Semicontinuity of vectorial functionals in Orlicz-Sobolev spaces

M. Focardi (*)

Summary. - We study integral vectorial functionals

\[F(u, \Omega) = \int_{\Omega} f(x, u(x), Du(x)) \, dx \]

where \(f \) satisfies quasi-convexity assumption and its growth is controlled in terms of \(N \)-functions. We obtain semicontinuity results in the weak * topology of Orlicz-Sobolev spaces.

1. Introduction

Let \(\Omega \) be a bounded open subset of \(\mathbb{R}^n \) with \(\partial \Omega \) lipschitzian, consider a function \(f : \Omega \times \mathbb{R}^N \times \mathbb{R}^{Nn} \to \mathbb{R} \) and the variational integral

\[F(u, \Omega) = \int_{\Omega} f(x, u(x), Du(x)) \, dx \tag{1} \]

where \(u : \Omega \to \mathbb{R}^N \).

Assume that \(f = f(x, s, z) \) is a Carathéodory function, i.e. \(f \) is measurable in \(x \) for every \((s, z) \in \mathbb{R}^N \times \mathbb{R}^{Nn} \) and continuous in \((s, z) \) for almost every \(x \in \Omega \), and that it is also quasi-convex in \(z \), i.e. for every \((x_0, s_0, z_0) \in \Omega \times \mathbb{R}^N \times \mathbb{R}^{Nn} \) and \(\varphi \in C^1_{0}(\Omega, \mathbb{R}^N) \)

\[f(x_0, s_0, z_0) |\Omega| \leq \int_{\Omega} f(x_0, s_0, z_0 + D\varphi(x)) \, dx. \]

(*) Author's address: Dipartimento di Matematica "U. Dini", Viale Morgagni 67/A, I-50134 Firenze (Italy).
Moreover, suppose that f satisfies the growth condition

$$-c_1 \{1 + \Phi_1(|s|) + \Phi_1(|z|)\} \leq f(x, s, z) \leq c_2 \{1 + \Phi_2(|s|) + \Phi_2(|z|)\} \quad (2)$$

for every $(x, s, z) \in \Omega \times \mathbb{R}^N \times \mathbb{R}^{nN}$, where c_1, c_2 are non-negative constants and Φ_i, $i = 1, 2$, is a N-function, i.e. a positive continuous convex function such that $\Phi_i(0) = 0$, $\lim_{t \to 0} \Phi_i(t)/t = 0$ and

$$\lim_{t \to +\infty} \Phi_i(t)/t = +\infty$$

(see Section 2 for definitions).

If in (2) $\Phi_i(t) = t^p$, $i = 1, 2$, $p > 1$, Fusco [15] proved the weak semicontinuity of (1) in the ordinary Sobolev space $W^{1,p+\varepsilon}(\Omega, \mathbb{R}^N)$, $\varepsilon > 0$. This result was improved by Acerbi and Fusco in [2] showing weak semicontinuity of (1) in $W^{1,p}(\Omega, \mathbb{R}^N)$ if f is non-negative and $\Phi_2(t) = t^p$, and by Marcellini in [20] under less restrictive growth conditions. If $\Phi_2(t) = t^p$ and if f satisfies some additional structure conditions, the weak semicontinuity of (1) was proved by Marcellini [21] in $W^{1,q}(\Omega, \mathbb{R}^N)$ with $q > \frac{n+1}{n+1}p$, by Fonseca and Marcellini [14] for $q > p - 1$ and by Malý [19] for $q \geq p - 1$. Recently, Fonseca and Malý [13] and Malý [18] proved the lower semicontinuity of (1) for $q > \frac{n+1}{n+1}p$. Finally, if (1) is poli-convex and $n = N$, Dacorogna and Marcellini [6] proved a semicontinuity result for $q > n - 1$, while the borderline case $q = n - 1$ was established by Acerbi and Dal Maso [1] and by Dal Maso and Sbordone [8]. An elementary approach was found by Fusco and Hutchinson [16].

In this paper, we obtain, for quasi-convex integrals satisfying the non-standard growth condition (2), some semicontinuity results in the weak* topology of Orlicz-Sobolev space $W^{1,\Phi_2}(\Omega, \mathbb{R}^N)$ (see Section 2 for definitions).

In Section 2 we introduce the definitions and some properties of N-functions, Orlicz and Orlicz-Sobolev spaces.

In Section 3, Theorem 3.1, we show that if $f = f(z)$, Φ_2 belongs to class Δ_2 (see Section 2 for definitions) and Φ_1 is suitably related to it, then (1) is sequentially lower semicontinuous in the weak* topology of the Orlicz-Sobolev space $W^{1,\Phi_2}(\Omega, \mathbb{R}^N)$. The proof generalizes the technique developed by Marcellini in [20]. Moreover, in this case, we prove an existence theorem.

In Section 4, Theorem 4.1, we consider functionals depending on $f = f(x, s, z)$ and satisfying (2) with $\Phi_1 = \Phi_2 = \Phi$. We succeed
in proving a semicontinuity result in $W^{1,\Gamma}(\Omega, \mathbb{R}^N)$ with Γ a suitable N-function related to Φ following Marcellini and Sbordone [22].

Finally in Section 5, we exhibit some examples of non trivial applications of the semicontinuity Theorems 3.1, 4.1 and of the existence Theorem 3.3.

We observe that Ball in [5] considered some variational problems in the framework of Orlicz-Sobolev spaces obtaining some semicontinuity and existence results for povi-convex integrals.

2. N-Functions and Orlicz Spaces

In this section we recall some definitions and well known properties on N-functions and Orlicz spaces (see for references [3], [17], [25]). A continuous and convex function $\Phi : [0, +\infty) \to [0, +\infty)$ is called N-function if it satisfies

$$\Phi(0) = 0, \quad \Phi(t) > 0, \quad t > 0,$$

$$\lim_{t \to 0} \Phi(t)/t = 0, \quad \lim_{t \to +\infty} \Phi(t)/t = +\infty.$$

A N-function Φ has an integral representation

$$\Phi(t) = \int_0^t p(s) \, ds \quad t \in [0, +\infty),$$

where $p : [0, +\infty) \to [0, +\infty)$ is nondecreasing, right continuous and it satisfies

$$p(0) = 0, \quad p(s) > 0 \quad s > 0, \quad \lim_{s \to +\infty} p(s) = +\infty.$$

The function p is the right derivative of Φ.

What is important in the definition of a N-function is the behaviour at infinity, in fact, a continuous convex function $Q : [0, +\infty] \to [0, +\infty]$ satisfying

$$Q(t)/t \to +\infty \quad t \to +\infty$$

is such that there exist a N-function Φ and $t_0 > 0$ such that for every $t \geq t_0$ we get

$$Q(t) = \Phi(t).$$
Such a function Q is called principal part of the N-function Φ.

Let Φ be a N-function, for $t \geq 0$ consider the function

$$
\Psi(t) = \max_{s>0}\{st - \Phi(s)\},
$$

it is easy to show that Ψ is a N-function, Ψ is called the complementary N-function of Φ. By the very definition of Ψ it is obvious that the pair Φ, Ψ satisfies Young’s inequality:

$$
st \leq \Phi(s) + \Psi(t) \quad s, t \in \mathbb{R},
$$

with equality holding if $s = p(t)$ or $t = q(s)$, where q is the right derivative of Ψ.

In the sequel we will deal with a particular class of N-functions. We say that a N-function Φ belongs to the class Δ_2, denoted by $\Phi \in \Delta_2$, if there exist $k > 1$ and $t_0 \geq 0$ such that

$$
tp(t) \leq k \Phi(t) \quad t \geq t_0.
$$

(3)

It is not difficult to check that definition (3) is equivalent to the classical one, i.e. $\Phi \in \Delta_2$ if and only if there exist $k > 1$ and $t_0 \geq 0$ such that for every $t \geq t_0$

$$
\Phi(2t) \leq 2^k \Phi(t).
$$

For related properties of N-functions of class Δ_2 see [7].

Let Ω be an open bounded subset of \mathbb{R}^n, the Orlicz class $K^\Phi(\Omega, \mathbb{R}^N)$ is the set of all (equivalence classes modulo equality a.e. in Ω of) measurable functions $u : \Omega \to \mathbb{R}^N$ satisfying

$$
\int_\Omega \Phi(|u(x)|) \, dx < +\infty.
$$

The Orlicz space $L^\Phi(\Omega, \mathbb{R}^N)$ associated with the N-function Φ and the open set Ω, is the linear hull of $K^\Phi(\Omega, \mathbb{R}^N)$. The equality $K^\Phi(\Omega, \mathbb{R}^N) = L^\Phi(\Omega, \mathbb{R}^N)$ holds if and only if $\Phi \in \Delta_2$.

The functional $\| u \|_{\Phi, \Omega} : L^\Phi(\Omega, \mathbb{R}^N) \to \mathbb{R}$, simply denoted by $\| u \|_\Phi$, defined by

$$
\| u \|_{\Phi, \Omega} = \inf \left\{ \lambda > 0 : \int_\Omega \Phi \left(\frac{|u(x)|}{\lambda} \right) \, dx \leq 1 \right\},
$$

(4)
is a norm and \(L^\Phi(\Omega, \mathbb{R}^N) \) is a Banach space with respect to it.

In the sequel we will denote with \(s - L^\Phi(\Omega, \mathbb{R}^N) \) the norm convergence in \(L^\Phi(\Omega, \mathbb{R}^N) \).

Many relevant properties of the Orlicz spaces are related to class \(\Delta_2 \), for instance:

Proposition 2.1. If \(\Phi \in \Delta_2 \) and \(\{u_a\}_{a \in I} \subset L^\Phi(\Omega, \mathbb{R}^N) \) then

\[
\sup_I \| u_a \|_{\Phi, \Omega} < +\infty \text{ if and only if } \sup_I \int_\Omega \Phi(|u_a(x)|) \, dx < +\infty.
\]

The closure in the norm topology of \(C_0^\infty(\Omega, \mathbb{R}^N) \) in \(L^\Phi(\Omega, \mathbb{R}^N) \) is denoted by \(E^\Phi(\Omega, \mathbb{R}^N) \). We have \(E^\Phi(\Omega, \mathbb{R}^N) \subseteq K^\Phi(\Omega, \mathbb{R}^N) \subseteq L^\Phi(\Omega, \mathbb{R}^N) \), with equality holding if and only if \(\Phi \in \Delta_2 \).

Moreover the Orlicz space associated with a \(N \)-function \(\Phi \) is separable if and only if the generating \(N \)-function belongs to class \(\Delta_2 \). The separability result is a consequence of the following approximation theorem which generalizes an analogous property of \(L^p \) spaces (see [12]).

Theorem 2.2. Let \(\Omega \) be a bounded open set in \(\mathbb{R}^n \), and let \(\Phi \in \Delta_2 \). For a natural number \(r \), let \(\{Q_{i,r}\} \) be a family of open cubes satisfying

\[
\text{diam } Q_{i,r} \leq \frac{1}{r}; \quad Q_{i,r} \cap Q_{j,r} = \emptyset \quad i \neq j; \quad \bigcup_i Q_{i,r} = \Omega.
\]

For \(u \in L^\Phi(\Omega, \mathbb{R}^N) \) define the functions

\[
u_r(x) = \sum_i \left\{ \frac{1}{|Q_{i,r}|} \int_{Q_{i,r}} u(y) \, dy \right\} \chi_{Q_{i,r}}(x).
\]

Then \(\{u_r\} \subset E^\Phi(\Omega, \mathbb{R}^N) \) and moreover \(\{u_r\} \to u \) \(s-L^\Phi(\Omega, \mathbb{R}^N) \).

In the sequel we will use the following result (see [17]).

Proposition 2.3. Let \(\Phi, \Gamma \) be \(N \)-functions such that

\[
\lim_{t \to +\infty} \frac{\Phi(t)}{\Gamma(t)} = +\infty,
\]
and let H be a mean bounded family of functions in $L^\Phi(\Omega, \mathbb{R}^N)$, i.e.
$$\sup_H \int_\Omega \Phi(|u(x)|) \, dx < +\infty,$$
then the set of functions $G = \left\{ \Gamma(|u|) : u \in H \right\}$ has equi-absolutely continuous integrals on Ω.

The *Orlicz-Sobolev space* $W^{1,\Phi}(\Omega, \mathbb{R}^N)$ consists of all functions u in $L^\Phi(\Omega, \mathbb{R}^N)$ whose distributional derivatives belong to $L^\Phi(\Omega, \mathbb{R}^N)$. As in the case of ordinary Sobolev spaces, $W_0^{1,\Phi}(\Omega, \mathbb{R}^N)$ is taken to be the closure in the norm topology of $C_0^\infty(\Omega, \mathbb{R}^N)$ in $W^{1,\Phi}(\Omega, \mathbb{R}^N)$.

The following embedding theorem holds (see [3], [4], [10]).

Theorem 2.4. Let Ω be an open subset of \mathbb{R}^n with $\partial \Omega$ Lipschitzian, let $\Phi \in \Delta_2$, then the embedding
$$W^{1,\Phi}(\Omega, \mathbb{R}^N) \rightarrow L^\Phi(\Omega, \mathbb{R}^N)$$
is compact.

We now introduce the weak * convergence in $L^\Phi(\Omega, \mathbb{R}^N)$. The space $L^\Phi(\Omega, \mathbb{R}^N)$ can be regarded as the dual space of $E^\Psi(\Omega, \mathbb{R}^N)$ (see [3], [17], [25]), so it is possible to characterize the convergence of sequences in the weak * topology of $L^\Phi(\Omega, \mathbb{R}^N)$ in the following way: $\{u_r\} \rightarrow u$ *w*-t$\Phi(\Omega, \mathbb{R}^N)$ if and only if for every $\nu \in E^\Psi(\Omega, \mathbb{R}^N)$
$$\lim_{r} \int_\Omega u_r(x)\nu(x) \, dx = \int_\Omega u(x)\nu(x) \, dx.$$ Since this, weak * convergence is often called *E^Ψ-convergence*.

By means of the Hahn-Banach theorem we characterize the weak * convergence in the space $W^{1,\Phi}(\Omega, \mathbb{R}^N)$: $\{u_r\} \rightarrow u$ *w*-t$W^{1,\Phi}(\Omega, \mathbb{R}^N)$ if and only if $\{u_r\}$ and $\{D_i u_r\}$, $1 \leq i \leq n$, converge to u, $D_i u$ *w*-t$L^\Phi(\Omega, \mathbb{R}^N)$, respectively. Finally if $\Phi \in \Delta_2$ we get $[L^\Phi(\Omega, \mathbb{R}^N)]^\prime \sim L^\Psi(\Omega, \mathbb{R}^N)$.

3. **Semicontinuity theorem: the case** $f = f(z)$

Theorem 3.1. Let Ω be an open bounded subset of \mathbb{R}^n with $\partial \Omega$ Lipschitzian, let $u : \Omega \rightarrow \mathbb{R}^N$, consider the functional
$$F(u, \Omega) = \int_\Omega f(Du(x)) \, dx,$$
where $f : \mathbb{R}^{\mathbb{N}_n} \rightarrow \mathbb{R}$ is a quasi-convex function such that for every $z \in \mathbb{R}^{\mathbb{N}_n}$ we have

$$-c\{1 + \Phi_1(||z||)\} \leq f(z) \leq c\{1 + \Phi(||z||)\}$$

(5)

with c positive constant, $\Phi \in \Delta_2$ and Φ_1 N-function such that

$$\lim_{t \to +\infty} \frac{\Phi(t)}{\Phi_1(t)} = +\infty.$$

(6)

Then F is sequentially lower semicontinuous in $\ast w$-$W^{1,\Phi}(\Omega, \mathbb{R}^N)$, i.e. for every sequence $\{u_r\} \rightarrow u$ $\ast w$-$W^{1,\Phi}(\Omega, \mathbb{R}^N)$ we have

$$\liminf_r \int_{\Omega} f(Du_r) \, dx \geq \int_{\Omega} f(Du) \, dx.$$

In the sequel we will use the following result which generalizes a proposition given by Marcellini [20].

Proposition 3.2. Let $g : \mathbb{R}^{\mathbb{N}_n} \rightarrow \mathbb{R}$ be a function separately convex in each variable, such that there exist a N-function $\Gamma \in \Delta_2$ and a positive constant c such that for every $z \in \mathbb{R}^{\mathbb{N}_n}$

$$|g(z)| \leq c\{1 + \Gamma(||z||)\}.$$

(7)

Then g is continuous, besides, denoted by h the right derivative of Γ, we have

$$|g(z) - g(w)| \leq c_1\{1 + h(1 + |z| + |w|)|z - w|$$

(8)

for every $z, w \in \mathbb{R}^{\mathbb{N}_n}$ with c_1 positive constant.

Proof. For $z, w \in \mathbb{R}^{\mathbb{N}_n}$ consider the vectors

$$a^k = (w_1, \ldots, w_k, z_{k+1}, \ldots, z_{N_n}) \quad 0 \leq k \leq Nn,$$

then using the convexity of g in each variable, we have for $t \geq 1$

$$g(a^{k+1}) - g(a^k) \leq \frac{g(a^k + t(a^{k+1} - a^k)) - g(a^k)}{t}.$$
By the very definition of a^k it follows that, for every k and t, we have
\[|a^k + t(a^{k+1} - a^k)| \leq 1 + |z| + |w| + t|z - w|, \]
so if we choose \(\tilde{t} = \frac{1 + |z| + |w|}{|z - w|} > 1 \) we get
\[|a^k + \tilde{t}(a^{k+1} - a^k)| \leq 2(1 + |z| + |w|). \]
By (7) we have
\[|g(a^k)| \leq c(1 + \Gamma(1 + |z| + |w|)). \]
and also, using assumption $\Gamma \in \Delta_2$ we get
\[|g(a^k + \tilde{t}(a^{k+1} - a^k))| \leq c_1(1 + \Gamma(1 + |z| + |w|)). \]
Thus we have
\[g(a^{k+1}) - g(a^k) \leq c_1 \frac{1 + \Gamma(1 + |z| + |w|)}{1 + |z| + |w|}|z - w| \]
\[\leq c_1(1 + h(1 + |z| + |w|))|z - w|, \]
adding up on k we get the inequality
\[g(w) - g(z) \leq c_2(1 + h(1 + |z| + |w|))|z - w|, \]
reversing the role of z and w we get (8).

Proof of Theorem 3.1. We assume first that $u \in W^{1,\Phi}(\Omega, \mathbb{R}^N)$ is an affine function, i.e. there exists $z_0 \in \mathbb{R}^N$ such that for every $x \in \mathbb{R}^n$ it holds $Du(x) \equiv z_0$.

Denote with \{\{u_r\}\} a sequence such that \{\{u_r\}\} $\to u * w - W^{1,\Phi}(\Omega, \mathbb{R}^N)$. If u, u_r have the same boundary values, i.e. $(u_r - u) \in W^{1,\Phi}_0(\Omega, \mathbb{R}^N)$, for every r, the result follows easily by quasi-convexity. In fact, by (5), the functional F is continuous in $s-W^{1,\Phi}(\Omega, \mathbb{R}^N)$, then the quasi-convexity inequality holds for test functions in $W^{1,\Phi}_0(\Omega, \mathbb{R}^N)$ and so we get semicontinuity inequality.

In the general case we change the boundary data of u_r using a method developed by De Giorgi [9]. Let Ω_0 be an open set compactly
contained in \(\Omega \) and fix \(k = \frac{1}{2} \operatorname{dist}(\overline{\Omega}_0, \partial \Omega) \), for \(h \in \mathbb{N} \) define the open sets
\[
\Omega_i = \left\{ x \in \Omega : \operatorname{dist}(x, \Omega_0) < \frac{i}{k} \right\} \quad 1 \leq i \leq h
\]
and consider a family of functions \(\phi_i \in C_0^\infty(\Omega_i) \) such that
\[
0 \leq \phi_i \leq 1; \quad \phi_i \equiv 1 \quad \Omega_{i-1}; \quad \phi_i \equiv 0 \quad \Omega \setminus \Omega_i; \quad |D\phi_i| \leq \frac{h + 1}{k}.
\]
For every \(r \), let \(\nu_r = u_r - u \), then \(\{\nu_r\} \to 0 \ast w^{-1, \Phi}(\Omega, \mathbb{R}^N) \), now define the functions
\[
\nu_{i,r}(x) = \phi_i(x)\nu_r(x),
\]
since \(\nu_{i,r} \in W_0^{1, \Phi}(\Omega, \mathbb{R}^N) \) for every \(i \) and \(r \) we have
\[
F(u, \Omega) \leq F(u + \nu_{i,r}, \Omega) = \int f(z_0 + D\nu_{i,r}) \, dx
= \int_{\Omega_{i-1}} f(Du_r) \, dx + \int_{\Omega_i \setminus \Omega_{i-1}} f(z_0 + D\nu_{i,r}) \, dx + \int_{\Omega_i} f(z_0) \, dx
= \int_{\Omega} f(Du_r) \, dx - \int_{\Omega \setminus \Omega_{i-1}} f(Du_r) \, dx + \int_{\Omega_i \setminus \Omega_{i-1}} f(z_0 + D\nu_{i,r}) \, dx
+ |\Omega \setminus \Omega_0| f(z_0) - \int_{\Omega_i \setminus \Omega_0} f(Du) \, dx.
\]
(9)
Since \(\{\nu_r\} \) is weakly * convergent, then \(\{D\nu_r\} \) is bounded in norm \(L^\Phi(\Omega, \mathbb{R}^N) \), and then, by Proposition 2.1, there exists a positive constant \(c_1 \) such that
\[
\sup_{r} \int_{\Omega} \Phi(|D\nu_r|) \, dx \leq c_1.
\]
Therefore there is \(0 \leq j \leq h \) such that
\[
\lim_{r} \sup_{\Omega_j \setminus \Omega_{j-1}} \int \Phi(|D\nu_r|) \, dx \leq \frac{c_1}{h}.
\]
Since the imbedding $W^{1,\Phi} \to L^\Phi$ is compact we obtain that $\{\nu_r\} \to 0$
s-$L^\Phi(\Omega, \mathbb{R}^N)$ and then

$$\lim_{r} \int_\Omega \Phi(|\nu_r|) \, dx = 0.$$

Now we estimate the integrals in (9), we have

$$\int_{\Omega \setminus \Omega_{j-1}} f(z_0 + Du_{j,r}) \, dx \leq c \int_{\Omega \setminus \Omega_{j-1}} \{1 + \Phi(|z_0| + |\phi_j| |Du_r| + |D\phi_j| |\nu_r|)\} \, dx$$

(10)

$$\leq c_2 |\Omega \setminus \Omega_0| + c_4 \left(\frac{h+1}{k} \right) \int_\Omega \Phi(|\nu_r|) \, dx,$$

besides by (5) we get

$$- \int_{\Omega \setminus \Omega_{j-1}} f(Du_r) \, dx - \int_{\Omega \setminus \Omega_0} f(Du) \, dx \leq c_5 \left\{ \Phi_1(|Du_r|) + \Phi_1(|Du|) \right\} \, dx.$$

(11)

Using Proposition 2.3 we obtain that the functions $\Phi_1(|Du_r|)$ have
equi-absolutely continuous integrals, so that the right term of (11) goes to zero if the measure of $\Omega \setminus \Omega_0$ does.

So, by (10) and (11), (9) becomes

$$F(u, \Omega) \leq F(u_r, \Omega) + c_3 \left(\frac{h+1}{k} \right) \int_\Omega \Phi(|\nu_r|) \, dx + \frac{c_4}{h} +$$

$$+ c_5 \int_{\Omega \setminus \Omega_0} \left\{ \Phi_1(|Du_r|) + \Phi_1(|Du|) \right\} \, dx + c_6 |\Omega \setminus \Omega_0|,$$

the assertion follows passing to the limit as $|\Omega \setminus \Omega_0| \to 0$, $r \to +\infty$
and $h \to +\infty$.

Passing to the general case let $u \in W^{1,\Phi}(\Omega, \mathbb{R}^N)$ and $\{u_r\}$ be a
sequence such that $\{u_r\} \to u \ast_w W^{1,\Phi}(\Omega, \mathbb{R}^N)$. Consider a family
of open cubes \(\{Q_{i,m}\} \) as in Theorem 2.2, and define on every cube \(Q_{i,m} \) the functions
\[
\nu_{r,m} = u_r - u^+ < (Du)_{i,m}, x >
\]
where
\[
(Du)_{i,m} = \frac{1}{|Q_{i,m}|} \int_{Q_{i,m}} Du(y) \, dy.
\]
Then
\[
D\nu_{r,m} = Du_r - Du + (Du)_m
\]
where
\[
(Du)_m(x) = \sum_i (Du)_{i,m} \chi_{Q_{i,m}}(x).
\]
Fix \(0 < \varepsilon < 1 \), we prove that for suitable \(m \) we have
\[
|F(u_r, \Omega) - F(\nu_{r,m}, \Omega)| \leq \varepsilon.
\]
Let \(p \) be the right derivative of \(\Phi \), by Proposition 3.2 and Young's inequality we get
\[
|F(u_r, \Omega) - F(\nu_{r,m}, \Omega)|
\leq \sum_i \int_{Q_{i,m}} |f(Du_r) - f(D\nu_{r,m})| \, dx
\leq c_1 \sum_i \int_{Q_{i,m}} \{1 + p(1 + |Du_r| + |D\nu_{r,m}|)|Du_r - D\nu_{r,m}| \, dx
\leq c_2 \int_{\Omega} \Phi(|Du - (Du)_m|) \, dx +
+ c_1 \varepsilon \sum_i \int_{Q_{i,m}} \{\Psi(1) + \Psi(p(1 + |Du_r| + |D\nu_{r,m}|)) \, dx
= I_1 + I_2.
\]
For a suitable \(m \), by Theorem 2.2, we obtain
\[
I_1 \leq \varepsilon.
\]
Since $\Phi \in \Delta_2$, there exist $k > 1$ and $t_0 \geq 0$ such that for every $t \geq t_0 \geq 0$: $\Phi(p(t)) \leq k\Phi(t)$, then

$$I_2 \leq c_2\varepsilon + c_3\varepsilon \int_{\Omega} \{\Phi(|Du_r|) + \Phi(|Du - (Du)_m|)\} \, dx,$$

therefore by Proposition 2.1 and Theorem 2.2 we have

$$|F(u_r, \Omega) - F(\nu_{r,\Omega})| \leq c_3\varepsilon.$$

In a similar way we can show that

$$\left| F(u, \Omega) - \int_{\Omega} f((Du)_m) \, dx \right| \leq \varepsilon.$$

Fix $M \in \mathbb{N}$ and set $\Omega_M = \bigcup_{i=1}^{M} Q_{i,m}$, since $\{\nu_{r,m}\} \to (Du)_{i,m, \mathbb{R}^N}$ for every i by the first part of the proof we have

$$\int_{\Omega_M} f((Du)_m) \, dx \leq \liminf_{r} \int_{\Omega_M} f(D\nu_{r,m}) \, dx.$$

Using (5) and the convexity of Φ, it is easy to prove that for suitable M it holds

$$\int_{\Omega \setminus \Omega_M} f((Du)_m) \, dx \leq \varepsilon.$$

Moreover, as the integrals of functions $\Phi_1(|Du_r|)$ are equi-absolutely continuous, we get

$$\int_{\Omega \setminus \Omega_M} f(D\nu_{r,m}) \, dx \leq \varepsilon.$$

We can conclude that

$$F(u, \Omega) \leq \int_{\Omega} f((Du)_m) \, dx + \varepsilon$$

$$\leq \int_{\Omega_M} f((Du)_m) \, dx + 2\varepsilon \leq \liminf_{r} \int_{\Omega_M} f(D\nu_{r,m}) \, dx + 2\varepsilon$$

$$\leq \liminf_{r} \int_{\Omega} f(D\nu_{r,m}) \, dx + 3\varepsilon \leq \liminf_{r} \int_{\Omega} f(Du_r) \, dx + c_3\varepsilon.$$
Finally the semicontinuity follows. □

By the previous semicontinuity result, we are able to state the following existence theorem in the context of Orlicz-Sobolev spaces, using the Direct Methods of the Calculus of Variations.

Theorem 3.3. Let \(f : \mathbb{R}^{Nn} \to \mathbb{R} \) be a quasi-convex function satisfying
\[
c_1 \{ \Phi(|z|) - 1 \} \leq f(z) \leq c_2 \{ \Phi(|z|) + 1 \}
\]
for every \(z \in \mathbb{R}^{Nn} \), where \(c_1 \) and \(c_2 \) are positive constants and \(\Phi \in \Delta_2 \).

Let \(\Omega \) be an open bounded subset of \(\mathbb{R}^n \) with \(\partial \Omega \) lipschitzian, let \(\nu \) be a function in \(W^{1,\Phi}(\Omega, \mathbb{R}^N) \), consider the Dirichlet's class
\[
V = \nu + W^{1,\Phi}_0(\Omega, \mathbb{R}^N),
\]
then the problem \(m = \inf_V F(u, \Omega) \) has solution.

Proof. Functional \(F \) is lower bounded and coercive in the strong topology of \(V \).

In fact for every \(w \in L^\Phi(\Omega, \mathbb{R}^N) \) it holds
\[
\| w \|_\Phi \leq 1 + \int_\Omega \Phi(|w|) \, dx,
\]
then by (12) we have
\[
F(u, \Omega) \geq c_3 \{ \| Du \|_\Phi - 1 \},
\]
so \(F \) is lower bounded on \(V \), i.e. \(m > -\infty \).

On the other hand from
\[
\| Du \|_\Phi \geq \| D(u - \nu) \|_\Phi - \| D\nu \|_\Phi
\]
it follows
\[
F(u, \Omega) \geq c_4 \{ \| D(u - \nu) \|_\Phi - 1 \},
\]
and, as in \(W^{1,\Phi}_0(\Omega, \mathbb{R}^N) \) the norm of the gradient and the usual one are equivalent, \(F \) is coercive with respect to the strong topology of \(V \).
Let \(\{ u_r \} \) be a minimizing sequence of \(F \) on \(V \), i.e. \(\lim_{r} F(u_r, \Omega) = m \), then, by coercitivity of \(F \), \(\{ u_r \} \) is bounded in norm. Thus, there exist a subsequence of \(\{ u_r \} \), which we still denote by \(\{ u_r \} \), and a function \(u \in \nu + W^{1,k}(\Omega, \mathbb{R}^N) \) such that \(\{ u_r \} \to u * w^{-1,k}(\Omega, \mathbb{R}^N) \).

By Theorem 3.1 \(F \) is sequentially lower semicontinuous in \(* w^{-1,k}(\Omega, \mathbb{R}^N) \) then

\[
F(u, \Omega) \leq \liminf_{r} F(u_r, \Omega) = m,
\]

since this we get \(m = F(u, \Omega) \).

\[\square\]

4. Semicontinuity theorem: the general case

Theorem 4.1. Let \(\Omega \) be an open bounded subset of \(\mathbb{R}^n \) with \(\partial \Omega \) lipschitzian, let \(f(x, s, z) \), defined on \(\Omega \times \mathbb{R}^N \times \mathbb{R}^{N_n} \) with real values, be a Carathéodory function quasi-convex in \(z \) such that there exist positive constants \(c_0, c_1, c_2 \) and \(\Phi_1, \Phi_2 \) \(N \)-functions belonging to class \(\Delta_2 \) such that

\[
|f(x, s, z)| \leq c_0 + c_1 \Phi_1(|s|) + c_2 \Phi_2(|z|)
\]

(13)

for every \((x, s, z) \in \Omega \times \mathbb{R}^N \times \mathbb{R}^{N_n} \).

Then the functional

\[
F(u, \Omega) = \int_{\Omega} f(x, u(x), Du(x)) \, dx
\]

is sequentially lower semicontinuous in \(* w^{-1,\Gamma}(\Omega, \mathbb{R}^N) \) for every \(N \)-function \(\Gamma \in \Delta_2 \) such that

\[
\lim_{t \to +\infty} \frac{\Gamma(t)}{\Phi_i(t)} = +\infty \quad i = 1, 2.
\]

(14)

Remark 4.2. The assumptions \(\Gamma \in \Delta_2 \) and (14) imply that the following embeddings are compact

\[
W^{1,\Gamma}(\Omega, \mathbb{R}^N) \to L^{\Phi_i}(\Omega, \mathbb{R}^N) \quad i = 1, 2.
\]

Remark 4.3. If \(f = f(z) \) Theorem 4.1 is a consequence of Theorem 3.1.
The following result, due to Scorza Dragoni (see [11]), characterizes the Carathéodory functions.

Proposition 4.4. \(g : \mathbb{R}^n \times \mathbb{R}^N \times \mathbb{R}^{N} \rightarrow \mathbb{R} \) is a Carathéodory function if and only if for every compact subset \(C \subset \mathbb{R}^n \) and every \(\gamma > 0 \) there exists a compact subset \(C_{\gamma} \subset C \) such that \(|C \setminus C_{\gamma}| \leq \gamma \) and that the restriction of \(g \) to \(C_{\gamma} \times \mathbb{R}^N \times \mathbb{R}^{N} \) is continuous.

Proof of Theorem 4.1. Let \(\tau > 0 \), then there exist a positive integer \(m \) and a finite number of open cubes \(\{Q_{i,m}\} \), whose sides have length \(1/m \), satisfying

\[
Q_{i,m} \subset \subset \Omega, \quad Q_{i,m} \cap Q_{j,m} = \emptyset, \quad i \neq j, \quad \left| \Omega \setminus \bigcup_{i \leq m} Q_{i,m} \right| \leq \tau.
\]

Let \(t > 0 \) and \(\nu \) be a function, define

\[
\Omega_{\nu,t} = \{ x \in \Omega : |\nu(x)| > t \}
\]

and set

\[
\nu_t(x) = \nu(x) \chi_{\Omega \setminus \Omega_{\nu,t}}(x).
\]

Fix \(m \) and \(i \), define

\[
\nu_{i,m} = \frac{1}{|Q_{i,m}|} \int_{Q_{i,m}} \nu(x) \, dx,
\]

then consider

\[
\nu_m(x) = \begin{cases}
\sum_i \nu_{i,m} \chi_{Q_{i,m}}(x) & x \in Q_m \\
0 & x \in \Omega \setminus Q_m
\end{cases},
\]

and set \(\nu_{i,m} = (\nu_t)_m \).

Let \(u \in W^{1,1}(\Omega, \mathbb{R}^N) \) and \(\{u_r\} \) be a sequence convergent to \(u \) in \(W^{1,1}(\Omega, \mathbb{R}^N) \).

By Remark 4.2, \(\{u_r\} \) converges to \(u \) in \(s-L^p(\Omega, \mathbb{R}^N) \) and then it is convergent to \(u \) almost everywhere in \(\Omega \). Moreover, by Proposition 2.3, the functions \(\Phi_1(|u|), \Phi_1(|u_r|), \Phi_2(|Du|) \) and \(\Phi_2(|Du_r|) \) have equi-absolutely continuous integrals on \(\Omega \).
Consider \(\{x_m\} \), \(x_m = [\text{Id}_{\mathbb{R}^n}]_m \), \(\{u_{t,m}\} \) and \(\{[Du]_{t,m}\} \), by Theorem 2.2 they are convergent almost everywhere in \(\Omega \) to \(\text{Id}_{\mathbb{R}^n}, u_t, [Du]_t \) respectively.

We get

\[
\int \Omega f(x, u, Du) \, dx
\]

\[
= \int_{\Omega \setminus Q_m} f(x, u, Du) \, dx + \quad (I_1)
\]

\[
+ \int_{Q_m} \{f(x, u, Du) - f(x, u_t, [Du]_t)\} \, dx + \quad (I_2)
\]

\[
+ \int_{Q_m} \{f(x, u_t, [Du]_t) - f(x_m, u_{t,m}, [Du]_{t,m})\} \, dx + \quad (I_3)
\]

\[
+ \int_{Q_m} \{f(x_m, u_{t,m}, [Du]_{t,m}) - f(x_m, u_{t,m}, [Du]_{t,m}) +
\]

\[
+ D(u_r - u)) \} \, dx + \quad (I_4)
\]

\[
+ \int_{Q_m} \{f(x_m, u_{t,m}, [Du]_{t,m} + D(u_r - u)) +
\]

\[
- f(x_m, u_{t,m}, [Du]_{t,m} + [Du]_t) \, dx + \quad (I_5)
\]

\[
+ \int_{Q_m} \{f(x_m, u_{t,m}, [Du]_{t,m} + [Du]_t) - [Du]_t +
\]

\[
- f(x, u_t, [Du]_t)\} \, dx + \quad (I_6)
\]

\[
+ \int_{Q_m} \{f(x, u_t, [Du]_t) - f(x, [u_r]_t, [Du]_t)\} \, dx + \quad (I_7)
\]

\[
+ \int_{Q_m} \{f(x, [u_r]_t, [Du]_t) - f(x, u_r, Du_r)\} \, dx + \quad (I_8)
\]

\[
- \int_{\Omega \setminus Q_m} f(x, u_r, Du_r) \, dx \quad (I_9)
\]
\[+ \int_{\Omega} f(x, u_r, Du_r) \, dx. \]

(I_{10})

By Proposition 2.3 it follows from (13) and (14) the equi-absolute continuity of integrals \(F(u, \Omega) \) and \(F(u_r, \Omega) \), thus if \(t \) is large enough we get

\[I_2 + I_5 + I_8 \leq \varepsilon. \]

Fixing a suitable \(m \) and using (13) we get

\[I_1 + I_9 \leq \varepsilon. \]

Consider \(I_3, I_6 \) and \(I_7 \), by Egorov theorem, Proposition 4.4 and equi-absolute continuity of integrals it follows that the sum of these addenda is less than \(\varepsilon \).

Finally \(I_4 \) has non positive inferior limit by Remark 4.3.

So we have

\[\int_{\Omega} f(x, u, Du) \, dx \leq \varepsilon + \int_{\Omega} f(x, u_r, Du_r) \, dx \]

and finally the result follows passing to inferior limits for \(r \to +\infty \).

\[\square \]

5. Examples

In this section we exhibit some examples of applications of the semi-continuity Theorems 3.1, 4.1 and of the existence Theorem 3.3. The first example deals with Theorem 4.1. We are interested in the case \(N = n = 2 \), completely solved in [1], [6] and [8] for positive poli-convex functionals, so we consider a suitable modification of a family of quasi-convex functions, introduced by Šverák [26], with sub-quadratic growth at infinity, which, then, are neither convex nor poli-convex.

Let \(A, B \in M^{2 \times 2} \) such that

\[\text{rank} (A - B) \geq 2, \]

then \(K = \{A, B\} \) is compact and non convex.
For $p > 1$ define the function

$$d_p(z) = [d(z)]^p,$$

where $z \in M^{2 \times 2}$ and $d(z)$ denotes the distance of z from K.

Šverák in [26] proved that the quasi-convex envelope Qd_p of d_p satisfies

$$Qd_p(z) > 0 \quad \text{for every } z \in M^{2 \times 2} \setminus K,$$

moreover if $1 < p < 2$ then Qd_p is quasi-convex but not poli-convex.

For $1 < p < 2$ define the function $f_p : M^{2 \times 2} \to \mathbb{R}$ by

$$f_p(z) = d_p(z) \ln(e + d(z)).$$

Since $d_p \leq f_p$ we have $(Qf_p)^{-1}(0) = K$, then Qf_p is not convex, and not even poli-convex since it has sub-quadratic growth at infinity.

Moreover, since $d(z)$ has linear growth at infinity, we obtain

$$0 \leq Qf_p(z) \leq c_1 \{1 + |z|^p \ln(e + |z|)\}. \quad (15)$$

Let $a : \Omega \times \mathbb{R}^2 \to \mathbb{R}$ be a non-negative measurable function belonging to $L^\infty(\Omega)$, define the function $g_p(x, s, z) = a(x, s)Qf_p(z)$. Then, by (15), g_p satisfies growth conditions of type (13) with the N-function $\Phi_p(t) = t^p \ln(e + t) \in \Delta_2$, thus by Theorem 4.1 the functional

$$G_p(u, \Omega) = \int_\Omega g_p(x, u, Du) \, dx \quad (16)$$

is sequentially lower semicontinuous in $\text{sw-}W^{1, \Phi_{a,p}}(\Omega, \mathbb{R}^2)$ with $\Phi_{a,p}(t) = t^p \ln^\alpha(e + t)$, $\alpha > 1$.

Finally, observe that applying Theorem 2.4 of [2], Proposition 1 of [15] and Theorem 1.1 of [20] we obtain the weak lower semicontinuity of (16) in $W^{1,p+\varepsilon}(\Omega, \mathbb{R}^2)$ for every $\varepsilon > 0$, which is a proper subspace of $W^{1,\Phi_{a,p}}(\Omega, \mathbb{R}^2)$ for every $\alpha > 1$, $\varepsilon > 0$.

The following example is obtained by applying a result of Zhang who developed in [27] a method to construct quasi-convex functions with linear growth at infinity from known quasi-convex functions.

Consider, as before, $A, B \in M^{N \times n}$ such that

$$\text{rank } (A - B) \geq 2,$$
and set $K = \{ A, B \}$, then K is compact and non convex.

Let $z \in M^{N \times n}$ and denote with $d(z)$ the distance of z from K, in [27] Zhang proved that the quasi-convex envelope Qd of d satisfies

$$Qd(z) > 0 \quad \text{for every } z \in M^{N \times n} \setminus K.$$

Thus Qd is a quasi-convex function with linear growth at infinity, i.e. there exist c_i, $1 \leq i \leq 4$, non negative constants satisfying for every $z \in M^{N \times n}$

$$-c_1 + c_2 |z| \leq Qd(z) \leq c_3 + c_4 |z|, \quad (17)$$

and Qd is not convex since $(Qd)^{-1}(0) = K$.

Consider $\Phi_{a,b}(t) = t^{a+b \sin((\pi t))}$, which is the principal part of a N-function of class Δ_2 if $a > 1 + b \sqrt{2}$, then the function

$$h_{a,b}(z) = (\Phi_{a,b} \circ Qd)(z)$$

is quasi-convex but not convex. In fact $h_{a,b}$ is the composition of a N-function with a quasi-convex function, then, since $\Phi_{a,b}(t) = 0$ if and only if $t = 0$, it follows $(h_{a,b})^{-1}(0) = K$.

Since $\Phi_{a,b} \in \Delta_2$, by (17), there exist c_5, c_6 non negative constants such that for every $z \in M^{N \times n}$

$$0 \leq h_{a,b}(z) \leq \Phi_{a,b}(c_3 + c_4 |z|) \leq c_5 + c_6 \Phi_{a,b}(|z|). \quad (18)$$

By (18) we get that $h_{a,b}$ satisfies

$$0 \leq h_{a,b}(z) \leq c_5 + c_6 |z|^{a+b}, \quad (19)$$

moreover by (17) and the continuity of Qd it is easy to show that the power $a + b$ in (19) is sharp.

By Theorem 3.1, it follows the sequential lower semicontinuity of the functional

$$H_{a,b}(u, \Omega) = \int_\Omega h_{a,b}(Du) \, dx \quad (20)$$

in $\text{w} \text{-} W^{1, \Phi_{a,b}}(\Omega, \mathbb{R}^N)$. Moreover, Theorem 3.3 gives the existence of minimizers for the Dirichlet problem $\min_V H_{a,b}(u, \Omega)$, where $V = \nu + W^{1, \Phi_{a,b}}(\Omega, \mathbb{R}^N)$ and $\nu \in W^{1, \Phi_{a,b}}(\Omega, \mathbb{R}^N)$.

We remark that Theorem 3.1 applied to (20) gives a different result with respect to semicontinuity theorems known in ordinary Sobolev spaces. Let \(N = n \geq 3 \), Theorems 2.4 of [2] and 1.1 of [20], assure the weak lower semicontinuity of (20) in \(W^{1,a+b}(\Omega,\mathbb{R}^N) \) which is a proper subspace of \(W^{1,p}(\Omega,\mathbb{R}^N) \). Moreover, the results in [13] and [18] give the lower semicontinuity of (20) in \(w-W^{1,p}(\Omega,\mathbb{R}^N) \) for \(p > \frac{N}{N-1}(a+b) \), and taking in account [19] we get semicontinuity for \(p \geq a+b-1 \). Let \(a+b < N \), then \(\frac{N}{N-1}(a+b) > a+b-1 \), if we assume \(a+b-1 > a-b \), i.e. \(b > \frac{a}{2} \), since \(\Phi_{a,b}(t) = t^{a-b} \) for infinite \(t \in \mathbb{R} \), we can conclude that Theorem 3.1 states semicontinuity in a different space with respect to previous results. We observe explicitly that there exist positive constants \(a, b \) satisfying \(a > 1 + b\sqrt[4]{2} \), \(a+b < N \) and \(b > \frac{1}{2} \), e.g. for \(N = 3 \) take \(a = 2 \) and \(b = \frac{5}{8} \).

Acknowledgement. The author thanks Prof. N. Fusco and Prof. E. Mascolo for their useful advises.

References

Received July 21, 1997.