Petri Maps for Very Ample Line Bundles

EDOARDO BALLCIO (*)

Summary. - Here we construct several smooth curves C and several very ample and special line bundles L on C such that the multiplication map $H^0(C, L) \otimes H^0(C, \omega_C \otimes L^*) \to H^0(C, \omega_C)$ (i.e. the Petri map) is surjective.

1. Introduction

Let C be a smooth and connected projective curve and $L \in \text{Pic}(C)$ such that $h^0(C, L) \geq 2$ and $h^1(C, L) \geq 2$. A key role in the classical theory of special divisors on C is played by the Petri map, i.e. by the multiplication map $\mu_L : H^0(C, L) \otimes H^0(C, \omega_C \otimes L^*) \to H^0(C, \omega_C)$ ([2] or [3], Ch. II). The best situation occurs when μ_L is injective, but this is a rather restrictive assumption for the pair (C, L), because it implies $h^0(C, L) \cdot h^0(C, \omega_C \otimes L^*) \leq h^0(C, \omega_C)$, i.e. $h^0(X, L) \cdot (h^0(X, L) + p_a(C) - 1 - \deg(L)) \leq p_a(C)$. This condition is not satisfied when L induces an embedding of C in \mathbb{P}^n as a curve of high genus with respect to its degree and in particular it is never satisfied for many pairs (C, L) which arise quite often in the Castelnuovo theory of curves in \mathbb{P}^n ([3], Ch. III). The next best thing would be the surjectivity of μ_L, because it would give the key...

(*) Author’s address: Edoardo Ballico, Dipartimento di Matematica, Università di Trento, via Sommarive 14, 38050 Povo (TN), Italy, e-mail: ballico@science.unitn.it

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

Keywords: Petri map, Curve in a projective space, $K3$ surface.

AMS Subject Classification: 14H50, 14H51, 14J28, 14M15, 14N05.
information \(\dim(\ker(\mu_L)) \). Notice that the surjectivity of \(\mu_L \) is an open condition for a flat family of pairs \((C, L)\) for which \(h^0(C, L) \) is constant. Following [1] we use the following classical definition.

Definition 1.1. Fix an integer \(k > 0 \) and curve \(C \subset \mathbb{P}^n \) (i.e. a locally closed equidimensional one-dimensional subscheme of \(\mathbb{P}^n \)). \(C \) is said to be \(k \)-normal if the restriction map \(H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(k)) \rightarrow H^0(C, \mathcal{O}_C(k)) \) is surjective. \(C \) is said to be strongly \(k \)-normal if it is \(t \)-normal for every integer \(t \) such that \(1 \leq t \leq k \).

The definition of \(\mu_L \) makes sense even if \(C \) is singular and we will get for free the surjectivity of the Petri map for pairs \((C, L)\) with \(C \) Gorenstein (but perhaps with multiple components) and \(C \) any member of a suitable linear system on a certain degree \(2n - 2 \) linearly normal \(K_3 \) surface \(S \subset \mathbb{P}^n \).

Theorem 1.2. Fix integers \(d, g, n, x \) such that \(n \geq 3 \) and \(0 \leq d - n < g < d^2/(4n - 4) - (n - 1)/4 \). Set \(r := \lfloor (d - \sqrt{d^2 - (4n - 4)g/(2n - 2)}) \rfloor \), \(d_0 := d - (2n - 2)r \) and \(g_0 := (n - 1)r^2 - dr + g \); notice that \(r \geq 1 \) and \(0 \leq g_0 \leq d - n \). Assume \(1 \leq 3x \leq r \). Then there exists a smooth linearly normal \(K_3 \) surface \(S \subset \mathbb{P}^n \) with degree \(2n - 2 \) and the following properties. Set \(H := \mathcal{O}_S(1) \). There is a smooth and connected curve \(C_0 \subset S \) such that \(\deg(C_0) = d_0 \), \(p_a(C_0) = g_0 \), \(h^0(S, \mathcal{O}_S(H - C_0)) = h^0(S, \mathcal{O}_S(C_0 - H)) = 0 \). \(\text{Pic}(S) \) is freely generated by \(H \) and \(C_0 \) and a general element of \(|C_0 + rH| \) is smooth. Fix any \(C \in |C_0 + rH| \). \(C \) is strictly \(r \)-normal. \(C \) is \((r + 1)\)-normal if and only if \(C_0 \) is linearly normal, i.e. if and only if \(n + g_0 = d_0 + h^1(C_0, \mathcal{O}_{C_0}(1)) \). Set \(L := \mathcal{O}_C(x) \). Then \(\mu_L \) is surjective.

We work over an algebraically closed field \(K \) such that \(\text{char}(K) = 0 \). Our proofs use an existence theorem for curves in certain \(K3 \) surfaces proved only in characteristic zero ([4], [5]).

2. Proof of Theorem 1.2

All the results, except the surjectivity of \(\mu_L \) were proved in [1]. More precisely, the results were proved in [1], Prop. 2.2 and proof of Th. 1.4, but only stated when \(C \) is smooth; however, no difference is for the case in which \(C \) is an arbitrary element of \(|C_0 + rH|\).
key tool for the quoted results in [1] was [4], Th. 4.6. Let \(\eta_t : H^0(S, \mathcal{O}_S(tH)) \otimes H^0(S, \mathcal{O}_S(C_0 + (r-t)H)) \rightarrow H^0(S, \mathcal{O}_S(C_0 + rH)) \) denote the multiplication map. Since \(C \) is strictly \(r \)-normal, the restriction map \(\rho_t : H^0(S, \mathcal{O}_S(t)) \rightarrow H^0(C, \mathcal{O}_C(t)) \) is surjective for every integer \(t \) such that \(1 \leq t \leq r \). Since \(h^0(S, \mathcal{O}_S((t-r)H-C_0)) = 0 \) if \(t \leq r \), we get the bijectivity of \(\rho_t \) for \(1 \leq t \leq r \). Since \(\omega_S \cong \mathcal{O}_S \), we have \(\omega_C \cong \mathcal{O}_C(C) \) (adjunction formula). Hence for any integer \(z \) we have the exact sequence

\[
0 \rightarrow \mathcal{O}_S(C_0 + (z-r)H) \rightarrow \mathcal{O}_S(C_0 + zH) \rightarrow \omega_C((z-r)) \rightarrow 0 \tag{1}
\]

Since \(S \) is arithmetically Cohen-Macaulay (or use Kodaira vanishing and duality), we have \(h^1(S, \mathcal{O}_S(yH)) = 0 \) for every integer \(y \). Hence the restriction map \(\tau_t : H^0(S, \mathcal{O}_S(C_0 + zH)) \rightarrow H^0(C, \omega_C((z-r))) \) is bijective for every integer \(z < r \) and surjective with one-dimensional kernel for \(z = r \). Hence to show that \(\mu_L \) is surjective, it is sufficient to show that \(\eta_t \) is surjective. We fix a general linear subspace \(W \) of \(H^0(S, \mathcal{O}_S(xH)) \) such that \(\dim(W) = 3 \). Since \(\mathcal{O}_S(H) \) is very ample, \(W \) spans \(\mathcal{O}_S(xH) \). Hence for all integers \(y \) the vector space \(W \) induces the following Koszul complex type exact sequence

\[
0 \rightarrow \mathcal{O}_S(C_0 + (r-3x+y)H) \rightarrow \mathcal{O}_S(C_0 + (r-2x+y)H) \rightarrow \mathcal{O}_S(C_0 + (r+y)H) \rightarrow 0 \tag{2}
\]

Set \(A_y : = \ker(\alpha_y) = \ker(\beta_y) \). Since \(W \subseteq H^0(S, \mathcal{O}_S(xH)) \) and \(\rho_x \) and \(\tau_r \) are surjective, to prove the surjectivity of \(\mu_L \) it is sufficient to prove \(h^1(S, A_0) = 0 \). Since \(3x \leq r \), then \(h^2(S, \mathcal{O}_S(C_0 + (r-3x)H)) = h^0(S, \mathcal{O}_S(-C_0 + (3x-r)H)) = 0 \). Hence we would get \(h^1(S, A_0) = 0 \) if \(h^1(S, \mathcal{O}_S(C_0 + (r-2x)H)) = 0 \). By [1], proof of part (iiiib) of Proposition 2.2, the linear system \(|C_0| \) has no base point. Since \(C_0 \) is irreducible and \(H \) ample, we get \(h^1(S, \mathcal{O}_S(C_0 + (r-2x)H)) = 0 \) by Kodaira vanishing if either \(2x < r \) or \(2x = r \) and \(C_0 \cdot C_0 > 0 \), concluding the proof.

References

[2] Ph. Griffiths, E. Arbarello, M. Cornalba and J. Harris,

Received October 13, 2004.