A Regularity Result for a Class of Anisotropic Systems

Antonia Passarelli di Napoli and Francesco Siepe (*)

SOMMARIO. - Si prova la regolarità parziale dei minimi del funzionale
$I(u) = \int_{\Omega} G(Du)$, con G integrando convesso a crescita anisotropa.
Non si fanno ipotesi speciali sulla struttura di G.

SUMMARY. - We prove partial regularity of minimizers of the functional
$I(u) = \int_{\Omega} G(Du)$, where G is a convex integrand satisfying anisotropic
growth condition. No special structure assumption is needed on G.

1. Introduction

In this paper we study the partial regularity of minimizers of integral functionals of the type

$$I(u) = \int_{\Omega} G(Du(x))dx$$

(1.1)

$u : \Omega \subset \mathbb{R}^n \rightarrow \mathbb{R}^N$, $N \geq 1$, where G is a C^2 convex integrand
satisfying the growth condition:

$$C|\xi|^p \leq G(\xi) \leq L(1 + |\xi|^p)$$

(1.2)

(*) Indirizzi degli Autori: Antonia Passarelli di Napoli: Dipartimento di
Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli “Federico II”, Complesso Monte s.Angelo, Via Cintia - 80126 Napoli, e-mail: pas-
sarel@matna2.dma.unina.it. Francesco Siepe: Dipartimento di Matematica
“U. Dini”, Università di Firenze, Viale Morgagni 67/A - 50134 Firenze, e-mail:
siepe@udini.math.unifi.it.

Key words and phrases: regularity, minimizers, convexity.
This work has been supported by M.U.R.S.T. (40%).
with $p > q$.

Few years ago it was observed that even in the scalar case, i.e. $N = 1$, minimizers of (1.1) may fail to be regular (see [M2], [G2]), when p is too large with respect to q. On the other hand, one can prove regularity of scalar minimizers of (1.1) if p is not too far away from q (see e.g. [M3], [FS] and the references given in [M3]). More precisely, in [M3] it is shown that if one writes down the Euler equation for the functional I, under suitable assumptions on p and q, the Moser iteration argument still works, thus leading to a sup estimate for the gradient Du of the minimizer.

Clearly this approach can not be carried on in the vector valued case, i.e. when $N > 1$. As far as we know, the only regularity results for systems are proved under special structure assumptions (see [AF2], [M4]).

Namely, the model case covered in [AF2] is the functional

$$\int_{\Omega} |Du|^p + \sum_{\alpha=1}^k |D_{\alpha}u|^{p_{\alpha}}$$

with $u : \Omega \subset \mathbb{R}^n \rightarrow \mathbb{R}^N$, $N \geq 1$, $1 \leq k \leq n$, $2 \leq p < p_{\alpha}$, and p_{α} not too far from p, while in [M4], it is proved everywhere regularity of minimizers of (1.1) when $G(\xi) = f(|\xi|)$.

In this paper we prove that if G satisfies (1.2) and the strong ellipticity assumption

$$\langle D^2 G(\xi) \eta, \eta \rangle \geq \gamma (1 + |\xi|^2)^{\frac{n-2}{2}} |\eta|^2$$

and

$$2 \leq q < p < \min \left\{ q + 1, \frac{qn}{n-1} \right\}, \quad (1.3)$$

a minimizer $u \in W^{1,q}(\Omega ; \mathbb{R}^N)$ of functional (1.1) is $C^{1,\alpha}$ for all $\alpha < 1$ in an open set $\Omega_0 \subset \Omega$ such that $\text{meas} (\Omega \setminus \Omega_0) = 0$.

We point out that a part from condition (1.3), no special structure assumption is needed on G.

The proof of our result goes through a more or less standard blow-up argument aimed to establish a decay estimate on the excess function for the gradient

$$U(x_0, r) = \int_{B_r(x_0)} |Du - (Du)_{x_0,r}|^2 + |Du - (Du)_{x_0,r}|^q dx.$$

The essential tool in the case we consider, is a lemma due to Fonseca and Maly (see [FM] and also Lemma 2.3 below) which makes possible to connect in the annulus $B_r \setminus B_s$ two $W^{1,q}$ functions v and w with a function $z \in W^{1,q}(B_r \setminus B_s)$ if $q < p < \frac{qn}{n-1}$.

2. Statements and preliminary Lemmas

Let us consider the functional

\[I(u) = \int_{\Omega} G(Du(x)) \, dx \]

where \(\Omega \) is a bounded open set of \(\mathbb{R}^n \), \(n \geq 2 \). Let \(G : \mathbb{R}^{nN} \to \mathbb{R} \), \(N \geq 2 \), satisfy the following assumptions:

\[G \in C^2 \quad \text{(H1)} \]
\[C|\xi|^p \leq G(\xi) \leq L(1 + |\xi|^p) \quad \text{(H2)} \]
\[\langle D^2 G(\xi) \eta, \eta \rangle \geq \gamma (1 + |\xi|^2)^{\frac{p-2}{2}} |\eta|^2 \quad \text{(H3)} \]

where \(2 \leq q < p < \min \left\{ q + 1, \frac{qn}{n-1} \right\} \)

It is well known that

\[|DG(\xi)| \leq c(1 + |\xi|^{p-1}). \quad \text{(H4)} \]

We say that \(u \in W^{1,q}(\Omega; \mathbb{R}^N) \) is a minimizer of \(I \) if

\[I(u) \leq I(u + v) \]

for any \(v \in u + W^{1,q}_0(\Omega; \mathbb{R}^N) \).

Remark 1. If \(u \) is a local minimizer of \(I \) and \(\phi \in C^1_0(\Omega; \mathbb{R}^N) \) from the minimality condition one has for any \(\varepsilon > 0 \)

\[0 \leq \int_{\Omega} \left[G(Du + \varepsilon D\phi) - G(Du) \right] \, dx \]
\[= \varepsilon \int_{\Omega} dx \int_0^1 \frac{\partial G}{\partial \xi_\alpha}(Du + \varepsilon t D\phi) D_\alpha \phi \, dt \]

Dividing this inequality by \(\varepsilon \), and letting \(\varepsilon \) go to zero, from (H4) and the assumption \(p \leq q + 1 \) we get

\[\int_{\Omega} \frac{\partial G}{\partial \xi_\alpha}(Du) D_\alpha \phi \, dx \geq 0 \]

and therefore by the arbitrariness of \(\phi \) the usual Euler-Lagrange system holds:

\[\int_{\Omega} \frac{\partial G}{\partial \xi_\alpha}(Du) D_\alpha \phi \, dx = 0 \quad \forall \phi \in C^1_0(\Omega; \mathbb{R}^N) \]
We prove the following

Theorem 2.1. Let G be as above and let $u \in W^{1,q}(\Omega; \mathbb{R}^N)$ be a minimizer of I. Then there exists an open subset Ω_0 of Ω such that

$$\text{meas}(\Omega \setminus \Omega_0) = 0$$

and

$$u \in C^{1,\alpha}(\Omega_0; \mathbb{R}^N) \quad \text{for all} \quad \alpha < 1.$$

In the following, we will denote by u a $W^{1,q}(\Omega; \mathbb{R}^N)$ minimizer of $\int_\Omega G(Du)dx$ and assume that G satisfies (H1), (H2), (H3). We set for every $B_r(x_0) \subset \Omega$

$$U(x_0, r) = \int_{B_r(x_0)} |Du - (Du)_{x_0,r}|^2 + |Du - (Du)_{x_0,r}|^q dx,$$

where

$$\int_{B_r(x_0)} g = (g)_{x_0,r} = \frac{1}{\text{meas}(B_r(x_0))} \int_{B_r(x_0)} g.$$

The next Lemma can be found in [FM], (Lemma 2.2), in a slightly different form.

Lemma 2.1. Let $v \in W^{1,q}(B_1(0))$ and $0 < s < r < 1$. There exists a linear operator $T : W^{1,q}(B_1(0)) \to W^{1,q}(B_1(0))$ such that

$$Tv = v \quad \text{on} \quad (B_1 \setminus B_s) \cup B_s$$

and for all $\mu > 0$, for all $p < q \frac{n}{n-1}$

$$||Tv||_{W^{1,2}(B_s \setminus B_s)} + \mu ||Tv||_{W^{1,p}(B_s \setminus B_s)}$$

$$\leq C \bigg\{ (r - s)^\sigma \left[\sup_{t \in (s, r)} (t - s)^{-\frac{1}{2}} ||v||_{W^{1,2}(B_s \setminus B_s)} + \right.$$

$$+ \sup_{t \in (s, r)} (r - t)^{-\frac{1}{2}} ||v||_{W^{1,2}(B_s \setminus B_s)} \bigg] +$$

$$+ \mu (r - s)^\tau \left[\sup_{t \in (s, r)} (t - s)^{-\frac{1}{q}} ||v||_{W^{1,q}(B_s \setminus B_s)} + \right.$$

$$+ \sup_{t \in (s, r)} (r - t)^{-\frac{1}{q}} ||v||_{W^{1,q}(B_s \setminus B_s)} \bigg\}$$

where $C = C(n, p, q) > 0$, $\sigma = \sigma(n) > 0$ and $\tau = \tau(n, p, q) > 0.$
Let us recall an elementary lemma also proved in [FM].

Lemma 2.2. Let \(\psi \) be a continuous nondecreasing function on an interval \([a, b], a < b\). There exist \(a' \in [a, a + \frac{1}{4}(b - a)] \), \(b' \in [b - \frac{1}{4}(b - a), b] \) such that \(a \leq a' < b' \leq b \) and

\[
\frac{\psi(t) - \psi(a')}{t - a'} \leq 3 \frac{\psi(b) - \psi(a)}{b - a}
\]

and

\[
\frac{\psi(b') - \psi(t)}{b' - t} \leq 3 \frac{\psi(b) - \psi(a)}{b - a}
\]

(2.3)

for all \(t \in (a', b') \).

Finally the next result is a straightforward generalisation to our case of Lemma 2.4 in [FM]. We give the proof here for completeness.

Lemma 2.3. Let \(v, w \in W^{1,q}(B_1(0)) \) and \(\frac{1}{4} < s < r < 1 \). Fix \(q < p < \frac{m^2}{n+1} \), for all \(\mu > 0 \) and \(m \in \mathbb{N} \) there exist a function \(z \in W^{1,q}(B_1(0)) \) and \(\frac{1}{4} < s' < s'' < r' < r < 1 \) with \(r', s' \) depending on \(v, w \) and \(\mu \), such that

\[
z = v \quad \text{on} \quad B_{s'}, \quad z = w \quad \text{on} \quad B_1 \setminus B_{s'},
\]

(2.4)

and

\[
||z||_{W^{1,q}(B_{r'} \setminus B_{s'})} + \mu ||z||_{W^{1,p}(B_{r'} \setminus B_{s'})}
\]

\[
\leq C \frac{(r - s)^\rho}{m^\rho} \left[\int_{B_{r'} \setminus B_{s'}} (1 + |Dv|^2 + |Dw|^2 + |v|^2 + |w|^2 + m^2 \frac{|v - w|^2}{(r - s)^2}) + m^q \right]
\]

(2.5)

\[
+ \frac{r - s}{m^{1 - \frac{q}{2}}} \left[\int_{B_{r'} \setminus B_{s'}} (1 + |Dv|^q + |Dw|^q + |v|^q + |w|^q + m^q \frac{|v - w|^q}{(r - s)^{q/2}}) \right]
\]

where \(C = C(n, p, q) > 0 \) and \(\rho = \rho(p, q, n) > 0 \).

Proof. As in Lemma 2.4 in [FM], choose \(m \in \mathbb{N} \) and set

\[
f = 1 + |Dv|^2 + |Dw|^2 + |v|^2 + |w|^2 + m^2 \frac{|v - w|^2}{(r - s)^2} + \mu^q \left[1 + |Dv|^q + |Dw|^q + |v|^q + |w|^q + m^q \frac{|v - w|^q}{(r - s)^{q/2}} \right].
\]
We may find $k \in \{1, ..., m\}$ such that
\[
\int_{B_\frac{k(r-s)}{m} \setminus B_{s + \frac{(k-1)(r-s)}{m}}} f dx \leq \frac{1}{m} \int_{B_r \setminus B_s} f dx,
\]
Set, for $t \in [s + \frac{(k-1)(r-s)}{m}, s + \frac{k(r-s)}{m}]$,
\[
\psi(t) = \int_{B_1 \setminus B_s} f dx
\]
which is a continuous nondecreasing function. By Lemma 2.2, there exists $[s', r'] \subset [s + \frac{(k-1)(r-s)}{m}, s + \frac{k(r-s)}{m}]$ such that
\[
\frac{r - s}{m} \geq r' - s' \geq \frac{r - s}{3m}
\]
and
\[
\int_{B_1 \setminus B_{s'}} f dx \leq 3 \frac{(t - s')m}{r - s} \int_{B_{s + \frac{k(r-s)}{m} \setminus B_{s + \frac{(k-1)(r-s)}{m}}}} f dx
\]
\[
\leq 3 \frac{t - s'}{r - s} \int_{B_r \setminus B_s} f dx,
\]
\[
\int_{B_{r'} \setminus B_1} f dx \leq 3 \frac{r' - t}{r - s} \int_{B_r \setminus B_s} f dx
\]
for all $t \in (s', r')$. Set
\[
u(x) = \begin{cases} v(x) & \text{if } x \in B_{s'} \\ \frac{(r'-|x|)v(x) + (|x|-s')u(x)}{r'-s'} & \text{if } x \in B_{r'} \setminus B_{s'} \\ w(x) & \text{if } x \in B_1 \setminus B_{r'}.
\end{cases}
\]
A direct computation shows that
\[
|u|^2 + |Du|^2 + mu^q(|u|^q + |Du|^q) \leq Cf.
\]
If we apply Lemma 2.1 to the function u, we then find $z \in W^{1, q}(B_1)$ satisfying (2.4). Moreover, from (2.6) and (2.7) one readily checks
that
\[
||z||_{W^{1,2}(B_r \setminus B_s)} + \mu ||z||_{W^{1,p}(B_r \setminus B_s)} \\
\leq c \left\{ \frac{(r' - s')^\sigma}{(r' - s')^{\frac{\sigma}{2}}} \left| B_r \setminus B_{s'} \right|^\frac{1}{2} \left(\int_{B_r \setminus B_{s'}} f \right)^\frac{1}{2} + \right. \\
+ \frac{(r' - s')^{\tau}}{(r' - s')^{\frac{\tau}{2}}} \left| B_r \setminus B_{s'} \right|^\frac{1}{2} \left(\int_{B_r \setminus B_{s'}} f \right)^\frac{1}{q'} \right\} \\
\leq c \left\{ (r' - s')^\sigma \left(\int_{B_r \setminus B_{s'}} f \right)^\frac{1}{2} + (r' - s')^{\tau} \left(\int_{B_r \setminus B_{s'}} f \right)^\frac{1}{q'} \right\},
\]
from which (2.5) follows choosing \(\rho = \min \{ \sigma, \tau \} \).

3. Proof of Theorem 1

As usual, to get the partial regularity result stated in Theorem 1, we need a decay estimate for the excess function \(U(x_0, r) \) defined in section 2.

Proposition 3.1. Fix \(M > 0 \). There exists a constant \(C_M > 0 \) such that for every \(0 < \tau < \frac{1}{4} \), there exists \(\epsilon = \epsilon(\tau, M) \) such that, if
\[
|\{(Du)_{x_0, r}\}| \leq M \quad \text{and} \quad U(x_0, r) \leq \epsilon
\]
then
\[
U(x_0, \tau r) \leq C_M \tau^2 U(x_0, r).
\]

Proof. Fix \(M \) and \(\tau \). We shall determine \(C_M \) later.

We argue by contradiction. We assume that there exists a sequence \(B_{r_n}(x_h) \) satisfying
\[
B_{r_n}(x_h) \subset \Omega, \quad |\{(Du)_{x_n, r_h}\}| \leq M, \quad \lim_{h} U(x_h, r_h) = 0,
\]
but
\[
U(x_h, \tau r_h) > C_M \tau^2 U(x_h, r_h).
\]
(3.1)

Set
\[
a_h = (u)_{x_n, r_h} \quad A_h = (Du)_{x_n, r_h} \quad \lambda^2_h = U(x_h, r_h).
\]
Step 1. [Blow up.] We rescale the function u in each $B_{r_h}(x_h)$ to obtain a sequence of functions on $B_1(0)$. Set

$$v_h(y) = \frac{1}{\lambda_h r_h} [u(x_h + r_h y) - a_h - r_h A_h y],$$

then

$$Dv_h(y) = \frac{1}{\lambda_h} [Du(x_h + r_h y) - A_h].$$

Clearly we have

$$(v_h)_{0,1} = 0 \quad (Dv_h)_{0,1} = 0.$$

Moreover,

$$\int_{B_1(0)} (1 + \lambda_h^{q-2} |Dv_h|^{q-2}) |Dv_h|^2 \, dy = 1. \quad (3.2)$$

Passing possibly to a subsequence we may suppose that

$$v_h \rightharpoonup v \quad \text{weakly in } W^{1,2}(B_1; \mathbb{R}^N) \quad (3.3)$$

and, since $\forall h \quad |A_h| \leq M$,

$$A_h \rightarrow A. \quad (3.4)$$

Step 2. Now we show that

$$\int_{B_1(0)} \frac{\partial^2 G}{\partial \xi_\alpha^i \partial \xi_\beta^j} (A) D_\beta v^i D_\alpha \phi^j \, dy = 0 \quad \forall \phi \in C_0^1 (B_1; \mathbb{R}^N). \quad (3.5)$$

Since we assume $p - 1 \leq q$ we can write the usual Euler-Lagrange system for u (see Remark 1). Then, rescaling in each $B_{r_h}(x_h)$, we get for any $\phi \in C_0^1 (B_1; \mathbb{R}^N)$ and any $1 \leq i \leq N$

$$\int_{B_1(0)} \frac{\partial G}{\partial \xi_\alpha^i} (A_h + \lambda_h Dv_h) D_\alpha \phi^i \, dy = 0.$$

Then

$$\frac{1}{\lambda_h} \int_{B_1(0)} [\frac{\partial G}{\partial \xi_\alpha^i} (A_h + \lambda_h Dv_h) - \frac{\partial G}{\partial \xi_\alpha^i} (A_h)] D_\alpha \phi^i \, dy = 0. \quad (3.6)$$
Let us split
\[B_1 = E^+_h \cup E^-_h \]
\[= \{ y \in B_1 : \lambda_h |Dv_h(y)| > 1 \} \cup \{ y \in B_1 : \lambda_h |Dv_h(y)| \leq 1 \}, \]
then by (3.2) we get
\[|E^+_h| \leq \int_{E^+_h} \lambda_h^2 |Dv_h|^2 dy \leq \lambda_h^2 \int_{B_1(0)} |Dv_h|^2 dy \leq c \lambda_h^2. \quad (3.7) \]

Now, by (H4) and Hölder inequality, we observe that
\[\frac{1}{\lambda_h} \int_{E^+_h} [DG(A_h + \lambda_h Dv_h) - DG(A_h)] D\phi dy \]
\[\leq \frac{c}{\lambda_h} |E^+_h| + c \lambda_h^{p-2} \int_{E^+_h} |Dv_h|^{p-1} dy \]
\[\leq c \lambda_h + c \left(\int_{E^+_h} \lambda_h^{p-2} |Dv_h|^q dy \right)^{\frac{p-1}{q}} \lambda_h^{\frac{2(p-2)}{q}} |E^+_h|^{\frac{2(p+1)}{q}} \leq c \lambda_h \]
where we used the assumption \(p - 1 \leq q. \)

From this it follows that
\[\lim_{h \to 0} \frac{1}{\lambda_h} \int_{E^+_h} [DG(A_h + \lambda_h Dv_h) - DG(A_h)] D\phi dy = 0. \quad (3.8) \]

On \(E^-_h \) we have
\[\frac{1}{\lambda_h} \int_{E^-_h} [DG(A_h + \lambda_h Dv_h) - DG(A_h)] D\phi dy \]
\[= \int_{E^-_h} \int_0^1 D^2 G(A_h + s \lambda_h Dv_h) Dv_h D\phi ds dy \]
\[= \int_{E^-_h} \int_0^1 [D^2 G(A_h + s \lambda_h Dv_h) - D^2 G(A_h)] Dv_h D\phi ds dy + \]
\[+ \int_{E^-_h} D^2 G(A_h) Dv_h D\phi dy. \]

Note that (3.7) ensures that \(\chi_{E^+_h} \to \chi_{B_1} \) in \(L^r(B_1) \) for all \(r < \infty \) and by (3.2) we have, passing possibly to a subsequence,
\[\lambda_h Dv_h(y) \to 0 \quad \text{a.e. in } B_1. \]
Then, by (3.3), (3.4) and the uniform continuity of $D^2 G$ on bounded sets, we get
\[
\lim_h \frac{1}{\lambda_h} \int_{E_h} [DG(A_h + \lambda_h Dv_h) - DG(A_h)] D\phi dy
= \int_{B_1} D^2 G(A) Dv D\phi dy.
\]
By (3.6), (3.8) and the above equality, we obtain that v satisfies equation (3.5), which is elliptic by (H3). We have for any $0 < \tau < 1$
\[
\iint_{B_r} |Dv - (Dv)_\tau|^2 dy \leq c\tau^2 \iint_{B_1} |Dv - (Dv)_1|^2 dy \leq c\tau^2. \quad (3.9)
\]
Moreover we have
\[
v \in C^\infty(B_1; \mathbb{R}^N). \quad (3.10)
\]
and
\[
\lambda_h^{-1} (v_h - v) \rightharpoonup 0 \quad \text{weakly in } W^{1,q}_0(B_1; \mathbb{R}^N)
\]

Step 3. [Upper bound.] We set
\[
G_h(\xi) = \frac{1}{\lambda_h^2} [G(A_h + \lambda_h \xi) - G(A_h) - \lambda_h D G(A_h) \xi]
\]
and for every $r < 1$
\[
I_{h,r}(w) = \int_{B_r} G_h(Dw) dy.
\]

Note that by the strong ellipticity assumption (H3) it follows that $G_h(\xi) \geq 0$, for any ξ. Fix $\frac{1}{4} < s < 1$. Passing to a subsequence we may always assume that
\[
\lim_h [I_{h,s}(v_h) - I_{h,s}(v)]
\]
eexists. We shall prove that
\[
\lim_h [I_{h,s}(v_h) - I_{h,s}(v)] \leq 0. \quad (3.11)
\]
Consider $r > s$ and fix $m \in \mathbb{N}$. Observe that, since $v \in W^{1,q}(B_1)$ and $v_h \in W^{1,q}(B_1)$, Lemma 2.3, with $\mu = \lambda_h^{-1}$, implies that there exist $z_h \in W^{1,q}(B_1)$ and $\frac{1}{4} < s_h < r_h < r < 1$ such that
\[
z_h = v \quad \text{on } B_{s_h} \quad z_h = v_h \quad \text{on } B_1 \setminus B_{r_h}
\]
and

\[
||z_h||_{W^{1,2}(B_{r,s} \setminus B_{r,h})} + \lambda_h^{\frac{p-2}{p}} ||z_h||_{W^{1,p}(B_{r,s} \setminus B_{r,h})} \\
\leq C \frac{(r-s)^p}{m^p} \left[\int_{B_{r} \setminus B_s} (1 + |Dv|^2 + |Dv_h|^2 + |v|^2 + |v_h|^2 + \\
+ m^2 \frac{|v - v_h|^2}{(r-s)^2}) + \lambda_h^{\frac{p-2}{p}} \int_{B_{r} \setminus B_s} (1 + |Dv|^q + |Dv_h|^q + |v|^q + |v_h|^q + \\
+ m^q \frac{|v - v_h|^q}{(r-s)^q}) \right]^{\frac{1}{p}} \\
\]

(3.12)

Since by (3.10), Dv is locally bounded on B_1 we get

\[
I_{h,s}(v_h) - I_{h,s}(v) \\
\leq I_{h,r_h}(v_h) - I_{h,r_h}(v) + I_{h,r_h}(v) - I_{h,s}(v) \\
= I_{h,r_h}(v_h) - I_{h,r_h}(v) + \int_{B_{r_h} \setminus B_s} G_h(Dv) \\
\leq I_{h,r_h}(z_h) - I_{h,r_h}(v) + c(r-s) \\
\leq c \int_{B_{r_h} \setminus B_s} [G_h(Dz_h) - G_h(Dv)] + c(r-s). \\
\]

(3.13)

where we used the minimality of v_h. As $|G_h(\xi)| \leq c(|\xi|^2 + \lambda_h^{p-2} |\xi|^p)$ (see [AF], Lemma II.3), we get by (3.12)

\[
I_{h,r_h}(z_h) - I_{h,r_h}(v) \\
\leq c \int_{B_{r_h} \setminus B_s} |Dz_h|^2 + \lambda_h^{p-2} |Dz_h|^p \\
\leq C \frac{(r-s)^{2p}}{m^{2p}} \left[\int_{B_{r} \setminus B_s} (1 + |Dv|^2 + |Dv_h|^2 + |v|^2 + |v_h|^2 + \\
+ m^2 \frac{|v - v_h|^2}{(r-s)^2}) + \lambda_h^{\frac{p-2}{p}} \int_{B_{r} \setminus B_s} (1 + |Dv|^q + |Dv_h|^q + |v|^q + |v_h|^q + \\
+ m^q \frac{|v - v_h|^q}{(r-s)^q}) \right]^{\frac{2p}{p}} \\
+ C \frac{(r-s)^{2p}}{m^{2p}} \left[\lambda_h^{\frac{p-2}{p}} \int_{B_{r} \setminus B_s} (1 + |Dv|^q + |Dv_h|^q + |v|^q + |v_h|^q + \\
+ m^q \frac{|v - v_h|^q}{(r-s)^q}) \right]^{\frac{2p}{q}} \\
= J_{h,1} + J_{h,2}. \\
\]

Since $v_h \rightarrow v$ in $L^2(B_1; \mathbb{R}^N)$ we have, using (3.2)

\[
\limsup_{h \rightarrow \infty} J_{h,1} \leq C m^{-2}.
\]
Moreover, since
\[
\frac{g(p-2)}{p} \int_{B_1} |Dv_h|^q = \lambda_h^{q-2} \int_{B_1} |Dv_h|^q \leq C \lambda_h^{2(p-2)}
\]
and
\[
\lambda_h^{\frac{q(p-2)}{p}} \int_{B_1} |v_h - v|^q \leq c \lambda_h^{\frac{q(p-2)}{p}} \int_{B_1} |Dv_h|^q \leq c \lambda_h^{2(p-2)}
\]
we have
\[
\lim_{h} J_{h,2} = 0.
\]
Hence we conclude letting first \(m \to \infty \) and then \(r \to s \) in (3.13).

Step 4. [Lower bound.] We shall prove that, for a.e. \(\frac{1}{4} < r < \frac{1}{2} \), if \(t < r \) then
\[
\limsup_h \int_{B_t} |Dv - Dv_h|^2 (1 + \lambda_h^{q-2} |Dv - Dv_h|^{q-2})
\leq \lim_h [I_{h,r}(v_h) - I_{h,r}(v)].
\]
For any Borel set \(A \subset B_1 \), let us define
\[
\mu_h(A) = \int_A (|v_h|^2 + |Dv_h|^2) dx.
\]
Passing possibly to a subsequence, since \(\mu_h(B_1) \leq c \), we may suppose
\[
\mu_h \to \mu \quad \text{weakly * in the sense of measures},
\]
where \(\mu \) is a Borel measure over \(B_1 \). Then for a.e. \(r < 1 \)
\[
\mu(\partial B_r) = 0
\]
and let us choose such a radius \(r \). Consider \(\frac{1}{4} < t < s < r \), also such that \(\mu(\partial B_s) = 0 \), and fix \(m \in IN \). Observe that, as \(v_h \in W^{1,q}(B_1) \) Lemmas 2.3 implies that there exist \(z_h \in W^{1,q}(B_1) \) and \(\frac{1}{4} < s < s_h < r_h < r < 1 \) such that
\[
\begin{align*}
 z_h &= v_h \quad \text{on} \quad B_{s_h} \quad & z_h &= v_h \quad \text{on} \quad B_1 \setminus B_{r_h} \\
 r_h - s_h &\geq \frac{r - s}{3m}
\end{align*}
\]
and
\[
\|z_h\|_{W^{1,2}(B_{r,h} \setminus B_{s,h})} + \lambda_h^{\frac{p-2}{p}} \|z_h\|_{W^{1,p}(B_{r,h} \setminus B_{s,h})} \\
\leq C \left(\frac{r-s}{m} \right)^{\rho} \int_{B_r \setminus B_s} (1 + |Dv_h|^2 + |v_h|^2) + \lambda_h^{-\frac{p}{p-2}} \int_{B_r \setminus B_s} (1 + |Dv_h|^2 + |v_h|^2)^\frac{1}{2}
\]
(3.14)

Passing possibly to a subsequence, we may suppose that
\[
z_h \rightharpoonup v_{r,s} \quad \text{weakly in } W^{1,2}(B_1).
\]
and
\[
v_{r,s} = v \quad \text{in } (B_1 \setminus B_r) \cup B_s
\]
Moreover from (3.14) it is clear that
\[
\lambda_h^{\frac{p-2}{p}} \int_{B_1} |Dz_{r,s}|^2 \leq c
\]
(3.15)
Consider \(\zeta_h \in C_0^\infty(B_{r,h})\) such that \(0 \leq \zeta_h \leq 1\), \(\zeta_h = 1\) on \(B_{s,h}\) and
\[
|D\zeta_h| \leq \frac{C}{r_h-s_h}
\]
and set
\[
\psi_h = \zeta_h(z_h - v_{r,s}^\epsilon),
\]
where \(v_{r,s}^\epsilon = \rho_\epsilon * v_{r,s}\), and \(\rho_\epsilon\) is the usual sequence of mollifiers. Now, setting \(v^\epsilon = \rho_\epsilon * v\), we observe that
\[
I_{h,r,s}(v_h) - I_{h,r,s}(v) \\
= I_{h,r,s}(v_h) - I_{h,r,s}(z_h) + I_{h,r,s}(z_h) - I_{h,r,s}(v_{r,s}^\epsilon + \psi_h^\epsilon) + \\
+ I_{h,r,s}(\psi_h^\epsilon + v_{r,s}^\epsilon) - I_{h,r,s}(v_{r,s}^\epsilon) - I_{h,r,s}(\psi_h^\epsilon) + \\
I_{h,r,s}(v_{r,s}^\epsilon) - I_{h,r,s}(v^\epsilon) + I_{h,r,s}(\psi_h^\epsilon) \\
= R_{h,1} + R_{h,2} + R_{h,3} + R_{h,4} + R_{h,5}
\]
(3.16)
To bound \(R_{h,1}\) we observe that
\[
I_{h,r,s}(v_h) - I_{h,r,s}(z_h) = \int_{B_{r,h} \setminus B_{s,h}} G_h(Dv_h) - \int_{B_{r,h} \setminus B_{s,h}} G_h(Dz_h) + \\
\geq - \int_{B_{r,h} \setminus B_{s,h}} G_h(Dz_h)
\]
on the other hand we have
\[
\int_{B_{r_{h}} \setminus B_{s_{h}}} G_{h}(Dz_{h}) \leq \int_{B_{r_{h}} \setminus B_{s_{h}}} |Dz_{h}|^{2} + \lambda_{h}^{p-2} |Dz_{h}|^{p} \\
\leq c m^{-2} p \left[\int_{B_{r_{h}} \setminus B_{s_{h}}} 1 + |Dv_{h}|^{2} + |v_{h}|^{2} + \\
+ \lambda_{h}^{p-2} \int_{B_{r_{h}} \setminus B_{s_{h}}} 1 + |Dv_{h}|^{2} + |v_{h}|^{2} \right]^{\frac{p}{2}}
\]
and then arguing as we did in Step 3 to bound $J_{h,1}$ we get
\[
\limsup_{h} \int_{B_{r_{h}} \setminus B_{s_{h}}} G_{h}(Dz_{h}) \leq C m^{-2} p
\]
hence, letting $h \to \infty$ we get
\[
\lim\inf_{h} R_{h,1} \geq -C m^{-2} p
\]
(3.17)
We obtain that
\[
R_{h,2} = \int_{B_{r_{h}} \setminus B_{s_{h}}} G_{h}(Dz_{h}) - G_{h}(D\psi_{h}^{*} + Dv_{r,s}^{*}) \\
\geq - c \int_{B_{r_{h}} \setminus B_{s_{h}}} |D\psi_{h}^{*} + Dv_{r,s}^{*}|^{2} + \lambda_{h}^{p-2} |D\psi_{h}^{*} + Dv_{r,s}^{*}|^{p} \\
\geq - c \int_{B_{r_{h}} \setminus B_{s_{h}}} \left[|Dz_{h}|^{2} + \lambda_{h}^{p-2} |Dz_{h}|^{p} + |Dv_{r,s}^{*}|^{2} + \\
+ \lambda_{h}^{p-2} |Dv_{r,s}^{*}|^{p} \right] - c \int_{B_{r_{h}} \setminus B_{s_{h}}} \left(m^{2} |z_{h} - v_{r,s}^{*}|^{2} + \\
+ m^{p} \lambda_{h}^{p-2} \frac{|z_{h} - v_{r,s}^{*}|^{p}}{(r-s)^{2}} \right)
\]
(3.18)
where we used the bound $r_{h} - s_{h} \geq \frac{r-s}{3m}$. By (3.15), since $p < q^{*}$, we get
\[
\int_{B_{1}} \lambda_{h}^{p-2} |z_{h}|^{p} \leq c \lambda_{h}^{p-2} \left\{ \int_{B_{1}} |z_{h} - (z_{h})_{0,1}|^{p} + |(z_{h})_{0,1}|^{p} \right\} \\
\leq c \lambda_{h}^{p-2} \left\{ \left(\int_{B_{1}} |z_{h} - (z_{h})_{0,1}|^{2^{*}} \right)^{\frac{p}{2^{*}}} + \left(\int_{B_{1}} |z_{h}| \right)^{p} \right\}
\]
\[
\leq c \lambda_h^q \left\{ \left(\int_{B_1} |Dz_h|^q \right)^{\frac{q}{p}} + \left(\int_{B_1} |z_h|^2 \right)^{\frac{q}{2}} \right\} \\
\leq c \lambda_h^{2(p-1)/q} \left(\lambda_h^q \int_{B_1} |Dz_h|^q \right)^{1/q} + c \lambda_h^{q-2}.
\]

where we used (3.14) to bound \(\left(\int_{B_1} |z_h|^2 \right)^{1/2} \). Therefore

\[
\limsup_{h \to \infty} S_{h,2} \leq c \frac{m^2}{(r-s)^2} \int_{B_2} |v_{r,s} - v_{r,s}^e|^2.
\]

To bound \(S_{h,1} \), observe that for every \(h \)

\[
\int_{B_{r,h} \setminus B_{r,s}} |Dv_{r,s}^e|^2 \\
\leq c \int_{B_r \setminus B_s} |Dv_{r,s}|^2 + c \int_{B_{r,s}} |Dv_{r,s} - Dv_{r,s}^e|^2 \\
\leq \liminf_j c \int_{B_r \setminus B_{s,j}} |Dz_j|^2 + c \int_{B_{r,s}} |Dv_{r,s} - Dv_{r,s}^e|^2 \\
= c \liminf_j \int_{(B_r \setminus B_{s,j}) \setminus (B_{r,s} \setminus B_{r,s})} |Dv_j|^2 + \\
+ c \limsup_j \int_{B_{r,s} \setminus B_{s,j}} |Dz_j|^2 + c \int_{B_{r,s}} |Dv_{r,s} - Dv_{r,s}^e|^2
\]

We control the second integral as usual using Lemma 2.3, while the first is less or equal than \(c \mu(B_r \setminus B_s) \).

Moreover we can estimate

\[
\int_{B_{r,h} \setminus B_{r,s}} |Dz_h|^2 + \lambda_h^{q-2} |Dz_h|^q
\]

as we did in Step 3 to bound \(J_{h,1} \). Hence

\[
\liminf_h R_{h,2} \geq - cm^{q-2} - c \mu(B_r \setminus B_s) + \\
- c \int_{B_{r,s}} |Dv_{r,s} - Dv_{r,s}^e|^2 + \\
- \frac{cm^2}{(r-s)^2} \int_{B_{r,s}} |v_{r,s} - v_{r,s}^e|^2
\]

(3.19)
To bound $R_{h,3}$ we observe that

$$G_h(A + B) - G_h(A) - G_h(B) = \int_0^1 \int_0^1 D^2 G_h(sA + tB) AB ds dt$$

and

$$D^2 G_h(s Dv^\varepsilon_{r,s} + t D\psi^\varepsilon_h) = D^2 G(A_h + s \lambda_h Dv^\varepsilon_{r,s} + t \lambda_h D\psi^\varepsilon_h)$$

is bounded and converges to $D^2 G(A)$ a.e. Since

$$R_{h,3} = \int_{B_r} dx \int_{[0,1] \times [0,1]} D^2 G(A_h + s \lambda_h Dv^\varepsilon_{r,s} + t \lambda_h D\psi^\varepsilon_h) Dv^\varepsilon_{r,s} D\psi^\varepsilon_h ds dt$$

and we may suppose that $\psi^\varepsilon_h \rightharpoonup \psi^\varepsilon$ weakly in $W^{1,2}(B_1)$, where

$$\int_{B_1} |D\psi^\varepsilon|^2 \leq c \frac{m^2}{(r-s)^2} \int_{B_{\frac{r}{2}}} |v^\varepsilon_{r,s} - v^\varepsilon_{r,s}|^2 +$$

$$+ c \int_{B_{\frac{r}{2}}} |Dv^\varepsilon_{r,s} - Dv^\varepsilon|^2$$

we get easily

$$\limsup_h |R_{h,3}| \leq c(M)||Dv^\varepsilon_{r,s}||_{L^2(B_{\frac{r}{2}})} ||D\psi^\varepsilon||_{L^2(B_{\frac{r}{2}})}.$$ (3.20)

To bound $R_{h,4}$ we observe that

$$n R_{h,4} = \int_{B_r \setminus B_{r,\varepsilon}} [G_h(Dv^\varepsilon_{r,s}) - G_h(Dv^\varepsilon)]$$

$$\geq - \int_{B_r \setminus B_{r,\varepsilon}} G_h(Dv^\varepsilon)$$

$$\geq - c|B_r \setminus B_{r,\varepsilon}|.$$ (3.21)

Then

$$\liminf_h R_{h,4} \geq - c|B_r \setminus B_{r,\varepsilon}|.$$ (3.22)

Moreover (H3) implies

$$|R_{h,5}| = I_{h, r_h}(\psi^\varepsilon_h)$$

$$= \int_{B_{r_h}} G_h(D\psi^\varepsilon_h)$$

$$\geq \gamma \int_{B_r} (1 + \lambda_h^{q-2} |Dv^\varepsilon - Dv_h|^{q-2}) |Dv^\varepsilon - Dv_h|^2$$

$$\geq \gamma \int_{B_r} |Dv^\varepsilon - Dv_h|^2,$$ (3.23)
for \(\epsilon \) small enough.

Passing to a subsequence we may suppose that

\[
\limsup_h R_{h,5} = \lim_h R_{h,5}.
\]

Therefore returning to the (3.16), from (3.17), (3.19), (3.21), (3.22) and (3.23) we get

\[
\liminf_h [I_{h,r}(v_h) - I_{h,r}(v^\epsilon)] \\
\geq \gamma \limsup_h \int_{B_r} (1 + \lambda_h^{q-2} |Dv - Dv_h|^{q-2}) |Dv - Dv_h|^2 +
- c|B_r \setminus B_{s-\epsilon}| - c\mu(B_r \setminus B_s) - c||Dv_h^\epsilon||_{L^q(B_r/2)}||Dv^\epsilon||_{L^q(B_r)} +
- cm^{-2\rho} - \int_{B_r} |Dv_{r,s} - Dv_{r,s}^\epsilon|^2 - c\frac{m^2}{(r - s)^2} \int_{B_r} |v_{r,s} - v_{r,s}^\epsilon|^2.
\]

Passing to the limit as \(\epsilon \to 0^+ \) we get easily

\[
\liminf_h [I_{h,r}(v_h) - I_{h,r}(v)] \\
\geq \gamma \limsup_h \int_{B_r} (1 + \lambda_h^{q-2} |Dv - Dv_h|^{q-2}) |Dv - Dv_h|^2 +
- c|B_r \setminus B_s| - c\mu(B_r \setminus B_s) - cm^{-2\rho}
\]

then passing to the limit as \(m \to \infty \) and \(s \to r \) we get

\[
\limsup_h \int_{B_r} |Dv - Dv_h|^2 (1 + \lambda_h^{q-2} |Dv - Dv_h|^q) \leq \liminf_h [I_{h,r}(v_h) - I_{h,r}(v)].
\]

Step 5. [Conclusion.] From the two previous steps we conclude that, for any \(B_r \), with \(0 < \tau < \frac{1}{4} \)

\[
\lim_h \int_{B_r} |Dv - Dv_h|^2 (1 + \lambda_h^{q-2} |Dv - Dv_h|^q) = 0.
\]

Now, from this equality and by (3.9) we get

\[
\lim_h \frac{U(x_h, \tau r_h \lambda_h^2)}{\lambda_h^2} = \lim_h \frac{1}{\lambda_h^2} \int_{B_{\tau r_h}(x_h)} (|Du - (Du)_{\tau r_h}|^2 + |Du - (Du)_{\tau r_h}|^q) dx
\]
\[\lim_{h \to 0} \int_{B_r} \left(|Du - (Du)_\tau|^2 + \lambda_h^{q-2} |Du - (Du)_\tau|^q \right) dy = \int_{B_r} |Dv - (Dv)_\tau|^2 dy \leq C_M^* \tau^2 \]

which contradicts (3.1) if we choose \(C_M = 2C_M^* \).

\[\square \]

The proof of Theorem 1 follows by proposition 3.1 by a standard iteration argument, see [G1].

Remark 2. Notice that the proof of Proposition 3.1 and of Theorem 1 still works if, beside assuming \(p < \frac{nq}{n-q-2} \), we have \(p \leq q + 1 \).

References

Pervenuto in Redazione il 3 Febbraio 1996.