An Orlicz Extension of Some New Sequence Spaces

EKREM SAVAŞ AND RICHARD F. PATTERSON (∗)

SUMMARY. - The aim of this note is to introduce and study a new concept of lacunary σ-convergence with respect to an Orlicz function and examine some properties of the resulting sequence spaces.

1. Introduction and Background

Let \(w \) denote the set of all real and complex sequences \(x = (x_k) \). By \(l_\infty \) and \(c \), we denote the Banach spaces of bounded and convergent sequences \(x = (x_k) \) normed by \(||x|| = \sup_n |x_n| \), respectively. A linear functional \(L \) on \(l_\infty \) is said to be a Banach limit [1] if it has the following properties:

1. \(L(x) \geq 0 \) if \(x \geq 0 \) (i.e. \(x_n \geq 0 \) for all \(n \)),
2. \(L(e) = 1 \) where \(e = (1,1,\ldots) \),
3. \(L(Dx) = L(x) \), where the shift operator \(D \) is defined by \(D(x_n) = x_{n+1} \).

(*) Authors’ addresses: Ekrem Savaş, Yüzüncü Yılı University, Department of Mathematics, Van, Turkey, e-mail: ekremsavas@yahoo.com.
Richard F. Patterson, Department of Mathematics and Statistics, University of North Florida Jacksonville, Florida, 32224, e-mail: rpatters@unf.edu.
This research was completed while the first author was a Fulbright scholar at Indiana University, Bloomington, IN, U.S.A., during the fall and spring semesters of 2003-2004.
Keywords: Orlicz function, Invariant Mean, Almost convergence, Lacunary sequence.
AMS Subject Classification: Primary, 40H05; Secondary 40C05.
Let B be the set of all Banach limits on l_∞. A sequence x is said to be almost convergent to a number L if $L(x) = L$ for all $L \in B$. Lorentz [8] has shown that

$$\hat{c} = \{ x \in l_\infty : \lim_m t_{m,n}(x) \text{ exists uniformly in } n \}$$

where

$$t_{m,n}(x) = \frac{x_n + x_{n+1} + x_{n+2} + \cdots + x_{n+m}}{m + 1}.$$

Shaefer [14] defines the σ-convergence as follows: Let σ be a mapping of the set of positive integers into itself. A continuous linear functional ϕ on l_∞ is said to be an invariant mean or a σ-mean if and only if

1. $\phi(x) \geq 0$ when the sequence $x = (x_k)$ has $x_n \geq 0$ for all n;
2. $\phi(e) = 1$ where $e = (1,1,1,\ldots)$ and
3. $\phi(x_{\sigma(n)}) = \phi(x)$ for all $x \in l_\infty$.

Let V_σ denote the set of bounded sequences which have unique σ-mean. If $x \in V_\sigma$ and $\phi(x) = l$, then we write $l = V_\sigma - \lim x$. In case σ is the translation mapping $n \to n + 1$, σ-mean reduces to the unique Banach limit and V_σ reduces to \hat{c}. We denote by V_σ the space of σ-convergent sequences. It is known that $x \in V_\sigma$ if and only if

$$\frac{1}{m} \sum_{k=1}^{m} x_{\sigma^k(n)}$$

has a limit as $m \to \infty$, uniformly in n.

By a lacunary $\theta = (k_r); r = 0, 1, 2, \ldots$ where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $k_r - k_{r-1}$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and $h_r = k_r - k_{r-1}$. The ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r.

Recently Das and Mishra [3] have introduced the space AC_θ of lacunary almost convergent sequences as follows:

$$AC_\theta = \left\{ x = (x_k) : \lim_r \frac{1}{n_r} \sum_{k \in I_r} (x_{k+n} - L) = 0, \text{ for some } L \text{ uniformly in } n \right\}.$$
Note that in the special case where $\theta = 2^r$, we have $AC_\theta = \hat{c}$.

Quite recently, concept of lacunary σ-convergent was introduced and studied by Savas [13] which is a generalization of the idea of lacunary almost convergence due to Das and Mishra [3]. If $x \in V^\theta_\sigma$ denotes the set of all lacunary σ-convergent sequences, then Savas [13] defined

$$V^\theta_\sigma = \left\{ x = (x_k) : \lim_{r} t_{r,n}(x) = L, \text{ uniformly in } n \text{ for some } L \right\}$$

where

$$t_{r,n}(x) = \frac{1}{\nu_r} \sum_{k \in I_r} x_{\sigma^k(n)}.$$

Note that for $\sigma(n) = n + 1$, the space V^θ_σ is the same as AC_θ. We write $V^\theta_\sigma = V^\theta_{\sigma_0}$ whenever $L = 0$.

Recall in [6] that an Orlicz function $M : [0, \infty) \to [0, \infty)$ is continuous, convex, non decreasing function defined by $M(0) = 0$ and $M(x) > 0$ for $x > 0$, and $M(x) \to \infty$ as $x \to \infty$. If convexity of Orlicz function is replaced by $M(x + y) \leq M(x) + M(y)$, then this function is called the modulus function which is defined and characterized by Ruckle [11].

Lindeastrau and Tzafriri [7] used the concept of Orlicz function to construct the following sequence space:

$$L_M = \left\{ x \in w : \sum_{k} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

The space L_M with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k} M\left(\frac{|x_k|}{\rho}\right) \leq 1 \right\}$$

becomes a Banach space which is called an Orlicz sequence space.

An Orlicz function M is said to satisfy Δ_2-condition of all values of u, if there exists a constant $K > 0$ such that

$$M(2u) \leq KM(u), \text{ for all } u \geq 0.$$

The Δ_2-condition is equivalent to

$$M(lu) \leq KlM(u)$$
for all values of u and $l \geq 1$.

In the present paper, we introduce and study some properties of the following three sequence spaces that are defined using the Orlicz function.

Let M be an Orlicz function then

$$V_{\sigma_0}^\theta(M) = \left\{ x = (x_k) : \lim_{r \to \infty} M \left(\frac{|t_{r,n}(x)|}{\rho} \right) = 0 \text{ uniformly in } n \text{ for some } \rho > 0 \right\},$$

$$V_{\sigma}^\theta(M) = \left\{ x = (x_k) : \lim_{r \to \infty} M \left(\frac{|t_{r,n}(x)-l|}{\rho} \right) = 0 \text{ uniformly in } n \text{ for some } \rho > 0 \right\},$$

and

$$V_{\sigma_\infty}^\theta(M) = \left\{ x = (x_k) : \sup_{r,n} M \left(\frac{|t_{r,n}(x)|}{\rho} \right) < \infty \text{ for some } \rho > 0 \right\}.$$

If $t_{r,n}(x)$ is replaced by x, then we have the following sequence spaces:

$$c_0(M) = \left\{ x = (x_k) : \lim_{k} M \left(\frac{|x_k|}{\rho} \right) = 0 \text{ for some } \rho > 0 \right\},$$

$$c(M) = \left\{ x = (x_k) : \lim_{k} M \left(\frac{|x_k-l|}{\rho} \right) = 0 \text{ for some } l > 0 \text{ and } \rho > 0 \right\},$$

and

$$l_\infty(M) = \left\{ x = (x_k) : \sup_{k} M \left(\frac{|x_k|}{\rho} \right) < \infty \text{ for some } \rho > 0 \right\}.$$

It is easy to see that $V_{\sigma_0}^\theta$, V_{σ}^θ, and $V_{\sigma_\infty}^\theta$ are linear spaces over the complex field. With consider of the above sequence spaces we now present the following theorem.
2. Main Result

Theorem 2.1. The linear spaces $V_0^\theta(M)$, $V_\sigma^\theta(M)$ and $V_\sigma^\infty(M)$ are Banach spaces with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sup_{r,n} M \left(\frac{|t_{r,n}(x)|}{\rho} \right) \leq 1 \right\}.$$

Proof. It is clear that the spaces are normed spaces with the above norm. We shall only establish that $V_\sigma^\infty(M)$ is a Banach space. The others can be established in a manner similar to $V_\sigma^\infty(M)$. Let $(x^i_k)_k$ be a Cauchy sequence in $V_\sigma^\infty(M)$. Let $s, x_0 > \epsilon$ be fixed such that $M\left(\frac{s x_0}{2}\right) \geq 1$. Then for each $\epsilon x_0 s > 0$ there exists a positive integer N such that for all $i, j \geq N$

$$||x^i - x^j|| \leq \frac{\epsilon}{x_0 s}.$$

The definition of norm above implies that for all $i, j \geq N$

$$\sup_{r,n} M \left(\frac{|t_{r,n}(x^i - x^j)|}{||x^i - x^j||} \right) \leq 1,$$

since $||x^i - x^j||$ is positive so we can substitute ρ for $||x^i - x^j||$. Thus

$$M\left(\frac{|t_{r,n}(x^i - x^j)|}{||x^i - x^j||} \right) \leq 1 \text{ for all } r, n \geq 0 \text{ and for all } i, j \geq N.$$

Since $M\left(\frac{s x_0}{2}\right) \geq 1$ we have

$$M\left(\frac{|t_{r,n}(x^i - x^j)|}{||x^i - x^j||} \right) \leq M\left(\frac{s x_0}{2}\right) \text{ for all } r, n.$$

This implies that

$$|t_{r,n}(x^i - x^j)| \leq \frac{x_0 s}{2} \frac{\epsilon}{x_0 s} = \frac{\epsilon}{2} \text{ for all } r, n.$$

In particular $|t_{1,n}(x^i - x^j)| = |x^i_{\sigma(n)} - x^j_{\sigma(n)}| \to 0$ as $i, j \to \infty$ for each fixed n. Hence (x^i) is a Cauchy sequence in the complex plane.
Therefore for each $\epsilon (0 < \epsilon < 1)$, there exists a positive integer N such that $|t_{r,n}(x^i - x^j)| < \epsilon$, for all $i, j \geq N$ and for all r, n. Using the continuity of M and taking the limit as $j \to \infty$ we have that

$$\sup_{r \geq N} M \left(\frac{|t_{r,n}(x_k^i - x_k^j)|}{\rho} \right) \leq 1.$$

Taking the infimum over such ρ’s we get the following for all n

$$\inf \left\{ \rho > 0 : \sup_{r \geq N} M \left(\frac{|t_{r,n}(x_k^i - x_k^j)|}{\rho} \right) \leq 1 \right\} < \epsilon,$$

for all $i \geq N$. Since $x^i \in V^\theta_{\infty}(M)$ and M is an Orlicz function, it follows that $x \in V^\theta_{\infty}(M)$. This completes the proof.

\[\square\]

Theorem 2.2. Let M be an Orlicz function that satisfies the Δ_2-condition then

- $c_0(M) \subset V^\theta_0(M)$,
- $c(M) \subset V^\theta(M),$

and

- $l_\infty(M) \subset V^\theta_{\sigma_\infty}(M).$

The verification of this theorem is routine and thus omitted.

It is quite natural to expect that the spaces $V^\theta_{\sigma_0}(M)$, $V^\theta_{\sigma}(M)$ and $V^\theta_{\sigma_\infty}(M)$ can be extended to $V^\theta_{\sigma_0}(M, p)$, $V^\theta_{\sigma}(M, p)$ and $V^\theta_{\sigma_\infty}(M, p)$ in manner similar to the extension of c, c_0, and l_∞ to $c(p)$, $c_0(p)$, and $l_\infty(p)$ respectively (see, Simons [15] and Moddox [9]).

In this section of this paper, we study the spaces $V^\theta_{\sigma_0}(M, p)$, $V^\theta_{\sigma}(M, p)$ and $V^\theta_{\sigma_\infty}(M, p)$ which are defined below:

Let M be Orlicz function, $p = (p_r)$ be any sequence of positive real numbers.

- $V^\theta_{\sigma_0}(M, p) = \left\{ x = (x_k) : \lim_{r \to \infty} M \left(\frac{|t_{r,n}(x)|}{\rho} \right)^{p_r} = 0 \right\}$, uniformly in n for some $\rho > 0$,

- $V^\theta_{\sigma}(M, p) = \left\{ x = (x_k) : \lim_{r \to \infty} M \left(\frac{|t_{r,n}(x) - L|}{\rho} \right)^{p_r} = 0 \right\}$, uniformly in n for some $L, \rho > 0$.

and

\[V^\theta_{\sigma_{\infty}}(M, p) = \left\{ x = (x_k) : \sup_{r, n} \left(M \left(\frac{|x_{r,n}(x)|}{\rho} \right) \right)^{p_r} < \infty \right\} . \]

If \(p = p_r \) is a constant sequence, i.e., \(p_r = p \) for all \(r \), then we write

\[V^\theta_{\sigma_0}(M, p) = V^\theta_{\sigma_0}(M), \quad V^\theta_{\sigma}(M, p) = V^\theta_{\sigma}(M) \quad \text{and} \quad V^\theta_{\sigma_{\infty}}(M, p) = V^\theta_{\sigma_{\infty}}(M). \]

If we let \(\sigma(n) = n + 1 \), the spaces \(V^\theta_{\sigma_0}(M, p) \), \(V^\theta_{\sigma}(M, p) \) and \(V^\theta_{\sigma_{\infty}}(M, p) \) reduce to the following sequence spaces:

\[\hat{V}_0(M, p) = \left\{ x = (x_k) : \lim_{r \to \infty} \left(M \left(\frac{|d_{r,n}(x)|}{\rho} \right) \right)^{p_r} = 0 \right\}, \]

\[\hat{V}(M, p) = \left\{ x = (x_k) : \lim_{r \to \infty} \left(M \left(\frac{|d_{r,n}(x) - Le|}{\rho} \right) \right)^{p_r} = 0 \right\}, \]

and

\[\hat{V}_{\infty}(M, p) = \left\{ x = (x_k) : \sup_{r, n} \left(M \left(\frac{|d_{r,n}(x)|}{\rho} \right) \right)^{p_r} < \infty \right\} \]

where

\[d_{r,n}(x) = \frac{1}{h_r} \sum_{k \in I_r} x_{k+n}, \]

We now consider the following theorem:

Theorem 2.3. The linear spaces \(V^\theta_{\sigma_0}(M, p) \), \(V^\theta_{\sigma}(M, p) \) and \(V^\theta_{\sigma_{\infty}}(M, p) \) are paranormed spaces with

\[g(x) = \inf \left\{ \frac{\rho}{\rho^H} : \left\{ \sup_{r} \left(M \left(\frac{|x_{r,n}(x)|}{\rho} \right) \right)^{p_r} \leq 1, n = 1, 2 \right\} \right\}, \]

where \(H = \max\{1, \sup_{r} p_r\}. \)

Proof. This can be proved by using the techniques similar to those used in Theorem 1 and Theorem 2 in [10]. \(\square \)
Theorem 2.4. Let p_k and q_k be two sequences of real numbers such that $0 < p_k \leq q_k < \infty$ for each k. Then

$$V^\theta_{\sigma_0}(M, p) \subseteq V^\theta_{\sigma_0}(M, q).$$

Proof. Let $x \in V^\theta_{\sigma_0}(M, p)$. Then there exists some $\rho > 0$ such that

$$\lim_{r \to \infty} \left(M \left(\frac{|t_{r,n}(x)|}{\rho} \right) \right)^{p_r} = 0,$$

uniformly in n. This implies that

$$M \left(\frac{|t_{r,n}(x)|}{\rho} \right) \leq 1$$

for sufficiently large n. Since M is non-decreasing, we obtain the following

$$\lim_{r \to \infty} \left(M \left(\frac{|t_{r,n}(x)|}{\rho} \right) \right)^{q_r} \leq \lim_{r \to \infty} \left(M \left(\frac{|t_{r,n}(x)|}{\rho} \right) \right)^{p_r} = 0$$

uniformly in n that is $x \in V^\theta_{\sigma_0}(M, q)$. This completes the proof.

Theorem 2.5. (1) Let $0 < \inf p_k \leq p_k \leq 1$. Then

$$V^\theta_{\sigma_0}(M, p) \subseteq V^\theta_{\sigma_0}(M).$$

(2) Let $0 < p_k \leq \sup_k p_k \leq \infty$. Then

$$V^\theta_{\sigma_0}(M) \subseteq V^\theta_{\sigma_0}(M, p).$$

Proof. (1) Let $x \in V^\theta_{\sigma_0}(M, p)$, that is $\lim_{r \to \infty} \left(M \left(\frac{|t_{r,n}(x)|}{\rho} \right) \right)^{p_r} = 0$, uniformly in n. Since $0 < \inf p_k \leq p_k \leq 1$ we have

$$\lim_{r \to \infty} \left(M \left(\frac{|t_{r,n}(x)|}{\rho} \right) \right) \leq \lim_{r \to \infty} \left(M \left(\frac{|t_{r,n}(x)|}{\rho} \right) \right)^{p_r} = 0$$

uniformly in n and hence $x \in V^\theta_{\sigma_0}(M)$.

(2) Let $p_k \geq 1$ for each k and $\sup_k p_k < \infty$. Let $x \in V^\theta_{\sigma_0}(M)$, then for each $\epsilon (0 < \epsilon < 1)$ there exists a positive integer N such that
\[M\left(\frac{|f_{r,n}(x)|}{\rho}\right) \leq \epsilon \text{ for all } r \geq N \text{ and for all } n. \text{ Since } 0 < p_k \leq \sup p_k < \infty, \text{ we have for all } n. \]

\[\lim_{r \to \infty} \left(M\left(\frac{|f_{r,n}(x)|}{\rho}\right)\right)^{p_r} \leq \lim_{r \to \infty} \left(M\left(\frac{|f_{r,n}(x)|}{\rho}\right)\right) \leq \epsilon < 1. \]

Therefore \(x \in V_{o_0}^{\theta}(M, p) \). This completes the proof. \(\square \)

Acknowledgement The authors wishes to thank the referee for his constructive comments and suggestions.

References

Received November 23, 2004.