Perturbation of Ornstein-Uhlenbeck Semigroups

GIUSEPPE DA PRATO (*)

Dedicated to Pierre Grisvard

Introduction

In this paper we consider the Ornstein-Uhlenbeck process \(Z(t, x) \), solution of the following differential stochastic equation in a Hilbert space \(H \):

\[
dZ = AZdt + dW(t), \quad Z(0) = x.
\]

Here \(W \) is a cylindrical Wiener process on \(H \) and \(A \) is the infinitesimal generator of an exponentially stable analytic semigroup \(e^{tA} \) in \(H \). Under this hypothesis it is well known that the process \(Z(t, x) \) has a unique invariant measure \(\mu \), see e.g. [7].

Let us denote by \(A \) the infinitesimal generator of the transition semigroup

\[
R_t \varphi(x) = \mathbb{E}[\varphi(Z(t, x))], \quad t \geq 0,
\]

defined in the space \(L^2(H; \mu) \). \(A \) can be written formally as

\[
A \varphi = \frac{1}{2} \text{Tr} [D^2 \varphi(x)] + \langle Ax, D \varphi(x) \rangle.
\]

In G. Da Prato and J. Zabczyk see [9], it was proved that \(A \) is an \(m \)-dissipative operator on \(L^2(H; \mu) \). Moreover, in that paper we also

(*) Indirizzo dell’Autore: Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 6, 56126 Pisa (Italy).
studied perturbations of \mathcal{A} of the form
\[\langle F(x), D\varphi(x) \rangle, \tag{0.1} \]
where $F : H \to H$ is a continuous and bounded mapping.

The main result of the present paper is a precise characterization, under suitable assumptions, of the domain $D(\mathcal{A})$ of \mathcal{A}, as a subspace of $W^{2,2}(H; \mu)$.

We notice that the operator \mathcal{A} has been extensively studied using the Theory of Dirichlet forms, see Z. M. Ma and M. Röckner [17]. Using this method one can show that, in several situations, the operator \mathcal{A} is variational, and consequently one can conclude that $D(\mathcal{A})$ is a subspace of $W^{1,2}(H; \mu)$. Knowing that $D(\mathcal{A}) \subset W^{2,2}(H; \mu)$, will allow us to consider perturbations of \mathcal{A} more general than (0.1).

Our method is based on a generalization of the well known L. Nirenberg’s proof about H^2 regularity of second order elliptic equations, see e.g. [2]. We establish a basic identity for functions belonging to $D(\mathcal{A})$, that, under suitable assumptions (see Hypotheses 1.1 and 3.1), yields a characterization of $D(\mathcal{A})$. These assumptions are in particular fulfilled when \mathcal{A} is self-adjoint and when H is finite-dimensional.

We notice that, when \mathcal{A} is self-adjoint, a characterization of $D(\mathcal{A})$ could also be obtained by using the spectral decomposition of \mathcal{A} written in terms of Hermite polynomial, see [7]. Moreover, when H is finite-dimensional, our characterization coincides with that proved earlier by A. Lunardi, see [16], by a completely different method involving interpolatory arguments.

In section §1 we recall several known results, proved for instance in [7], about transition semigroups \mathcal{R}_t, $t \geq 0$, defined in space of continuous functions.

Section §2 is devoted to the description of the transition semigroup \mathcal{R}_t, $t \geq 0$, in $L^2(H; \mu)$. Here we recall several results proved earlier in [9] and [12], and we give some improvements that will be used later.

In §3 we present a characterization of the domain of \mathcal{A}. This characterization is exploited in §4 to study different perturbations of \mathcal{A}.
1. Notation and setting of the problem

We are given a separable Hilbert space H (norm $| \cdot |$, inner product $\langle \cdot, \cdot \rangle$), and a differential stochastic equation in H

$$
\begin{cases}
 dZ(t) = AZ(t)\,dt + dW(t) \\
 Z(0) = x \in H,
\end{cases}
$$

(1.1)

where $A : D(A) \subset H \to H$ is a linear operator and $W(t), t \geq 0$, is a cylindrical Wiener process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, see e.g. [7].

We shall assume that

Hypothesis 1.1.

(i) A is the infinitesimal generator of an analytic semigroup e^{tA} in H. There exist $M \geq 1$ and $\omega > 0$ such that

$$
\|e^{tA}\| \leq Me^{-\omega t}, \quad t \geq 0.
$$

(ii) For any $t > 0$, $e^{tA} \in L_2(H)$ (1) and, setting

$$
Q_t x = \int_0^t e^{sA} e^{sA^*} x \,ds, \quad x \in H,
$$

(1.2)

we have

$$
\text{Tr } [Q_t] < +\infty, \quad \forall \ t > 0.
$$

The following result is proved in [7].

Proposition 1.1. Assume that Hypothesis 1.1 holds.

(i) Problem (1.1) has a unique mild solution given by

$$
Z(t, x) = e^{tA}x + \int_0^t e^{(t-s)A}dW(s), \quad x \in H, \quad t \geq 0. \quad (1.3)
$$

1\(L(H)\) is the Banach algebra of all linear bounded operators on H, endowed with the sup norm $\| \cdot \|$. By $L_1(H)$ (norm $\| \cdot \|_{L_1(H)}$) we mean the Banach space of all trace-class operators on H, and by $L_2(H)$ (norm $\| \cdot \|_{L_2(H)}$) the Hilbert space of all Hilbert-Schmidt operators in H. If $T \in L_1(H)$, the trace of T is denoted by $\text{Tr } T$.
Moreover $Z(t,x)$ is a Gaussian random variable $\mathcal{N}(e^{tA}x, Q_t)$, for all $t \geq 0$ and all $x \in H$. \(^{(2)}\)

(ii) There exists a unique probability measure μ on $(H, \mathcal{B}(H))$ that is invariant for the process $Z(t,x)$, that is such that

$$\int_H R_t \varphi(x) \mu(dx) = \int_H \varphi(x) \mu(dx), \forall \varphi \in C_b(H), \quad \text{for all } t \geq 0,$$

where R_t, $t \geq 0$ is the transition semigroup

$$R_t \varphi(x) = \int_H \varphi(y) \mathcal{N}(e^{tA}x, Q_t)(dy), \varphi \in C_b(H), \quad t \geq 0, \quad x \in H. \quad \text{(1.4)}$$

Moreover $\mu = \mathcal{N}(0, Q)$, where

$$Qx = \int_0^{+\infty} e^{tA} e^{tA^*} x dt, \quad x \in H. \quad \text{(1.5)}$$

One can easily check that Q is a solution to the following Lyapunov equation

$$2\langle A^* x, Qx \rangle + \|x\|^2 = 0, \quad x \in D(A^*). \quad \text{(1.6)}$$

We end this section by recalling some properties of the semigroup R_t, $t \geq 0$, in the space $C_b(H)$.

The following result is proved in [7].

Proposition 1.2. Assume that Hypothesis 1.1 holds.

(i) For all $t > 0$ we have $e^{tA}(H) \subset Q_t^{1/2}(H)$. Moreover the linear operator $\Gamma(t) := Q_t^{-1/2} e^{tA}$ belongs to $\mathcal{L}_2(H)$ and the following estimate holds

$$\|\Gamma(t)\| \leq t^{-1/2}, \quad t > 0. \quad \text{(1.7)}$$

\(^{(2)}\) For any $z \in H$, and any positive operator $L \in \mathcal{L}_1(H)$, we denote by $\mathcal{N}(z, L)$ the Gaussian measure on $(H, \mathcal{B}(H))$, (where $\mathcal{B}(H)$ is the family of all Borel subsets of H, with mean z and covariance operator L.)

\(^{(3)}\) $C_b(H)$ is the Banach space of all uniformly continuous and bounded mappings from H into \mathbb{R}, endowed with the norm $\|\varphi\|_0 = \sup_{x \in H} |\varphi(x)|$.
(ii) For all $t > 0$ and all $\varphi \in C_b(H)$, we have $R_t \varphi \in C^1_b(H)$ \footnote{$C^1_b(H)$ is the set of all functions in $C_b(H)$ that are uniformly continuous and bounded together with their Fréchet derivative.} and
\[
\langle DR_t \varphi(x), h \rangle = \int_H \langle \Gamma(t)h, Q_t^{-1/2}y \rangle \varphi(e^{tA}x + y) \mathcal{N}(0, Q_t)(dy), \ h \in H.
\]

We notice that, when A is not identically 0, the semigroup R_t, $t \geq 0$ is never strongly continuous, see [3]. Moreover its restriction to the “subspace of continuity”:

\[
\{ \varphi \in C_b(H) : t \to R_t \varphi \text{ is continuous in } C_b(H) \},
\]
is not an analytic semigroup, see [5].

Proceeding as in S. Cerrai [3], we define the infinitesimal generator A of R_t, $t \geq 0$, through its resolvent, by setting
\[
R(\lambda, A)\varphi(x) = \int_0^{+\infty} e^{-\lambda t} R_t \varphi(x) dt, \ x \in H, \ \varphi \in C_b(H).
\]

To give a description of the infinitesimal generator A, it is convenient to introduce the space \mathcal{E} of all finite linear combinations of the exponential functions $\varphi_h = e^{i(h, x)}$, $x \in H$, $h \in D(A^*)$.

2. Transition semigroup in $L^2(H; \mu)$

In this section we first recall the definition and some properties of the Sobolev spaces $W^{1,2}(H; \mu)$ and $W^{2,2}(H; \mu)$. Then we show, following [7], that the semigroup R_t, $t \geq 0$ can be uniquely extended as a contraction semigroup to $L^2(H; \mu)$, and we state several properties of it, needed in the sequel.

2.1 Sobolev spaces

First of all we remark that, as easily checked, the linear space \mathcal{E} of exponential functions, as introduced in §1, is dense in $L^2(H; \mu)$. Moreover we denote by $\{e_k\}$ a complete orthonormal system in H of
eigenvectors of Q_∞, and by $\{\lambda_k\}$, the corresponding set of eigenvalues:

$$Qe_k = \lambda_k e_k, \ k \in \mathbb{N}.$$

For any $k \in \mathbb{N}$ we denote by $D_k \varphi$ the derivative of φ in the direction of e_k, and we set $x_k = \langle x, e_k \rangle$, $x \in H$.

The following lemma and proposition are well known, see e.g. [12]. However, we give a sketch of proofs for the reader’s convenience.

Lemma 2.1. Let $\varphi, \psi \in \mathcal{E}$ and $h \in \mathbb{N}$. Then we have

$$\int_H D_h \varphi(x) \psi(x) \mu(dx) + \int_H D_h \psi(x) \varphi(x) \mu(dx) = \frac{1}{\lambda_h} \int_H x_h \varphi(x) \psi(x) \mu(dx). \quad (2.1)$$

Proof. Since \mathcal{E} is dense in $L^2(H; \mu)$, it is enough to prove (2.1) for

$$\varphi(x) = e^{i(\alpha, x)}, \ \psi(x) = e^{i(\beta, x)}, \ \alpha, \beta \in H.$$

In this case we have (5):

$$\int_H D_h \varphi(x) \psi(x) \mu(dx) + \int_H D_h \psi(x) \varphi(x) \mu(dx) = i(\alpha_h - \beta_h) e^{-\frac{1}{2}(Q(\alpha, \alpha) + Q(\beta, \beta))}. \quad (2.2)$$

Moreover

$$\int_H x_h \varphi(x) \psi(x) \mu(dx) = \int_H x_h e^{i(\alpha - \beta, x)} \mu(dx)$$

$$= -i \frac{d}{d \lambda} \left. \int_H e^{i(\alpha - \beta + \lambda e_h, x)} \mu(dx) \right|_{\lambda=0}$$

$$= \left. -i \frac{d}{d \lambda} e^{-\frac{1}{2}(Q(\alpha - \beta + \lambda e_h, \alpha - \beta + \lambda e_h))} \right|_{\lambda=0}$$

$$= -i e^{\frac{1}{2}(Q(\alpha - \beta, \alpha - \beta))(\alpha_h - \beta_h) \lambda_h}. \quad (2.3)$$

Now the conclusion follows. \hfill \Box

\(^5\) If $\nu = \mathcal{N}(0, Q)$ is a Gaussian measure on H, then the characteristic function of ν is defined as $F(h) = \int_H e^{i(h, x)} \nu(dx)$. One can easily show that $F(h) = e^{-\frac{1}{2}(Q(\nu, h))}$.

From Lemma 2.1 we have

Proposition 2.2. For any \(h \in \mathbb{N} \) the linear operator

\[
D_h : \mathcal{E} \subset L^2(H; \mu) \rightarrow L^2(H; \mu), \quad \varphi \rightarrow D_h \varphi,
\]

is closable in \(L^2(H; \mu) \).

We shall still denote by \(D_h \) the closure of \(D_h \).

Proof. Let \(\{ \varphi_n \} \) be a sequence in \(\mathcal{E} \) and let \(g \in L^2(H; \mu) \) such that

\[
\varphi_n \rightarrow 0, \quad D_h \varphi_n \rightarrow g, \quad \text{in} \ L^2(H; \mu), \quad \text{as} \ n \rightarrow \infty.
\]

We have to show that \(g = 0 \).

By using (2.1) with \(\varphi = \varphi_n \) and with \(\psi \) being any element in \(\mathcal{E} \), we have in fact

\[
\int_H D_h \varphi_n(x) \psi(x) \mu(dx) + \int_H D_h \psi(x) \varphi_n(x) \mu(dx) = \\
= \frac{1}{\lambda_h} \int_H x_h \varphi_n(x) \psi(x) \mu(dx).
\]

Letting \(n \) tend to \(\infty \) we have by the hypothesis

\[
\int_H g(x) \psi(x) \mu(dx) = 0,
\]

that yields \(g = 0 \) due to the density of \(\mathcal{E} \) and the arbitrariness of \(\psi \).

This completes the proof. \(\square \)

We can now define Sobolev spaces. We denote by \(W^{1,2}(H; \mu) \) the linear space of all functions \(\varphi \in L^2(H; \mu) \) such that \(D_k \varphi \in L^2(H; \mu) \) for all \(k \in \mathbb{N} \) and

\[
\int_H |D \varphi(x)|^2 \mu(dx) = \sum_{k=1}^{\infty} \int_H |D_k \varphi(x)|^2 \mu(dx) < +\infty.
\]

\(W^{1,2}(H; \mu) \), endowed with the inner product

\[
\langle \varphi, \psi \rangle_1 = \int_H \varphi(x) \psi(x) \mu(dx) + \int_H \langle D \varphi(x), D \psi(x) \rangle \mu(dx),
\]
is a Hilbert space. We recall that the embedding of $W^{1,2}(H;\mu)$ into $L^2(H;\mu)$ is compact, see [6], [19], [7].

In a similar way we can define the Sobolev space $W^{2,2}(H;\mu)$ consisting of all functions $\varphi \in W^{1,2}(H;\mu)$ such that $D_h D_k \varphi \in L^2(H;\mu)$ for all $h, k \in \mathbb{N}$ and $D^2 \varphi(x) \in L^2(H)$ for all $x \in H$.

$W^{2,2}(H;\mu)$, endowed with the inner product

$$
\langle \varphi, \psi \rangle_2 = \langle \varphi, \psi \rangle_1 + \sum_{h,k=1}^{\infty} \int_H D_h D_k \varphi(x) \cdot D_h D_k \psi(x) \mu(dx)
$$

is a Hilbert space. Notice that, when H is infinite-dimensional, the embedding of $W^{2,2}(H;\mu)$ into $W^{1,2}(H;\mu)$ is not compact, see [9].

Now from Lemma 2.1 and Proposition 2.2 the following integration by parts formula follows, see [12].

Proposition 2.3. Let $\psi_1, \psi_2 \in W^{1,2}(H;\mu)$ and $\alpha \in H$. Then we have

$$
\int_H \langle D \psi_1(x), Q \alpha \rangle \cdot \psi_2(x) \mu(dx) + \int_H \langle D \psi_2(x), Q \alpha \rangle \cdot \psi_1(x) \mu(dx) =
$$

$$
= \int_H \psi_1(x) \psi_2(x) \langle \alpha, x \rangle \mu(dx).
$$

We finish this subsection by proving some useful properties of the spaces $W^{1,2}(H;\mu)$ and $W^{2,2}(H;\mu)$.

Proposition 2.4. ([12]) Let $\zeta \in W^{1,2}(H;\mu)$ and $\alpha \in H$. Then the function

$$
x \rightarrow \langle x, \alpha \rangle \zeta(x),
$$

belongs to $L^2(H, \mu)$ and the following inequality holds.

$$
\int_H |\langle \alpha, x \rangle|^2 \zeta^2(x) \mu(dx) \leq 2|Q^{1/2} \alpha|^2 \int_H \zeta^2(x) \mu(dx) +
$$

$$
+ 16|Q \alpha|^2 \int_H |D \zeta(x)|^2 \mu(dx).
$$
Proof. It is enough to prove (2.5) when $\zeta \in \mathcal{E}$. We apply the integration by parts formula (2.4) with

$$\psi_1(x) = \langle \alpha, x \rangle, \psi_2(x) = \zeta^2(x).$$

Since

$$D\psi_1(x) = \alpha, \ D\psi_2(x) = 2\zeta(x)D\zeta(x), \ x \in H,$$

we obtain, using Hölder’s inequality

$$\int_H |\langle \alpha, x \rangle|^2 \zeta^2(x)\mu(dx) =$$

$$= \int_H \langle Q\alpha, \alpha \rangle \zeta^2(x)\mu(dx) + 2 \int_H \langle \alpha, x \rangle \langle D\zeta(x), Q\alpha \rangle \zeta(x)\mu(dx)$$

$$\leq |Q|^{1/2} \|\alpha\|_2 \|\zeta\|_{L^2(\mu, H)}^2 +$$

$$+ 2 \left[\int_H |\langle \alpha, x \rangle|^2 \zeta^2(x)\mu(dx) \right]^{1/2} \left[\int_H |\langle Q\alpha, D\zeta(x) \rangle|^2 \mu(dx) \right]^{1/2}$$

$$\leq |Q|^{1/2} \|\alpha\|_2 \|\zeta\|_{L^2(\mu, H)}^2 +$$

$$+ \frac{1}{2} \int_H |\langle \alpha, x \rangle|^2 \zeta^2(x)\mu(dx) + 8 \int_H |\langle Q\alpha, D\zeta(x) \rangle|^2 \mu(dx),$$

that yields (2.5). \qed

By Proposition 2.4 it follows the result.

Corollary 2.5. Let $\zeta \in W^{1,2}(H, \mu)$. Then the function

$$H \rightarrow \mathbb{R}, \ x \rightarrow |x|\zeta(x),$$

belongs to $L^2(H, \mu)$ and the following estimate holds

$$\int_H |x|^2 \zeta^2(x)\mu(dx) \leq 2 \text{Tr } Q \int_H \zeta^2(x)\mu(dx) +$$

$$+ 16 \text{Tr } [Q^2] \int_H |D\zeta(x)|^2 \mu(dx). \quad (2.6)$$

Proof. Let $k \in \mathbb{N}$; setting in (2.5) $\alpha = e_k$, we find

$$\int_H x_k^2 \zeta^2(x)\mu(dx) \leq 2\lambda_k \int_H \zeta^2(x)\mu(dx) + 16\lambda_k^2 \int_H |D\zeta(x)|^2 \mu(dx).$$

Summing up on k, the inequality (2.6) follows. \qed
We now consider functions \(\zeta \) in \(W^{2,2}(H,\mu) \).

Proposition 2.6. Let \(\zeta \in W^{2,2}(H,\mu) \) and \(\alpha \in H \). Then the function \(x \to |\langle x, \alpha \rangle|^2 \zeta(x) \) belongs to \(L^2(H;\mu) \) and

\[
\int_H |\langle x, \alpha \rangle|^4 \zeta^2(x) \mu(dx) \leq 4 \left(|Q^{1/2} \alpha|^4 + 8 |\alpha|^2 |Q \alpha|^2 \right) \int_H \zeta^2(x) \mu(dx) + 96 |Q \alpha|^2 |Q^{1/2} \alpha|^2 \int_H |D \zeta(x)|^2 \mu(dx) + 512 |Q \alpha|^4 \int_H \|D^2 \zeta(x)\|^2_{L^2(H)} \mu(dx) \tag{2.7}
\]

Proof. Setting \(\eta(x) = \langle x, \alpha \rangle \zeta(x) \), we have by Proposition 2.4 that \(\eta \in L^2(H;\mu) \) and

\[
\int_H \eta^2(x) \mu(dx) \leq 2 |Q^{1/2} \alpha|^2 \int_H \zeta^2(x) \mu(dx) + 16 |Q \alpha|^2 \int_H |D \zeta(x)|^2 \mu(dx). \tag{2.8}
\]

Moreover, for any \(i \in \mathbb{N} \), we have

\[D_i \eta(x) = \alpha_i \zeta(x) + \langle x, \alpha \rangle D_i \zeta(x). \]

Thus, by Proposition 2.4, \(D_i \eta \in L^2(H;\mu) \) and

\[
\int_H |D_i \eta(x)|^2 \mu(dx) \leq 2 |\alpha_i|^2 \int_H \zeta^2(x) \mu(dx) + 2 \int_H \langle x, \alpha \rangle^2 |D_i \zeta(x)|^2 \mu(dx) \leq 2 |\alpha_i|^2 \int_H \zeta^2(x) \mu(dx) + 4 |Q^{1/2} \alpha|^2 \int_H |D \zeta(x)|^2 \mu(dx) + 32 |Q \alpha|^2 \int_H |D D_i \zeta(x)|^2 \mu(dx).
\]
Summing up on i we have
\[
\int_H |D\eta(x)|^2 \mu(dx) \leq 2|\alpha|^2 \int_H \zeta^2(x) \mu(dx) + \\
+ 4|Q^{1/2}\alpha|^2 \int_H |D\zeta(x)|^2 \mu(dx) \\
+ 32|Q\alpha|^2 \int_H \|D^2\zeta(x)\|^2_{L_2(H)} \mu(dx). \tag{2.9}
\]
This shows that $\eta \in W^{1,2}(H;\mu)$. Now, applying once again Proposition 2.4, we have that $g = \langle x, \alpha \rangle \eta \in L^2(H;\mu)$ and
\[
\int_H |\langle x, \alpha \rangle|^4 \zeta^2(x) \mu(dx) \leq 2|Q^{1/2}\alpha|^2 \int_H \eta^2(x) \mu(dx) + \\
+ 16|Q\alpha|^2 \int_H |D\eta(x)|^2 \mu(dx). \tag{2.10}
\]
By substituting (2.8) and (2.9) into (2.10) we obtain the conclusion (2.7). \hfill \Box

In a similar way we prove the following result.

Proposition 2.7. Let $\zeta \in W^{2,2}(H,\mu)$. Then the function $x \to (1 + |x|^2)\zeta(x)$ belongs to $L^2(H;\mu)$ and
\[
\int_H (1 + |x|^2)^2 \zeta^2(x) \mu(dx) \leq \\
[32 \text{Tr } Q^2 + (1 + 2 \text{Tr } Q)^2] \int_H \zeta^2(x) \mu(dx) + \\
+ 48 \text{Tr } [Q^2](1 + 2 \text{Tr } Q) \int_H |D\zeta(x)|^2 \mu(dx) + \\
+ 512 (\text{Tr } [Q^2])^2 \int_H \|D^2\zeta(x)\|^2_{L_2(H)} \mu(dx). \tag{2.11}
\]

Proof. Setting $\rho(x) = \sqrt{1 + |x|^2} \zeta(x)$, we have by (2.6) that $\rho \in L^2(H;\mu)$ and
\[
\int_H \rho^2(x) \mu(dx) = \int_H \zeta^2(x) \mu(dx) + \int_H |x|^2 \zeta^2(x) \mu(dx) \leq \\
\leq (1 + 2 \text{Tr } Q) \int_H \zeta^2(x) \mu(dx) + 16 \text{Tr } [Q^2] \int_H |D\zeta(x)|^2 \mu(dx). \tag{2.12}
\]
For any $i \in \mathbb{N}$ we have

$$D_i \rho(x) = x_i (1 + |x|^2)^{-1/2} \zeta(x) + (1 + |x|^2)^{1/2} D_i \zeta(x),$$

so that

$$\int_H |D_i \rho(x)|^2 \mu(dx) \leq 2 \int_H \frac{x_i^2}{1 + |x|^2} \zeta^2(x) \mu(dx) + 2 \int_H |D_i \zeta(x)|^2 \mu(dx) + 2 \int_H |x|^2 |D_i \zeta(x)|^2 \mu(dx).$$

Consequently, by (2.6) it follows that $D_i \rho \in L^2(H; \mu)$ and

$$\int_H |D_i \rho(x)|^2 \mu(dx) \leq 2 \int_H \frac{x_i^2}{1 + |x|^2} \zeta^2(x) \mu(dx) + 2 \int_H |D_i \zeta(x)|^2 \mu(dx) + 4 \text{Tr} \, Q \int_H |D_i \zeta(x)|^2 \mu(dx) + 32 \text{Tr} \, [Q^2] \int_H |DD_i \zeta(x)|^2 \mu(dx).$$

Summing up on i we obtain

$$\int_H |D \rho(x)|^2 \mu(dx) \leq 2 \int_H \zeta^2(x) \mu(dx) + (2 + 4 \text{Tr} \, Q) \int_H |D \zeta(x)|^2 \mu(dx) + 32 \text{Tr} \, [Q^2] \int_H \|D^2 \zeta(x)\|^2_{\mathcal{L}_2(H)} \mu(dx), \quad (2.13)$$

that yields $\rho \in W^{1,2}(H; \mu)$. Finally by (2.6) it follows

$$\int_H (1 + |x|^2)^2 \zeta^2(x) \mu(dx) \leq \int_H \rho^2(x) \mu(dx) + \int_H |x|^2 \rho^2(x) \mu(dx) \leq (1 + 2 \text{Tr} \, Q) \int_H \rho^2(x) \mu(dx) + 16 \text{Tr} \, [Q^2] \int_H |D \rho(x)|^2 \mu(dx). \quad (2.14)$$
By substituting (2.12) and (2.13) into (2.14) we complete the proof. □

2.2 Transition semigroup

The following result was proved in [7], see also [8]. We give however a sketch of the proof for the reader’s convenience.

Proposition 2.8. (i) Assume that Hypothesis 1.1 holds. Then, for any \(t > 0 \), the operator \(R_t \), defined by (1.4), has a unique extension to a linear bounded operator in \(L^2(H; \mu) \), that we still denote by \(R_t \). Moreover \(R_t \), \(t \geq 0 \) is a strongly continuous semigroup of contractions in \(L^2(H; \mu) \), and

\[
R_t \varphi(x) = \int_H \varphi(e^{tA}x + y)\mathcal{N}(0, Q_t)(dy),
\]

\(t \geq 0, \ x \in H, \ \varphi \in L^2(H; \mu). \) \(\text{(2.15)} \)

(ii) \(\mathcal{E} \subset D(A) \) and

\[
A(e^{i(h, \cdot)})(x) = \left(\langle A^*h, x \rangle - \frac{1}{2}|h|^2 \right)e^{i(h, x)}, \ x \in H. \quad \text{(2.16)}
\]

Moreover, \(\mathcal{E} \) is a core for the infinitesimal generator \(A \) of \(R_t \), \(t \geq 0 \).

(iii) For all \(t > 0 \) and all \(\varphi \in L^2(H; \mu) \), one has \(R_t \varphi \in W^{1,2}(H; \mu) \) and

\[
\langle DR_t \varphi(x), h \rangle = \int_H \langle \Gamma(t)h, Q_t^{-1/2}y \rangle \varphi(e^{tA}x + y)\mathcal{N}(0, Q_t)(dy).
\]

Consequently, \(R_t \) is compact on \(L^2(H; \mu) \) for all \(t > 0 \).

Proof. Let \(\varphi \in C_b(H) \), then by (1.4) and Hölder’s estimate, we have

\[
|R_t \varphi(x)|^2 \leq \int_H \varphi^2(e^{tA}x + y)\mathcal{N}(0, Q_t)(dy) = R_t(\varphi^2)(x).
\]
Using the invariance of μ, it follows that
\[
\int_H |R_t \varphi(x)|^2 \mu(dx) \leq \int_H |\varphi(x)|^2 \mu(dx),
\]
that proves (i).

(ii) Notice first that, in view of (2.15), for all $h \in H$ we have
\[
R_t e^{i(h \cdot \gamma)}(x) = e^{i(e^{tA} h \cdot x) - \frac{1}{2} \langle Q_h h, h \rangle}.
\]
Thus, for any $t > 0$, R_t maps \mathcal{E} into itself. Since clearly $\mathcal{E} \subset D(\mathcal{A})$, we have that \mathcal{E} is a core for \mathcal{A}, see [11, Theorem 1.9].

Let us prove (iii). Let $\varphi \in C_b(H)$ and $h \in H$. By (1.8) and the Hölder inequality we have
\[
|\langle DR_t \varphi(x), h \rangle|^2 \leq \\
\leq \int_H |\langle \Gamma(t) h, Q^{-1/2} \rangle|^2 \int_H |\varphi(e^{tA} x + y)|^2 N(0, Q_t)(dy) \\
= |\Gamma(t) h|^2 R_t(\varphi^2)(x).
\]
Integrating on x and using the invariance of μ, we find
\[
\int_H |\langle DR_t \varphi(x), h \rangle|^2 \mu(dx) \leq |\Gamma(t) h|^2 \int_H |\varphi(x)|^2 \mu(dx).
\]
Setting $h = e_k$, $k \in \mathbb{N}$, summing up on k, and recalling that by Proposition 1.2-(i), $\Gamma(t) \in \mathcal{L}_2(H)$, we obtain
\[
\int_H |DR_t \varphi(x)|^2 \mu(dx) \leq \text{Tr} \left[\Gamma(t) \Gamma^*(t) \right] \int_H |\varphi(x)|^2 \mu(dx).
\]
The conclusion follows from the density of $C_b(H)$ in $L^2(H; \mu)$. \hfill \Box

The following propositions were proved in [12], see also [1]. Before stating it we need some preliminary results.

LEMMMA 2.9. For any $\varphi, \psi \in \mathcal{E}$ the following identity holds.
\[
\int_H (A \varphi)(x) \psi(x) \mu(dx) = \int_H \langle QD \psi(x), A^* D \varphi(x) \rangle \mu(dx). \tag{2.18}
\]
Proof. It is enough to prove (2.18) for
\[\varphi(x) = e^{i(x, \alpha)}, \psi(x) = e^{i(x, \beta)}, \quad x \in H, \quad \alpha, \beta \in D(A^*). \]

In this case we have, by a simple computation,
\[
\int_H (A\varphi)(x)\psi(x)\mu(dx) = -\left(\langle A^*\alpha, Q(\alpha - \beta) \rangle + \frac{1}{2}|\alpha|^2 \right) e^{-\frac{1}{2}(Q(\alpha-\beta), \alpha-\beta)},
\]
and
\[
\int_H \langle QD\psi(x), A^*D\varphi(x) \rangle \mu(dx) = \langle A^*\alpha, Q\beta \rangle e^{-\frac{1}{2}(Q(\alpha-\beta), \alpha-\beta)}. \quad (2.20)
\]

Taking into account (2.19) and (2.20), we see that equality (2.18) is equivalent to
\[2\langle A^*\alpha, Q\alpha \rangle + |\alpha|^2 = 0, \]
that coincides with Lyapunov equation (1.6). \(\square \)

The lemma yields now the result

Proposition 2.10. For any \(\varphi \in D(A) \) and any \(\psi \in W^{1,2}(H; \mu) \) the following identity holds.
\[
\int_H (A\varphi)(x)\psi(x)\mu(dx) = \int_H \langle QD\psi(x), A^*D\varphi(x) \rangle \mu(dx). \quad (2.21)
\]

Finally, taking \(\phi = \psi \), and using again the Lyapunov equation we have

Proposition 2.11. Assume that Hypothesis 1.1 holds. Then for any \(\varphi \in D(A) \) one has \(\varphi \in W^{1,2}(H, \mu) \) and the following identity holds.
\[
\int_H (A\varphi)(x)\varphi(x)\mu(dx) = -\frac{1}{2} \int_H |D\varphi(x)|^2 \mu(dx). \quad (2.22)
\]

The following corollary is an immediate consequence of Proposition 2.11.
Corollary 2.12. Assume that Hypothesis 1.1 holds. Then for any \(\varepsilon > 0 \) one has
\[
\int_H |D\varphi(x)|^2 \mu(dx) \leq \varepsilon \int_H |A\varphi(x)|^2 \mu(dx) + 4 \int_H |\varphi(x)|^2 \mu(dx).
\]
(2.23)

Remark 2.13. If \(M = 1 \) (6), one can prove that the semigroup \(R_t t \geq 0 \) is analytic in \(L^2(H; \mu) \), see [12], [9].

3. Characterization of \(D(A) \)

In this section we want to characterize the domain of \(A \). From now on we shall assume that
\[
\{e_k\} \subset D(A).
\]
(3.1)

Then we set
\[
A_{h,k} = \langle Ae_k, e_h \rangle, \quad h, k \in \mathbb{N},
\]
and we write \(A \) on \(\mathcal{E} \) as
\[
(A\varphi)(x) = \frac{1}{2} \sum_{h=1}^{\infty} D_h^2 \varphi(x) + \sum_{h,k=1}^{\infty} A_{h,k} x_k D_h \varphi(x), \quad \varphi \in \mathcal{E}.
\]
(3.2)

We start with a basic identity.

Proposition 3.1. Assume that Hypotheses 1.1 and (3.1) hold. Let \(\varphi \in \mathcal{E} \) and let \(f = A\varphi \). Then the following identity holds:
\[
\frac{1}{2} \int_H \|D^2 \varphi(x)\|_{L^2(H)}^2 \mu(dx) - \int_H \langle D\varphi(x), A^* D\varphi(x) \rangle \mu(dx)
\]
\[
= 2 \int_H |f(x)|^2 \mu(dx) - 2 \int_H f(x) \langle Ax + \frac{1}{2} Q^{-1} x, D\varphi(x) \rangle \mu(dx).
\]
(3.3)

\(^6 \)M is the constant in Hypothesis 1.1
Proof. By differentiating (3.2) with respect to x_j, we obtain

$$A(D_j \varphi)(x) + \sum_{h=1}^{\infty} A_{h,j} D_h \varphi(x) = D_j f(x).$$

Multiplying both sides by $D_j \varphi(x)$ and integrating with respect to μ it follows

$$\int_H A(D_j \varphi) D_j \varphi \mu(dx) + \sum_{h=1}^{\infty} \int_H A_{h,j} D_h \varphi D_j \varphi \mu(dx) = \int_H D_j \varphi D_j f(x) \mu(dx).$$

Recalling (2.22) we see that the above equality is equivalent to

$$\frac{1}{2} \int_H |D_D \varphi(x)|^2 \mu(dx) - \sum_{h=1}^{\infty} \int_H A_{h,j} D_h \varphi(x) D_j \varphi(x) \mu(dx) = - \int_H D_j \varphi(x) D_j f(x) \mu(dx).$$

By (2.1) we get

$$\frac{1}{2} \int_H |D_D \varphi(x)|^2 \mu(dx) - \sum_{h=1}^{\infty} \int_H A_{h,j} D_h \varphi(x) D_j \varphi(x) \mu(dx) = \int_H f(x) D_j^2 \varphi(x) \mu(dx) - \int_H \frac{x_j}{\lambda_j} f(x) D_j \varphi(x) \mu(dx).$$

Summing up on j we find

$$\frac{1}{2} \int_H \|D^2 \varphi(x)\|_{L^2(H)}^2 \mu(dx) - \int_H \langle D \varphi(x), A^* D \varphi(x) \rangle \mu(dx) = \int_H f(x) \left\{ \text{Tr} \left[D^2 \varphi(x) \right] - \langle Q^{-1} x, D \varphi(x) \rangle \right\} \mu(dx),$$

and the conclusion follows. □
In order to characterize $D(A)$ we need some further assumptions.

Hypothesis 3.1.

(i) $D(A) \cap Q(H)$ is dense in H and the linear operator

\[
\begin{align*}
D(K) &= D(A) \cap Q(H), \\
Kx &= Ax + \frac{1}{2} Q^{-1}x, \quad x \in D(K),
\end{align*}
\]

is bounded in H.

(ii) There exists $\eta > 0$ such that

\[
\langle Ax, x \rangle \leq -\eta |x|^2, \quad x \in D(A).
\]

If Hypothesis 3.1 holds, we shall denote by K the unique extension of the operator K to H. Notice that if Hypothesis 1.1 holds with $M = 1$, then (3.5) holds with $\eta = \omega$.

In the following we denote by H_A the Banach space obtained by taking the completion of $D(A)$ with respect to the norm

\[
|x|_{H_A}^2 = -\langle Ax, x \rangle, \quad x \in D(A).
\]

Theorem 3.2. Assume that Hypotheses 1.1, 3.1 and (3.1) hold. Let A be the infinitesimal generator of the semigroup R_t, $t \geq 0$, defined by (2.15). Then we have

\[
D(A) = \left\{ \varphi \in W^{2,2}(H; \mu) : \\
|D\varphi(x)| \in H_A, \mu \text{ a.e., } |D\varphi(\cdot)|_{H_A} \in L^2(H; \mu) \right\}
\]

(3.6)

Proof. We first prove that

\[
D(A) \subset \left\{ \varphi \in W^{2,2}(H; \mu) : \\
D\varphi(x) \in H_A, \mu \text{ a.e. } |D\varphi(\cdot)|_{H_A} \in L^2(H; \mu) \right\}.
\]

(3.7)
For this, recalling that $D(A) \subset W^{1,2}(H; \mu)$ by Proposition 2.11, it suffices to prove that for any $\varphi \in D(A)$ the following estimate holds

\[
\frac{1}{4} \int_H \|D^2 \varphi(x)\|_{L^2(H)}^2 \mu(\,dx) + \int_H |D \varphi(x)|^2_{H, \mu}(\,dx) \\
\leq 2(1 + 128 \|K\|^2 \text{ Tr} [Q^2]) \int_H |f(x)|^2 \mu(\,dx) + \\
+ \frac{\text{ Tr } Q}{32 \text{ Tr } [Q^2]} \int_H |D \varphi(x)|^2 \mu(\,dx).
\]

(3.8)

Since \mathcal{E} is a core for A, it is enough to prove (3.8) for all $\varphi \in \mathcal{E}$. Let $a > 0$ be a positive number to be fixed later. By (3.3) it follows

\[
\frac{1}{2} \int_H \|D^2 \varphi(x)\|^2_{L^2(H)} \mu(\,dx) + \int_H |D \varphi(x)|^2_{H,\mu}(\,dx) \leq \\
\leq (2 + 4a) \int_H |f(x)|^2 \mu(\,dx) + \frac{\|K\|^2}{a} \int_H |x|^2 |D \varphi(x)|^2 \mu(\,dx).
\]

Taking into account (2.6) we find

\[
\frac{1}{2} \int_H \|D^2 \varphi(x)\|_{L^2(H)}^2 \mu(\,dx) + \int_H |D \varphi(x)|^2_{H,\mu}(\,dx) \leq \\
\leq (2 + 4a) \int_H |f(x)|^2 \mu(\,dx) + \\
+ 2 \frac{\|K\|^2 \text{ Tr } Q}{a} \int_H |D \varphi(x)|^2 \mu(\,dx) + \\
+ 16 \frac{\|K\|^2 \text{ Tr } [Q^2]}{a} \int_H \|D^2 \varphi(x)\|^2_{L^2(H)} \mu(\,dx).
\]

Choosing finally a such that

\[a = 64 \|K\|^2 \text{ Tr } Q^2 \]

(3.8) and consequently (3.7) follows.

We now prove that

\[D(A) \supset \left\{ \varphi \in W^{2,2}(H; \mu) : \right. \]

\[D \varphi(x) \in H_A, \ \mu \text{ a.e., } |D \varphi(\cdot)|_{H_A} \in L^2(H; \mu) \}.
\]

(3.9)
Let $\varphi \in \mathcal{E}$ and set
\[L = \frac{1}{2} \int_H \| D^2 \varphi(x) \|^2_{L_2(H)} \mu(dx) + \int_H |D\varphi(x)|^2_{H,A} \mu(dx), \]
then from (3.3) we have
\[2 \int_H |A\varphi(x)|^2 \mu(dx) \leq L + 2\|K\| \int_H |A\varphi(x)| \cdot |x| \cdot |D\varphi(x)| \mu(dx) \]
\[\leq L + \int_H |A\varphi(x)|^2 \mu(dx) + 4\|K\|^2 \int_H |x|^2 |D\varphi(x)|^2 \mu(dx), \]
and so
\[\int_H |A\varphi(x)|^2 \mu(dx) \leq L + 4\|K\|^2 \int_H |x|^2 |D\varphi(x)|^2 \mu(dx). \]
By (2.6) it follows
\[\int_H |A\varphi(x)|^2 \mu(dx) \leq L + 8 \text{Tr } Q \|K\|^2 \int_H |D\varphi(x)|^2 \mu(dx) \]
\[+ \ 64 \left(\text{Tr } Q^2\right) \int_H \| D^2 \varphi(x) \|_{L_2(H)}^2 \mu(dx), \]
Taking into account (2.23), for any $\varepsilon > 0$ we have
\[\int_H |A\varphi(x)|^2 \mu(dx) \leq L + 8\varepsilon\|K\|^2 \text{Tr } Q \int_H |A\varphi(x)|^2 \mu(dx) \]
\[+ \frac{32\|K\|^2 \text{Tr } Q}{\varepsilon} \int_H |\varphi(x)|^2 \mu(dx). \]
Now choosing
\[\varepsilon = \frac{1}{16 \text{Tr } Q \|K\|^2}, \]
we have
\[\frac{1}{2} \int_H |A\varphi(x)|^2 \mu(dx) \leq L + 512 \left(\text{Tr } Q\right)^2 \|K\|^4 \int_H |\varphi(x)|^2 \mu(dx) \]
\[+ \ 64 \text{Tr } [Q^2] \int_H \| D^2 \varphi(x) \|_{L_2(H)}^2 \mu(dx). \]
(3.10)
From (3.10) and the density of \(\mathcal{E} \) it follows that if \(\varphi \) is such that \(L \) is bounded, then \(\varphi \in D(A) \). This proves the inclusion (3.9).

The proof is complete. \(\Box \)

Remark 3.3. It is well known that when \(A \) is a variational operator and \(D(A) = D(A^*) \), then \(H_A \) coincides with \(D_A \left(\frac{1}{2}, 2 \right) \), the real interpolation space consisting of all \(x \in H \) such that

\[
|x|_{D_A(\frac{1}{2}, 2)}^2 := \int_0^\infty |A e^{tA} x|^2 dt < +\infty,
\]

see [13]. Thus in this case, if Hypotheses 1.1, 3.1 and (3.1) hold, then the domain of \(A \) is given by

\[
D(A) = \left\{ \varphi \in W^{2,2}(H; \mu) : \ D\varphi(x) \in D_A \left(\frac{1}{2}, 2 \right), \ \mu \text{ a.e.,} \right\}.
\]

Remark 3.4. Assume that Hypotheses 1.1, and (3.1) hold and that \(A \) is self-adjoint. In this case from (1.5) we have

\[
Q x = \int_0^{+\infty} e^{2A t} x dt = -\frac{1}{2} A^{-1} x, \ x \in H,
\]

that obviously implies \(K = 0 \). Consequently Hypotheses 3.1 holds and, from Theorem 3.2 it follows that

\[
D(A) = \left\{ \varphi \in W^{2,2}(H; \mu) : \ D\varphi(x) \in D((-A)^{1/2}), \ \mu \text{ a.e.}, \right\}.
\]

Remark 3.5. Assume that \(H \) is finite-dimensional and that \(A \) is of negative type. Then Hypotheses 1.1, 3.1 and (3.1) obviously hold. Then from Theorem 3.2 it follows that

\[
D(A) = W^{2,2}(H; \mu).
\]

This result was earlier proved by a different method based on interpolation, by A. Lunardi, see [16].
4. Perturbation results

We assume here that \(A \) is self-adjoint and fulfills Hypotheses 1.1 and 3.1. We will be concerned with some perturbations of the operator \(\mathcal{A} \), the infinitesimal generator of the semigroup \(R_t, t \geq 0 \), in \(L^2(H; \mu) \), defined in §2. We recall that \(\mathcal{A} \) is \(m \)-dissipative and that the domain of \(\mathcal{A} \) is defined by (3.12). Then the graph norm of \(\mathcal{A} \) can be defined as

\[
\| \varphi \|_{D(\mathcal{A})}^2 = \| \varphi \|^2_{W^{2,2}(H; \mu)} + \| (-A)^{-1/2} D \varphi \|^2_{L^2(H; \mu)}, \quad \varphi \in D(\mathcal{A}).
\]

(4.1)

4.1 Relatively bounded perturbations

Let \(F : H \rightarrow H \) be a Borel mapping such that

HYPOTHESIS 4.1. \((-A)^{-1/2} F \) is bounded.

We set

\[
a = \sup \text{ ess } \{ \| (-A)^{-1/2} F(x) \| : x \in H \}.
\]

Now we define a mapping \(\mathcal{F} \) in \(L^2(H; \mu) \) by setting

\[
\mathcal{F} \varphi(x) = \langle F(x), D \varphi(x) \rangle = - \langle (-A)^{-1/2} F(x), (-A)^{1/2} D \varphi(x) \rangle,
\]

\(\forall \varphi \in D(\mathcal{A}). \)

(4.2)

The following proposition concerns the operator \(\mathcal{A} + \mathcal{F} \), defined in \(D(\mathcal{A}) \).

PROPOSITION 4.1. Assume that Hypotheses 1.1, 3.1, and 4.1 hold, and let \(\mathcal{F} \) be defined by (4.2).

(i) If \(a < 1 \) then \(\mathcal{A} + \mathcal{F} \) is \(m \)-dissipative in \(L^2(H; \mu) \).

(ii) If \(a = 1 \) then \(\mathcal{A} + \mathcal{F} \) is closable and its closure is \(m \)-dissipative in \(L^2(H; \mu) \).
Proof. We first note that by (3.13) we have $D(\mathcal{F}) \subset D(\mathcal{A})$. Moreover for any $\varphi \in D(\mathcal{A})$ we have

\[
\|\mathcal{F}\varphi\|_{L^2(H;\mu)}^2 = \int_H |\langle F(x), D\varphi(x) \rangle|^2 \mu(dx)
\]

\[
= \int_H |\langle (-A)^{-1/2}F(x), (-A)^{1/2}D\varphi(x) \rangle|^2 \mu(dx)
\]

\[
\leq a^2 \int_H |\langle (-A)^{1/2}D\varphi(x) \rangle|^2 \mu(dx) \leq a^2 \|\mathcal{A}\varphi\|_{L^2(H;\mu)}^2.
\]

This implies that \mathcal{F} is relatively bounded with respect to \mathcal{A}. By a well-known perturbation result, see e.g. [18], the conclusion follows.

\[\Box\]

Example 4.2. We take $H = L^2([0, 2\pi])$ and define a linear operator A on H by setting

\[
\begin{aligned}
D(A) &= \{ x \in H^2(0, 2\pi) : x(0) = x(2\pi), D_\xi x(0) = D_\xi x(2\pi) \}, \\
A x(\xi) &= D_\xi^2 x(\xi) - x(\xi), \quad \xi \in [0, 2\pi], \quad x \in D(A).
\end{aligned}
\]

(4.3)

A is clearly self-adjoint and fulfills Hypothesis 1.1 with $M = 1$ and $\omega = 1$, and Hypothesis 3.1, since the eigenvectors of A are given by

\[
e_\xi(\xi) = \frac{1}{2\pi} e^{ik\xi}, \quad \xi \in [0, 2\pi], \quad k \in \mathbb{Z}.
\]

Let L be a positive number, and set

\[
F(x)(\xi) = L \frac{d}{d\xi} \sin x(\xi), \quad \xi \in [0, 2\pi].
\]

(4.4)

Then

\[
(-A)^{1/2}F(x)(\xi) = L \sin x(\xi), \quad \xi \in [0, 2\pi].
\]

so that Hypothesis 4.1 holds. Thus by Proposition 4.1 it follows that if $L < 1$, then the operator \mathcal{B}:

\[
\mathcal{B}\varphi(x)(\xi) := A\varphi(x) + k \left(\frac{d}{d\xi} \sin x(\xi), D\varphi(x) \right), \quad \varphi \in D(A)
\]

is m-dissipative in $L^2(H;\mu)$, whereas if $L = 1$ then \mathcal{B} is closable and its closure is m-dissipative in $L^2(H;\mu)$.
4.2 Perturbation by a potential

We are given a nonnegative Borel function \(V : H \to \mathbb{R} \), and we define a mapping \(\mathcal{V} \) in \(L^2(H; \mu) \) by setting

\[
D(\mathcal{V}) = \{ \varphi \in L^2(H; \mu) : V \varphi \in L^2(H; \mu) \}
\]

\[
\mathcal{V} \varphi(x) = -V(x) \varphi(x), \ \forall \varphi \in D(\mathcal{V}).
\]

Next proposition concerns the operator \(A + \mathcal{V} \) with domain \(D(A) \).

Proposition 4.3. Let \(\mathcal{V} \) be defined by (4.5), and assume that there are numbers \(a > 0 \) and \(\beta \in [0, 1] \) such that

\[
V(x) \leq a|x|^{1+\beta}, \ x \in H.
\]

Then \(A + \mathcal{V} \) is self-adjoint in \(L^2(H; \mu) \).

Proof. Let \(\varepsilon > 0 \) to be chosen later, and let \(C(\varepsilon, \beta) > 0 \) such that

\[
a^2|x|^{2+2\beta} \leq \varepsilon |x|^\beta + C(\varepsilon, \beta), \ x \in H.
\]

Let \(\varphi \in D(A) \), then we have

\[
\int_H V^2(x)\varphi^2(x)\mu(dx) \leq \varepsilon \int_H |x|^4\varphi^2(x)\mu(dx) + C(\varepsilon, \beta) \int_H \varphi^2(x)\mu(dx).
\]

Consequently, in view of Proposition 2.7, we have \(\varphi \in D(\mathcal{V}) \) and

\[
\int_H V^2(x)\varphi^2(x)\mu(dx) \leq [32\varepsilon \text{ Tr } Q^2 + \varepsilon(1 + 2 \text{ Tr } Q)^2 + C(\varepsilon, \beta)] \int_H \varphi^2(x)\mu(dx) + \\
+ \varepsilon(48 \text{ Tr } [Q^2](1 + 2 \text{ Tr } Q) + 512 \text{ (Tr } [Q^2])^2)\|A\varphi\|^2_{L^2(\mu; H)}.
\]

So, by choosing \(\varepsilon \) sufficiently small, we see that \(\mathcal{V} \) is relatively bounded with respect to \(A \), and the conclusion follows by the quoted result in [18]. \[\square \]

Remark 4.4. If (4.6) is fulfilled with \(\beta = 1 \), then the argument above works with \(a \) sufficiently small.
References

