from (7) by means of the
fundamental theorem of Calculus.

3. Results of the numerical experiments

In this section we show the results of the experiments performed by applying
numerical continuation methods to the discretized problem obtained in Sec-
tion 2. We send the interested reader to [2, 9, 17, 19] for general references
on numerical continuation methods, and to [25, 26] for more recent references
where some improvements to the algorithms are performed in order to be able
to compute complex bifurcation diagrams as those appearing in this work.
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Structure of the bifurcation diagrams. For our numerical experiments,
we have used the following values of the parameters:

b = c = 1, p = 2,

and λ ∈ {−4,−25,−60,−120}, which are the same values used to obtain the
diagrams in Figure 1. The choice of the number of discretization points has
been n = 300 with the aim of achieving a good precision (measured by the
size of the Fourier coefficients uj , n − 10 ≤ j ≤ n, whose modulus in all
our simulation is smaller than 10−4 and, in many cases, smaller than 10−8)
in a reasonable computational time. The resulting bifurcation diagrams are
represented in Figure 2.

In particular we observe that for α = 0 problems (3) and (4) coincide,
thus the number of solutions is necessarily the same, and the branches are
continuous. Moreover, the global patterns of the branches for α < 0 are the
same as those for α > 0 described in Theorem 1.1, the only difference being
that the principal curve seems to be continuable for all α < 0.

To understand this difference, we observe that a necessary condition for (3)
and (4) to possess positive solutions, which can be easily obtained by integrating
the differential equation and using the boundary conditions, is that the weight
has to change sign. This condition is no longer true for problem (3) when α = 1

2 ,
thus all the solutions are lost before such a value of the parameter is reached.
Instead, the weight in (4) changes sign for all α < 0, thus no restrictions exist
on α, and actually our simulations suggest that existence occurs for all α < 0.

Moreover, we observe that the diagrams are non-connected for sufficiently
negative λ’s and the number of connected components increases as λ becomes
more and more negative.

This is not a priori evident, since, as commented above, problem (5) can be
equivalently written as

−u′′ = λ̃(α)u+ (1− 2α)2a2(x)up, x ∈ (0, 1),

with λ̃(α) = (1− 2α)2λ, and we have the following opposite trends coinciding
as α→ −∞:

i) first, as above, the positive part of the weight, whose size is 1
1−2α , becomes

smaller and smaller, thus the necessary condition for the existence of so-
lutions - the change of sign of the weight - tends to be violated, though
it is so only in the limiting case α = −∞. This makes one infer that the
solutions are lost as α < 0 decreases;

ii) contrastingly, the value of λ̃(α) goes to −∞ as α → −∞, thus, if all the
other parameters were fixed, Theorem (1.1) would guarantee the existence
of an increasing number of solutions. Nonetheless, the values of α for
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which such a high number of solution is present depends on λ: essentially,
one should study the dependence of the turning points on λ, which is a
very interesting open problem both from the analytical and the numerical
point of view;

iii) finally, the values of the weight, both in the negative and the positive
part, go to +∞ as α→ −∞, and the overall effect is not clear in this case
(cf. [11] for a similar problem).
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Figure 2: Numerical bifurcation diagrams in α obtained for problem (3) (α > 0,
with dash-dotted line) and problem (4) (α < 0, with continuous line) corre-
sponding to the following values of λ:

(A) λ = −4, (B) λ = −25, (C) λ = −60, (D) λ = −120.

On the vertical axes we plot the values of u(α) for α > 0 and u(0) for α < 0,
i.e. we represent the value of the solution where the weight changes sign for
the first time. As in Figure 1, the blue branches are formed by symmetric
solutions, while the red ones by asymmetric solutions. The bifurcation points
have been marked with squares.
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Remark 3.1: A natural question, that arises after the comments performed
above on the general properties of the bifurcation diagram, is whether the
branches are differentiable, with respect to α, at α = 0. By using a finite
difference method, the results that we obtain for the approximation of the
left and right derivatives of the several branches appearing in the diagrams of
Figure 2 have been gathered in Table 1.

λ Point Right derivative Left derivative
-4 (0, 4.00000) 10.2952 -10.2952
-25 (0, 2.09423) 63.8469 -42.0332
-25 (0, 25.0000) -333.815 333.815
-25 (0, 37.3889) -4.71944 2.46041
-60 (0, 0.311947) 14.5182 -9.67665
-60 (0, 17.3092) -129.934 290.669
-60 (0, 60.0000) 1040.64 -1040.64
-60 (0, 87.1313) -312.416 262.173
-60 (0, 89.9989) 10.861 -10.8944
-120 (0, 0.0251730) 1.72774 -1.17619
-120 (0, 6.14466) -7.37161 76.2526
-120 (0, 45.5856) 1197.07 -765.859
-120 (0, 120.000) -2503.6 2503.6
-120 (0, 170.378) -432.671 262.252
-120 (0, 179.797) 16.8713 -21.3551
-120 (0, 180.000) 43.8456 -43.8475

Table 1: Values of the derivatives with respect to α of the branches in the
bifurcation diagrams of Figure 2, evaluated at α = 0.

As we can see from the previous table, the right derivative always has the
opposite sign of the left one; thus, our numerical simulations suggest that none
of the branches is differentiable at α = 0. Moreover, we see that, at the points
(0,−λ), with λ ∈ {−4,−25,−60,−120}, the right and the left derivative have
the same absolute value. In view of this, we conjecture that, for all λ < 0, the
following relation holds true:

d

dα
ûλ(0;α)

∣∣∣∣
α=0+

= − d

dα
ûλ(0;α)

∣∣∣∣
α=0−

, (8)

where ûλ(·;α) is the unique solution of (3) for α > 0 and (4) for α < 0 such
that uλ(0; 0) = −λ. To try to prove this relation, one could perform some
asymptotic expansions for α ∼ 0, in the spirit of the ones - carried out in a
completely different context - of [11, Section 7], but this goes outside the scope
of this work, and we leave it as an open question.
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Stability of the solutions. As established in [14, Theorem 3.8], problems
(3) and (4) do not admit any positive stable solutions, since λ < 0 = σ0 (we
use the same notation of [14] and denote by σ0 the principal eigenvalue of the
linearized problem at u = 0).

Here, we study the linear stability of the solutions of (5) following [9], i.e.
by considering the parabolic counterpart of (5)

ut −
1

(1− 2α)
2uxx = λu+ a2(x)up, t > 0, x ∈ (0, 1) (9)

taking time-dependent approximating functions

u(t, x) =

n∑
j=1

uj(t)φj(x),

and obtaining, by reasoning as in Section 2, a system of ordinary differential
equations for the unknown functions uj(t). This nonlinear system is then lin-
earized around a steady state of (9), i.e. a solution of (5), and the dimension
of the unstable manifold of such a steady state corresponds to the number of
eigenvalues of the linearization having positive real part.

The observed stability patterns can be summarized as follows and are il-
lustrated in Figure 3 (we use the notation of Theorem 1.1 and assume that
λ ∈ [λn+1, λn) for some n ∈ N):

• for α = 0, problem (5) has 2n + 1 solutions. We denoted them by u(i),
i = 1, 2, . . . , 2n + 1, (we use superscripts in order not to confuse them
with the coefficients of the Fourier expansions used above) so that

u(1)(0) < u(2)(0) < . . . < u(2n+1)(0).

For all i = 1, 2, . . . , n+ 1, the dimension of the unstable manifold of the
solution u(i) coincides with the one of the solution u(2n+2−i) and equals
i;

• on the branches of asymmetric solutions (represented in red in Figure 3),
the dimension of the unstable manifold of the solution does not change;

• on the branches of symmetric solutions (represented in blue in Figure 3),
the dimension of the unstable manifold changes by 1 as a bifurcation or
a turning point is crossed, monotonically on each branch. Moreover, the
unique solution of the problem for α → −∞, which lies on the principal
branch, has a 1-dimensional unstable manifold.

We point out that the observed stability patterns for problem (3) with α > 0
are exactly the same.
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Figure 3: Dimensions of the unstable manifold for the solutions of problem (4)
with λ = −120 ∈ [λ4, λ3) (case (D) of Figure 2).

Profiles of the solutions. To conclude the presentation of the results of our
numerical experiments, we plot in Figure 4 the profiles of the solutions in a
case of high multiplicity, corresponding to the values of the parameters that
give rise to the bifurcation diagram of Figure 2(D).

□□

□□

-0.25 -0.20 -0.15 -0.10 -0.05 0.00
α
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0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

t

u(t)

Figure 4: Bifurcation diagram in α for problem (4) with λ = −120 (left) and
profiles of the seven solutions of the problem for α = −0.015 (right). The level
α = −0.015 has been marked in the bifurcation diagram with a dashed line.
Observe that the position of each solution of the right plot can be determined
in the bifurcation diagram, at the level α = −0.015, from its value at t = 0 and
its symmetry.

Moreover, in order to make apparent that the behavior of the solutions
is similar for positive and negative α’s, we now present a description of the
behavior of the solutions along each of the branches of the bifurcation diagram.
Once again, we present the plots corresponding to the bifurcation diagram of
Figure 2(D), since it is the most illustrative one.

Figure 5 shows the plots of some solutions on the upper blue branch in
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Figure 5: Plots of some solutions on the upper blue branch in Figure 2(D):
upper row for α > 0, lower row for α < 0. The arrows indicate the direction
in which the bifurcation diagram has been gone through, according to the
description in the text.

Figure 2(D), that connects the point (0, 120) to the point (0, 179.797) in the
bifurcation diagram. All the solution on this branch are symmetric. In the up-
per row of Figure 5 we represent the solutions for α > 0: in the left plot we start
from the constant solution corresponding to the point (0, 120) in the bifurcation
diagram and arrive to the turning point, which occurs at (0.0263530, 110.425),
while in the right plot the solutions go from the turning point to the upper
point (0, 179.797). In the lower row of the figure, instead, we represent the
solutions for α < 0 according to the same pattern: in the left plot from the
point (0, 120) to the turning point (−0.0316540, 98.6296), and in the right plot
from the turning point to the upper point (0, 179.797). The arrows in the figure
visually indicate the direction along which the solutions evolve on the bifurca-
tion diagram, following the starting and the endpoint specified in the previous
description.

Figure 6 shows the plots of some solutions on the lower blue branch in
Figure 2(D), starting from (0, 6.14466): the upper plot is for α > 0 and the
lower ones for α < 0. All the solutions are, again, symmetric. In the lower left
plot we represent the solutions after the change of variables that transforms
the domain (α, 1−α), which varies with α, in the fixed domain (0, 1), while in
the right plot we use the original domain of problem (4). This has been done
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Figure 6: Plots of some solutions on the lower blue branch in Figure 2(D),
starting from (0, 6.14466). The upper plot is for α > 0, the lower left plot for
α < 0, working with fixed domain (0, 1), and the lower right plot for α > 0
with the original domain of problem (4).

because the difference between the different solutions is amplified in the fixed
domain.

In Figure 7 we represent the solutions that lie on the red branch of Fig-
ure 2(D) starting from (0, 0.0251730) and arriving at (0, 180.000): on the upper
row the ones for α > 0 and on the lower row the ones for α < 0. All the solu-
tions, apart from the ones on the bifurcation points (−0.197821, 3.03203) and
(0.128325, 12.0364), are asymmetric. The left plots go from the starting point
(0, 0.0251730) on the bifurcation diagram up to the bifurcation point, while the
ones on the right go from the bifurcation point to the ending point (0, 180.000).

Finally, in Figure 8 we represent the solutions that lie on the other red
branch of Figure 2(D), starting from (0, 45.5856), arriving at (0, 170.378) and
following the same patterns used in Figure 7: top left for α > 0 up to the bifur-
cation point (0.0194360, 98.8542), top right α > 0 starting from the bifurcation
point, bottom left for α < 0 up to the bifurcation point (−0.0234266, 90.0263)
and bottom right for α < 0 starting from the bifurcation point.

4. Final remarks

To conclude this work, we observe that we may extend problem (3) also in
other different ways than the one considered above. A first possibility consists
in maintaining the condition on the derivatives at the fixed points t = 0 and
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Figure 7: Plots of some solutions on the red branch in Figure 2(D) starting
from (0, 0.0251730). The upper plots are for α > 0, the lower ones for α < 0.
The left plots represent, in the direction of the arrows, the solutions from the
starting point to the bifurcation points, where they become symmetric, while
in the right ones we start from the bifurcation points and arrive at (0, 180.000).

t = 1, obtaining{
−u′′ = λu+ a1(t)up, t ∈ (α, 1− α),
u′(0) = 0 = u′(1),

α < 0. (10)

Doing so, we no longer have to deal with a boundary value problem, but with
an “intermediate” value problem.

This problem is less interesting, since one readily observes that its solutions
are in 1-1 correspondence with the solutions of the purely superlinear Neumann
problem {

−u′′ = λu+ bup, t ∈ (0, 1),
u′(0) = 0 = u′(1).

(11)

Indeed, one takes any solution u of (11) and extends it to (α, 0) and (1, 1− α)
with the unique solutions of the initial value problems
−u′′ = λu− cup, t ∈ (α, 0),

u(0) = u(0),

u′(0) = 0,


−u′′ = λu− cup, t ∈ (1, 1− α),

u(1) = u(1),

u′(1) = 0,

(12)
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Figure 8: Plots of some solutions on the red branch in Figure 2(D) starting
from (0, 45.5856). The upper plots are for α > 0, the lower ones for α < 0.
The left plots represent, in the direction of the arrows, the solutions from the
starting point to the bifurcation points, where they become symmetric, while
in the right ones we start from the bifurcation points and arrive at (0, 170.378).

respectively. In this way, a solution of (10) is obtained. For this reason, we
can say that the extension (10) makes the problem lose its indefinite nature.
Nonetheless, we remark that the existence of global solutions for problems (12)
depends on the values of α, since the solutions blow up in finite time, which
has to be compared with α. By studying such a blow-up time, one can also
construct the bifurcation diagrams in α of problem (10). This can be done with
the elements developed in [33].

A second possible extension is the following one{
−u′′ = λu+ a3(t)up, t ∈ (2α, 1− 2α),
u′(2α) = 0 = u′(1− 2α),

α < 0, (13)

with

a3(t) :=

{
−c, for t ∈ (2α, α) ∪ (1− α, 1− 2α),
b, for t ∈ (α, 1− α).

This problem cannot be directly related to the one extensively studied above,
since, here, both the size of the positive part of the weight and of the negative
one vary with α.

To study this problem numerically, we first had to slightly modify the dis-
cretization performed in Section 3. Once that done, we have computed the
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corresponding bifurcation diagrams and the related profiles of the solutions.
The results of our computations have been represented in Figures 9 and 10.

The left plot of Figure 9 shows the bifurcation diagram of problem (13)
with λ = −120. By comparing it with the right part of the diagram in Figure
2(D), which corresponds to the same value of λ, we observe that the qualitative
structure of the bifurcation diagrams is similar for the two extensions.

Nevertheless, a closer look at it (see the right plot of Figure 9) shows that
some differences arise in the quantitative behavior of the bifurcation diagram.
Indeed, some of the branches are not monotone, which does not occur for the
corresponding ones in Figure 2(D). Moreover, in the left plot of Figure 9 we
have marked only one bifurcation point, while in Figure 2(D) there were two
of them. We think that this is uniquely due to the fact that we have not
been able to perform the simulations for sufficiently negative values of α, since
the solutions on the three branches are very close to each other apart from
being very small. We conjecture, that the qualitative shape of the diagram for
problem (13) is exactly as for problem (4) and that, if one is able to continue
the simulations for more negative α’s, the bifurcation point should arise. In
order to do so, one may try to apply the treatment of narrow turning points
developed in [26].

Finally, if we compare the plots of the solutions of problem (13), which are
shown in Figure 10, with the corresponding ones of problem (4) (see Figures
5–8), we observe that they also follow the same qualitative patterns.

□□

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
α

50

100

150

u(α)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
α

0.01

0.02

0.03

0.04
u(α)

Figure 9: Bifurcation diagram of problem (13) for λ = −120 (left) and a zoom
of its lower part (right).
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Figure 10: Plots of some solutions related to the left diagram of Figure 9:
on the upper blue branch (top left), on the lower blue branch (top right), on
the biggest red branch (bottom left) and on the smallest red branch (bottom
right). The arrows indicate how the solutions evolve as the bifurcation diagrams
are gone though, as described in the text of Section 3 and as marked in the
corresponding plots of the solutions of problem (4).
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[22] J. López-Gómez, Metasolutions of parabolic equations in population dynamics,
CRC Press, Boca Raton, FL, 2016.
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Abstract. In this paper we simulate positive solutions, large solu-
tions and metasolutions of the heterogeneous logistic equation in a disk
and an annulus. The numerical methods introduced in this paper are
extremely innovative because they make unnecessary determining any
previous lifting and solving any decoupled system of ordinary differen-
tial equations. Moreover, they can be used to solve non-radially sym-
metric problems. The models are of a huge interest in Spatial Ecology
because they enable us to analyse the effects of the spatial heterogeneity
on the evolution of the terrestrial ecosystems. The large solutions and
the metasolutions have been computed by the first time in this paper.

Keywords: Heterogeneous logistic equation, unequal distribution of resources, spectral
methods, collocation methods, numerical simulation of large solutions and metasolu-
tions.
MS Classification 2010: 35J61, 35J70, 65N35, 65P30, 92D25.

1. Introduction

As a consequence of the unequal distribution of resources, populations dis-
tribute themselves in habitats of different size and quality. Algae, cyanobac-
teria and mountain pine beetles, see [1, 17, 29], grow and reproduce rapidly
in some concrete habitats, having extraordinary and dramatic impact in some
ecosystems, as changing food webs, decreasing biodiversity and altering ecosys-
tem conditions. Inspired by Section 1.2 of López-Gómez [21], we propose the
diffusive heterogeneous logistic equation to model the disproportionate growth
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of a population.
Definitely, modelling the heterogeneous distribution of populations in patch-

es of the landscape with different population densities is crucial in conservation
planning. Using mathematical models where the habitat is assumed to be spa-
tially homogeneous becomes a tight restriction that leads too often to numerical
results that do not match up with the collected field data. At the same time,
modelling with reaction-diffusion systems with constant coefficients may also
result in inaccurate predictions. The key issue is to implement variable coeffi-
cients in reaction-diffusion equations.

Moreover, it is incredibly important to assign correct values to the param-
eters, in this case, the proliferation rate λ that depends on the size of the
patches. There are critical values of this parameter for which the species can
survive and grow in each patch as we are going to see below in this paper.

In contrast to spatial structure population models, we use a simpler model
that is more tractable and easier to interpret. We solve numerically for the
first time the following master equation in Spatial Ecology in an habitat Ω to
be considered circular, in the presence of spatial heterogeneity,{

−∆u = λu−m(x, y)u2 in Ω,

Bu = 0 on ∂Ω,
(1)

where ∆ is the Laplacian, Ω ∈ {BR((0, 0)), A(R0, R1)}, with

BR((x0, y0)) := {(x, y) ∈ R2 : ‖(x− x0, y − y0)‖ < R},

A(R0, R1) := {(x, y) ∈ R2 : 0 < R0 < ‖(x, y)‖ < R1},

and either
Bu = Du = u− f

(general Dirichlet boundary conditions), whith f ≥ 0 or

Bu =
∂u

∂η
= 0

(homogeneous Neumann boundary conditions), where η stands for the outward
unit normal vector-field on ∂Ω, λ ∈ R is a constant, f are the prescribed values
of u along the boundary ∂Ω, and m ≥ 0, m 6= 0, is a function of class Cµ(Ω),
for some µ ∈ (0, 1], satisfying the following hypotheses:

(A) The set
Ω+ := {x ∈ Ω : m(x, y) > 0}

is a subdomain of Ω with Ω+ ⊂ Ω, whose boundary, ∂Ω+, is of class C3,
and the open set

Ω0 := Ω\Ω+
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consists of two components Ω0,i, i ∈ {1, 2}, such that

Ω0,1 ∩ Ω0,2 = ∅,

and
λ1[−∆,D,Ω0,1] < λ1[−∆,D,Ω0,2]. (2)

Throughout this paper, for any given regular subdomain D of Ω, we de-
note by λ1[−∆,D, D] the principal eigenvalue of −∆ in D under homogeneous
Dirichlet boundary conditions. As a consequence of the Maximum Principle,

λ1[−∆,D, D2] < λ1[−∆,D, D1] if D1  D2

(see [20] for any further required details). So, roughly speaking, (2) entails
Ω0,1 to be larger than Ω0,2, but not exactly, as the principal eigenvalue also
dependes on some hidden geometrical properties of the underlying domains.
Figure 1 shows some of spatial configurations of m(x, y) treated in this paper.
Problem (1) is considered degenerate, always that Ω0 6= ∅.

Figure 1: Spatial configuration of m(x, y) in the disk BR((0, 0)) and the annulus

A(10, 100).

This problem is used in Spatial Ecology to model the evolution of the dis-
tribution of a single species, u, randomly dispersed in the inhabiting area, Ω.
In this context, it is very important to obtain the solutions of (1) because, at
least in case f = 0, they provide us with the limiting profiles as t→∞ of the
solutions of the parabolic problem

∂u
∂t −∆u = λu−m(x, y)u2 in Ω× (0,∞),

Bu = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 > 0 in Ω.

(3)
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From the point of view of the applications, allowing m(x, y) to vanish on a
subdomain of Ω, enables us to model the three different possible behaviors of
the solution of (1), with f = 0 and B = D, according to three distinct ranges
of the parameter λ. Precisely, according to López-Gómez [18]:

• The inhabiting region Ω cannot support the species u if λ ≤ λ1[−∆,D,Ω].

• The species u grows according to the Verhulst law if λ1[−∆,D,Ω] < λ <
λ1[−∆,D,Ω0,1].

• The species u grows according to the Malthus law in Ω0,1, while it has a
logistic behavior in Ω\Ω0,1 if λ1[−∆,D,Ω0,1] ≤ λ < λ1[−∆,D,Ω0,2].

• The species u grows according to the Verhulst law in Ω+, while it exhibits
Malthusian growth in Ω\Ω+ if λ ≥ λ1[−∆,D,Ω0,2].

Therefore, as the previous results establish that, for the appropriate ranges
of values of the parameter λ, the metasolutions provide us with the limiting
profiles of the positive solutions of the evolution problem, from the point of view
of the applications it is imperative to design efficient numerical algorithms to
compute all the solutions and metasolutions of (1). A functionM : Ω→ [0,∞]
is said to be a metasolution of (1) supported in D, D ∈ {Ω\Ω0,1,Ω+} if there
exists a solution (large solution) L of{

−∆L = λL−m(x, y)L2 in D,

L = 0 on ∂D ∩ ∂Ω,

satisfying

lim
dist((x,y),∂D\∂Ω)↓0

L(x, y) =∞,

for which

M =

{
∞ in Ω\D,
L in D.

Computing the positive solutions, the large solutions and the metasolutions
is the main goal of this paper, where, for the first time, the degenerate logis-
tic equation in circular domains, without radial symmetries on the coefficient
m(x, y), has been solved numerically. Our numerical schemes and methods
enjoy a great versatility, as it will become apparent later.

From the point of view of numerical analysis, our main contribution here
consists in developing a number of, really necessary, algebraic manipulations on
the differentiation matrix L∆ of the Laplace operator in polar coordinates in
order to impose either general inhomogeneous Dirichlet boundary conditions,
or homogeneous Neumann ones, both in arbitrary disks and circular annuli.
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From a theoretical point of view, in the problem with Ω = B1((0, 0)) the
most common pseudo-spectral method available is based on the expansion of u
in terms of eigenfunctions of the Laplace operator and it can be expressed as

u(r, θ) ≈
M∑
m=0

N∑
n=1

amnJm(
√
λmnr) cos(mθ) +

M∑
m=1

N∑
n=1

bmnJm(
√
λmnr) sin(mθ),

where N , M are positive integers, the Jm’s denote the Bessel functions of first
kind, λmn are the eigenvalues of −∆ in B1((0, 0)) under Dirichlet boundary
conditions, and amn, bmn are the (unknown) coefficients of the expansion, that
are determined in this paper through the collocation points, (ri, θj), which are
the Chebyshev–Gauss–Lobatto points in the r-direction and the equidistant
spaced points in the θ-direction. Unfortunately, in the case of the logistic
equation, this paradigmatic classical scheme becomes unstable for

λ > λ[−∆,D, B1((0, 0))] + ε

if ε > 0, being precisely this range of values of λ the one for which the large
solutions and metasolutions of the model play a significant role in describing
the dynamics of the evolution problem (3).

As a by-product, during the last several years a variety of methods have
been developed to approximate the solutions of the Poisson equation in a disk.
The monograph of Boyd and Fu Yu [3] collects a rather complete review of
them comparing some of the main available schemes to solve the Poisson equa-
tion in a disk through the Zernike and the Logan–Shepp ridge polynomials, the
Chebyshev–Fourier series, the cylindrical Robert functions, the Bessel–Fourier
expansions, the square-to-disk conformal mapping, and the radial basis func-
tions. But yet none of these schemes can be directly applied to compute the
large solutions and the metasolutions of our problem. Very recently, the authors
obtained in [24] the differentiation matrices of the Laplace equation in polar
coordinates subjected to non homogeneous Robin boundary conditions and
also, the differentiation matrix of the biharmonic equation subjected to non-
homogeneous boundary conditions. More references concerning pseudospectral
methods in the disk can also be found in [24]. The paradigmatic monographs
of e.g., Gottlieb–Orszag [13], Fornberg [10], Boyd [2], Peyret [26], Canuto et
al [6], and Shen–Tang–Wang [32] reveal the great importance of using spec-
tral and pseudo-spectral methods to solve a huge variety of partial differential
equations.

Although some sophisticated numerical calculations of radially symmetric
classical solutions for (1), as well as some explosive solutions that do not belong
to ∪∞p=1L

p
loc

(Ω), were carried out by Gómez-Reñasco and López-Gómez [12],
this paper solves for the first time (1) without imposing any radial symmetry
on the coefficients. Actually, the numerics of [12] where utterly one-dimensional
using ODE’s techniques.
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Collocation-spectral methods are some of the most versatile methods for
treating non-linear problems as well as simulating solutions of partial differen-
tial equations with variable coefficients, as it will be seen in this work. Further-
more, solving problem (1) in the unit disk is the first necessary step to solve
the same problem on a more complicated geometry via a conformal mapping.
But this analysis will be accomplished in an upcoming work and will appear
elsewhere.

The organization of this paper is as follows. In Section 2 we apply the
underlying collocation spectral method to simulate numerically the classical
positive solutions, large solutions and metasolutions of the heterogeneous lo-
gistic equation in the unit disk and in a circular annulus for both the Dirichlet
and the Neumann problems. In Appendixes A and B we obtain the discretiza-
tion matrices of the Laplace operator in polar coordinates for homogeneous
and inhomogeneous Dirichlet boundary conditions, as well as for homogeneous
Neumann boundary conditions.

2. The Logistic Equation with Spatial Heterogeneity.

In this section, we apply the collocation spectral method developed in the
Appendix to approximate the positive solutions of (1). As a consequence of
the presence of the weight function m(x, y) in front of the non-linear term, the
richness of the set of positive solutions of (1) increases extraordinarily. Actually
the model can exhibit classical positive solution, large positive solutions and
metasolutions of (1). Subsequently, we will compute all these types of solutions.

It should be emphasized that, without a deep previous knowledge of the
analytical results of López-Gómez [18] and [21], the numerical resolution of (1)
would be an extremely hard task, by the lack of a priori bounds in L∞ for
the gradients of all these classical and non-classical solutions, which might be-
come infinity even in some open sub-domains of the underlying domain. When
necessary, we will refer to [18] for the available theoretical results about (1).

2.1. Classical solutions and metasolutions in B1((0, 0))
under Dirichlet boundary conditions

In this section we consider the problem (1) with homogeneous Dirichlet bound-
ary conditions: {

−∆u = λu−m(x, y)u2 in B1((0, 0)),

u = 0 on ∂B1((0, 0)),
(4)
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where m : B1((0, 0))→ [0,∞) is given by:

m(x, y) =

{
−
(√

x2 + y2 − 0.5
)(√

x2 + y2 − 0.3
)

if (x, y) ∈ A(0.3, 0.5),

0 otherwise.
(5)

Figure 2 shows a plot of m(x, y) for this choice.

Figure 2: Plot of m(x, y) for the choice (5).

In polar coordinates, the problem (4) becomes into
−∂

2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
= λu−m(r, θ)u2 in (0, 1)× [0, 2π)

u(1, θ) = 0 on [0, 2π),

u(r, θ) = u(r, θ + π) in [0, 1]× (−∞,∞),

(6)

where m : [0, 1]× [0, 2π)→ [0,∞) is given by

m(r, θ) =

{
−(r − 0.5)(r − 0.3) if (r, θ) ∈ (0.3, 0.5)× [0, 2π),

0 otherwise.
(7)

Naturally, this model fits into the abstract setting of this paper with

Ω+ = A(0.3, 0.5), Ω0 = B0.3((0, 0)) ∪A(0.5, 1).

Table 1 collects the theoretical and numerical values of the principal eigenvalue
λ1 of −∆ in the most relevant subdomains of Ω from the point of view of de-
scribing the dynamics of (3). Namely, Ω and each of the two components of
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Ω0. We call theoretical λ1 the value of the approximation obtained by using
Bessel function and computed λ1 the value calculated through the Inverse Power
Method applied to the differentiation matrices approximating the Laplace op-
erator with N + 1 nodes in the r-direction and Nθ nodes in the θ-direction.

Subdomain Theoretical λ1 Computed λ1 Computed λ1

N=17, Nθ = 40 N=42, Nθ = 40
B1((0, 0)) 5.783185962946 5.783185962959 5.783185962956
A(0.5,1) 39.013288499083 39.013288499012 39.013288498923
B0.3((0, 0)) 64.257621810519 64.257621810502 64.257621810334

Table 1: The principal eigenvalues in the relevant subdomains.

Thanks to Table 1, if we take

Ω0,1 = A(0.5, 1), Ω0,2 = B0.3((0, 0)),

then λ1[−∆,D,Ω0,1] < λ1[−∆,D,Ω0,2]. The existence of classical positive
solutions of (1) is guaranteed from the following theorem borrowed from [18].
As all the remaining results going back to [18] and [12], it is collected here by
the sake of completeness.

Theorem 2.1. Suppose m(x, y) satisfies (A). Then,

1. The problem (4) possesses a classical positive solution if, and only if,

λ1[−∆,D,Ω] < λ < λ1[−∆,D,Ω0,1]. (8)

Moreover, it is unique if it exists.

2. Suppose (8) and let θλ denote the unique classical positive solution of (4).
Then

lim
λ↓λ1[−∆,D,Ω]

||θλ||L∞(Ω) = 0, (9)

and

lim
λ↑λ1[−∆,D,Ω0,1]

||θλ||L∞(Ω) =∞ (10)

uniformly in (Ω0,1 ∪ Ω0,2)\∂Ω.

3. The mapping λ→ θλ is point-wise increasing and, if we regard to it as a
mapping from (λ1[−∆,D,Ω], λ1[−∆,D,Ω0,1]) into C1,ν(Ω), 0 < ν < 1,

then it is differentiable and ∂θλ
∂λ ∈W

2,p(Ω) ∩W 1,p
0 (Ω) for all p > 1.
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In order to compute some distinguished solutions along the global curve
of classical positive solutions of (4) we apply the collocation spectral method
already described in Appendix A to obtain a nonlinear system of equations that
we solve using the Newton method. Succeeding in the choice of an appropriate
initial data for the Newton method is utterly based on a good knowledge of
the available analytical results.

Figure 3 shows some of the classical positive solutions that we have com-
puted with our method. The value λ1[−∆,D, B1((0, 0))] = 5.783185 is the
unique value of λ for which bifurcation to positive solutions from u = 0 occurs.
It should be noted how these solutions grow in Ω0,1, while, in strong apparent
contrast, they stabilize in B1((0, 0))\Ω0,1, as λ increases.

As λ moves up from λ1[−∆,D, B1((0, 0))] = 5.783185, the principal eigen-
value of the linearization around the positive solutions grows from zero up to
reach its maximum value critical λ, where it becomes decreasing for any further
value λ up to approach the critical value where the bifurcation from infinity
takes place, where it converges to zero. As this feature, was not previously
observed in the specialized literature, we conjecture that

lim
λ↑λ1[−∆,D,Ω0,1]

λ1[−∆ + 2m(x, y) θλ − λ,D,Ω] = 0.

Table 2 collects some representative values of λ together with the L∞-norms
of the corresponding positive solutions and the principal eigenvalues of their
linearizations (p.e.l.).

Value of λ p.e.l. ||u||∞
30.0 1.9279 2.3520e+005
32.5 1.0511 1.3294e+006
33.6 0.7035 5.0819e+006
34.0 0.4480 1.0785e+007

Table 2: The principal eigenvalues of the linearizations.

Now, we will show the results of our numerical experiments for computing
the metasolutions of (4). First, we need to introduce some concepts going back
to [12].

Definition 2.2. Consider the problem{
−∆u = λu−m(x, y)u2 in D,

u =∞ on ∂D,
(11)

where D is un proper subdomain of Ω. A function u ∈ C2+µ(D) is said to be
a large (or explosive) solution of (11) if it satisfies the differential equation in
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Figure 3: Plots of the classical positive solutions of (4) for λ ∈ {6, 13, 22, 29, 34}.
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D, u = 0 on ∂D ∩ ∂Ω, and

lim
dist((x,y),∂D\∂Ω)↓0

u(x, y) =∞.

Definition 2.3. Consider (11) with D ∈ {Ω\Ω0,1,Ω+}. Then, a function
M : Ω → [0,∞] is said to be a metasolution of (11) supported in D if there
exists a large solution L of (11) in D for which

M =

{
∞ in Ω\D,
L in D.

(12)

According to López-Gómez [18] and [21] , it is known that:

• If λ1[−∆,D,Ω] ≤ λ < λ1[−∆,D,Ω0,1], the problem (4) admits a classical
positive solution.

• If λ1[−∆,D,Ω0,1] ≤ λ < λ1[−∆,D,Ω0,2], the problem (4) admits a meta-
solution supported in Ω\Ω0,1.

• If λ ≥ λ1[−∆,D,Ω0,2], the problem (4) admits a metasolution supported
in Ω+.

Moreover, the minimal metasolutions in these ranges describe the limiting
profiles of all positive solutions of the evolution problem (3), when the initial
data u0 is a subsolution of problem (1), see Theorem 5.2 in [21]. So, the impor-
tance of computing them from the point of view of the design, or restoration,
of spatially heterogeneous ecosystems. According to the previous analytical
results, (1) possesses a metasolution supported in Ω\Ω0,1 if

λ1[−∆,D,Ω0,1] w 39.013288 ≤ λ < λ1[−∆,D,Ω0,2] w 64.257622. (13)

To compute this metasolution, we first computed the large solution u of{
−∆u = λu−m(x, y)u2 in B0.5((0, 0)),

u =∞ on ∂B0.5((0, 0)).
(14)

The most natural strategy to approximate the large solution of (14) is to com-
pute the unique positive solution of{

−∆u = λu−m(x, y)u2 in B0.5((0, 0)),

u = β on ∂B0.5((0, 0)),
(15)

for sufficiently large β. Figure 4 shows some numerical solutions of (15) with
β = 3 ∗ 105. Our numerics reveal that the metasolutions supported in Ω\Ω0,1
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are point-wise increasing in Ω\Ω0,1 with respect to λ. They grow at a faster
rate in A(0.5, 1), where m = 0, than in B0.5((0, 0)), where m > 0. Each of these
metasolutions takes the value β on ∂B0.5((0, 0)). As λ ↑ λ1[−∆,D,Ω0,2], the
corresponding metasolution exhibits a complete blow-up in B0.3((0, 0)), while
it stabilizes in A(0.3, 0.5). Finally, to obtain the metasolution supported in Ω+

for λ ≥ λ1[−∆,D,Ω0,2]), we computed the large solution of{
−∆u = λu−m(x, y)u2 in A(0.3, 0.5),

u =∞ on ∂A(0.3, 0.5),
(16)

approximating it by the unique solution of{
−∆u = λu−m(x, y)u2 in A(0.3, 0.5),

u = β on ∂A(0.3, 0.5),
(17)

for β sufficiently large. Figure 5 shows some plots of these metasolutions.
Since the problems (14) and (17) are radially symmetric, the positive large

solution of each of these problems is unique, by, e.g., Theorem 7.1 of J. López-
Gómez [21] (see also [19]). Moreover, due to Theorem 4.7 of [21], we already
know that the positive solutions of (14) and (17) approximate these unique
large solutions as β ↑ ∞. For uniqueness results in more general settings, the
reader is sent to the more recent paper of J. López-Gómez and L. Maire [22].
Figure 6 shows a zoom of the profiles of the positive solutions of (15) for
λ = 40, as well as the profiles of the positive solutions of (17) for λ = 70 and
β ∈ {3 ∗ 105, 4 ∗ 105, 5 ∗ 105}.

2.2. Classical positive solutions in A(R0, R1) under
Dirichlet boundary conditions

In this subsection, we compute numerically some classical positive solutions of{
−∆u = λu−m(x, y)u2 in A(10, 100),

u = 0 on ∂A(10, 100),
(18)

where m : A(10, 100)→ [0,∞) is defined by:

m(x, y) =


0 if (x, y) ∈ A(95, 100),

10−11p(x, y)(x2 + y2 − 102)(952 − x2 − y2)

if (x, y) ∈ A(10, 95)\B6((30, 40)),

0 if (x, y) ∈ B6((30, 40)).

(19)

where p(x, y) = (x − 30)2 + (y − 40)2 − 36. Figure 7 shows a plot of m(x, y)
defined in (19).
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Figure 4: Plots of the solutions of (15) in B1(0)\A(0.5, 1) for λ ∈ {40, 48, 55, 60, 64}.
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Figure 5: Plots of the solutions of (17) in A(0.3, 0.5) for λ ∈ {70, 100}.

Figure 6: Profiles approximating the large solution of (14) for λ = 40 and, of (16)

for λ = 70.

Figure 7: Plots of m(x, y) and its contour lines for the choice (19).
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Consequently, the problem is far from being radially symmetric. The ex-
istence of classical positive solutions of (18) is guaranteed by Theorem 2.1.
Problem (18) can be rewritten as:
−∂

2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
= λu−m(r, θ)u2 in (10, 100)× [0, 2π)

u(10, θ) = 0 on [0, 2π)

u(100, θ) = 0 on [0, 2π)

u(r, θ) = u(r, θ + π) in [10, 100]× (−∞,∞).

(20)

In Table 3 we are giving the theoretical and numerical values of the principal
eigenvalue of −∆ in some of the relevant subdomains of Ω. The theoretical
value is calculated from the estimate 2.4048 for the first zero of the Bessel
function J0.

Subdomain Theoretical λ1 Computed λ1

A(10,100) 0.001097 0.001098
B6((30, 40)) 0.160640 0.160644
A(95,100) 0.394757 0.394757

Table 3: The principal eigenvalues in some relevant subdomains.

The corresponding model fits into the general setting of this paper with

Ω+ = A(10, 95)\B6((30, 40)), Ω0,1 = B6((30, 40)) Ω0,2 = A(95, 100).

Figure 8 shows some of the classical positive solutions that we have com-
puted. These solutions grow in B6((30, 40)), while they stabilize in the set
A(10, 100)\B6((30, 40)), as λ increases. As λ increases from 0.001098 approxi-
mating the principal eigenvalue in B6((30, 40)), which is given by 0.160644, the
solutions blow up in B6((30, 40)) as λ ↑ 0.160644.

2.3. Classical positive solutions in B1((0, 0)) under
Neumann conditions

In this subsection we compute the classical positive solution of−∆u = λu−m(x, y)u2 in B1((0, 0)),
∂u

∂η
= 0 on ∂B1((0, 0)),

(21)

using the collocation spectral method described in the Appendixes. Here, η
stands for the outward unit normal along ∂B1((0, 0)). So, η(x, y) = (x, y)
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Figure 8: Plots of the classical solutions of (18) in A(10, 100) for λ ∈
{0.004, 0.03, 0.06}.
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for all (x, y) ∈ ∂B1((0, 0)). The existence of solutions of (21) for any domain
Ω ⊂ R2 is guaranteed by the next theorem going back to Ouyang [25]. The
case of general boundary operators on ∂Ω was first considered by J. M. Fraile
et al. [11], where the open set Ω0 consists of a single component with Ω0 ⊂ Ω.
Nevertheless, in this paper we will investigate numerically some cases where Ω0

consists of two disjoint components. Our numerical experiments show that the
positive classical solutions of (21) tend to infinity in Ω0,1 as λ ↑ λ1[−∆,D,Ω0,1].

Theorem 2.4. Assume that m ≥ 0 (6≡ 0) is a smooth function in Ω.

1. If Ω0 = ∅, then for every λ > 0 there exists a unique solution u(λ) of
problem (21).

2. If Ω0 6= ∅, then for any λ ∈ (0, λ1[−∆,D,Ω0]) there exists a unique
solution of (21), whereas (21) cannot admit a positive solution if λ ≥
λ1[−∆,D,Ω0].

Moreover

lim
λ↑λ1[−∆,D,Ω0]

||u(λ)||L2(Ω) =∞. (22)

Note that problem (21) can be written as:
−∂

2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
= λu−m(r, θ)u2 in (0, 1)× [0, 2π),

∂u

∂r
(1, θ) = 0 on [0, 2π),

u(r, θ) = u(r, θ + π) in [0, 1]× (−∞,∞).

(23)

In order to show the excellent accuracy of the numerical method, we are
taking m ≡ 1 in the first simulation. In this case, the corresponding model fits
into the abstract setting of Theorem 2.4, with Ω+ = B1((0, 0)) and Ω0 = ∅.
Thus, the problem (21) has a unique positive solution for all λ > 0. In this case,
we know that the solution of (21) is u ≡ λ. Figure 9 shows the plots of some
classical positive solutions computed through the spectral collocation method
introduced in this paper, and the distribution of the error E(x, y) = |u(x, y)−λ|
in B1((0, 0)) for λ = 8 and λ = 100. Note that the maximum value of the error
is of order 10−13 for λ = 8 and 10−12 for λ = 100.

Finally, for the last simulation, we take m as in (5). It should be remember
that for this choice the model fits into the abstract setting of this paper with
Ω+ = A(0.3, 0.5), Ω0 = B0.3((0, 0)) ∪ A(0.5, 1), Ω0,1 = A(0.5, 1) and Ω0,2 =
B0.3((0, 0). In this case, combining the abstract theory of Fraile et al. [11]
with López-Gómez [21, Ch. 4], it becomes apparent that (21) has a classical
positive solution if, and only if, 0 < λ < λ1[−∆,D,Ω0,1]. Actually, this is a
rather direct consequence of Daners and López-Gómez [7, Th. 1.1].
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Figure 9: Numerical solution of (21) for λ ∈ {8, 100} with m ≡ 1 and the corre-

sponding errors E(x, y).

Figure 10 shows the plots of the numerical solutions of (21) for λ ∈ {0.0003, 5}.
Although it is well known that the solutions are point-wise increasing in Ω with
respect to λ, our experiments suggest that they grow at a faster rate on Ω0,1.
Actually, these solutions grow up to infinity on Ω̄0,1 as λ ↑ λ1[−∆,D,Ω0,1].

2.4. Case Neumann II : Numerical Computation of
Classical Positive Solutions in the circular annulus
Ω = A(R0, R1)

Firstly, we consider the problem

−∆u = λu−m(x, y)u2 in A(4, 10),
∂u

∂η
= 0 on ∂A(4, 10),

(24)

where η is the unit outward vector on ∂A(4, 10) and m ≡ 1. The existence
of solutions of (24) is guaranteed by Theorem 2.4. The problem (24) in polar
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Figure 10: Plots of the classical solutions of (23) with m as in (5) for λ ∈ {0.0003, 5}.
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coordinates can be rewritten as:

−∂
2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
= λu−m(r, θ)u2 in (4, 10)× [0, 2π),

−∂u
∂r

(4, θ) = 0 on [0, 2π),

∂u

∂r
(10, θ) = 0 on [0, 2π),

u(r, θ) = u(r, θ + π) in [4, 10]× (−∞,∞).

(25)

Since Ω+ = A(4, 10) and Ω0 = ∅, by the Theorem 2.4, there exists a clas-
sical positive solution for all λ > 0. Naturally, as in the previous section, the
solutions of (24) must be u ≡ λ. Figure 11 shows some of the numerical solu-
tions that we computed.

Figure 11: Numerical solution of (24) in A(4, 10) for λ ∈ {4, 15} with m ≡ 1.

To end this paper, we consider (24) in A(4, 10) with two different coefficients
m : A(4, 10)→ [0,∞) defined by

m(x, y) =

{
(
√
x2 + y2 − γ)(9− (

√
x2 + y2) if (x, y) ∈ A(γ, 9),

0 if (x, y) ∈ A(4, γ) ∪A(9, 10).
(26)

where γ ∈ {4.9, 5.5}. Figure 12 shows a plot of m(x, y) for γ = 5.5. For this
choice, Ω+ = A(γ, 9) and Ω0 = A(4, γ) ∪ A(9, 10). Table 4 provides the nu-
merical values of the principal eigenvalues of −∆ in some relevant subdomains
of Ω. These values have been computed applying the Inverse Power Method
to the discretization matrix of the Laplace operator, taking 85 nodes in the
r-direction and 60 nodes in the θ-direction.

Although it is possible to give a theoretical value for the underlying prin-
cipal eigenvalues as in the tables above, in this occasion it is much faster and
versatile to compute them through the Inverse Power Method applied to the
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Figure 12: Plot of m(x, y) for the choice (26) with γ = 5.5.

corresponding differentiation matrix. Actually, our method might be far more
accurate than using the available tables.

Subdomain A(4,10) A(4,5.5) A(9,10) A(4,4.9)
Computed λ1 0.268642 4.375300 9.866831 12.172021

Table 4: The principal eigenvalue of some relevant subdomains.

Thanks to the values given in Table 4, we have that Ω0,1 = A(4, 5.5) and
Ω0,2 = A(9, 10) if γ = 5.5, since

λ1[−∆,D, A(4, 5.5)] < λ1[−∆,D, A(9, 10)],

whereas Ω0,1 = A(9, 10) and Ω0,2 = A(4, 4.9) if γ = 4.9, because in such case

λ1[−∆,D, A(9, 10)] < λ1[−∆,D, A(4, 4.9)].

So, the relative position of these principal eigenvalues have inter-exchanged.

Figures 13 and 14 show the plots of some positive solutions of (24) with
m(x, y) defined by (26); these plots were computed for γ = 5.5 and γ = 4.9,
respectively. In both cases, as predicted by the theory, the solutions are point-
wise increasing with respect to λ. However, these solutions grow faster in
Ā(4, 5.5) than in Ā(9, 10) if γ = 5.5, while they grow faster in Ā(9, 10) than in
Ā(4, 5.5) if γ = 4.9, as expected from the existing theory.

Actually, these solutions grow to infinity in Ā(4, 5.5) as λ ↑ λ1[−∆,D,Ω0,1]
if γ = 5.5, stabilizing to some fixed profile in Ā(9, 10), whereas they grow-up
to infinity in Ā(9, 10) as λ ↑ λ1[−∆,D,Ω0,1] if γ = 4.9, staying bounded in its
complement.
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Figure 13: Numerical solution of (24) in A(4, 10) for λ ∈ {1, 1.1} with m(x, y) given

by (26) with γ = 5.5.

2.5. Final remarks

Table 5 collects the number of collocation points used in the simulations pre-
sented in this paper. When the domain is a disk, it equals

(
Nr+1

2

)
Nθ, while it

is given by (Nr + 1)Nθ if, instead, it is an annulus.
As illustrated in Table 5, for obtaining Figure 8, in order to capture the

fastest growth of the solution in Ω0,1 = B6((30, 40)), we had to increase the
number of collocations points up to 2300.

In the simulations sketched by Figure 5, we have taken more collocations
points than in the simulations of Figures 3-4 to approximate the growth of the
solution on ∂A(0.3, 0.5). Finally, note that, in order to get Figures 13 and 14,
where Ω0,1 6= ∅, we have used more collocation points than in the simulations
necessary to get Figure 11, where Ω0 = ∅.

Appendix

A. Construction of the differentiation matrices in the
unit disk

The main goal of this appendix is to discretize the Laplace operator in po-
lar coordinates in the unit disk B1((0, 0)) in order to impose inhomogeneous
Dirichlet and homogeneous Neumann conditions. First, we will discretize the
disk spectrally by taking a periodic Fourier grid in θ and a nonperiodic Cheby-
shev grid in r. Note that, when performing the radial interpolation, as the
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Figure 14: Numerical solution of (24) in A(4, 10) for λ ∈ {1, 1.8} with m(x, y) given

by (26) with γ = 4.9.

radius is positive, the collocation points (ri, θj) with negative ri, correspond to
those which have the same radius and θ increased by π (see [4, 9, 15, 23]). The

collocation points are (ri, θj) =
(

cos
(

(i−1)π
Nr

)
, 2π j
Nθ

)
for 1 ≤ i ≤ N + 1 and

1 ≤ j ≤ Nθ, where N = (Nr − 1)/2. To avoid the inherent loss of regularity at
the origin, the grid parameter Nr in the r-direction is taken to be odd, and Nθ
must be even to be able to apply the symmetry properties in θ.

Some pioneer results about Chebyshev-Fourier expansion can be found in
[2, 5, 8, 28, 30, 31]. In Gottlied, Hussaini and Orszag [14] it was shown that
the trigonometric interpolant of a smoothly differentiable function with period

Figure Domain Nr Nθ Total
3 B1((0, 0)) 55 30 990
4 B0.5((0, 0)) 55 30 990
5 A(0.3, 0.5) 45 30 1380
8 A(10, 100) 45 50 2300
9 B1((0, 0)) 35 30 540
11 A(4, 10) 40 30 1230
13 A(4, 10) 61 30 1830
14 A(4, 10) 61 30 1830

Table 5: Total number of collocations points.
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2π, g(θ) can be written as

g(θ) =

Nθ∑
l=1

g(θl)SNθ (θ − θl)

where SNθ is the periodic sinc function:

SNθ (θ) =
sin
(
Nθθ

2

)
Nθ tan

(
θ
2

) .
Thus, let us consider

uN+1,Nθ (r, θ) =

Nr∑
k=1

Lk(r) Pk(θ)

where Lk’s are the Lagrange polynomials Lk(r) =
∏
i 6=k(r − ri)/(rk − ri) and

Pk(θ) =

Nθ∑
l=1

ak,lSNθ (θ − θl)

is the trigonometric interpolant of u(rk, θ) in the points θl, l = 1, . . . , Nθ. Then

uN+1,Nθ (r, θ) =

Nr+1∑
k=1

Nθ∑
l=1

ak,l SNθ (θ − θl) Lk(r). (27)

Note that the approximate solution used in Huang and Sloan [16] coincides with
the expression in (27) but there, the collocation points in the radial direction

are of the form
1−cos( (i−1)π

Nr
)

2 for 1 ≤ i ≤ N + 1.

Taking into account that

rNr+2−i = −ri and θ
j+

Nθ
2

= θj + π, for 1 ≤ j ≤ Nθ
2

and 1 ≤ i ≤ Nr + 1

2
,

we can conclude that

u(rNr+2−i cos θj , rNr+2−i sin θj) = u(ri cos θ
j+

Nθ
2

, ri sin θ
j+

Nθ
2

). (28)

Since
aNr+2−i,j = u(rNr+2−i, θj), a

i,j+
Nθ
2

= u(ri, θj+Nθ
2

),

from (28) we finally obtain that

aNr+2−i,j = a
i,j+

Nθ
2

, 1 ≤ j ≤ Nθ
2
, 1 ≤ i ≤ Nr + 1

2
. (29)
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Very recently, using (29) , the authors proved in [24] that uN+1,Nθ (r, θ) can be
rewritten as:

uN+1,Nθ (r, θ) =

Nr+1
2∑

k=1

Nθ∑
l=1

ak,l

[
SNθ (θ−θl)Lk(r)+SNθ

(
θ−θ

l+
Nθ
2

)
LNr+2−k(r)

]
where ak,l = u(rk, θl).

Therefore, there exist
(
Nr+1

2

)
Nθ unknowns in uN+1,Nθ (r, θ).

Thus, the associated matrix to the Laplacian in polar coordinates on the
full grid is an (N + 1)Nθ × (N + 1)Nθ matrix consisting of Kronecker products
where N = (Nr − 1)/2. Let us define the differentiation matrices D1, D2, E1,

E2 and D
(2)
θ by

(E1)i,j = L′j(ri); 1 ≤ i, j ≤ N + 1,

(E2)i,j = L′Nr+2−j(ri); 1 ≤ i, j ≤ N + 1,

(D1)i,j = L′′j (ri); 1 ≤ i, j ≤ N + 1, (30)

(D2)i,j = L′′Nr+2−j(ri); 1 ≤ i, j ≤ N + 1,

(D
(2)
θ )k,l = S′′Nθ (θk − θl); 1 ≤ l, k ≤ Nθ.

Consequently, the discretization matrix of the Laplacian in polar coordinates,
denoted by L∆, takes the following form:

L∆ = (D1 +RE1)⊗
(
I 0
0 I

)
+ (D2 +RE2)⊗

(
0 I
I 0

)
+R2 ⊗D(2)

θ

where I stands for the identity of order Nθ
2 ×

Nθ
2 and R is the diagonal matrix

Ri i = r−1
i , i = 1, . . . , N + 1, see [33] and [27].

Finally, one should extract the Nθ- first rows of L∆ because they correspond
to the discretization of the Laplacian on the boundary points (r1, θj) for j =
1, . . . , Nθ. So, the discretization matrix of the Laplace operator on the inner
collocations points is given by L̃ where L̃ is obtained by stripping L∆ of its Nθ-
first rows, so,

L∆ =

 · · ·

L̃

 .

Throughout the rest of this section, we will set:

u = (u(r1, θ1), . . . , u(r1, θNθ ), u(r2, θ1), . . . , u(r2, θNθ ), . . .

. . . , u(rN+1, θ1), . . . , u(rN+1, θNθ ))
T ,

u0 = (u(r1, θ1), . . . , u(r1, θNθ ))
T ,

ũ = (u(r2, θ1), . . . , u(r2, θNθ ), . . . , u(rN+1, θ1), . . . , u(rN+1, θNθ ))
T .



336 M. MOLINA-MEYER AND F.R. PRIETO MEDINA

Note that u = (u0, ũ)T and N + 1 = Nr+1
2 . Finally,

(L̃ ũ)(i−2)Nθ+j =

(
∂2uN+1,Nθ

∂r2
+

1

r

∂uN+1,Nθ

∂r
+

1

r2

∂2uN+1,Nθ

∂θ2

)∣∣∣∣
(ri,θj)

for every i = 2, . . . , N + 1 and j = 1, . . . , Nθ. It should be noted that the
subsequent analysis depends on the nature of the boundary conditions of the
problem we want to solve.

A.1. Inhomogeneous Dirichlet condition (u = f 6≡ 0 on
∂B1((0, 0)))

To impose the boundary condition we fix (u0)j = u(r1, θj) = f(θj) for j =

1, . . . , Nθ. Then, we divide L̃ as:

L̃ =

(
L1 L2

)
(31)

where L1 and L2 are the matrices obtained by stripping L̃ of its NNθ-last and
Nθ-first columns, respectively. Note that

L̃ u = L1 u0 + L2 ũ.

Thus, L2 provides us with the discretization matrix of the Laplace operator on
the inner collocation points.

A.2. Homogeneous Neumann conditions (∂u
∂η

= 0 on

∂B1((0, 0)))

Let E be the differentiation matrix of ∂
∂r on the colocation points (ri, θj) for

i = 1, . . . , N and j = 1, . . . , Nθ:

E := E1 ⊗
(
I 0
0 I

)
+ E2 ⊗

(
0 I
I 0

)
where E1 and E2 are the matrices defined in (30), and I stands for the identity
of order Nθ

2 ×
Nθ
2 . In order to impose the Neumann boundary conditions on

the collocation points on ∂B1((0, 0)), we are interested in the portion of E that
discretizes the first derivative on these points. Thus, we introduce the matrix

A = FE1
1 ⊗

(
I 0
0 I

)
+ FE2

1 ⊗
(

0 I
I 0

)
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where FE1
1 and FE2

1 denote the first row of the matrices E1 and E2, respectively.
Note that, for any j = 1, . . . , Nθ fixed, the discrete partial derivative with
respect to r in (r1, θj) corresponds to the j-th row of the matrix A. That is,

∂

∂r

∣∣∣∣
(r1,θj)

= FAj for j = 1, . . . , Nθ.

Then, we obtain the following partion of E:

E =

 A

· · ·

 .

Next, we break up A as follows:

A =

(
A1 A2

)
where A1 and A2 stand for the matrices obtained by stripping of A the NNθ-
last and the Nθ-first columns, respectively. Finally, the homogeneous Neumann
boundary conditions

∂u

∂η

∣∣∣∣
∂B1((0,0))

=
∂u

∂r

∣∣∣∣
∂B1((0,0))

= 0

implies that

0 = A u = A1 u0 +A2 ũ.

Thus, u0 satisfies
u0 = −A−1

1 A2 ũ.

Considering L̃ as in (31), we have:

L̃u = L1u0 + L2ũ

= (−L1A
−1
1 A2 + L2)ũ.

Therefore, the discretization matrix of the Laplacian on the inner collocation
points with homogeneous Neumann boundary conditions becomes

˜̃L = −L1 A
−1
1 A2 + L2.

We claim that A1 is non-singular. Indeed, since

A1 = (E1)11 ⊗
(
I 0
0 I

)
+ (E2)11 ⊗

(
0 I
I 0

)
,
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using (30) and the well known Chebyshev differentiation matrix (see, e.g., [26],
[5] or [33]), it follows that

(E1)11 =
2N2

r + 1

6
, (E2)11 =

1

2
(−1)Nr .

Thus,

det(A1) =
[
((E1)11)2 − ((E2)11)2

]Nθ
2 6= 0.

B. The differentiation matrices in a circular annulus

The rotational symmetry of A(R0, R1) enables us to use polar coordinates.
In such case, there is an isomorphism between A(R0, R1) and the rectangle
[R0, R1]× [0, 2π]. Hence, we need to take a linear transformation of the Cheby-
shev grid in the r-direction and a periodic Fourier grid in θ. The grid in the
ρ-direction is obtained from the usual Chebyshev grid r ∈ [−1, 1]. So, the
collocation points in the annulus are

(ρi, θj) =

(
(R1 −R0)ri + (R1 +R0)

2
,

2π j

Nθ

)
1 ≤ i ≤ Nr + 1, 1 ≤ j ≤ Nθ.

It should be remembered that ρ1 = R1 and ρNr+1 = R0 correspond to the
boundary points of the annulus. As a by-product, the discretization of the
Laplace operator in polar coordinates in the annulus is the matrix of order
((Nr + 1)Nθ)× ((Nr + 1)Nθ) defined by

L∆ = (p2 D2
r + p R Dr)⊗ I +R2 ⊗D(2)

θ

where p = 2
R1−R0

, I stands for the Nθ ×Nθ identity matrix, R is the diagonal

matrix with entries Ri i = 1
ρi

for i = 1, . . . , Nr+1, and Dr is the full Chebyshev
differentiation matrix

(Dr)i,j = L′j(ri); 1 ≤ i, j ≤ Nr + 1. (32)

Note that in this case we are not discarding any blocks of Dr because we need to
consider exactly r in the closed interval [−1, 1]. Before imposing the boundary
conditions on L∆, we set

u0 = (u(ρ1, θ1), . . . , u(ρ1, θNθ ))
T ,

ũ = (u(ρ2, θ1), . . . , u(ρ2, θNθ ), . . . , u(ρNr , θ1), . . . , u(ρNr , θNθ ))
T ,

u1 = (u(ρNr+1, θ1), . . . , u(ρNr+1, θNθ ))
T .

So, u is factorized as (u0, ũ, u1)T .
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B.1. Homogeneous Dirichlet conditions (u = 0 on
∂A(R0, R1))

First, set w := L∆ u. Next, we factorize w in the same way as u, so that
w = (w0, w̃, w1)T with w0, w1 ∈ RNθ and w̃ ∈ RNθ(Nr−1). Then, the procedure
scheme adopted here to impose the homogeneous Dirichlet conditions on L∆

consists in fixing the vectors u0 and u1 at zero, and ignoring w0 and w1 because,
as already mentioned above, the Laplacian is computed in the interior of domain
where the differential equation holds. This implies that the Nθ-first and Nθ-last
columns of L∆ have no computational effects, because they correspond to the
discretization of the Laplacian at points along the boundary. Accordingly, the
discretization matrix for the Laplacian is the matrix L̃ obtained by stripping
L∆ of its Nθ-first and Nθ-last rows and columns.

L∆ =

 L̃

 .

B.2. Inhomogeneous Dirichlet conditions (u = f 6≡ 0 on
∂A(R0, R1))

We consider w as in the previous subsection. In the present situation, to impose
the inhomogeneous Dirichlet condition on L∆ we first fix u0 and u1 at the
vectors fNr+1 and f1, respectively, where (fi)j = f(ρi, θj) with i ∈ {1, Nr + 1}
fixed and j = 1, . . . , Nθ, and we ignore w0 and w1. So, the Nθ-first and Nθ-last
rows have no effects and they can be ignored. Accordingly, the matrix L∆ is
split into the three blocks

L∆ =


· · ·

L

· · ·


where L is the matrix obtained by stripping L∆ of its Nθ-first and Nθ-last rows.
Consequently, we can discard the top and bottom blocks of L∆. Next, we split
L into another three blocks, as follows

L =
(

L1 L2 L3

)
, (33)

where

• L1 is the matrix formed by the first Nθ columns of L.
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• L2 is obtained by stripping L of its Nθ-first and Nθ-last columns.

• L3 is the matrix formed by the last Nθ columns of L.

Note that, owing to (33), we have

Lu = L1u0 + L2ũ+ L3u1. (34)

Naturally, L2 is the discrete matrix of the Laplacian in polar coordinates on
the inner collocation points of the annulus.

B.3. Homogeneous Neumann conditions (∂u
∂η

= 0 on

∂A(R0, R1))

In this case, we denote by E the corresponding discratization matrix of the
first partial derivative with respect to r on the collocation points (ρi, θj) for
i = 1, . . . , Nr + 1 and j = 1, . . . , Nθ. That is,

E = p Dr ⊗ I

where I is the identity matrix of dimension Nθ ×Nθ.
Now, to impose the Neumann boundary conditions on the collocation points

contained in ∂A(R0, R1), we are just interested into the portion of E that dis-
cretizes the first derivative on the inner and outer components of the boundary
of the annulus. Accordingly, we introduce the matrices A and B as follows:

A = p FDr1 ⊗ I
B = p FDrNr+1 ⊗ I

(35)

where FDr1 and FDrNr+1 denote the first and last rows, respectively, of the matrix
Dr. Note that, for any fixed j = 1, . . . , Nθ, the discrete partial derivative
with respect to ρ at (ρ1, θj) and (ρNr+1, θj) corresponds to the j-th row of the
matrices A and B, respectively. That is,

p
∂

∂r

∣∣∣∣
(ρ1,θj)

= FAj for j = 1, . . . , Nθ,

p
∂

∂r

∣∣∣∣
(ρNr+1,θj)

= FBj for j = 1, . . . , Nθ.

Now, we divide both, A and B, in three blocks

A =

(
A1 A2 A3

)
, (36)

B =

(
B1 B2 B3

)
, (37)

where:
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• A1 (resp. B1) is obtained by stripping A (resp. B) of its NrNθ-last (resp.
-first) columns.

• A2 (resp. B2) is obtained by stripping A (resp. B) of its Nθ-first (resp.
-last) and Nθ-last (resp. -first) columns.

• A3 (resp. B3) is obtained by stripping A (resp. B) of its NrNθ-first (resp.
-last) columns.

Imposing 0 = ∂u
∂r (R0, θ) = ∂u

∂r (R1, θ), yields

0 = A u = A1 u0 +A2 ũ+A3 u1 =⇒ A1 u0 +A3 u1 = −A2 ũ

0 = B u = B1 u0 +B2 ũ+B3 u1 =⇒ B1 u0 +B3 u1 = −B2 ũ

an solving the matricial system{
A1u0 +A3u1 = −A2ũ

B1u0 +B3u1 = −B2ũ,

we obtain{
u0 = −A−1

1 (A2 +A3(B3 −B1A
−1
1 A3)−1)(B1A

−1
1 A2 −B2)ũ

u1 = (B3 −B1A
−1
1 A3)−1(B1A

−1
1 A2 −B2)ũ.

We claim that (B3 − B1A
−1
1 A3) is non-singular. Indeed, from (35), (36) and

(37) it becomes apparent that

A1 = (Dr)1 1I,

A3 = (Dr)1Nr+1I,

B1 = (Dr)Nr+1 1I,

B3 = (Dr)Nr+1Nr+1I.

Using (32) and the coefficients of the Chebyshev differentiation matrix, it fol-
lows that

(Dr)1 1 = −(Dr)Nr+1Nr+1 =
2N2

r + 1

6
and that

(Dr)1Nr+1 = −(Dr)Nr+1 1 =
1

2
(−1)Nr .

Therefore,

det(B3 −B1A
−1
1 A3) =

[
(Dr)Nr+1Nr+1

−(Dr)Nr+1 1 ((Dr)1 1)
−1

(Dr)1Nr+1

]Nθ
6= 0.
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Consequently, by substituting u0 and u1 in (34), we find the discretization
matrix of the Laplacian. Namely,

˜̃L = −L1A
−1
1 (A2 +A3(B3 −B1A

−1
1 A3)−1)(B1A

−1
1 A2 −B2)

+ L2 + L3(B3 −B1A
−1
1 A3)−1(B1A

−1
1 A2 −B2).
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