APPROXIMATE POLYHEDRAL RESOLUTIONS
WITH IRREDUCIBLE BONDING MAPPINGS (*)

by VLASTA MATJEVIĆ (in Split)(**)

SOMMARIO. - Gli spazi normali finitisti sono caratterizzati come spazi che
ammettono risoluzioni approssimate (surgettive) consistenti in poliedri finiti-
dimensionali. Gli spazi normali aventi dimensione \(\leq n \) sono caratterizzati
come spazi che ammettono risoluzioni irriducibili approssimate consistenti in
poliedri aventi dimensioni \(\leq n \).

SUMMARY. - Normal finitistic spaces are characterized as spaces which admit ir-
reducible (surjective) approximate resolutions consisting of finite-dimensional
polyhedra. Normal spaces having dimension \(\leq n \) are characterized as spaces
admitting irreducible approximate resolutions consisting of polyhedra having
dimension \(\leq n \).

1. Preliminaries.

Recently, S. Mardešić and N. Uglešić proved that every mapping of a
normal space into an arbitrary polyhedron can be approximated by an ir-
reducible mapping into some of its subpolyhedra ([5]). This important and
interesting result allows us to give a much better characterization of normal
finitistic spaces than the one in [7]. Irreducible mappings are very conve-
nient for the construction of surjective approximate resolutions of a normal
space ([3], [8]), and were successfully used for solving some problems in the
theory of commutative inverse systems. Till now only irreducible mappings
into compact polyhedra were considered, where irreducible approximation
is achieved in a few simple steps. Here we shall construct an approximate
resolution of a normal finitistic space, which consists of finite-dimensional
polyhedra and whose projections and bonding maps are irreducible.

We shall use the same terminology and notion as in ([6]). A normal or
numerable (open) covering of a (topological) space \(X \) is an open covering \(U

(*) Pervenuto in Redazione il 28 dicembre 1993.
(**) Indirizzo dell’Autore: Department of Mathematics, Teslina 12/III, 58000 Split
(Croazia).
of X which admits a subordinate partition of unity. The set of all normal coverings of X is denoted by $\text{Cov}(X)$. If $\mathcal{U}, \mathcal{V} \in \text{Cov}(X)$ and \mathcal{V} refines \mathcal{U}, we write $\mathcal{V} \preceq \mathcal{U}$. For two maps $f, g : Y \to X$ which are \mathcal{U}-near (for every $y \in Y$ there exists a $U \in \mathcal{U}$ with $f(y), g(y) \in U$), we write $(f, g) \preceq \mathcal{U}$. The order of \mathcal{U}, denoted $\text{ord}(\mathcal{U})$, is the largest integer n such that \mathcal{U} contains n elements with nonempty intersection, or ∞ if no such integer exists. We say that $\dim X \leq n$ if, for any $\mathcal{U} \in \text{Cov}(X)$, there is a $\mathcal{V} \in \text{Cov}(X)$ such that $\mathcal{V} \preceq \mathcal{U}$ and $\text{ord}(\mathcal{V}) \leq n + 1$.

A space X is called finitistic if for each normal covering $\mathcal{U} \in \text{Cov}(X)$ there are a positive integer n and a normal covering $\mathcal{V} \in \text{Cov}(X)$ such that $\mathcal{V} \preceq \mathcal{U}$ and $\text{ord}(\mathcal{V}) \leq n$. This means that for each $\mathcal{U} \in \text{Cov}(X)$ of a finitistic space X there exists a refinement $\mathcal{V} \in \text{Cov}(X)$ such that $|N(\mathcal{V})|$ is a finite-dimensional polyhedron, where $N(\mathcal{V})$ denotes the nerve of the covering \mathcal{V}. By the definition of finitistic spaces, it is clear that every compact space and every finite-dimensional space is finitistic. Finitistic spaces need not be finite-dimensional; any compact infinite-dimensional space provides an example.

Let X be a topological space, K a simplicial complex and let $f, g : X \to |K|$ be mappings into the geometric realization $|K|$, endowed with the CW-topology. We say that g is a K-modification of f if for every point $x \in X$ and every (closed) simplex $\sigma \subset K$, $f(x) \in \sigma$ implies $g(x) \in \sigma$.

If K' is a subdivision of K and $g : X \to |K'|$ is a K'-modification of $f : X \to |K| = |K|$, then g is also a K-modification of f.

We say that a mapping $f : X \to |K|$ is K-irreducible if for every K-modification g of f one has $g(X) = |K|$. Since f is its own K-modification, every K-irreducible map f is onto. A mapping $f : X \to P$ into a polyhedron is called irreducible if it is K-irreducible for some triangulation K of P. Note that every irreducible map $f : X \to P$ is onto.

An approximate inverse system \mathcal{X} is a collection $\{X_\lambda, U_\lambda, p_{\lambda\lambda'}, \Lambda\}$ consisting of

i) a preordered indexing set $\Lambda = (\Lambda, \leq)$ (it need not be antisymmetric), which is directed and unbounded (i.e. has no maximal element),

ii) for each $\lambda \in \Lambda$, X_λ is a topological space and $U_\lambda \in \text{Cov}(X_\lambda)$,

iii) for any two related indices $\lambda \leq \lambda'$, $p_{\lambda\lambda'} : X_{\lambda'} \to X_\lambda$ is a (continuous) map ($p_{\lambda\lambda} = id_{X_\lambda}$ is the identity map on X_λ).

Furthermore, the following three conditions must be satisfied:
(A1) for any three related indices \(\lambda \leq \lambda' \leq \lambda'' \),

\[(p_{\lambda' \lambda''}, p_{\lambda' \lambda}) \leq \mathcal{U}_{\lambda} \]

(A2) for each \(\lambda \in \Lambda \) and each \(\mathcal{U} \in Cov(X_{\lambda}) \), there exists a \(\lambda' \geq \lambda \) such that

\[(p_{\lambda', \lambda}, p_{\lambda' \lambda}) \leq \mathcal{U} \], whenever \(\lambda \geq \lambda' \);

(A3) for each \(\lambda \in \Lambda \) and each \(\mathcal{U} \in Cov(X_{\lambda}) \), there exists a \(\lambda' \geq \lambda \) such that

\[\mathcal{U}_{\lambda''} \leq p_{\lambda'' \lambda}^{-1} \mathcal{U} = \{ p_{\lambda'' \lambda}^{-1}(U) : U \in \mathcal{U} \} \], whenever \(\lambda'' \geq \lambda' \).

An approximate mapping \(p = \{ p_\lambda : \lambda \in \Lambda \} : X \to \mathcal{X} = \{ X_\lambda, \mathcal{U}_\lambda, p_{\lambda' \lambda}, \Lambda \} \) of a topological space \(X \) into an approximate inverse system \(\mathcal{X} \) is a family of maps \(p_\lambda : X \to X_\lambda, \lambda \in \Lambda \), such that the following condition holds:

(AS) For any \(\lambda \in \Lambda \) and any \(\mathcal{U} \in Cov(X_{\lambda}) \), there exists a \(\lambda' \geq \lambda \) such that \((p_{\lambda' \lambda''}, p_{\lambda'}) \leq \mathcal{U} \), for every \(\lambda'' \geq \lambda' \).

Let \(\text{POL} \) denote the class of all polyhedra (endowed with the CW-topology).

An approximate resolution of a space \(X \) is an approximate mapping \(p = \{ p_\lambda : \lambda \in \Lambda \} : X \to \mathcal{X} = \{ X_\lambda, \mathcal{U}_\lambda, p_{\lambda' \lambda}, \Lambda \} \) of \(X \) into an approximate system \(\mathcal{X} \) satisfying the following two conditions:

(R1) For any \(P \in \text{POL}, \mathcal{V} \in Cov(P) \) and mapping \(f : X \to P \) there is a \(\lambda \in \Lambda \) such that, for every \(\lambda' \geq \lambda \), there exists a mapping \(g : X_{\lambda'} \to P \) satisfying \((gp_{\lambda'}, f) \leq \mathcal{V} \).

(R2) For every \(P \in \text{POL} \) and \(\mathcal{V} \in Cov(P) \) there is a \(\mathcal{V}' \in Cov(P) \) such that for any \(\lambda \in \Lambda \) and any two maps \(g, g' : X_\lambda \to P \), for which \((gp_{\lambda'}, g'_{\lambda'}) \leq \mathcal{V}' \), there exists a \(\lambda' \geq \lambda \) such that \((gp_{\lambda''}, g'_{\lambda''}) \leq \mathcal{V}' \), for any \(\lambda'' \geq \lambda' \).

Let \(p = \{ p_\lambda : \lambda \in \Lambda \} : X \to \mathcal{X} \) be a polyhedral resolution (commutative or approximate). Then \(p \) is called irreducible if all bonding maps \(p_{\lambda' \lambda} \) and all projections \(p_\lambda \) are irreducible. Note that each irreducible resolution has surjective bonding maps and surjective projections.

2. Irreducible resolutions of finitistic spaces.

Proposition 2.1. Let \(X \) be a normal space and \(\mathcal{U} \in Cov(X) \). Then there exist a subcomplex \(K \leq N(\mathcal{U}) \) of the nerve \(N(\mathcal{U}) \) of \(\mathcal{U} \) and a canonical map \(f : X \to |K| \) of \(\mathcal{U} \), which is \(K \)-irreducible.
Proof. Since \(U \) is a normal covering of \(X \), there exists a canonical mapping \(\Phi : X \to [N(U)] \) of \(U \). If \(\Phi \) is already \(N(U) \)-irreducible, we put \(K = N(U) \) and \(f = \Phi \). If not, there exist a subcomplex \(K \subseteq N(U) \) and a \(N(U) \)-modification \(f : X \to [K] \) of \(\Phi \), which is \(K \)-irreducible ([5], Corollary 1). So, we only need to prove that \(f \) is a canonical mapping of \(U \), i.e. \(f^{-1}(\text{st}(U, N(U))) \subseteq U \), for each \(U \in U = N(U)^0 \). Let \(x \in f^{-1}(\text{st}(U, N(U))) \). Then \(f(x) \in \text{st}(U, N(U)) \), which implies that there exists a simplex \(\sigma \in N(U) \) \(\sigma = [U_0 = U, U_1, \ldots, U_k] \) such that \(f(x) \in \sigma \). Since \(f \) is a \(N(U) \)-modification of \(\Phi \), there exists a simplex \(\tau = [U_0 = U, U_1, \ldots, U_k, U_{k+1}, \ldots, U_n] \), \(n \geq k \), such that \(\Phi(x) \notin \tau \cap \partial \text{st}(U, N(U)) \). So \(\Phi(x) \notin \text{st}(U, N(U)) \), which implies \(x \in \Phi^{-1}(\text{st}(U, N(U))) \subseteq U \). Consequently, \(f^{-1}(\text{st}(U, N(U))) \subseteq U \), which shows that \(f \) is canonical for \(U \).

The proof of the next lemma is obtained by appropriate changes in the proof of Lemma 3.4 of [7].

Lemma 2.2. Let \(X \) be a normal finitistic space, let \(P_1, \ldots, P_n \) be polyhedra, let \(f_1 : X \to P_1, \ldots, f_n : X \to P_n \) be mappings and let \(U_i \in \text{Cov}(P_i) \), \(i = 1, \ldots, n \), \(U_1, \ldots, U_n \in \text{Cov}(P_n) \) be open coverings. Then there exist a finite-dimensional polyhedron \(P \), an irreducible map \(f : X \to P \) and PL-mappings \(p_1 : P \to P_1, \ldots, p_n : P \to P_n \) such that \((f, p_1f) \leq U_i \), for \(i = 1, \ldots, n \). Moreover, if for a given \(i \) the polyhedron \(P_i \) is finite-dimensional and \(f_i \) is irreducible, then the corresponding mapping \(p_i \) is also irreducible. In that case it is possible to choose a triangulation \(K_i \) of \(P_i \) such that \(f_i \) and \(p_i \) are \(K_i \)-irreducible.

Proof. For each \(i = 1, \ldots, n \) choose a triangulation \(K_i \) of \(P_i \) so fine that the covering \(\tilde{S}_i \) formed by all the closures of the members of \(S_i = \{ \text{st}(v, K_i) : v \in K_i^0 \} \) \(\subseteq \text{Cov}(P_i) \) refines \(U_i \), i.e. \(S_i \leq U_i \) ([4], Theorem 4, Appendix 1). If for a given \(i \), \(P_i \) is finite-dimensional and \(f_i \) is irreducible, let \(M_i \) be a triangulation of \(P_i \) such that \(f_i \) is \(M_i \)-irreducible. Let \(L_i \) be a common subdivision of \(M_i \) and \(K_i \). Put now \(S_i = \{ \text{st}(v, L_i) : v \in L_i^0 \} \) \(\subseteq \text{Cov}(P_i) \). Note that \(f_i \) is \(L_i \)-irreducible and also \(\tilde{S}_i \leq U_i \). In order to simplify notations rename the triangulation \(L_i \) again by \(K_i \).

Now choose a normal \(V \in \text{Cov}(X) \) such that \(V \leq f_i^{-1}(S_i) \), \(i = 1, \ldots, n \). Since \(X \) is a finitistic space there exist an integer \(n \) and a normal covering \(U \in \text{Cov}(X) \) such that \(U \leq V \) and \(\text{ord}(U) \leq n \). Then, by Proposition 2.1 there exist a finite-dimensional polyhedron \(P = [K] \) and a \(K \)-irreducible
mapping $f : X \to |K| \subseteq |N(U)|$, which is a canonical mapping of U.

Now, we define mappings $\pi_i : N(U)^0 \to K_i^0$, $i = 1, \ldots, n$, in the following way. To a vertex $U \in N(U)^0$ we assign a vertex $v_i = \pi_i(U) \in K_i^0$ such that $U \subseteq f_i^{-1}(st(v_i, K_i))$, $i = 1, \ldots, n$.

Claim 1. For each $i = 1, \ldots, n$, $\pi_i : N(U)^0 \to K_i^0$ is a simplicial mapping.

Let U_1, \ldots, U_m be vertices of $N(U)^0$, which span a simplex of $N(U)$. Then $U_1 \cap \ldots \cap U_m \neq \emptyset$ and therefore, $\emptyset \neq U_1 \cap \ldots \cap U_m \subseteq f_i^{-1}(st(\pi_i(U_1), K_i^0)) \cap \ldots \cap f_i^{-1}(st(\pi_i(U_m), K_i^0)) = f_i^{-1}(st(\pi_i(U_1), K_i^0) \cap \ldots \cap st(\pi_i(U_m), K_i^0))$. However, this implies $st(\pi_i(U_1), K_i^0) \cap \ldots \cap st(\pi_i(U_m), K_i^0) \neq \emptyset$, which shows that the vertices $\pi_i(U_1), \ldots, \pi_i(U_m)$ indeed span a simplex of K_i.

For each $i = 1, \ldots, n$ the mapping π_i induces a mapping $[\pi_i] : |N(U)| \to |K_i|$. Put $p_i = [\pi_i]P : P \to P_i$. Note that each $p_i : P \to P_i$ is a PL-mapping.

Claim 2. For each $i = 1, \ldots, n$, $p_i f : X \to |K_i|$ is a K_i-modification of f_i.

Let $x \in X$ be an arbitrary point of X and $\sigma = [v_1, \ldots, v_k] \in K_i$ a simplex of K_i such that $f_i(x) \in \sigma$. We need to prove that $p_i f(x) \in \sigma$.

Let U_1, \ldots, U_s be all the members of the covering U, which contain x, i.e., $x \in U_1 \cap \ldots \cap U_s$. Then $f(x) \in \tau = [U_1, \ldots, U_s] \in K \cap N(U)$ and $p_i f(x) \in [p_i(U_1), \ldots, p_i(U_s)] = [\pi_i(U_1), \ldots, \pi_i(U_s)]$. Put $\pi_i([U_1, \ldots, U_s]) = \{w_1, \ldots, w_k\} \subseteq K_i^0$, $t \leq s$, and therefore, $p_i f(x) \in [w_1, \ldots, w_t]$. Since $x \in U_1 \cap \ldots \cap U_s \subseteq f_i^{-1}(st(\pi_i(U_1), K_i^0)) \cap \ldots \cap f_i^{-1}(st(\pi_i(U_s), K_i^0))$, we obtain $f_i(x) \in st(w_1, K_i^0) \cap \ldots \cap st(w_t, K_i^0)$. Now we have $f_i(x) \in \sigma \cap st(w_1, K_i^0) \cap \ldots \cap st(w_t, K_i^0)$ and therefore, $[v_k, \ldots, v_k] \cap st(w_j, K_i^0) \neq \emptyset$, for each $j = 1, \ldots, t$. But this implies that each w_j is some v_k, i.e. $[w_1, \ldots, w_t] \subseteq [v_1, \ldots, v_k]$. This means that $[w_1, \ldots, w_t]$ is a face of $[v_1, \ldots, v_k]$ and therefore $p_i f(x) \in \sigma$.

Claim 3. $(p_i f, f_i) \leq \mathcal{U}_i$.

Because of Claim 2, for each $x \in X$ there exists a simplex $\sigma \in K_i$ such that $p_i f(x), f_i(x) \in \sigma$. Then $p_i f(x), f_i(x) \in st(v, K_i^0)$, where v is any vertex of σ. Since $\mathcal{S}_i \leq \mathcal{U}_i$, there exists a $U \in \mathcal{U}_i$ such that $p_i f(x), f_i(x) \in U$.

APPENDIX: POLYHEDRAL RESOLUTIONS

Claim 4. If f_i is K_i-irreducible, then p_i is K_i-irreducible.

We shall first prove that pf is K_i-irreducible if f_i is K_i-irreducible. Let $h : X \to |K_i|$ be any K_i-modification of pf. Then h is also a K_i-modification of f_i. Since f_i is K_i-irreducible, we conclude that h is a surjection. This proves that pf is K_i-irreducible. Now, let $h : |K| \to |K_i|$ be any K_i-modification of p_i. Then hf is K_i-modification of pf. Since pf is K_i-irreducible, we conclude that hf is surjective and thus, h must also be surjective. This completes the proof of Lemma 2.2.

Remark 2.3. Let X be a normal space with dimension $\dim X \leq m$. Then it is possible to achieve that the polyhedron P in Lemma 2.2 has dim $P \leq m$.

Using Lemma 2.2 in the construction, described in [1], we get the following theorem, which is an improvement of Theorem 3.5 of [7].

Theorem 2.4. Let X be a normal space. Then the following statements are equivalent.

i) X is finitistic.

ii) X admits an approximate irreducible resolution $p = \{p_\lambda : \lambda \in \Lambda\} : X \to \mathcal{X} = \{X_\lambda, \mathcal{U}_\lambda, p_{\lambda\lambda'}, \Lambda\}$ such that all X_λ are finite-dimensional polyhedra, all bonding maps are PL and Λ is cofinite.

iii) X admits an approximate resolution $p = \{p_\lambda : \lambda \in \Lambda\} : X \to \mathcal{X} = \{X_\lambda, \mathcal{U}_\lambda, p_{\lambda\lambda'}, \Lambda\}$ such that all X_λ are finite-dimensional spaces.

In the special case, when X is a normal space with $\dim X \leq m$, we obtain the following theorem.

Theorem 2.5. Let X be a normal space. Then the following statements are equivalent.

i) X has $\dim X \leq m$.

ii) X admits an approximate irreducible resolution $p = \{p_\lambda : \lambda \in \Lambda\} : X \to \mathcal{X} = \{X_\lambda, \mathcal{U}_\lambda, p_{\lambda\lambda'}, \Lambda\}$ such that all X_λ are polyhedra with $\dim X_\lambda \leq m$, all bonding maps are PL and Λ is cofinite.
iii) X admits an approximate resolution $p = \{ p_\lambda : \lambda \in \Lambda \} : X \to X = \{ X_\lambda, U_\lambda, p_{\lambda, \mu}, \Lambda \}$ such that all X_λ are spaces with $\dim X_\lambda \leq m$.

Remark 2.6. Theorem 2.5 is a generalization of Theorem 1 of [2] (where a similar statement was proved for compact Hausdorff spaces) and an improvement of Theorem 1 of [9], for normal finite-dimensional spaces (see also [1], §5.). Note that Theorem 1 of [2] was not proved using irreducible mappings, and the constructed approximate resolution does not have surjective bonding maps. This defect could be avoided using the construction of irreducible representations in the sense of [8].
References