On Hyperbolic π-Orbifolds with Arbitrary many Singular Components

ANDREI VESNIN (*)

Summary. - We construct a family of $(n + 1)$-component links \mathcal{L}_n which are closures of rational 3-string braids $(\sigma_1^{-1/2} \sigma_2^2)^n$, and show that for $n \geq 3$ they arise as singular sets of hyperbolic π-orbifolds. Moreover, their 2-fold branched coverings are described by Dehn surgeries.

1. Introduction

The concept of a hyperelliptic involution came originally from the theory of Riemann surfaces. Let S_g be a Riemann surface of genus g, $g > 1$. An involution $\tau \in \text{Iso}^+(S_g)$ is said to be hyperelliptic if the quotient space $S_g/\langle \tau \rangle$ is homeomorphic to the 2-dimensional sphere S^2. A Riemann surface is said to be hyperelliptic if it admits a hyperelliptic involution, i.e. if it can be obtained as a 2-fold branched covering of S^2. For properties of hyperelliptic Riemann surfaces see [4].

This concept can be generalized to higher dimensions in the natural way. Let M be an n-dimensional manifold. Suppose that there exists an involution $\tau : M \to M$ such that the quotient space $M/\langle \tau \rangle$ is homeomorphic to the n-dimensional sphere S^n. Then, τ is said to be a hyperelliptic involution and M is said to be a hyperelliptic

(*) Supported by the grant NSh-8526.2006.1, the grant of RFBR, and the grant of Siberian Branch of RAN.
Author’s address: Andrei Vesnin, Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia; E-mail: vesnin@math.nsc.ru
Keywords: Hyperbolic 3-Manifolds, Hyperelliptic Involution, π-Orbifold.
AMS Subject Classification: Primary: 57M25.
manifold. If M admits a geometric structure then we assume in the
definition that \(\tau \) is an isometry.

Three-dimensional hyperelliptic manifolds are objects of a special
interest because of the relation with knot theory. If M is a
3-dimensional hyperelliptic manifold, with a hyperelliptic involution
\(\tau \), then M is the 2-fold branched covering of \(S^3 \) branched over some
link (in particular, a knot) \(L \). The covering is given by the action of
\(\tau \) and each point of \(L \) has branching index 2. According to the ter-
minology of orbifold theory (see [16, 19]), this situation means that
M is the 2-fold covering of a \(\pi \)-orbifold \(O = S^3(L) \) with underling
set \(S^3 \) and singular set \(L \) with singular angle \(\pi \) at each point of \(L \).

It is known that in the 3-dimensional case there are eight model
geometries: \(E^3, \mathbb{H}^3, S^3, \mathbb{H}^2 \times \mathbb{E}^1, S^2 \times \mathbb{E}^1, Sol, Nil, \) and \(PSL(2, \mathbb{R}) \)
[16, 19]. It was shown in [8] that for each of these geometries there
exist hyperelliptic manifolds (with \(\tau \) be an isometry).

Examples of hyperbolic 3-manifolds of small volume admitting
one, two, or three hyperelliptic involutions can be found in [11];
we note that the maximal number of non-conjugate hyperelliptic
involutions of a hyperbolic manifold is nine, see [12], [6].

Let \(M \) be a hyperbolic hyperelliptic 3-manifold with hyperelliptic
involution \(\tau \). Then, the quotient \(\pi \)-orbifold \(M/\langle \tau \rangle = S^3(L) \) is also
hyperbolic.

A link \(L \) in \(S^3 \) is said to be hyperbolic if the complement \(S^3 \setminus L \)
is a hyperbolic manifold. We will say that \(L \) is \(\pi \)-hyperbolic if the
\(\pi \)-orbifold \(O = S^3(L) \) is hyperbolic. Obviously, hyperbolicity of a
link does not imply \(\pi \)-hyperbolicity of it (for example, hyperbolic
2-bridge links are not \(\pi \)-hyperbolic).

Most of known examples of \(\pi \)-hyperbolic links have few com-
ponents. Among them are knots \(8_{18} \) and \(9_{49} \), 2-component link
\(10^2_{138} \), knots and 3-component links arising as closed 3-string braids
\((\sigma_1 \sigma_2^{-1})^n, n \geq 4 \) (here we use standard notations for knots and links
according to [15] and for braids according to [1]). Discussions of the
2-fold branched coverings of these knots and links can be found in
[9, 10, 11].

In the present paper, we construct explicit examples of \(\pi \)-hy-
perbolic links with an arbitrary number \(n \) of components, for any posi-
tive integer \(n \). We will present quite simple examples of such a type.
Moreover we describe the 3-manifolds that are the 2-fold branched coverings of the links under consideration.

2. π-hyperbolic links

To define a family of links we start with the notion of a rational 3-string braid.

Let σ_1 and σ_2 be standard generators of the braid group B_3 on 3 strings. Elements of B_3 are of the form $\omega = \sigma_{i_1}^{p_1} \cdots \sigma_{i_k}^{p_k}$, where i_1, \ldots, i_k are equal to 1 or 2, and p_1, \ldots, p_k are integers. To construct a geometric braid corresponding to ω, with each multiplier $\sigma_{i_j}^{p_j}$ we associate $|p_j|$ half-twists on strings i_j and $i_j + 1$ in the direction depending of sign of p_j. In other words, we are putting p_j–tangle with strings i_j and $i_j + 1$ as incoming arcs.

We generalize this construction in the following way (see also [7]).

Let p_j and q_j be coprime integers. By $\sigma_{i_j}^{p_j/q_j}$ we denote the geometrical object called a rational braid, which is obtained by putting the rational p_j/q_j–tangle with strings i_j and $i_j + 1$ as incoming arcs. The product of two rational braids is defined similarly to the product of usual braids. Thus, an expression $\omega = \sigma_{i_1}^{p_1/q_1} \cdots \sigma_{i_k}^{p_k/q_k}$, with i_1, \ldots, i_k equal to 1 or 2, and p_j and q_j be coprime for each $j = 1, \ldots, k$, defines a rational braid obtained by putting rational tangles in respect to each multiplier.

Consider a rational 3-string braid $\sigma_1^{-1/2} \sigma_2^2$ pictured in Figure 1.

Denote by \mathcal{L}_n, $n \geq 1$, the closure of the rational 3-string braid $(\sigma_1^{-1/2} \sigma_2^2)^n$ (see Figure 2, where the 4-component link \mathcal{L}_3 is pictured). Obviously, \mathcal{L}_n has $(n+1)$ components.

Theorem 2.1. For any integer $n \geq 3$ the $(n+1)$-component link \mathcal{L}_n is π-hyperbolic.
Proof. Let $\mathcal{O}_n = S^3(\mathcal{L}_n)$ be the π-orbifold with singular set \mathcal{L}_n. By the definition \mathcal{L}_n has a cyclic symmetry ρ of order n which permutes blocks $\sigma_1^{-1/2}\sigma_2^2$. The symmetry ρ induces a cyclic symmetry of order n of the orbifold \mathcal{O}_n; we denote this symmetry also by ρ. The singular set of the quotient orbifold $\mathcal{O}'_n = \mathcal{O}_n/\langle \rho \rangle$ is the 3-component link \mathcal{R} presented in the left part of Figure 3, i.e. $\mathcal{O}'_n = S^3(\mathcal{R})$. One of its components is the image of the axis of ρ and has singularity index n. Two other components are images of \mathcal{L}_n and have singularity index 2.

Using Reidemeister moves one can redraw \mathcal{R} as in the right part of Figure 3, and then as in the left part of Figure 4.

Let \mathcal{O}''_n be the 2-fold covering of \mathcal{O}'_n, branched over one component of \mathcal{R} having singularity index 2. The singular set of \mathcal{O}''_n is the 2-component link \mathcal{Q} presented in the right part of Figure 4, i.e. $\mathcal{O}''_n = S^3(\mathcal{Q})$. One its component, say \mathcal{Q}_1, has singularity index n, and other, say \mathcal{Q}_2, has singularity index 2.

Now we construct a 2-fold covering of \mathcal{O}''_n branched over \mathcal{Q}_2 as
follows. Using Reidemeister moves one can redraw Q as in the left part of Figure 5, and then as in the right part of Figure 5.

Let us denote by O_n''' the 2-fold covering of O_n'' branched over Q_2. The singular set of O_n''' is the 2-component link P presented in Figure 6, i.e. $O_n''' = S^3(P)$. Both its component have singularity index n.

Using Reidemeister moves P can be redrawn as in the left part of Figure 7, and then as in the right part of Figure 7. Comparing Figure 7 with the standard picture for a 2-bridge link (see, for example [3, p. 195], one can conclude that P is the 2-bridge link corresponding to the rational parameter $40/9 = 4 + 1/2 + 1/4$.

Thus O_n''' is the orbifold with the singular set the 2-bridge 40/9-link and the singularity index n on both components. The hyperbolicity of orbifolds $\alpha/\beta(n)$ with singular set a 2-bridge knot or link α/β and singularity index n is described in [2, Example A.0.2, p. 174] and in [5]. In particular, $\alpha/\beta(n)$ is hyperbolic if $\alpha > 5$, $|\beta| > 1$, and $n \geq 3$. Therefore, the orbifold O_n''' is hyperbolic if $n \geq 3$. Since by the construction O_n''' is commensurable with O_n, the π-orbifold O_n
is also hyperbolic, and the link L_n is π-hyperbolic for $n \geq 3$.

Geometrical invariants of manifolds and orbifolds from the proof can be found by using a computer program SnapPea [17]. Thus, one can see that $\text{vol}(S^3 \setminus \mathcal{R}) = 7.70691\ldots$ and $\text{vol}(S^3 \setminus \mathcal{P}) = 8.51908\ldots$. Moreover, for initial values of n the following table of volumes holds:

<table>
<thead>
<tr>
<th>n</th>
<th>$\text{vol}(S^3 \setminus L_n)$</th>
<th>$\text{vol} \mathcal{O}_n$</th>
<th>$\text{vol} \mathcal{O}_n'$</th>
<th>$\text{vol} \mathcal{O}_n''$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>16.59112\ldots</td>
<td>2.56897\ldots</td>
<td>0.85632\ldots</td>
<td>3.42529\ldots</td>
</tr>
<tr>
<td>4</td>
<td>25.76187\ldots</td>
<td>5.60143\ldots</td>
<td>1.40036\ldots</td>
<td>5.60143\ldots</td>
</tr>
<tr>
<td>5</td>
<td>34.42142\ldots</td>
<td>8.32706\ldots</td>
<td>1.66541\ldots</td>
<td>6.66165\ldots</td>
</tr>
</tbody>
</table>

3. 2-fold branched coverings of links

In this section we will describe 3-manifolds M_n that are 2-fold coverings of S^3 branched over links L_n.
In [18] there was introduced a family of closed orientable 3-manifolds Takahashi manifolds obtained by Dehn surgery with rational coefficients \(p_k/q_k \) and \(r_k/s_k \), \(k = 1, \ldots, n \), on \(S^3 \), along the 2n-component link \(T_n \) (see Figure 8) which is a closed chain of 2n unknotted components. These manifolds have been studied and generalized in [7, 13].

A Takahashi manifold is said to be periodic when the surgery coefficients have the same cyclic symmetry of order \(n \) as the 2n-component link \(T_n \), i.e. the coefficients are \(p_k/q_k = p/q \) and \(r_k/s_k = r/s \) alternately, for \(k = 1, \ldots, n \). Let us denote such Takahashi manifold by \(M_n(p/q; r/s) \). By [7, 18] the manifold \(M_n(p/q; r/s) \) is a 2-fold branched covering of \(S^3 \) branched over the link that is the closure of a rational 3-string braid \((\sigma_1^{p/q} \sigma_2^{r/s})^n \). By the definition, if \(p/q = -1/2 \) and \(r/s = 2/1 \) then we get the link \(L_n \) from the previous section. Therefore, the following description of 2-fold branched coverings of \(L_n \) holds.

Proposition 3.1. For any \(n \geq 1 \) the two-fold covering of \(S^3 \) branched over \(L_n \) is the periodic Takahashi manifold \(M_n = M_n(-1/2; 2/1) \).

In virtue [13, 18] the fundamental group of \(M_n(p/q; r/s) \) has the following presentation:

\[
\langle x_1, \ldots, x_n, y_1, \ldots, y_n \mid y_i^{-p} = x_i^{s} x_{i-1}^{-s}, \quad x_i^{-r} = y_i^{q} y_{i+1}^{-q}, \quad i = 1, \ldots, n \rangle,
\]

where all indices are taken by mod \(n \). Hence the following cyclic
presentation holds:

$$\pi_1(M_n(-1/2; 2/1)) = \langle x_1, \ldots, x_n \mid w(x_i, x_{i+1}, x_{i+2}) = 1, \quad i = 1, \ldots, n \rangle.$$

with the defining word $w(x_i, x_{i+1}, x_{i+2}) = x_i^2(x_ix_i^{-1})^2(x_ix_i^{-1})^2$.

4. Covering diagram

To complete the discussion of links L_n and manifolds M_n let us describe a covering diagram in which they are involved.

Before formulating the main result of this section we have to talk about the types of n-fold cyclic branched coverings of links we want to consider. Obviously, a knot has an unique n-fold cyclic branched covering. Let $L = K_1 \cup K_2$ be a link in the 3-sphere with two components. Denote by $\pi_1(S^3 \setminus L)$ the fundamental group of the link complement and by m_1 and m_2 meridians of the components $K_1 \cup K_2$ of the link, oriented in an arbitrary way. The homology group $H_1(S^3 \setminus L)$ of the link complement is isomorphic to \mathbb{Z}^2 and generated by the homology classes of the meridians. Each surjection $\psi : \pi_1(S^3 \setminus L) \to H_1(S^3 \setminus L) \to \mathbb{Z}_n$ onto the cyclic groups \mathbb{Z}_n of order n defines a cyclic n-fold branched covering $M = M(\psi)$ of S^3 branched over L. According to [14] we call M a strictly–cyclic n-fold covering of L if the corresponding surjection ψ maps (the homotopy class of) meridians m_1 and m_2 of L to the same generator of the cyclic group \mathbb{Z}_n. Note that strictly–cyclic coverings are also called uniform coverings in [20].

Let us denote by M'_n the strictly–cyclic n-fold covering of S^3 branched over the 2-component 2-bridge link 40/9. Remark that M'_n is a generalized periodic Takahashi manifold in the sense of [13].

Theorem 4.1. For the above described manifolds and orbifolds the following diagram of coverings holds:
where singular sets L_n, R, Q, and P of orbifolds O_n, O_n', O_n'', and O_n''' are presented in Figures 2, 3, 4, and 7, respectively.

Proof. By the proof of Theorem 2.1 and by Proposition 3.1 we already have the following sequences of coverings:

$$M_n \xrightarrow{2} O_n \xrightarrow{n} O_n'$$

and

$$M_n' \xrightarrow{n} O_n''' \xrightarrow{2} O_n'' \xrightarrow{2} O_n'.$$

Let us denote by Γ_n' the group of the orbifold O_n', i.e. $O_n' = \mathbb{H}^3 / \Gamma_n'$. Let α, β, and γ be generators of Γ_n' corresponding to generators of $\pi_1(S^3 \setminus R)$ pictured in Figure 9.

Using the Wirtinger algorithm [3] one can see that Γ_n' has the
following presentation:

\[
\langle \alpha, \beta, \gamma \mid \alpha^n = 1, \beta^2 = 1, \gamma^2 = 1, \beta \alpha \gamma = \alpha \gamma \beta, \\
\alpha^{-1} \gamma \beta^{-1} \alpha^{-1} \gamma^{-1} \beta^{-1} \alpha^{-1} \gamma^{-1} \beta \gamma \cdot \\
\cdot \beta^{-1} \alpha \beta \gamma^{-1} \beta^{-1} \alpha \gamma^{-1} \beta \gamma^{-1} \alpha \beta \gamma^{-1} = 1 \rangle.
\]

Consider a group

\[H_n = \mathbb{Z}_n \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 = \langle a \mid a^n = 1 \rangle \oplus \langle b \mid b^2 = 1 \rangle \oplus \langle c \mid c^2 = 1 \rangle\]

and define an epimorphism \(\varphi_n : \Gamma' \rightarrow H_n\) by setting \(\varphi_n(\alpha) = a, \varphi_n(\beta) = b, \varphi_n(\gamma) = c\). Let \(\Gamma_n, \Gamma''_n, \Gamma'''_n, G_n,\) and \(G'_n\) be such groups that \(O_n = \mathbb{H}^3 / \Gamma_n, O''_n = \mathbb{H}^3 / \Gamma''_n, O'''_n = \mathbb{H}^3 / \Gamma'''_n, M_n = \mathbb{H}^3 / G_n,\) and \(M'_n = \mathbb{H}^3 / G'_n\).

For the covering \(O''_n \rightarrow O'_n\) a lift of the loop \(\beta\) is a trivial loop, lifts \(\tilde{\alpha}\) and \(\tilde{\gamma}\) of \(\alpha\) and \(\gamma\) are loops about components of the singular set \(Q\) of \(O''_n\) generating subgroups \(\mathbb{Z}_n\) and \(\mathbb{Z}_2\), respectively. Thus, \(\Gamma'_n = \varphi^{-1}_n(\langle a \mid a^n = 1 \rangle \oplus \langle c | c^2 = 1 \rangle)\). For the covering \(O'''_n \rightarrow O''_n\) a lift of the loop \(\tilde{\gamma}\) is a trivial loop, a lift \(\tilde{\alpha}\) of the loop \(\alpha\) is a loop about the singular set \(P\) of \(O'''_n\) generating subgroup \(\mathbb{Z}_n\). Thus, \(\Gamma'''_n = \varphi^{-1}_n(\langle a | a^n = 1 \rangle)\). For the covering \(M'_n \rightarrow O'''_n\) the preimage of the loop \(\tilde{\alpha}\) is a trivial loop. Thus, \(G'_n = \text{Ker}(\varphi_n)\).

For the covering \(O_n \rightarrow O'_n\) a lift of the loop \(\alpha\) is a trivial loop, lifts \(\tilde{\beta}\) and \(\tilde{\gamma}\) of loops \(\beta\) and \(\gamma\) are loops about components of the singular set \(L_n\) of \(O_n\) generating subgroups \(\mathbb{Z}_2\) and \(\mathbb{Z}_2\). Thus, \(\Gamma_n = \varphi^{-1}_n(\langle b | b^2 = 1 \rangle \oplus \langle c | c^2 = 1 \rangle)\). For the group \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 = \langle b | b^2 = 1 \rangle \oplus \langle c | c^2 = 1 \rangle\) we denote \(d = b + c\) and consider a group \(\mathbb{Z}_2 = \langle d | d^2 = 1 \rangle\). For the covering \(M_n \rightarrow O_n\) loops \(\tilde{\beta}\) and \(\tilde{\gamma}\) lift to trivial loops. Thus, \(G_n = \varphi^{-1}_n(\langle d | d^2 = 1 \rangle)\).

Therefore we get the following diagram of subgroups (where \(A \xrightarrow{m} B\) denotes that \(A\) is a subgroup of \(B\) of index \(m\))
\[\Gamma_n = \varphi_n^{-1}((b) \oplus (c)) \]
\[\Gamma_n' = \varphi_n^{-1}((a) \oplus (c)) \]

that implies the diagram of coverings. \[\square\]

References

M. MECCHIA AND B. ZIMMERMANN, The number of knots and links with the same 2-fold branched covering, Quart. J. Math. 55 (2004), 69–76.

SnapPea, a computer program for creating and studying hyperbolic 3-manifolds, available from http://geometrygames.org/SnapPea/.

W. ThurstON, The geometry and topology of 3-manifolds, Lecture Notes, Princeton University (1980).

Received November 2, 2006.