Note on Elongations
of Summable p-Groups
by $p^{\omega+n}$-Projective p-Groups II

PETER V. DANCHEV (*)

Summary. - We find a suitable condition under which a special ω-elongation
of a summable p-group by a $p^{\omega+n}$-projective p-group
is itself a summable p-group. This supplies our recent result on
this theme in (Rend. Istit. Mat. Univ. Trieste, 2006).

Throughout the rest of this brief article, suppose all groups into
consideration are abelian, p-primary for some prime p, written additively. Thus A is an abelian p-group with first Ulm subgroup
$A^1 = \cap_{i<\omega} p^i A$, where $p^i A = \{p^i a \mid a \in A\}$ is the p^i-th power of A, and with p^n-socle $A[p^n] = \{a \in A \mid p^na = 0\}$, where $n \in \mathbb{N}$. All other unstated explicitly notions and nomenclatures are classical and agree with [11].

In [14] (see [11] too) was defined the concept of a summable group
that is a group A so that $A[p] = \oplus_{\alpha<\lambda} A_{\alpha}$ with $A_{\alpha} \setminus \{0\} \subseteq p^{\alpha} A \setminus p^{\alpha+1} A$
for each $\alpha<\lambda = \text{length}(A)$. It is well-known that $\lambda \leq \Omega$, the first uncountable limit ordinal not cofinal with ω. Moreover, following [16], a group A is said to be $p^{\omega+n}$-projective if there is $P \leq A[p^n]$
with A/P a direct sum of cyclics.

Besides, in [1] we treat a more general situation by studying the
so-called by us strong ω-elongations of summable groups by $p^{\omega+n}$-
projective groups. Specifically, the group A is such a special ω-
elongation if A^1 is summable and there exists $P \leq A[p^n]$ such that

(*) Author’s address: Peter V. Danchev, 13, General Kutuzov Street, bl. 7, fl.
2, ap. 4, 4003 Plovdiv, Bulgaria; E-mail: pvdanchev@yahoo.com
Keywords: Summable Groups, ω-Elongations, $p^{\omega+n}$-Projective Groups, n-Σ-Groups.
2000 AMS Subject Classification: 20K10.
$A/(P + A^1)$ is a direct sum of cyclics (for the corresponding variant of totally projective groups see [3] and [4]). We showed there that under certain additional circumstances on P these elongations are of necessity summable groups; in fact $P \cap p^n A \subseteq A^1$ was taken, that is, P has a finite number of finite heights as calculated in A. In this way, the following simple technicality is a direct consequence of Dieudonné criterion from [10], but it also possesses an easy proof like this: Let $C \leq A$ such that A/C is a direct sum of cyclics. If there exists a positive integer n with $C \cap p^n A = 0$, then A is a direct sum of cyclics. Indeed write $A = \cup_{i<\omega} A_i, C \subseteq A_i \subseteq A_{i+1} \leq A$ and $A_i \cap p^i A \subseteq C$ for all $i: n \leq i < \omega$. Therefore, $A_i \cap p^i A \subseteq C \cap p^i A = 0$. Thus Kulikov’s criterion from [15] works to conclude the wanted property for A. Note that according to this claim, we may directly argue the Main Theorem in [1].

On the other hand, in [4] was introduced the class of n-Σ-groups, which is a proper subclass of the class of Σ-groups, as follows: A is an n-Σ-group if $A[p^n] = \cup_{i<\omega} A_i, A_i \subseteq A_{i+1} \leq A[p^n], \forall i \geq 1 : A_i \cap p^i A \subseteq A^1$. We also proved there that every n-Σ-group which is a strong ω-elongation of a totally projective group by a $p^{\omega+n}$-projective group is totally projective and vice versa; in particular each n-Σ-group is $p^{\omega+n}$-projective uniquely when it is a direct sum of countable groups of length at most $\omega + n$.

The aim of the present paper is to examine what is the relationship between the classes of n-Σ-groups and strong ω-elongations of summable groups by $p^{\omega+n}$-projective groups, i.e. how n-Σ-groups are situated inside these special ω-elongations of summable groups by $p^{\omega+n}$-projective groups, and whether there is an analogue with the strong ω-elongations of a totally projective groups by $p^{\omega+n}$-projective groups.

Before doing that, we need some crucial preliminaries.

Following Hill, a group A is known to be pillared provided that A/A^1 is a direct sum of cyclics. Clearly such a group is necessarily an n-Σ-group, and hence a Σ-group (see [4] too), whereas the converse implication fails. The next affirmation answers under which extra limitations this holds true. Besides, a group A is said to be a strong ω-elongation (of a summable group) by a $p^{\omega+n}$-projective group if there exists $P \leq A[p^n]$ with $A/(P + A^1)$ a direct sum of cyclics.
(and A^1 is summable). Such a group has first Ulm factor which is of necessity $p^{\omega+n}$-projective, while this property is not retained in a converse way that is there is a group with $p^{\omega+n}$-projective first Ulm factor which is not a strong ω-elongation by a $p^{\omega+n}$-projective group. That is why we have also named these groups as groups with strongly $p^{\omega+n}$-projective first Ulm factor.

We are now endowed with enough information to proceed by proving the following main statement.

Theorem 1. An n-Σ-group is a strong ω-elongation by a $p^{\omega+n}$-projective group if and only if it is a pillared group.

Proof. Write down $A[p^n] = \cup_{i<\omega} A_i$, $A_i \subseteq A_{i+1} \leq A[p^n]$ and $A_i \cap p^iA \subseteq A^1$ for all $i \geq 1$ along with $A/(P + A^1)$ a direct sum of cyclics for some existing $P \leq A[p^n]$. Furthermore, we observe that $A/A^1/(P + A^1)/A^1 \cong A/(P + A^1)$. Because $P \subseteq \cup_{i<\omega} A_i$, we deduce that $P = \cup_{i<\omega}(A_i \cap P)$ and thus $(P + A^1)/A^1 = \cup_{i<\omega}[(P_i + A^1)/A^1]$ by setting $P_i = A_i \cap P$. With the modular law in hand we compute that $[(P_i + A^1)/A^1] \cap p^i(A/A^1) = [(P_i \cap p^iA) + A^1]/A^1 = \{0\}$. That is why, appealing to [10], A/A^1 is a direct sum of cyclics. Finally, we conclude that A is pillared, in fact. The opposite implication is straightforward.

As a non-trivial consequence, we obtain the following.

Proposition 2. An n-Σ-group is a strong ω-elongation of a summable group by a $p^{\omega+n}$-projective group if and only if it is a summable pillared group.

Proof. Assume that A is the group in question. Since A is a Σ-group and A^1 is summable, it follows from our criterion for summability in [5] that A has to be summable as well. Moreover, we can also precise this statement by using Theorem 1 which ensures that A must be even pillared.

The converse implication is self-evident since A as summable assures that A^1 is so, and pillared groups are both n-Σ-groups and strong ω-elongations by $p^{\omega+n}$-projective groups by taking $P = 0$.

Remark 3. As the referee indicated “summable” could be replaced by any property of groups, $P(G)$, such that $P(G)$ holds whenever
$\mathcal{P}(G^1)$ holds and G/G^1 is a direct sum of cyclics. For example, $\mathcal{P}(G)$ might be "G is totally projective" (see for instance [3]) or "G is fully starred".

As an immediate consequence, we derive the following assertion.

Corollary 4. Suppose A is a Σ-group which is a strong ω-elongation of a summable group by a $p^{\omega+n}$-projective group and the $(\omega + m)$-th Ulm-Kaplansky invariants of A are zero for each m so that $0 \leq m < n - 1$ if $n > 1$. Then A is a summable pillared group.

Proof. The vanishing of the Ulm-Kaplansky invariants gives that $A[p^n] = H[p^n] \oplus A_1[p^n]$ where H is a high subgroup of A. Since it is a direct sum of cyclics, one may write $H[p^n] = \bigcup_{i<\omega} H_i, H_i \subseteq H_{i+1} \leq H[p^n]$ where $H_i \cap p^iH = 0$. Furthermore, we obtain that $A[p^n] = \bigcup_{i<\omega} A_i$ by putting $A_i = H_i \oplus A_1[p^n]$. Knowing this, we compute with the help of modular law that $A_i \cap p^iA \subseteq A_1 + H_i \cap p^iA = A_1 + H_i \cap p^iH = A_1$ since H is pure in A. Consequently, A is an n-Σ-group and thus Proposition 2 works to infer the claim.

Before stating and proving our next result as well as a new proof of the previous corollary, we proceed with an assertion of independent interest (see [9] for more details).

Proposition 5. A group of length not exceeding $\omega + n - 1$ is an n-Σ-group if and only if it is a direct sum of countable groups.

Proof. The sufficiency is obvious (see [4]). As for the necessity, we observe that, for such a group A, $A_1 \subseteq A[p^{n-1}]$ and hence $((A/A_1)[p] = \bigcap_{i<\omega} (p^iA+A[p])/A_1 \subseteq A[p^n]/A_1$ since $p((\bigcap_{i<\omega} (p^iA+A[p]))) \subseteq A_1$. Moreover, we write $A[p^n] = \bigcup_{i<\omega} A_i, A_i \subseteq A_{i+1} \leq A[p^n]$ and $A_i \cap p^iA \subseteq A_1$. Consequently, $(A/A_1)[p] = \bigcup_{i<\omega} S_i$, where $S_i = ((A_i + A_1)/A_1) \cap (A/A_1)[p]$. But with the modular law at hand we have $S_i \cap p(A/A_1) = S_i \cap (p^iA/A_1) = [(A_i + A_1) \cap p^iA]/A_1 = (A_i \cap p^iA + A_1)/A_1 = \{0\}$, whence A is pillared. Referring to [11], because A_1 is bounded, we derive the desired claim.

We now intend to prove the following

Corollary 6. A group is an n-Σ-group if and only if one (and hence each) of its $p^{\omega+n-1}$-high subgroups is a direct sum of countable groups.
Proof. Let A be such a group and H its $p^{\omega+n-1}$-high subgroup. In [4] we showed that A is an n-Σ-group precisely when H is an n-Σ-group. Henceforth, we wish apply the preceding Proposition to infer the claim.

Employing the last statement we can verify once again the validity of Corollary 4 because it is readily checked that a subgroup H of A is p^ω-high (i.e. high) in A if and only if H is $p^{\omega+n-1}$-high in A whenever the $(\omega+m)$-th Ulm-Kaplansky invariants of A are zero for $0 \leq m < n - 1$, that is $(p^\omega A)[p] = \cdots = (p^{\omega+n-1} A)[p]$.

Imitating [12], a group A is said to be a strong $(\omega+n-1)$-elongation of a summable group by a totally projective group if $p^{\omega+n-1} A$ is summable and there is a nice subgroup $N \leq A$ such that $N \cap p^{\omega+n-1} A = 0$ and $A/(N \oplus p^{\omega+n-1} A)$ is totally projective. So, we are now in a position to prove our final claim which is parallel to Proposition 2 (for the corresponding variant of totally projective groups see [8]).

Theorem 7. An n-Σ-group is a strong $(\omega+n-1)$-elongation of a summable group by a totally projective group if and only if it is a summable pillared group.

Proof. Observe that $A/(N \oplus p^{\omega+n-1} A) \cong A/p^{\omega+n-1} A/(N \oplus p^{\omega+n-1} A)$ is totally projective. Moreover, since $N \cap p^{\omega+n-1} A = 0$, N is contained in some $p^{\omega+n-1}$-high subgroup of A, say H. In accordance with Corollary 6, H is totally projective of length at most $\omega+n-1$. Hence by [13] we may write that $H = \bigcup_{i<\omega} H_i$, where $H_i \subseteq H_{i+1} \leq H$ and all H_i are height-finite in H, whence in A because H is isotype in A. Therefore, $(N \oplus p^{\omega+n-1} A)/p^{\omega+n-1} A = \bigcup_{i<\omega} ((H_i + p^{\omega+n-1} A)/p^{\omega+n-1} A) \cap ((N \oplus p^{\omega+n-1} A)/p^{\omega+n-1} A)$.

Likewise, it is not hard to verify that $(H_i + p^{\omega+n-1} A)/p^{\omega+n-1} A$ are height-finite in $A/p^{\omega+n-1} A$. Moreover, $(N \oplus p^{\omega+n-1} A)/p^{\omega+n-1} A$ is nice in $A/p^{\omega+n-1} A$ by consulting with [12] and [11]. Thus, in view of [6] or [7], we deduce that $A/p^{\omega+n-1} A$ is totally projective. But then $A/p^\omega A \cong A/p^{\omega+n-1} A/p^\omega A/p^{\omega+n-1} A = A/p^{\omega+n-1} A/p^\omega (A/p^{\omega+n-1} A)$ should be a direct sum of cyclics in virtue of [11]. That is why, A is pillared.

On the other hand, $p^{\omega+n-1} A$ being summable implies that so is $p^{n-1}(p^\omega A)$ which implies by [5] that $p^\omega A$ is summable. Finally, by
what we have just shown above, again [5] applies to conclude that \(A \) has to be summable, thus it is summable pillared as asserted. \(\square \)

As an immediate consequence for \(n = 1 \) we yield the following (compare with Corollary 4).

Corollary 8. A \(\Sigma \)-group is a strong \(\omega \)-elongation of a summable group by a totally projective group if and only if it is a summable pillared group.

Remark 9. It is well-known that there is a \(\Sigma \)-group which is not pillared; in fact it is well-known that there exists a \(\Sigma \)-group with unbounded torsion-complete first Ulm factor. Even more, there is a \(\Sigma \)-group which is not an \(n \)-\(\Sigma \)-group for any \(n \geq 2 \) (see [2], [3] and [4] too). The above Corollaries 4 and 8 provide us with some natural conditions under which a \(\Sigma \)-group is a pillared group and thereby an \(n \)-\(\Sigma \)-group. These restrictions on the Ulm-Kaplansky invariants are essential and cannot be dropped off (we note once again that in [2] and [3] it was constructed a \(p^{\omega+2} \)-projective \(\Sigma \)-group with nonzero \((\omega+1) \)-th Ulm-Kaplansky invariant which is not a 2-\(\Sigma \)-group, whence it is not pillared).

The expert referee suggests the author the following original approach to summarize in one single statement Theorems 1 and 7. To begin, we elementarily observe that a group \(A \) is pillared, i.e., \(A/p^{\omega}A \) is a direct sum of cyclics, if and only if for some \(n < \omega \) (and hence for all such \(n \)) \(A/p^{\omega+n}A \) is a direct sum of countables. It appears that both main theorems are consequences of the following central statement, which is essentially Theorem 7 for the case of groups of length at most \(\omega + n \) (for lengths less than or equal to \(\omega + n - 1 \) see Proposition 5).

Theorem 10. Suppose \(0 < n < \omega \) and \(H \) is an \(n \)-\(\Sigma \)-group of length not exceeding \(\omega + n \). Then \(H \) is a direct sum of countables if and only if it has a nice subgroup \(K \) such that \(K \cap p^{\omega+n-1}H = 0 \) and \(H/K \) is a direct sum of countables.

This formulation has several other advantages: First, in this form, Theorem 1 and Theorem 7 follow by considering \(H = A/p^{\omega+n}A \), and either, in Theorem 1, \(K = (P + p^{\omega+n}A)/p^{\omega+n}A \cong \).
$P/(P \cap p^{\omega+n}A)$, or in Theorem 7, $K = (N + p^{\omega+n}A)/p^{\omega+n}A \cong N/(N \cap p^{\omega+n}A)$.

Second, it visually clarifies that what we are looking at this is a generalization from the case of groups of length ω, considered by Dieudonné, to those of length $\omega + n$ considered here.

Third, this new version proposes a proof that more clearly indicates the relationship to Dieudonné’s theorem from [10]. So, we come to

Sketch of proof of Theorem 10. Note that in virtue of [11] we have that H is a direct sum of countables if and only if $H/p^\omega H$ is a direct sum of cyclics, since $p^\omega H$ is bounded by p^n. Given such a nice subgroup K, then similarly to above the hypothesis that H is an n-Σ-group implies that Dieudonné’s theorem applies to the exact sequence

$$0 \to K/(K \cap p^\omega H) \to H/p^\omega H \to H/K/p^\omega(H/K) \to 0,$$

where $K/(K \cap p^\omega H) \cong (K + p^\omega H)/p^\omega H$ and $H/K/p^\omega(H/K) = H/K/(K + p^\omega H)/K \cong H/(K + p^\omega H) \cong H/p^\omega H/(K + p^\omega H)/p^\omega H$, to show that $H/p^\omega H$ is a direct sum of cyclics, thus showing that H is, indeed, a direct sum of countables, as required.

We close with the following challenging

Problem. Decide whether or not a group is an n-Σ-group for every $1 \leq n < \omega$ if and only if it is pillared, i.e., its first Ulm factor is a direct sum of cyclics.

Acknowledgment. The author would like to thank the specialist referee for his valuable organizational suggestions led to improving the present manuscript.

References

Received March 2, 2007.