A Fixed Point Theorem for Fuzzy Contraction Mappings

Valentín Gregori and José Pastor

Summary. - In this paper, we give a fixed point theorem for fuzzy contraction mappings in quasi-pseudo-metric spaces which is a generalization of the corresponding one for metric spaces given by S. Heilpern.

1. Introduction

S. Heilpern [1] introduced the concept of a fuzzy mapping, i.e., mapping from an arbitrary set to a certain subfamily of fuzzy sets in a metric linear space X. He proved a fixed point theorem for fuzzy contraction mappings which is a generalization of the fixed point theorem for multivalued mappings of Nadler [3] arising from the set-representation of fuzzy sets [4]. In this paper we extend the result of Heilpern to quasi-pseudo-metric spaces which are left K-sequentially complete.

(*) Authors' addresses: Valentín Gregori, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Escola Universitària de Gandia Carretera Nazaret-Oliva S.N. 46730-Grau de Gandia, Valencia, Spain, e-mail: vgregori@mat.upv.es
José Pastor, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Escola Universitària de Gandia Carretera Nazaret-Oliva S.N. 46730-Grau de Gandia, Valencia, Spain, e-mail: jpastogi@mat.upv.es

AMS Classification: 54A40.

Keywords: Fuzzy mapping, left K-Cauchy sequence, quasi-pseudo-metric.

While working on this paper the first-listed author has been partially supported by a grant from Ministerio de Educación y Ciencia DGES PB 95-0737.
2. Preliminaries

The set of positive integers is denoted by \mathbb{N}. Recall that a nonnegative real valued function d defined on a nonempty set X is said to be a quasi-pseudo-metric provided it satisfies the following properties:

- for every x, y, $z \in X$,

 \[d(x, z) \leq d(x, y) + d(y, z) \]

 \[d(x, x) = 0. \]

The set $B_\varepsilon(x) = \{ y \in X : d(x, y) < \varepsilon \}$ is the d-ball with centre x and radius $\varepsilon > 0$. The topology $T(d)$, having as a base the family of all d-balls $B_\varepsilon(x)$ with $x \in X$ and $\varepsilon > 0$, is the topology on X induced by d. (X, d) is called a quasi-pseudo-metric space, if d is a quasi-pseudo-metric on X and we will suppose it is endowed with the topology $T(d)$, in the following.

If d is a quasi-pseudo-metric on X, then d^{-1}, defined by $d^{-1}(x, y) = d(y, x)$ whenever $x, y \in X$, is also a quasi-pseudo-metric on X. We will denote B_{ε}^{-1} the d^{-1}-ball with centre x and radius $\varepsilon > 0$. Only if confusion is possible we write d-closed or d^{-1}-closed, for example, to distinguish the topological concept in (X, d) or (X, d^{-1}). We will denote $\min(d, d^{-1})$ by $d \wedge d^{-1}$. We will make use of the following notion, which has been studied by various authors under different names (see e.g. [2], [5]).

A sequence (x_n) in a quasi-pseudo-metric space (X, d) is called left K-Cauchy if for each $\varepsilon > 0$ there is $k \in \mathbb{N}$ such that $d(x_r, x_s) < \varepsilon$ for all $r, s \in \mathbb{N}$ with $k \leq r \leq s$. A quasi-pseudo-metric space (X, d) is said to be left K-sequentially complete if each left K-Cauchy sequence in X converges (with respect to the topology $T(d)$).

Let x be a point in X and A a nonempty subset of X. We define the distance $d(x, A)$ from x to A by

\[d(x, A) = \inf \{ d(x, a) : a \in A \}. \]

Thus $d(x, A) = 0$ iff $x \in \overline{A}$, the closure of A in X.

Now let A and B be nonempty subsets of X. We define the distance $d(A, B)$ from A to B by

\[d(A, B) = \inf \{ d(x, y) : x \in A, y \in B \}. \]
and clearly \(d(A, B) \neq d(B, A) \) in general. Now, we define the Hausdorff separation of \(A \) from \(B \) by

\[
d_H(A, B) = \sup\{d(a, B) : a \in A\}.
\]

Thus we have \(d_H(A, B) \geq 0 \) with \(d_H(A, B) = 0 \) iff \(A \subseteq dB \). In addition, the triangle inequality

\[
d_H(A, C) \leq d_H(A, B) + d_H(B, C)
\]

holds for all nonempty subsets \(A, B, C \) of \(X \). In general, however \(d_H(A, B) \neq d_H(B, A) \).

We define the Hausdorff distance, deduced from the quasi-pseudometric \(d \), between nonempty subsets \(A \) and \(B \) of \(X \) by

\[
H(A, B) = \max\{d_H(A, B), d_H(B, A)\}.
\]

This is now symmetric in \(A \) and \(B \). Consequently, \(H(A, B) \geq 0 \) with \(H(A, B) = 0 \) iff \(dA = dB \), \(H(A, B) = H(B, A) \) and \(H(A, C) \leq H(A, B) + H(B, C) \) for any nonempty subsets \(A, B, C \) of \(X \). When \(d \) is a metric on \(X \), clearly \(H \) is the usual Hausdorff distance.

Remark 2.1. Given a quasi-pseudometric \(d : X \times X \rightarrow \mathbb{R}^+ \) let \(\rho = \max\{d, d^{-1}\} \). Then \(\rho \) is obviously a pseudometric on \(X \). Moreover, it is easy to notice that the Hausdorff distance \(H(A, B) = H_d(A, B) \) determined by \(d \) and the Hausdorff distance \(H_\rho(A, B) \) determined by the pseudometric \(\rho \) coincide.

A fuzzy set on \(X \) is an element of \(I^X \) where \(I = [0,1] \). The \(\alpha \)-level set \(A_\alpha \) of a fuzzy set \(A \) on \(X \) is defined as

\[
A_\alpha = \{x \in X : A(x) \geq \alpha\} \text{ for each } \alpha \in [0,1],
\]

\[
A_0 = d(\{x \in X : A(x) > 0\}).
\]

For \(x \in X \) we denote by \(\{x\} \) the characteristic function of the ordinary subset \(\{x\} \) of \(X \).

Definition 2.2. Let \((X, d) \) be a quasi-pseudo-metric space. We define the family of fuzzy sets on \(X \), \(W^*(X) \), as follows:

\[
W^*(X) = \{A \in I^X : A_1 \text{ is nonempty } d-closed \text{ and } d^{-1}-compact\}.
\]
For a metric linear space \((X,d)\), in [1] it is defined the family
\(W(X)\) of fuzzy sets on \(X\), as follows, \(A \in W(X)\) iff \(A_\alpha\) is compact
and convex in \(X\) for each \(\alpha \in [0,1]\) and \(\sup_{x \in X} A(x) = 1\). Clearly,
\(A_\alpha\) is closed for \(\alpha \in [0,1]\) and it is easy to verify that \(A_1\) is nonempty.
Then, in a metric linear space \((X,d)\) we have the following inclusions:
\(W(X) \subset W^*(X) \subset I^X\).

For working with a similar notation to [1] we introduce the next
definition.

Definition 2.3. Let \((X,d)\) be a quasi-pseudo-metric space and let
\(A, B \in W^*(X)\), \(\alpha \in [0,1]\). Then we define:

\[p_\alpha(A,B) = \inf\{d(x,y) : x \in A_\alpha, y \in B_\alpha\} = d(A_\alpha, B_\alpha) \]

\[D_\alpha(A,B) = H(A_\alpha, B_\alpha) \]

where \(H\) is the Hausdorff distance deduced from the quasi-pseudo-metric \(d\) on \(X\);

\[D(A,B) = \sup_\alpha D_\alpha(A,B) \]

Notice that \(p_\alpha\) is non-decreasing function of \(\alpha\), and then \(p_1(A,B) = d(A_1,B_1)\).

The following definition is more general than the one given in [1].

Definition 2.4. Let \(X\) and \(Y\) be an arbitrary set and a quasi-pseudo-metric space, respectively. \(F\) is said to be a fuzzy mapping if
\(F\) is a mapping from the set \(X\) into \(W^*(Y)\).

Definition 2.5. Let \(A, B \in I^X\). As usual in fuzzy theory, we
denote \(A \subseteq B\) when \(A(x) \leq B(x)\), for each \(x \in X\). We say \(x\) is a
fixed point of the mapping \(F : X \rightarrow I^X\), if \(\{x\} \subseteq F(x)\).

We will use the following three lemmas, whose proofs we omit, given for a quasi-pseudo-metric space \((X,d)\). They were given in metric version (the first one modified) by Heilpern [1], for the family
\(W(X)\).

Lemma 2.6. Let \(x \in X\) and \(A \in W^*(X)\). Then \(\{x\} \subseteq A\) if and only if \(p_1(x,A) = 0\).
Lemma 2.7. \(p_0(x,A) \leq d(x,y) + p_0(y,A) \), for any \(x,y \in X \), \(A \in W^*(X) \).

Lemma 2.8. \(\text{If } \{x_0\} \subset A \text{ then } p_0(x_0,B) \leq D_0(A,B) \) for each \(A,B \in W^*(X) \).

We will need the following lemma.

Lemma 2.9. \(\text{Suppose } K \neq \emptyset \text{ is compact in the quasi-pseudo-metric space } (X,d^{-1}). \text{ If } z \in X, \text{ then there exists } k_0 \in K \text{ such that } d(z,K) = d(z,k_0). \)

Proof. Let \(A \) be a nonempty subset of \(X \). From \(d(z,x) \leq d(z,y) + d(y,x) \) whenever \(x,y,z \in X \), we conclude, taking the infimum of the last expression for \(z \in A, \) that

\[
d(A,x) \leq d(A,y) + d(y,x) \tag{1}
\]

We will see that \(d(A,x) \) is a \(d^{-1}\)-lower-continuous (lsc) function of \(X \). Let \(x_0 \in X \) and \(\varepsilon > 0 \). By (1) we have \(d(A,y) \geq d(A,x_0) - d(y,x_0) \) and then for \(y \in B_{\varepsilon}^{-1}(x_0) \) we have \(d(A,y) > d(A,x_0) - \varepsilon \) and so \(d(A,x) \) is a \(d^{-1}\)-lsc function.

In particular if \(A \) is the one-point set \(\{z\} \), the function \(d(z,k) \) is a \(d^{-1}\)-lsc function of \(k \in K \), and since \(K \) is \(d^{-1}\)-compact then there exists \(k_0 \in K \) such that \(d(z,k_0) = \min\{d(z,k) : k \in K\} \), i.e., \(d(z,k_0) = d(z,K) \).

\(\square \)

3. Fixed point theorem

Now, we prove a fixed point theorem for fuzzy contraction mappings in quasi-pseudo-metric spaces.

Theorem 3.1. \(\text{Let } (X,d) \text{ be a left } K\text{-sequentially complete quasi-pseudo-metric space, and } F \text{ be a fuzzy mapping from } X \text{ to } W^*(X) \)

satisfying the following condition: there exists \(q \in]0,1[\), such that

\[
D(F(x),F(y)) \leq q (d \wedge d^{-1})(x,y) \text{ for each } x,y \in X.
\]

Then there exists \(x^* \in X \) such that \(\{x^*\} \subset F(x^*) \).
Proof. Let \(x_0 \in X \) and \(\{x_1\} \subset F(x_0) \). By Lemma 2.9 there exists \(x_2 \in X \) such that \(\{x_2\} \subset F(x_1) \) and \(d(x_1, x_2) \leq d(x_1, (F(x_1))_1) \) since \((F(x_1))_1 \) is \(d^{-1} \)-compact. We have
\[
d(x_1, x_2) \leq d(x_1, (F(x_1))_1) \leq H(x_1, (F(x_1))_1) \leq D(F(x_0), F(x_1)).
\]

Continuing in this way we produce a sequence \((x_n) \) in \(X \) such that \(\{x_n\} \subset F(x_{n-1}) \) and \(d(x_n, x_{n+1}) \leq D(F(x_{n-1}), F(x_n)) \) for each \(n \in \mathbb{N} \). We will prove that \((x_n) \) is a left \(K \)-Cauchy sequence.

\[
d(x_1, x_2) \leq D(F(x_0), F(x_1)) \leq q (d \wedge d^{-1})(x_0, x_1) \leq q d(x_0, x_1)
\]
and
\[
d(x_k, x_{k+1}) \leq D(F(x_k-1), F(x_k)) \leq q (d \wedge d^{-1})(x_k-1, x_k) \leq q d(x_{k-1}, x_k) \leq q^k d(x_0, x_1), \text{ for } k = 0, 1, 2 \ldots
\]

For \(n < m \) we have
\[
d(x_n, x_m) \leq \sum_{i=0}^{m-n-1} d(x_{n+i}, x_{n+i+1}) \leq \sum_{i=n}^{m-1} q^i d(x_0, x_1) \leq \frac{q^n}{1-q} d(x_0, x_1)
\]
whenever \(q \in [0, 1] \) and then \((x_n) \) is a left \(K \)-Cauchy sequence, since \(q^n \) converges to 0 as \(k \to \infty \). Then, since \(X \) is left \(K \)-sequentially complete in \(X \), there exists \(x^* \in X \) such that \(\lim_n x_n = x^* \).

Now, by Lemma 2.7
\[
p_1(x^*, F(x^*)) \leq d(x^*, x_n) + p_1(x_n, F(x^*))
\]

Then by Lemma 2.8 (compare with [1]):
\[
p_1(x^*, F(x^*)) \leq d(x^*, x_n) + D_1(x_n, F(x^*)) \leq d(x^*, x_n) + D(F(x_{n-1}), F(x^*)) \leq d(x^*, x_n) + q (d \wedge d^{-1})(x_{n-1}, x^*) \leq d(x^*, x_n) + q d(x^*, x_{n-1}).
\]

Now, \(d(x^*, x_n) \) and \(d(x^*, x_{n-1}) \) converge to 0 as \(n \to \infty \). Hence, by Lemma 2.6 we conclude that \(\{x^*\} \subset F(x^*) \). \(\square \)
When \(d \) is a complete metric on \(X \), we get the following result of Heilpern [1]

Corollary 3.2. Let \(X \) be a complete metric linear space and \(F \) be a fuzzy mapping from \(X \) to \(W(X) \) satisfying the following condition: there exists \(q \in [0, 1] \) such that

\[
D(F(x), F(y)) \leq qd(x, y) \quad \text{for each } x, y \in X.
\]

Then, there exists \(x^* \in X \) such that \(\{x^*\} \subset F(x^*) \).

Acknowledgement. The authors are grateful to the referee for his valuable suggestions.

References

Received October 24, 1997.