A Note on Quasi-k-Spaces

Manuel Sanchis

Summary. - We prove that for a regular Hausdorff space \(X \) the following conditions are equivalent: (1) \(X \) is locally compact, (2) for each quasi-k-space \(Y \), the product space \(X \times Y \) is also a quasi-k-space.

1. Introduction

Unless the contrary is explicitly stated, all topological spaces are assumed to be regular Hausdorff. Let \(\Sigma \) be a cover for a topological space \(X \) with topology \(\tau \). The family \(\Sigma(\tau) \) of those subsets of \(X \) which intersect each \(S \in \Sigma \) in an \(S \)-open set (i.e., open in \(S \) with the relative topology from \(\tau \)) is a topology for \(X \) finer than \(\tau \). Now to each space \(X \) and to each cover \(\Sigma \) for \(X \) we may associate the space \(\sigma(X) \), the same set of points topologized by \(\Sigma(\tau) \). Let us call a space a \(\Sigma \)-space whenever \(\sigma(X) = X \). If \(\Sigma \) is the cover of all countably compact (respectively, compact) subsets, \(\Sigma \)-spaces are called quasi-k-spaces (respectively, \(k \)-spaces).

The quasi-k-spaces and the \(k \)-spaces appear in several fields in General Topology and Functional Analysis. For instead, when studying compactness of function spaces in the topology of pointwise convergence [1] and in the theory of \(M \)-spaces introduced by K. Morita

(*) Author’s address: Departament de Matemàtiques, Universitat Jaume I, Campus de Penyeta Roja s/n, 12071, Castelló, Spain, e-mail: sanchis@mat.uji.es
1991 Mathematics Subject Classification: 54D50, 54D99, 54B10, 54B15.
Key words and phrases: quotient map, \(k \)-space, quasi-k-space, (locally) countably compact space.
The author was supported by DGES, under grant PB95-0737.
[4]. As it was showed by J. Nagata [6] a space X is a quasi-k-space (respectively, a k-space) if and only if X is a quotient space of a regular (respectively, paracompact) M-space.

In this note we are concerned with characterizing when a quasi-k-space satisfies that its product with every quasi-k-space is also a quasi-k-space. The similar question for k-spaces was solved by E. Michael [3]. He showed that $X \times Y$ is a k-space for every k-space Y if and only if X is locally compact. Our main result is to prove a similar one in the realm of quasi-k-spaces.

The terminology and notation are standard. If X is a topological space, Y is a set and $g : X \rightarrow Y$ is an onto mapping, the strongest topology on Y making g continuous is called the quotient topology on Y. When Y is equipped with such a quotient topology, it is called a quotient space of X, and the inducing map g is called a quotient map. We denote by $\bigoplus_{\alpha \in A} X_\alpha$ the disjoint topological sum of a family $\{X_\alpha\}_{\alpha \in A}$ of topological spaces. A subset M of X is said to be quasi-k-closed (in X) provided that $M \cap K$ is closed in K for every countably compact subset K of X. Obviously, the definition of quasi-k-space can be reformulated in the following way: A space X is a quasi-k-space if every quasi-k-closed subset is closed. We remind the reader that a space X is locally countably compact if each point has a countably compact neighborhood. In the category of regular spaces each such space X has a base composed of countably compact neighborhoods at x for every $x \in X$. For terminology and notation not defined here and for general background see [2].

2. The results

First we shall prove a characterization of quasi-k-spaces that it will be used in the sequel (compare with [5], Theorem 1.2).

Theorem 2.1. Let X be a Hausdorff space. The following conditions are equivalent:

1. X is a quasi-k-space;
2. X is a quotient space of a disjoint topological sum of countably compact spaces;

3. X is a quotient space of a locally countably compact space.

Proof. (1) \implies (2) Let \mathcal{K} be the family defined as

$$ \mathcal{K} = \{ K \subseteq X \mid K \text{ is countably compact} \} $$

and consider the space $Y = \bigoplus_{K \in \mathcal{K}} K$. We shall prove that X is a quotient space of Y.

To see this, define the function φ from Y onto X by the requirement that $\varphi(x)$ be x whenever $x \in Y$. Beginning from the fact that X is a quasi-k-space, it is a routine matter to check that φ is a quotient map.

(2) \implies (3) It is clear.

(3) \implies (1) Let φ be a quotient map from a locally countably compact space Y onto X. Since φ is a quotient map, we need only show that $\varphi^{-1}(F)$ is closed in Y whenever F is quasi-k-closed in X. Suppose that there exists a quasi-k-closed subset (in X) F such that $\varphi^{-1}(F)$ is not closed in Y. We shall see that this leads us to a contradiction. Choose $y \in \partial_Y \varphi^{-1}(F) \setminus \varphi^{-1}(F)$ and let V be a countably compact neighborhood of y in Y. φ being continuous, $\varphi(V)$ is countably compact and, consequently, $\varphi(V) \cap F$ is closed in $\varphi(V)$. On the other hand, as $\varphi(y) \notin F$, we can find an open set T such that $\varphi(y) \in T$ and

$$ T \cap (\varphi(V) \cap F) = \emptyset. $$

Thus,

$$ \varphi^{-1}(T) \cap \varphi^{-1}(\varphi(V) \cap F) = \emptyset. \quad (\star) $$

But, as $y \in \partial_Y \varphi^{-1}(F)$, there is $z \in Y$ satisfying

$$ z \in (\varphi^{-1}(T) \cap V) \cap \varphi^{-1}(F). $$
So, $\varphi(z) \in \varphi(V) \cap F$. Therefore,

$$z \in \varphi^{-1}(T) \cap \varphi^{-1}(\varphi(V) \cap F).$$

This is contrary to condition (\ast) and the proof is complete. \qed

Given an ordinal number α, the symbol $W(\alpha)$ stands for the set of all ordinal numbers less than α. When viewed as a topological space this has the usual order topology. As usual, ω denotes the first infinite ordinal number. If X is a non locally compact space at a point x_0, E. Michael constructed in [3] a space $\mathcal{K}(X)$ associated with X in the following way: let $\{U_i\}_{i \in I}$ be a base of non-compact closed neighborhoods of the point x_0. For each $i \in I$, since U_i is not compact, there are a limit ordinal number $\eta(i)$ and a well-ordered (by inclusion) family $\{F^{i}_j\}_{j < \eta(i)}$ of closed subsets of U_i such that

$$\bigcap \{F^{i}_j \mid j < \eta(i)\} = \emptyset.$$

Consider now the k-space $Z = \bigoplus_{i \in I} W(\eta(i) + 1)$. The Michael space $\mathcal{K}(X)$ is defined as the quotient space of Z obtained by identifying all points $\{\eta(i)\}_{i \in I}$ with a point y_0. Since a quotient space of a k-space is also a k-space ([2], Theorem 3.3.23), $\mathcal{K}(X)$ is a k-space (and, a fortiori, a quasi-k-space). We need the following important property of $\mathcal{K}(X)$.

Theorem 2.2. Let X be a non locally compact space at a point x_0. If K is a countably compact subset of $\mathcal{K}(X)$, then K meets at most finitely many elements of the family $\{W(\eta(i))\}_{i \in I}$.

Proof. Let K be a subset of $\mathcal{K}(X)$ such that there exists a sequence $\{i_n\}_{n < \omega}$ in I such that K meets $W(\eta(i_n))$ for all $n < \omega$. We shall show that K is not countably compact.

Choose, for each $n < \omega$, an $\alpha_n \in K \cap W(\eta(i_n))$. We shall prove that the sequence $\{\alpha_n\}_{n < \omega}$ does not admit any cluster point in Y. For this in turn, it suffices to check that the point y_0 is not a cluster.
point of \(\{ \alpha_n \}_{n<\omega} \). As \(\eta(i_n) \) is a limit ordinal, there exists an open set \(V_n \) for each \(n < \omega \) such that

\[
\alpha_n \notin V_n, \quad \eta(i_n) \in V_n.
\]

Let \(D_n \) be the set defined as follows:

\[
D_n = \{ \lambda \in W(\eta(i_n)) \mid \lambda \in V_n \} \cup \{ y_0 \}
\]

and consider the open neighborhood \(D \) of \(\{ y_0 \} \),

\[
D = \left(\bigcup_{n<\omega} D_n \right) \cup E
\]

where \(E = \bigcup \{ W(\eta(i)) : i \neq i_n \text{ for every } n < \omega \} \). It is clear that \(D \) does not meet \(\{ \alpha_n \}_{n<\omega} \) as was to be proved. \(\square \)

We determine next when a space \(X \) satisfies that \(X \times Y \) is a quasi-\(k \)-space for each quasi-\(k \)-space \(Y \). The following lemma is well-known; a proof can be extracted from [2], Corollary 3.10.14.

Lemma 2.3. The product space \(X \times Y \) of a locally compact space \(X \) and a locally countably compact space \(Y \) is locally countably compact.

Theorem 2.4. Let \(X \) be a regular Hausdorff space. The following assertions are equivalent:

1. \(X \) is locally compact;
2. If \(Y \) is a quasi-\(k \)-space, then so is \(X \times Y \).

Proof. (1) \(\Rightarrow \) (2) Let \(Y \) be a quasi-\(k \)-space. According to Theorem 2.1, we can find a locally countably compact space \(Z \) such that \(Y \) is a quotient space of \(Z \). Let \(\varphi \) be a quotient map from \(Z \) onto \(Y \). By [7], Lemma 4 the function \(f \) from \(X \times Z \) onto \(X \times Y \) defined as

\[
f = \text{id}_X \times \varphi
\]
(where \(id_X\) stands for the identity map on \(X\)) is a quotient map. As, by Lemma 2.3, the space \(X \times Z\) is locally countably compact, the result holds by condition (3) in Theorem 2.1.

(2) \(\implies\) (1) Let \(X\) be a non locally compact space at \(x_0\). We shall construct a quasi-\(k\)-space \(Y\) such that \(X \times Y\) is not a quasi-\(k\)-space. To see this, let \(\{U_i\}_{i \in I}\) be a base for closed neighborhoods of the point \(x_0\) and consider, for each \(U_i, i \in I\), a family \(\{F^i_\alpha\}_{\alpha < \eta(i)}\) of nonempty closed sets of \(U_i\) satisfying the same conditions as in Michael’s construction. Let \(Y = \mathcal{K}(X)\) be the Michael space associated with this family. We shall prove that \(X \times Y\) is not a quasi-\(k\)-space. For this end, given \(i \in I\) and \(\mu \in W(\eta(i))\), let \(M^i_\mu\) be the closed set defined as \(M^i_\mu = \bigcap_{\lambda < \mu} F^i_\lambda\). Since the family \(\{F^i_\alpha\}_{\alpha < \eta(i)}\) is well-ordered by inclusion, the set \(M^i_\mu\) is nonempty. Now, for each \(i \in I\), let \(H_i = \bigcup_{\lambda < \eta(i)} \{M^i_\lambda \times \{\lambda\}\}\). Because \(\bigcap_{\mu < \eta(i)} M^i_\mu = \emptyset\), it is easy to check that each \(H_i\) is a closed set. We shall complete the proof by showing that \(H = \bigcup_{i \in I} H_i\) is a quasi-\(k\)-closed, non closed set in \(X \times Y\). In fact, for each \(i \in I\),

\[
H \cap \{X \times (W(\eta(i)) \cup \{y_0\})\} = H_i,
\]

and, by Theorem 2.2, \(H\) is quasi-\(k\)-closed. On the other hand, for each neighborhood \(U \times V\) of \((x_0, y_0)\), we can find \(i \in I\) such that \(U_i \subset U\) and, consequently, if \(\mu \in V \cap W(\eta(i))\),

\[
(U \times V) \cap H_i \neq \emptyset.
\]

Thus, \((x_0, y_0) \in \text{cl}_{X \times Y} H \setminus H\) as was to be proved.

\[\square\]

References

A NOTE ON QUASI-k-SPACES

Received November 3, 1997.