On some Semilinear Periodic Parabolic Problems

T. Godoy and U. Kaufmann

Summary. - Let $\Omega \subset \mathbb{R}^N$ be a smooth bounded domain. We study existence and nonexistence of positive solutions for some semilinear Dirichlet periodic parabolic problems of the form $Lu = h(x, t, u)$ in $\Omega \times \mathbb{R}$ for a class of Caratheodory functions $h : \Omega \times \mathbb{R} \times [0, \infty) \rightarrow \mathbb{R}$ such that $h(., 0) = 0$ and $\lim_{\xi \to 0^+} \xi^{-1} h(., \xi) = 0$ or $\pm \infty$. All results remain true for the corresponding elliptic problems.

1. Introduction

Let Ω be a $C^{2+\theta}$ bounded domain in \mathbb{R}^N, $\theta \in (0, 1)$, $N \geq 2$. For $T > 0$ and $1 \leq p \leq \infty$, let L^p_T be the Banach space of T-periodic functions f on $\Omega \times \mathbb{R}$ (i.e. satisfying $f(x, t) = f(x, t + T)$ a.e. $(x, t) \in \Omega \times \mathbb{R}$) such that $f|_{\Omega \times (0, T)} \in L^p(\Omega \times (0, T))$, equipped with the norm $\|f\|_{L^p_T} := \|f|_{\Omega \times (0, T)}\|_{L^p(\Omega \times (0, T))}$. Let C_T be the space of continuous and T-periodic functions on $\Omega \times \mathbb{R}$ provided with the L^∞ norm, and let $C^{1+\theta, (1+\theta)/2}_T$ be the space of T-periodic functions belonging to $C^{1+\theta, (1+\theta)/2}(\Omega \times \mathbb{R})$.

Let $\{a_{ij}\}$, $\{b_j\}$, $1 \leq i, j \leq N$, be two families of T-periodic functions satisfying $a_{ij} \in C^{0,1}(\overline{\Omega} \times \mathbb{R})$, $a_{ij} = a_{ji}$ and $b_j \in L^p_T$, and

$^{(*)}$ Partially supported by CONICET, Secyt-UNC, ANPCYT and Ag. Cordoba Ciencia.

Authors’ addresses:
Tomás Godoy and Uriel Kaufmann, Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; E-mail: godoy@mate.uncor.edu, kaufmann@mate.uncor.edu
AMS Subject Classification: 35K20, 35P05, 35B10
assume that
\[\sum a_{ij} (x,t) \xi_i \xi_j \geq \alpha_0 |\xi|^2 \]
for some \(\alpha_0 > 0 \) and all \((x,t) \in \Omega \times \mathbb{R} \), \(\xi \in \mathbb{R}^N \). Let \(A \) be the \(N \times N \) matrix whose \(i,j \) entry is \(a_{ij} \), let \(b = (b_1, ..., b_N) \), let \(0 \leq c_0 \in L_\infty^0 \) and let \(L \) be the parabolic operator given by
\[Lu = u_t - \text{div} (A \nabla u) + \langle b, \nabla u \rangle + c_0 u \]

Let \(W = \{ u \in L^2 ((0, T), H^1_0 (\Omega)) : u_t \in L^2 ((0, T), H^{-1} (\Omega)) \} \). For \(h \in L_T^2 \), we say that \(u \) is a (weak) solution of the periodic problem
\[\begin{aligned}
L u &= h, & \quad & \text{in } \Omega \times \mathbb{R} \\
u &= 0, & \quad & \text{on } \partial \Omega \times \mathbb{R} \\
u &= T \text{-periodic, if } u \text{ is } T \text{-periodic, } u_{|\Omega \times (0,T)} \in W \end{aligned} \]
if \(u \) is \(T \text{-periodic, } u_{|\Omega \times (0,T)} \in W \) and
\[\int_{\Omega \times (0,T)} \left[-u \frac{\partial g}{\partial t} + (A \nabla u, \nabla g) + \langle b, \nabla u \rangle g + c_0 ug \right] = \int_{\Omega \times (0,T)} hg \]
for all \(g \in C_0^\infty (\Omega \times (0,T)) \). For \(u \in W \), the inequality \(Lu \geq h \) (respectively \(\leq \)) in \(\Omega \times \mathbb{R} \) will be understood in the analogous weak sense.

For \(1 \leq r \leq \infty \) let \(W^{2,1}_r (\Omega \times (t_0, t_1)) \) be the Sobolev space of the functions \(u \in L^r (\Omega \times (t_0, t_1)), u = u(x_1, ..., x_N, t), u_t, u_{x_i}, \text{ and } u_{x_i x_j} \) belong to \(L^r \Omega \times (t_0, t_1)) \) for \(1 \leq i, j \leq N \), and let \(W^{2,1}_{r,T} \) be the space of \(T \text{-periodic functions such that } u_{|\Omega \times (0,T)} \in W^{2,1}_r (\Omega \times (0,T)) \). For \(f \in L_T^r, r > 1 \), we say that \(u \) is a strong solution of (1) if \(u \in W^{2,1}_{r,T} \) and the equation holds a.e. in the pointwise sense.

Let \(f, g : \Omega \times \mathbb{R} \times [0, \infty) \rightarrow \mathbb{R} \) be two Carathéodory functions, i.e. \((x,t) \rightarrow f(x,t,\xi) \) is measurable for all \(\xi \geq 0 \) and \(\xi \rightarrow f(x,t,\xi) \) is continuous in \([0, \infty) \) a.e. \((x,t) \in \Omega \times \mathbb{R} \), and the same for \(g \). Assume that \(f(\cdot, \xi) \) and \(g(\cdot, \xi) \) belong to \(L_T^r, r > (N + 2)/2 \), for all \(\xi \geq 0 \) and that both are \(T \text{-periodic in } t \). Let

H1. There exist \(c_f, p_1, p_2, \xi, \bar{\xi} > 0 \) and \(0 \leq a \in L_T^\infty \) such that
\[c_f \xi^{p_1} \leq f(x,t,\xi) \text{ for all } \xi \in (0, \xi_0] \text{ a.e. } (x,t) \in \Omega \times \mathbb{R}, \quad (2) \]
\[f(x,t,\xi) \leq a(x,t) \xi^{p_2} \text{ for all } \xi \in (\xi_0, \infty) \text{ a.e. } (x,t) \in \Omega \times \mathbb{R} \quad (3) \]
H2. There exist \(b, c, q_1, q_2, \xi, \eta > 0 \) with \(q_1 > p_2 \) if \(p_2 \geq 1 \) such that
\[
c g \xi^{q_1} \leq g (x, t, \xi) \quad \text{for all } \xi \in [\xi, \infty) \ a.e. (x, t) \in \Omega \times \mathbb{R},
\]
\[
g (x, t, \xi) \leq b \xi^{q_2} \quad \text{for all } \xi \in (0, \xi] \ a.e. (x, t) \in \Omega \times \mathbb{R}
\]

Our aim in this paper is to study existence and nonexistence of positive solutions for semilinear periodic parabolic problems of the form
\[
\begin{aligned}
Lu &= \lambda f (x, t, u) - g (x, t, u) \quad \text{in } \Omega \times \mathbb{R} \\
u &= 0 \quad \text{on } \partial \Omega \times \mathbb{R} \\
u &= \text{T-periodic}
\end{aligned}
\]

where \(\lambda > 0 \) is a real parameter and \(f, g \) satisfy conditions H1 and H2. Let us mention that as a consequence of our proofs the results remain true for the corresponding elliptic problems. For applications we refer to [2], [16].

In order to describe our results and relate them to others in the literature, let us take as an example of the above situation the problem
\[
\begin{aligned}
Lu &= \lambda a (x, t) h (u) u^p - b (x, t) u^q := H (x, t, u) \quad \text{in } \Omega \times \mathbb{R} \\
u &= 0 \quad \text{on } \partial \Omega \times \mathbb{R} \\
u &= \text{T-periodic}
\end{aligned}
\]

where \(0 < a_0 \leq a \in L^\infty_T, 0 < b_0 \leq b \in L^\infty_T, p, q > 0 \) and \(h : [0, \infty) \rightarrow \mathbb{R} \) is a continuous function such that \(h (0) \geq 0 \) with \(h' (0) > 0 \) if \(h (0) = 0 \), and sup_{\xi > 0} h (\xi) < \infty.

When \(p = 1 < q \) and \(h \equiv 1 \), (7) becomes the well-known logistic equation that has been widely studied in recent years. A necessary and sufficient condition for the existence of positive solutions is \(\lambda > \lambda_1 (a) \), where \(\lambda_1 (a) \) is the (unique) positive principal eigenvalue of the linear problem with weight
\[
\begin{aligned}
Lu &= \lambda a (x, t) u \quad \text{in } \Omega \times \mathbb{R} \\
u &= 0 \quad \text{on } \partial \Omega \times \mathbb{R} \\
u &= \text{T-periodic}
\end{aligned}
\]

(see e.g. [14], [17] and the references therein for the elliptic problem and [12], [10] for the periodic parabolic case). However, if for instance
If $0 < p, q < 1$ and $h \equiv 1$, in the elliptic case it is also known that there exists some $\Lambda \geq 0$ such that (7) has a positive solution for all $\lambda > \Lambda$ and that there is no positive solution if $0 < \lambda < \Lambda$. In fact, it was proved under additional smoothness assumptions on a and b that if $p \leq q$ then $\Lambda = 0$, and that if $p > q$ then $\Lambda > 0$ (see e.g. [21], [4], [15] and its references). For the periodic parabolic problem, recently the authors have found existence of positive solutions for all λ large enough in [11]. We note however that there it is asked that either $q > 1 - 1/(N + 2)$ or b satisfies a quite strong assumption.

Finally, to our knowledge no results are known for (7) when $1 < p < q$, even if $h \equiv 1$, while this elliptic problem has been studied for example in [20], [13] for $a = b = h \equiv 1$ and $(N + 2) / (N - 2) < p < q$, and recently in [6] for a quasilinear equation that includes the case $1 < p < (N + 2) / (N - 2)$, $q < 2N / (N - 2)$, $a \equiv 1$ and $b \geq 0$ satisfying some additional conditions. Theorem 3.1 shows that similar existence results as the ones quoted above are still valid in this situation, and that there exists a lower estimate for Λ and a positive solution for $\lambda = \Lambda$ in this case.

Acknowledgments. The authors would like to thank the referee for her-his careful and detailed reading of the paper.
2. Preliminaries

We start collecting some known facts about periodic parabolic problems with weight.

 Remark 2.1. i) Let $a \in L^r_T$, $r > (N + 2)/2$, and let

$$P(a) := \int_0^T \operatorname{esssup}_{x \in \Omega} a(x,t) \, dt.$$

Then $P(a) > 0$ is necessary and sufficient for the existence of a (unique) positive principal eigenvalue $\lambda_1(a)$ for problem (8) (cf. [8], Theorem 3.6). We note that the case $P(a) = +\infty$ is allowed (cf. [8], p. 218).

ii) Let $0 \leq \lambda < \lambda_1(a)$ if $\lambda_1(a)$ exists or $\lambda \geq 0$ if $\lambda_1(a)$ does not exist. Then $(L - \lambda a)^{-1} : L^r_T \to C_T (r > (N + 2)/2)$ is a well defined compact and positive operator (cf. [9], Lemma 2.9). In particular, if $Lu \geq \lambda au$ (respectively \leq) then $\lambda \leq \lambda_1(a)$ if $\lambda_1(a)$ exists (respectively $\lambda \geq \lambda_1(a)$).

iii) The following comparison principle holds: if $a_1, a_2 \in L^r_T$, $P(a_1) > 0$ and $a_1 \leq a_2$ in $\Omega \times \mathbb{R}$, then $\lambda_1(a_1) \geq \lambda_1(a_2)$ and, if in addition $a_1 < a_2$ in a set of positive measure, then $\lambda_1(a_1) > \lambda_1(a_2)$ (cf. [8], Remark 3.7).

The following remark compiles necessary information of some singular periodic parabolic problems.

 Remark 2.2. Let $0 < \alpha < 1/(N + 2)$, $0 < \beta < 1$, and consider the problem

$$\begin{cases}
Lv = -v^{-\alpha} + \lambda v^\beta & \text{in } \Omega \times \mathbb{R} \\
v = 0 & \text{on } \partial \Omega \times \mathbb{R} \\
v \text{ is } T\text{-periodic}
\end{cases}$$

Then there exists $\lambda_0 > 0$ such that for all $\lambda > \lambda_0$ (9) has a positive strong solution $v \in W^{2,1}_{r,T}$ for some $r > N + 2$. Moreover, $v \in C^{1+\theta/(1+\theta)}_{r,T}$ and $\frac{\partial v}{\partial n} < 0$ on $\partial \Omega \times \mathbb{R}$, where ν denotes the outward normal unit vector (cf. [7], Theorems 3.1 and 3.3).
3. The theorem

Let
\[P^0 := \text{interior of the positive cone of } C_T^{1+\theta,(1+\theta)/2} \]

Theorem 3.1.

i) Let \(f, g \) satisfying H1 and H2. Then there exists \(\Lambda \geq 0 \) such that (6) has a (strictly) positive solution \(u = u_\lambda \in L^\infty_T \) for all \(\lambda > \Lambda \), and if \(0 < \lambda < \Lambda \) then there is no positive solution for (6). Moreover, \(u_\lambda \) can be chosen such that
\[
\lim_{\lambda \to \infty} \| u_\lambda \|_{L^\infty_T} = \infty \tag{10}
\]
Assume in addition that (3) and (4) hold for all \(\xi > 0 \).

ii) If \(p_2 = 1 \), then
\[
\Lambda \geq \lambda_1 (a) \tag{11}
\]

iii) If \(p_2 > 1 \), then there exists a positive solution \(u_\Lambda \in L^\infty_T \) for \(\lambda = \Lambda \) and
\[
\Lambda \geq \lambda_1 (a)^{(q_1-p_2)/(q_1-1)} \left(c_g / \| a \|_{L^\infty_T} \right)^{(p_2-1)/(q_1-1)} \tag{12}
\]

iv) If \(0 < q_1 < p_2 < 1 \), then
\[
\Lambda \geq c_g^{(1-p_2)/(1-q_1)} / \left(\| a \|_{L^\infty_T} \| L^{-1} \|_{L^\infty_T}^{(p_2-q_1)/(1-q_1)} \right) := \tilde{\Lambda} \tag{13}
\]
Also, either if \(f(., \xi), g(., \xi) \in L^r_T \) for some \(r > N+2 \) and all \(\xi \geq 0 \) or if in addition (2) and (5) hold for all \(\xi > 0 \), then \(u_\lambda \in W^{2,1}_{r,T} \cap P^0 \) whenever such \(u_\lambda \) exists.

Proof. In order to prove (i) we start constructing a subsolution for (6). Let \(\alpha, \beta, \lambda_0 \) be as in Remark 2.2, and let \(v = v_{\lambda^*} \in W^{2,1}_{r,T} \cap P^0 \) be a solution of (9) corresponding to some \(\lambda^* > \lambda_0 \). Let \(\xi > 0 \) be given by H1 and H2 (clearly we may assume that both \(\xi \) coincide). Choose \(k = \xi / \| v \|_{\infty} \) and \(\varepsilon = \varepsilon (k) > 0 \) such that \(b_\xi q_2 + \lambda^* k^{1-\beta} \xi^{\beta} \leq k^{1+\alpha} \xi^{-\alpha} \) for all \(0 < \xi \leq \varepsilon \). Define \(v_k := kv \) and \(h(x, t, \xi) := \lambda f(x, t, \xi) - g(x, t, \xi) \),
and pick \(\lambda \geq (\lambda^* k^{1-\beta} \xi^\beta + b \xi^{q_2}) / (c_f \varepsilon^{p_1}) \). Since \(v_k \leq \xi \), from (9), (2) and (5) we have that

\[
Lv_k = -k^{1+\alpha} v_k^{-\alpha} + \lambda^* k^{1-\beta} v_k^\beta \\
\leq -b \xi^{q_2} \chi_{0<v_k<\varepsilon} + \lambda^* k^{1-\beta} \xi^\beta \chi_{\varepsilon<v_k} \\
\leq (\lambda c_f \xi^{p_1} - b v_k^{q_2}) \chi_{0<v_k<\varepsilon} + (\lambda c_f \varepsilon^{p_1} - b \xi^{q_2}) \chi_{\varepsilon<v_k} \\
\leq h(x, t, v_k)
\]

and therefore \(v_k \) is a subsolution of (6).

On the other side, if \(p_2 \geq 1 \) we have \(p_2 < q_1 \) and so recalling (3) and (4) we see that for some constant \(K > 0 \) it holds that

\[
h(x, t, K) \leq \lambda \|a\|_\infty K^{p_2} - c_g K^{q_1} \leq 0 \leq L(K)
\]

Hence, \(K \) is a supersolution of (6). Suppose now \(0 < p_2 < 1 \), and fix \(0 < \delta < \lambda_1 (1) \) and \(K > \max \left(\bar{\xi}, (\lambda \|a\|_\infty / \delta)^{1/(1-p_2)} \right) \), where \(\bar{\xi} \) is given by H1. From Remark 2.1 (ii) there exists \(0 \leq w \in L^\infty \) solution of the Dirichlet periodic problem \(Lw = \delta (w + K) \) in \(\Omega \times \mathbb{R} \). Moreover,

\[
h(x, t, w + K) \leq \lambda a(x, t) (w + K)^{p_2} \leq \lambda \|a\|_\infty (w + K) / K^{1-p_2} \\
\leq \delta (w + K) \leq L(w + K)
\]

and thus \(w + K \) is a supersolution of (6). Hence, in any case we can apply [5], Theorem 1, to obtain a solution \(0 < u \leq L^\infty \) of (6).

Let \(\Lambda := \inf \{ \lambda > 0 : \text{there exists } 0 < u_\lambda \in L^\infty \text{ solution of (6)} \} < \infty \). Let \(\lambda > \Lambda \) and let \(\lambda > \bar{\lambda} > \Lambda \) such that there exists \(u_{\bar{\lambda}} \in L^\infty \) solution of (6) for \(\lambda = \bar{\lambda} \). Clearly \(u_{\bar{\lambda}} \) is a subsolution of (6). Moreover, as above we can choose a supersolution \(w \geq \|u_{\bar{\lambda}}\|_\infty \) and then again Theorem 1 in [5] gives a solution of (6).

Let us prove (10). Let \(\lambda_j \) be an increasing sequence such that \(\lambda_j \to \infty \), and let \(u_{\lambda_j} \) be the corresponding positive solutions of (6). An inspection of the above part of the proof shows that we can choose \(u_{\lambda_j} \) such that \(\lambda_j \to \lambda_{\lambda_j} \) is increasing and so there exists \(\lim_{j \to \infty} \|u_{\lambda_j}\|_\infty := l \leq \infty \). Suppose \(l < \infty \), and let \(0 < u_\infty := \lim_{j \to \infty} u_{\lambda_j} \). Dividing (6) by \(\lambda_j \) and going to the limit we find that \(f(x, t, u_\infty) = 0 \), which is not possible. Therefore, part (i) of the theorem is proved.
Assume now that (3) and (4) hold for all \(\xi > 0 \), and let \(\lambda > \Lambda \), \(0 < u \in L^\infty_T \) be the solution found above. If \(p_2 = 1 \), (3) and (4) imply \(Lu \leq \lambda au \) and hence Remark 2.1 (ii) gives \(\lambda \geq \lambda_1 (a) \) and thus (11) follows (note that since (3) holds for all \(\xi > 0 \), (2) and (3) say that \(a \) is not identically zero, i.e. \(P(a) > 0 \) and so \(\lambda_1 (a) \) exists).

We prove (iii). Let \(\Lambda < \lambda_j \) be a decreasing sequence such that \(\lambda_j \to \Lambda \) and let \(u_{\lambda_j} \) be the positive solutions of (6) for \(\lambda = \lambda_j \). As before, we can choose \(u_{\lambda_j} \) such that \(j \to u_{\lambda_j} \) is decreasing and so \(\| u_{\lambda_j} \|_\infty \leq c \) for some \(c > 0 \) not depending on \(j \). Moreover, since \(\| h(., u_{\lambda_j}) \| \leq \max_{0 \leq \xi \leq \| u_{\lambda_j} \|_\infty} |h(., \xi)| \), the assumptions on \(f \) and \(g \) give that \(\| h(x, t, u_{\lambda_j}) \|_{L^r_T} \leq c \) with \(c \) not depending on \(j \) \((r > (N + 2)/2)\). Thus, from the compactness of \(L^{-1} : L^r_T \to C_T \) (cf. Remark 2.1 (ii)) we get some \(0 \leq u_\Lambda \in L^\infty_T \) solution of (6) for \(\lambda = \Lambda \). In order to show that \(u_\Lambda \) is not identically zero it suffices to prove that \(\lim_{j \to \infty} \| u_{\lambda_j} \|_\infty \neq 0 \). Now, suppose \(\lim_{j \to \infty} \| u_{\lambda_j} \|_\infty = 0 \), and let \(v_j := u_{\lambda_j}/\| u_{\lambda_j} \|_\infty \). Recalling (3) and (4) we get

\[
0 < v_j \leq L^{-1} \left(\lambda_j a v_j u_{\lambda_j}^{p_2 - 1} - c_{p_2} v_j u_{\lambda_j}^{q_1 - 1} \right)
\]

and thus going to the limit the continuity of \(L^{-1} \) implies \(v_j \to 0 \) which is not possible, and so the first assertion of (iii) is proved.

Let \(k = (c_g/\lambda \| a \|_\infty)^{1/(q_1 - p_2)} \). Since \(1 < p_2 < q_1 \) we have

\[
L(ku) \leq \lambda ak^{1-p_2} (ku)^{p_2} - c_{p_2} k^{1-q_1} (ku)^{q_1}
\]

\[
\leq \lambda ak^{1-p_2} (ku) \chi_{(0 < ku \leq 1)} + (\lambda ak^{1-p_2} - c_{p_2} k^{1-q_1}) (ku)^{p_2} \chi_{(ku > 1)}
\]

\[
\leq \lambda ak^{1-p_2} (ku) \chi_{(0 < ku \leq 1)}
\]

and so from the last statements in Remark 2.1 (ii) we get \(\lambda \geq \lambda_1 (ak^{1-p_2}) = \lambda_1 (a) k^{p_2 - 1} \) which in turn implies (12).

In order to prove (13) we proceed by contradiction. Suppose there exists a positive solution \(u \) for \(\lambda = \bar{\Lambda} \). Choose \(k := (\bar{\Lambda} \| a \| \| L^{-1} \|)^{-1/(1-p_2)} \). Recalling (3), (4) and that \(0 < p_2 < 1 \) a computation shows that \(\| ku \|_\infty \leq 1 \). Taking into account this and
that $q_1 < p_2$ we find

$$L(ku) \leq \tilde{\Lambda}k^{1-p_2}(ku)^{p_2} - c_g k^{1-q_1} (ku)^{q_1}$$

$$\leq (\|a\| \|L^{-1}\|)^{-1} a (ku)^{p_2} - \|L^{-1}\|^{-1} (ku)^{q_1}$$

Contradiction.

To end the proof, note that any of the last assumptions imply $h(x,t,u) \in L^r_T$ for some $r > N + 2$. Since the operator $L^{-1} : L^r_T \to W^{2,1}_{r,T}$ is continuous (see e.g. [19], Section 4) it follows that $u \in W^{2,1}_{r,T}$, and from the Sobolev imbedding theorems (e.g. [18], Lemma 3.3, p. 80) and the strong maximum principle (e.g. [2], Theorem 13.5) we get that $u \in P^o$. \qed

References

Received February 16, 2007.