Weierstrass Points, Inflection Points and Ramification Points of Curves

E. Ballico

Summary. - Let C be an integral curve of the smooth projective surface S and P ∈ C. Let π : X → C be the normalization and Q ∈ X with π(Q) = P. We are interested in the case in which Q is a Weierstrass point of X. We compute the semigroup N(Q, X) of non-gaps of Q when S is a Hirzebruch surface F_e, P ∈ C_{reg} and P is a total ramification point of the restriction to C of a ruling F_e → P^1. We study also families of pairs (X, Q) such that the first two integers of N(Q, X) are k and d. To do that we study families of pairs (P, C) with C plane curve, deg(C) = d, C has multiplicity d − k at P, C is unibranch at P and a line through P has intersection multiplicity d with C at P.

1. Introduction

We work over an algebraically closed field K with char(K) = 0. Let C be an integral Gorenstein projective curve with g := p_a(C) ≥ 2. Fix P ∈ C_{reg}. Since C is smooth at P, for every integer t the sheaf ω_C(−tP) is a line bundle. Hence, exactly as in the case of a smooth curve we may define the numerical semigroup of non-gaps of C at P, say N(P, C) ⊂ N, such that card(N \ N) = g ([15], [14]). P is not a Weierstrass point of C if and only if N \ N(P, C) = {1, . . . , g}. We just recall that in general N(P, C) is non a semigroup (for any conceivable definition of N(P, C)) without the assumption P ∈ C_{reg} ([14]). Reading [18], it seems obvious that the last assertion

(+) Author’s address: Dept. of Mathematic, University of Trento, 38050 Povo (TN), Italy; e-mail: ballico@science.unitn.it
of [18], Th. 1, p. 545, is not quite true as stated. Hence it seems natural to try to obtain a recipe for the construction of many triples $(g, k, d), k < d - 2k$, of a pair (X, Q), where X is a smooth curve of genus g and $Q \in X$ is a Weierstrass point with k and d as first two positive integers of $N(Q, X)$. Even more: we want to construct nice families of such pairs. For any such pair (Q, X) the complete linear system $|\mathcal{O}_X(Q)|$ is a base point free and induces a morphism $f : X \to \mathbb{P}^2$. Assume f birational and set $C := f(X), P := f(Q)$. The reduction of the tangent cone of C at P is given by a unique line, L, which has intersection multiplicity d with C at P. Furthermore, C is unibranch at P and it has multiplicity $d - k$ at P because every line $D \neq L$ with $P \in D$ has intersection multiplicity $d - k$. See Theorem 2.5 which clarifies the case in which C is smooth outside P, except for a small number of nodes which are in general \mathbb{P}^2. According to [17], Remark 13. 12, our approach should be the classical approach considered in [4], p. 59, and in [13], p. 547. For the case in which g is the first non gap and $g + x, 1 \leq x \geq g - 1$, is the only gap $> g$, see [17], Th. 14. 7. For the case in which then map $f : X \to C \subset \mathbb{P}^2$ is not birational, see Remark 2.3. In section 3 we compute $N(P, C)$ when C is an integral curve contained in a Hirzebruch surface, $P \in C_{\text{reg}}$, and P is a total ramification point of the restriction of a ruling of F_e to C (see Theorems 3.1 and 3.5). We solve the same problem for the curve X which is a partial normalization of C at a small number of nodes and cusps which are general points of F_e (Theorem 3.3).

This research was partially supported by MURST and GNSAGA of CNR (Italy).

2. Plane curves

In this section we consider the case of plane curves. Fix an integer $d \geq 4$ and an integer y with $0 \leq y \leq d$. At the beginning of this section (Lemma 2.1 and Proposition 2.2) we consider the set-up of [9], i.e., we consider a pair (C, P) such that C is an integral plane curve of degree d, $P \in C_{\text{reg}}$ and such that the tangent line T_PC of C at P has intersection multiplicity y with C at P. With the terminology of [9], P is called a $(y - 2)$-inflection point of P. Set $V(y, d) := \{x \in \mathbb{N} : x = ay + b \text{ for some integers } a, b \text{ with } 0 \leq a \leq d - y \}$.
With the definition of the semigroup of non-gaps for smooth points of integral Gorenstein curves outlined in the introduction, the proofs of [9], Lemma 2.1 and Prop. 2.2, work verbatim and give the following lemma.

Lemma 2.1. Let \(u : X \to C \) be a partial normalization of an integral plane curve \(C \) and \(P \in C_{\text{reg}} \) such that the tangent line \(T_P C \) of \(C \) at \(P \) has intersection multiplicity \(y \) with \(C \) at \(P \). Then \(N(y, d) \subseteq N(P, C) \).

Proposition 2.2. Fix integers \(d, y \) with \(d \geq 4 \) and \(d - 2 \leq y \leq d \). Let \(C \) be an integral plane curve and \(P \in C_{\text{reg}} \) such that the tangent line \(T_P C \) of \(C \) at \(P \) has intersection multiplicity \(y \) with \(C \) at \(P \). Then \(N(y, d) = N(P, C) \).

Now we consider the problem described in the introduction. We want to construct for several triples \((g, k, d)\) good families of pairs \((X, Q)\) with \(X \) smooth genus \(g \) curve and \(Q \) Weierstrass point of \(X \) whose first non-gaps are \(k \) and \(d \). We will try to find a plane model \((C, P)\) for \((X, Q)\) such that \(C \setminus \{P\} \) has only nodes as singularities. We cannot apply [6], Th. 0. 2, because in our situation the two numerical assumptions of [6] Th. 0. 2, are never simultaneously satisfied, except in the trivial case \(k = d - 1 \), i.e. the case in which \(C \) is smooth at \(Q \); for this case, see appendix of [9] in which more is proved. However, we may easily adapt the proofs and ideas contained in [6] to cover our situation.

Remark 2.3. As recalled in the introduction the set-up considered in this section covers all pairs \((X, Q)\) with \(Q \) Weierstrass point on \(X \) whose first non-gaps are \(k \) and \(d \) with \(k < d < 2k \) and such that the complete linear system \(|dQ| \) on \(X \) induces a birational morphism \(f : X \to \mathbb{P}^2 \). Now we will show how to reduce to this case the construction of all the possible examples for which \(f \) is not birational. Start with a pair \((X', Q')\) with \(X' \) of genus \(g' \geq 3 \) and \(P' \) such that the first non-gaps are \(k' \) and \(d' \) with \(k' < d' < 2k' \). Take an integer \(t \geq 2 \) and a ramified degree \(t \) covering \(\pi : X \to X' \) which is totally ramified over \(P' \) and with \(X \) smooth of genus \(g \); set \(k := tk' \), \(d := td' \) and \(Q := \pi^{-1}(Q')_{\text{red}} \). Using Castelnuovo–Severi inequality (see e.g. [1], Ch. 3) we see that for many values of \(t, g, g', d' \) and
k', the integers k and d must be the first non-gaps of P; for instance if $t = 2$ is true if $d \leq g - 2g'$. Viceversa, start with the integers g, k, d and assume that $f : X \to \mathbb{P}^2$ is not birational. Let g' be the genus of the normalization of $f(X)$. Since $h^0(f(X), O_f(X)(1)) = 3$ and $k < d < 2k$, it is easy to check that $g' \geq 3$.

We recall the ideas introduced in [10] to study equisingular deformations of plane curves. We need this reference for our problem because we need deformations of a unibranch point which preserve the condition “unibranch” and the multiplicity. We fix integers k and d with $3 \leq k < d$; in the application to gap-sequences it is sufficient to consider the case $d < 2k$. For simplicity we work over the field of complex numbers \mathbb{C}. We fix $P \in \mathbb{P}^2$ and the germ at P (in the analytic category) of a curve T with a unibranch singularity at P with multiplicity $d - k$. Call L the reduced tangent cone of T at P seen as a line in \mathbb{P}^2; we assume that L has intersection multiplicity d with L at P. The construction of all such examples is obvious in terms of Puiseux expansions. The paper [10] contains the definition of a zero-dimensional subscheme Z' of \mathbb{P}^2 (called the generalized singularity scheme) such that the condition $h^1(\mathbb{P}^2, I_{Z'}(d)) = 0$ gives the existence of a plane curve U of degree d with $P \in U$ and such that U is topologically equivalent to T at P. For any $Q \in \mathbb{P}^2$ and integer $x > 0$, let xQ the fat point of order x in \mathbb{P}^2 supported by Q, i. e. the $(x - 1)$-th infinitesimal neighborhood of Q in \mathbb{P}^2. Hence $dP|L$ is the effective divisor of degree d on L given by the multiple of order d of P. Taking $Z'' := Z' \cup (dP|L) \cup (d - k)Q$ instead of Z' if $h^1(\mathbb{P}^2, I_{Z''}(d)) = 0$ we may obtain an irreducible plane curve V of degree d topologically equivalent to T near P, V and L having intersection multiplicity d at P and such that V has multiplicity at least $d - k$ at P. If Z'' does not contain $(d - k + 1)P$, then we may even find such V with multiplicity $d - k$ at P. Take the germ T at P of any integral unibranch curve at P whose ideal sheaf I_T at P contains $I_{Z''}$ and let c be its conductor; since T is Gorenstein at P, the partial normalization T' of T at P has $\dim_K(O_{T'}/O_T) = \dim_K(O_{T,P}/c)$; we are interested mainly in the case in which $\dim_K(O_{T,P}/c)$ is as small as possible (compatibility with the order data). Let Z be the minimal zero-dimensional subscheme of \mathbb{P}^2 containing both Z'' and the scheme T/c; since every deformation of T preserving c preserves
the geometric genus, if $h^3(P^2, I_Z(d)) = 0$ we may obtain an irreducible plane curve V of degree d topologically equivalent to T near P, V and L having intersection multiplicity d at P, such that V has multiplicity at least $d - k$ at P and such that the arithmetic genus of the partial normalization at P is fixed and is given by $(d - 1)(d - 2)/2 - \dim_K(O_T, P)$. We will call any such Z suitable for the pair (k, d).

Definition 2.4. Let Z be a zero-dimensional subscheme of P^2 and $L \subset P^2$ a line. Set $Z\{1\} := Z$, $Z\{1\} := Z \cap L$ and call $Z\{2\}$ the residual scheme $\text{Res}_L(Z)$ of Z with respect to L. Define inductively $Z(i)$ and $Z\{i\} + 1$ using the formulas $Z(i) := Z\{i\} \cap L$ and $Z\{i\} + 1 := \text{Res}_L(Z\{i\})$. Set $z(i) := h^0(Z(i), O_{Z(i)})$. Notice that $z(i + 1) = z(i)$ and $z(i + 1) \leq z(i)$ for every $i \geq 1$. We will call the non-increasing sequence $\{z(1), z(2), \ldots\}$ (resp. $\{z(1)^*, z(2)^*, \ldots\}$) the first (resp. second) associated sequence of Z with respect to L.

Theorem 2.5. Fix integers d, k, x with $d > k \geq 3$. Fix $P \in P^2$ and a zero-dimensional scheme Z suitable for the pair (k, d), say with respect to the line L. Let $\delta := h^0(Z, O_Z)$ be the length of Z and let $\{z(1)^*, z(2)^*, \ldots\}$ be the first associated sequence of Z with respect to L. Assume $z(1) = d$, $z(i) \leq \max\{d - i - 1, 0\}$ for every $i \geq 2$ and $0 \leq 3x \leq d(d + 3)/2 - 3 - z$. Then for x general points Q_1, \ldots, Q_x of P^2 there exists an integral degree d curve $C \subset P^2$ with $P \in C$, C unibranch at P, L intersecting C with multiplicity d, $Z \subset C$, $Q_i \in C$ for every i, Q_i with ordinary nodes at each Q_i and C smooth outside $\{P, Q_1, \ldots, Q_x\}$. Furthermore, fixing Z and varying Q_1, \ldots, Q_x in a Zariski open subset of symmetric product $S^x(P^2)$ we obtain an irreducible family $M(Z, x)$ of dimension $d(d + 3)/2$ of plane curves with geometric genus $(d - 1)(d - 2)/2 - \delta - x$, where δ is the arithmetic genus of the singularity (C, P).

Proof. Step 1) Here we will show that the union of Z and the first infinitesimal neighborhoods $2Q_i$, $1 \leq i \leq x$, of x general points Q_i of P^2 imposes $z + 3x$ independent conditions to the linear system of degree d plane curves containing them. Since $z(1) = d$ is the maximal length of a subscheme of Z contained in a line through P, we have $Z \subseteq dP$. Hence the case $x = 0$ is obvious. Hence we will assume $x > 0$. Take a general $Q \in L$ and let t the length 2 zero-dimensional
subscheme of L with $t_{\text{red}} = \{Q\}$; the scheme t is the second simple residue of Q with respect to L in the sense of [2], Definition 2.2. Take $x - 1$ general points Q_i, $1 \leq i \leq x - 1$, of \mathbb{P}^2 and let W be the union of $Z\{2\}$, the schemes $2Q_i$, $1 \leq i \leq x - 1$, and t. By [2], Lemma 2.3 it is sufficient to prove the vanishing of $h^1(\mathbb{P}^2, \mathcal{I}_W(d-1))$. Notice that $\text{length}(W \cap L) = z(2) + 2 \leq d - 2$. Now we continue making again an application of Horace Lemma with respect to the line L.

We specialize $[(d - z(2) - 2)/2]$ of the points Q_i, say Q_i, $1 \leq i \leq [(d - z(2) - 2)/2]_i$, to general points Q_i', $1 \leq i \leq [(d - z(2) - 2)/2]$ of L; if $d - z(2) - 2$ is even we call W' the union of $Z\{2\}$, $2Q_i'$, $1 \leq i \leq [(d - z(2) - 2)/2]$ and $2Q_j$, $[(d - z(2) - 2)/2]_j < j \leq x$ with Q_j' general in \mathbb{P}^2. Set $W'' := \text{Res}_L(W')$. Since $\text{length}(W' \cap L) = d$, we have $h^1(\mathbb{P}^2, \mathcal{I}_{W''}(d-1)) = h^1(\mathbb{P}^2, \mathcal{I}_{W''}(d-2))$ and hence we may continue the construction. If $d - z(2) - 2$ is odd instead of a general point Q_α, $\alpha := [(d - z(2) - 2)/2] + 1$, of \mathbb{P}^2 we specialize it to a general $Q_\alpha' \in L$ and call t' the length 2 zero-dimensional subscheme of L with $t'_{\text{red}} = \{Q'\}$; set $W'(1) := (W'' \setminus 2Q_{x-1}) \cup t'$. By [2], Lemma 2.3, to prove the vanishing of $h^1(\mathbb{P}^2, \mathcal{I}_{W'(1)}(d-1))$ it is sufficient to prove the vanishing of $h^1(\mathbb{P}^2, \mathcal{I}_{W'(1)}(d-2))$. Then we continue to reduce the vanishing we need to the vanishing of some group $H^1(\mathbb{P}^2, \mathcal{I}_{A(t)})$ for some integer $t < d$ and some zero-dimensional scheme A whose connected component, B, supported by P is $Z\{d - t + 1\}$. Hence at each step we add at most one double point, t'', supported by a general point of L and this length 2 zero-dimensional scheme gives no contribution when we take the residual scheme with respect to L. Since $z(d - t) \leq t + 1$ we are sure that at every step we may add on L a scheme t' of length 2 when $t + 2 - z(d - t - 1)$ is odd, and still have the vanishing of the cohomology group H^1 for $A \cap L$. If we finish the x points before arriving to the case $t = 0$, we have won. Since $z + 3c \leq h^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d)) - (h^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1)))$, we are sure to finish the points Q_i.

Step 2) The generalized associated scheme of an ordinary double point at Q is just ideal sheaf of $2Q$ ([10], Ex. 2 after Def. 2.3). Hence by [10] we obtain that the family of plane curves with $x + 1$ prescribed singularities (one at P with Z as associated scheme plus x nodes in general position) is smooth of the expected dimension and its general member has only the expected singularities. □
Remark 2.6. Since in characteristic zero every smooth curve of genus at least 2 has only finitely many Weierstrass points, it is obvious that the “parametrization” of smooth curves with a Weierstrass point with first non-gaps k and d given by Theorem 2.5 is, up to an element of $\text{Aut}(\mathbb{P}^2)$, finite - to - one.

Example 2.7. Here we will compute the associated scheme in the particular case in which d and k are coprime. In this case the germ at $(0,0)$ of the curve $t \to (t^{d-k}, t^d)$ is the germ of a unibranch curve which has all the properties we want. We drop the condition $d < 2k$. We apply the standard blowing-up procedure to this curve whose local equation near $(0,0)$ is $y^{d-k} = x^d$. Set $x' = x$, $y' = yx$. In the first infinitesimal neighborhood we obtain an equation $y^{d-k} = x'^k$. Since k and $d - k$ are coprime, we continue in the same way and find that the tree of the resolution is a Dynkin diagram of type A_W for some w.

With the notations of [19], p. 15, the characteristic of this branch are the integers $(d - k, d)$ and $g = 1$. This example is important because any nearby germ with the same characteristic exponents is formally equivalent to it and in particular it has the same δ-invariant, i.e. the conductor has the same co-length.

Example 2.8. Now we will construct in some cases plane curves with two associated schemes of type (k, d), but with $2k < d$. More generally, we fix two integers k, k' with $2 \leq k \leq k' \leq d - k$, take two distinct points P, P', of \mathbb{P}^2, lines L, L', on \mathbb{P}^2 with $P \in L$, $P' \in L'$, $P \not\in L'$, $P' \not\in L$ and look at integral plane curves, C, of degree d passing through Q (resp. Q') with multiplicity $d - k$ (resp. $d - k'$), unibranch at P and P' and with L (resp. L') with intersection multiplicity d with C at P (resp. P'). Let Z (resp. Z') be the associated scheme for the data (k, d, P, L) (resp. (k', d, P', L')).

We want to prove (under suitable assumptions on Z and Z') that $h^1(\mathbb{P}^2, I_{Z\cup Z'}(d)) = 0$. Set $W := \text{Res}_L(Z)$ and $W' := \text{Res}_L(Z')$. We have $\text{length}(W) = \text{length}(Z) - d$ and $\text{length}(W') = \text{length}(Z') - d$.

We apply first Horace Lemma with respect to L (loosing one condition) and then Horace Lemma with respect to L' (without loosing anything because L' is in the base locus of $H^0(\mathbb{P}^2, I_{W\cup W'}(d - 1))$). Hence to prove the vanishing of $h^1(\mathbb{P}^2, I_{Z\cup Z'}(d)) = 0$ it is sufficient to prove the vanishing of $h^1(\mathbb{P}^2, I_{W\cup W'}(d - 2))$. Let $\{z(1), z(2), \ldots\}$ (resp. $\{z'(1), z'(2), \ldots\}$) be the first associated sequence of Z (resp. Z').
The proof of Theorem 2.5 works verbatim exploiting alternatively L and L' if for every integer $i \geq 2$ we have $z(i) \geq d - 2i$ and $z'(i) \geq d - 2i - 1$. However, if for some integers k, k' we want to construct such integral curves with a few nodes, say at general point Q_1, \ldots, Q_y with y very small, it is better to use the following trick to check the vanishing of $h^1(P^2), I_{W(i-1)} \cup_2 Q_1, \ldots, \cup_2 Q_w (d - 2i)$. We apply Horace Lemma $[(d - 2)/2]$ times using a smooth conic passing through P, P' and perhaps some of the points Q_i. Call D a general conic through P and P', and define the schemes $W(i)$ (resp. $W'(i)$), $i \geq 1$, and the first associated D-sequence to W (resp. W') exploiting D instead of the line L (resp. L') and denote it with $\{w(1), \ldots\}$ (resp. $\{w'(1), \ldots\}$). Hence $w(1) = w'(1) = d - 2$. Suppose that after $i - 1$ applications of Horace Lemma using a smooth conic through P and P' one need to check the vanishing $h^1(P^2, I_{W(i-1)} \cup_2 Q_1, \ldots, \cup_2 Q_w (d - 2i))$ for some non-negative integers w, z. By the generality of the points Q_1, \ldots, Q_y it is sufficient to have $h^1(P^2, I_{W(i-1)} \cup_2 Q_1, \ldots, \cup_2 Q_w (d - 2i)) = 0$ and $\text{length}(W(i-1)) + \text{length}(W'(i-1)) + 3w + z \leq (d - 2i + 2)(d - 2i + 1)/2$.

Fix an integer m with $0 \leq m \leq \min\{w, 5\}$ and take a general smooth conic A through P, P' and m of the points Q_1, \ldots, Q_w. To apply another time Horace Lemma exploiting A it is sufficient to have $2m + w(i - 1) + w'(i - 1) \leq 2(d - 2i)$.

3. Curves on Hirzebruch surfaces

In this section we fix an integer $e \geq 0$ and set $S := F_e$, where $F_e = P(O_{P^1} \oplus O_{P^1})$ is a Hirzebruch surface. Let $\pi : S \to P^1$ be the associated ruling. We take as a basis of $\text{Pic}(S) \cong Z^2$ a fiber, f, of π and a section h of π with minimal self-intersection. Hence we have $h^2 = -e$, $h \cdot f = 1$ and $f^2 = 0$. For the cohomological properties of the line bundles on S, see [11], pp. 379–381. We will use both the additive and multiplicative notation for line bundles, divisors and linear systems on S. We just observe that (as in [11], pp. 379–381) everything follows from the projection formula $\pi_* (O_S (ah + bf)) \cong \bigoplus_{0 \leq t \leq a} O_{P^1}(b - te)$ for all integers a, b with $a \geq 0$. We have $\omega_S = -2h + (e - 2)f$. We are interested in integral curves $C \in |kh + xf|$, some $k \geq 2$, $x \geq k\epsilon$, $x > 0$, such that there are some points, say
$P_1, \ldots, P_z \in C_{reg}, z \geq 1$, such that the fiber of f at each point P_i has intersection multiplicity k at P_i, i.e. such that every point P_i is a total ramification point of π. By the adjunction formula we have $p_0(C) = kx - ek(k-1)/2 - x - k + 1$. Since the case $k = 2$ corresponds to hyperelliptic curves, we will assume $k \geq 3$.

Theorem 3.1. Fix integers k, x with $k \geq 3$, $x > 0$, $x \geq ke$, an integral curve $C \in [kh + xf]$ and $P \in C_{reg}$ which is a total ramification point of π. If $e > 0$ assume that P is not contained in the section h of π with minimal self-intersection. If $e = 0$ we have $h^0(C, \mathcal{O}_C(akP)) = a + 1$ if $0 \leq a \leq x$, $h^0(C, \mathcal{O}_C(tP)) = [t/k] + 1$ if $bk < t < (b + 1)k$ for some b with $b = 1 \leq x$, while $h^0(C, \mathcal{O}_C(tP)) = t + 1 - g$ (i.e. $h^1(C, \mathcal{O}_C(tP)) = 0$) if $t > xk$, i.e. the semigroup $N(P, C)$ is the minimal one compatible with its first positive value, k, and the constraint card $(N \setminus N(P, C)) = g$. Assume $e > 0$; we have $h^1(C, \mathcal{O}_C(akP)) = 0$, i.e. $h^0(C, \mathcal{O}_C(akP)) = ak - kx + ek(k-1)/2 + x + k$ if and only if $\alpha \geq x - e - 1$; fix an integer $\beta \leq x - e - 2$; let u be the minimal non-negative integer with $e(k - 2 - u) \leq x - e - 2 - \beta$; we have $h^0(C, \mathcal{O}_C(\beta kP)) = \beta - kx + ek(k-1)/2 + x + k + \sum_{0 \leq i \leq k-2-u} (x - e - 1 - \beta - ie)$; the non-gaps of P in the interval $k\beta < t \leq k\beta + k$ are at last $h^0(C, \mathcal{O}_C((\beta + 1)kP)) - h^0(C, \mathcal{O}_C(\beta kP))$ integers in this interval.

Proof. It is sufficient to compute the value of $h^0(C, \omega_C(-tP))$ for every integer $t > 0$. For every integer $t > 0$, call $D(t)$ the zero-dimensional subscheme of S corresponding to the positive Cartier divisor tP on C. Since $h^0(S, K_S) = h^1(S, K_S) = 0$, the restriction map $H^0(S, \mathcal{O}_S((k-2)h + (x - e - 2)f)) \to H^0(C, \omega_C)$ is bijective. Hence it is sufficient to compute $h^0(S, \mathcal{O}_S((k-2)h + (x - e - 2)f) \oplus I_D(t))$ for every integer $t > 0$. Set $w := [t/k]$ and $z := t - kw$. Hence $0 \leq z \leq k$ and $h^0(S, \mathcal{O}_S((k-2)h + (x - e - 2)f) \oplus I_D(w)) = h^0(S, \mathcal{O}_S((k-2)h + (x - e - 2 - w)f) \oplus I_D(z))$. By the cohomology exact sequence of the restriction of K_S to α fibers, $\alpha \geq 0$ we obtain $h^1(S, K_S(-\alpha f)) = 0$ for every positive integer α. Since $h^0(S, K_S(-\alpha f)) = 0$ for every positive integer α, by Serre duality on C we obtain $h^1(C, \mathcal{O}(atP)) = 0$ if and only if $\alpha \geq x - e - 1$ and $h^1(C, \mathcal{O}(\beta tP)) = h^0(S, \mathcal{O}_S((k-2)h + (x - e - 2 - \beta)f)))$ for every positive integer β; let u be the multiplicity of h as base component of $(k-2)h + (x - e - 2 - \beta)f)$, i.e. let u be the minimal non-negative integer with $e(k-2-u) \leq x - e - 2 - \beta$;
by the projection formula we obtain \(h^0(S, O_S((k-2)h + (x-e-2-\beta)f)) = h^0(S, O_S((k-2-u)h + (x-e-2-\beta)f)) = \sum_{0 \leq i \leq k-2-u}(x-e-1-\beta-ic). \) Hence we know \(h^0(C, O_C(wkP)) \) and \(h^0(C, O_C((w+1)kP)) \) and we have \(1 \leq h^0(C, O_C((w+1)kP)) - h^0(C, O_C(wkP)) \leq k-1, \) until \(O_C((w+1)kP) \) is a special line bundle, i.e. for \(w \leq x-e-2. \) Furthermore since \(O_C((w+1)kP) \) is spanned, we know that \(h^0(C, O_C((wk+k-1)kP)) = h^0(C, O_C((w+1)kP)) - 1. \) For every integer \(q \) we have \(h^0(C, O_C(qP)) \leq h^0(C, O_C((q+1)P)) \leq h^0(C, O_C(qP)) + 1. \) To prove the theorem it is sufficient to check that the \(h^0(C, O_C((w+1)kP)) - h^0(C, O_C(wkP)) \) jumps for the values of \(h^0(C, O_C(qP)) \) in the interval \(wk \leq q < (w+1)k \) occur for \(q = wk \) and the last \(h^0(C, O_C((w+1)kP)) - h^0(C, O_C(wkP)) - 1 \) values of \(q. \) First we assume \(e > 0. \) Call \(m \geq 0 \) the multiplicity of \(h \) as base component of \(|(k-2)h + (x-e-2-w-1)f|, \) i.e. set \(m := 0 \) if \(x-e-2-w \geq ek \) and set \(m := k-2 - [(x-e-2-w-1)/e], \) otherwise. By Serre duality on \(C \) it is sufficient to note that the restriction of \(|(k-2-m)h + (x-e-2-w-1)| \) to any fiber of \(\pi \) (even to \(\pi^{-1}(\pi(P)) \)) is a complete linear system of degree \((k-2-m) \), that \(h^0(C, O_C((w+1)kP)) - h^0(C, O_C(wkP)) = k-1-m \) and that for every integer \(z \) with \(0 \leq z \leq t \) the zero-dimensional scheme \(D(z) \) is contained in the fiber \(\pi^{-1}(\pi(P)) \). The case \(e = 0 \) is similar and easier.

Remark 3.2. The proof of Theorem 3.1 works verbatim if \(C \) is any integral curve such that \(P \in C_{\text{reg}} \) and such that the fiber of \(\pi|C \) is just \(P \) with multiplicity \(k. \) Of course, here we use the notation of gap sequence at a smooth point of any Gorenstein curve. The power of this tool will be shown by the proof of Theorem 3.3 we assume \(\text{Sing}(C) = \{Q_1, \ldots, Q_y\} \), i.e. even in the case in which we are studying Weierstrass points on a smooth curve (the normalization of \(C \)).

Now we consider the case of the normalization of nodal or cuspidal curves. The case \(e = 0 \) was considered (at least for the nodes) in [5] and [7]. Again, the aim is to show that when we have very few nodes and cusps and/or their position is sufficiently general, then the situation is the best possible one with the numerical constraints we have and in particular the Weierstrass point has the a priori possible minimal weight. Since it comes for free, we will consider a more gen-
eral statement allowing the partial normalization of a very singular curve.

Theorem 3.3. Fix integers \(k, x, y \) with \(k \geq 3, x > 0, x \geq ke \) and \(y \geq 0 \). Fix \(y \) general points \(Q_1, \ldots, Q_y \) of \(S := F_c \). Assume the existence of an integral curve \(C \) with \(C \in [kh + xf] \) such that each \(Q_i \) is an ordinary node or an ordinary cusp of \(C \) and such that there is \(P \in C_{\text{reg}} \) which is a total ramification point of \(\pi \). If \(e > 0 \) assume that \(P \) is not contained in the section \(h \) of \(\pi \) with minimal self-intersection. Let \(X \) be the partial normalization of \(C \) at \(Q_1, \ldots, Q_y \). Set \(g := kx - ek(k - 1)/2 - k - x + 1 - y \). Let \(C' \in [kh + xf] \) be a smooth curve with \(P \in C \) and such that \(P \) is a total ramification point for \(\pi|C' \). Then for every integer \(t > 0 \) we have \(h^0(C, \omega_C(-tP)) = \max \{ h^0(C', \omega_C'(-tP)) - y, 0 \} \).

Proof. The adjoint linear system to \(X \) is given by the curves in \(|(x - 2)k + (x + e + 2)f| \) passing through the points \(Q_1, \ldots, Q_y \). Since these points are in general points of \(S \), they impose the maximal possible number of conditions (i.e., \(\min \{y, \dim(V)\} \)) to any complete linear system \(V \) on \(S \). Hence the proof of Theorem 3.1 and the claim that the same proof works for a singular curve (Remark 3.2) give the result.

For the existence of a curve \(C \) as in the statement of Theorem 3.3 and with \(\text{Sing}(C) = \{Q_1, \ldots, Q_y\} \), see Remark 3.4.

Remark 3.4. Modifying the proof of [3], Prop. 3.7 and Prop. 4.1, Theorem 3.3 may be applied to several cases in which \(C \) has an ordinary node at each point \(Q_1, \ldots, Q_y \) as unique singularities and hence in which \(X \) is smooth; the only difference in each cohomological computation comes from the condition “\(\pi|C \) with total ramification at \(P \)” for some case for \(e = 0 \), see [5] or [7]; Proof of Theorem 0.1; for similar cases in the plane, see [9] and [8]; anyway if \(y \) is very small with respect to \(x - ke \), the existence of such curve \(C \) is an easy exercise. Now we will consider the case in which in the statement of Theorem 3.1 we have \(e > 0 \) and \(P \in h \).

Theorem 3.5. Fix integers \(e, k, x \) with \(e > 0, k \geq 3, x > 0 \), \(x \geq ke \), an integral curve \(C \in [kh + xf] \), \(p \in h \) and \(P \in C_{\text{reg}} \) which is a total ramification point of \(\pi \). We have \(h^1(C, \mathcal{O}_C(\alpha kP)) = 0 \),
i.e. \(h^0(C, \mathcal{O}_C(\alpha kP)) = \alpha k - kx + ek(k - 1)/2 + x + k \) if and only if \(\alpha \geq x - e - 1 \); fix an integer \(\beta \leq x - e - 2 \); let \(u \) be the minimal non-negative integer with \(e(k - 2 - u) \leq x - e - 2 - \beta \); we have \(h^0(C, \mathcal{O}_C(\beta kP)) = \beta - kx + ek(k - 1)/2 + x + k + \sum_{0 \leq i \leq k - 2 - u} (x - e - 1 - \beta - ie) \); the non-gaps in the interval \(k\beta < t \leq k\beta + k \) are in the first \(h^0(C, \mathcal{O}_C((\beta + 1)kP)) - h^0(C, \mathcal{O}_C(\beta kP)) - 1 \) values of \(t \) and the integer \(k\beta + k \).

Proof. We use the notations of the proof of 3.1. To prove 3.5 it is sufficient to check that the \(h^0(C, \mathcal{O}_C((w + 1)kP)) - h^1(C, \mathcal{O}_C(\omega kP)) \) jumps for the values of \(h^0(C, \mathcal{O}_C(qP)) \) in the interval \(wk \leq t < (w + 1)k \) occurs for the value \(t = wk \) (which is true because \(\mathcal{O}_C(\omega kP) \) is spanned) and for the next \(h^0(C, \mathcal{O}_C((w + 1)kP)) - h^1(C, \mathcal{O}_C(\omega kP)) - 1 \) values of \(t \). The latter assertion is true because \(u \) contains \(D(u) \).

\[\square \]

Theorem 3.6. Fix integers \(k, x \) and \(z \) with \(z \geq 1 \), \(k \geq 2 \), \(x > 0 \), \(x \geq ke \). Let \(C | kh + x | f | be an integral projective curve and \(P_1, \ldots, P_Z \) \(C_{reg} \) total ramification points of \(\pi \). Thus \(g := p_0(C) = kx + ke - k - x + 1 \). Call \(M(P_1, \ldots, P_z, k, x) \) the subset of \(|kh + x| \) parametrizing the curves, \(D \), containing the effective divisor \(\sum_{1 \leq i \leq z} kP_i \) of \(C \), i.e. containing each \(P_i \) and such that \(\pi | D \) has total ramification at each \(P_i \). Call \(M'(P_1, \ldots, P_z, k, x) \) the subset of \(M(P_1, \ldots, P_z, k, x) \) formed by the curves, \(D \), with \(P_i \in D_{reg} \) for every \(i \). Let \(N_C \) be the normal bundle of \(C \) in \(S \). Hence \(N_C = \mathcal{O}_C(kh + x + f) \) and \(\deg(N_C) = C^2 = 2g - 2 - KS \cdot C = 2g - 2 + 2k + 2x + ke \). Hence we have the following remark.

Remark 3.7. If \(zk < 2k + 2x + ke \) we have \(h^1(C, N_C(-\sum_{1 \leq i \leq z} kP_i)) = 0 \).

Remark 3.8. By Remark 3.7 and [17], Th. 1.5 if \(zk < 2k + 2x + ke \) the scheme \(M'(P_1, \ldots, P_z, k, x) \) is smooth at \(P \) of dimension \(h^0(C, N_C(-\sum_{1 \leq i \leq z} kP_i)) = g - 1 + 2x + 2k + ke - zk = kx + 2k + ke \) for all integers \(i \) with \(1 \leq i \leq w \) is smooth and of the expected dimension. Hence we obtain the following result.
Proposition 3.9. Fix integers k, x and w with $z \geq 1$, $k \geq 2$, $x \geq ke$ and $zk < 2k + 2x + ke$. Let $C \in \{kh + xf\}$ be an integral projective curve and $P_1, \ldots, P_z \in C_{reg}$ total ramification points of π. For every integer w with $1 \leq w \leq z$ there exists a generically smooth irreducible open subset $M'(w)$ of $M'(P_1, \ldots, P_w, k, x)$ such that $\dim(M'(w)) = kx = 2ke + k(e - w - 1)$, $M'(w + 1)$ is contained in the closure of $M'(w)$ if $w < z$ and $C \in M'(z)$.

Now we some integers e, k, x, and z we will construct the data (C, P_1, \ldots, P_z) we were looking for.

Proposition 3.10. Fix integers e, k, x, z, with $e \geq 0$, $k \geq 3$, $x > 0$, $x \geq ke + z$. Fix z distinct points Q_1, \ldots, Q_z of \mathbb{P}^1 and $P_i \in S$ with $\pi(P_i) = Q_i$ for every i. Then there exists a smooth curve $C \in \{kh + xf\}$ such that every integer i $P_i \in C$ and P_i is a total ramification point of $\pi|C$.

Proof. Call Z the zero-dimensional subscheme of S contained in $\bigcup_{1 \leq i \leq z} \pi^{-1}(Q)$, with $D_{red} = \{P_1, \ldots, P_z\}$ and such that each connected component of Z has length k. By assumption the lineal system $\{kh + (x - z)f\}$ is a base point free. Hence the sheaf $\mathcal{I}_Z \mathcal{O}_S(kh + bf)$ is spanned outside $\bigcup_{1 \leq i \leq z} \pi^{-1}(Q)$. Since it is easy to check that no line of $\bigcup_{1 \leq i \leq z} \pi^{-1}(Q)$ is in the base locus of $\mathcal{I}_Z \mathcal{O}_S(kh + bf)$, by Bertini theorem a general curve $C \in \{kh + bf\}$ containing D is smooth outside $\{P_1, \ldots, P_z\}$. Taking reducible curves union of $\bigcup_{1 \leq i \leq z} \pi^{-1}(Q)$ and of a curve $C' \in \{kh + (x - z)f\}$ with $P_i \notin C'$ for every i, we obtain the smoothness of a general curve $C \in \{kh + xf\}$ containing D.

References

Received November 5, 1998.