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Let (Q,X, P) be a probability space.
A subset of K of L;( P) is called uniformly integrable if

lim sup/ |fldP =0,
€0 feK J[|f]>c]

thatis, if givene > 0 thereisac, = ¢ > 0 sothat fort > S s 1F1dP <
eforall f € K.

This definition, which is preferred by probabilists, has another ver-
sion.

THEOREM 1. A subset K of L1(P) is uniformly integrable if and
only if K is bounded and given e > 0 thereisa § > 0 so thatany E € X
with P(E) < 6 has [, |f|dP < eforall f € K.

(*)  Lectures presented at the School on Measure Theory and Real Analysis.
Grado (Italy), October 14-25, 1991.

(**) Address of the Author: Department of Mathematical Sciences, Kent State University,
Kent, Ohio 44242 (USA).
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Proof. Suppose K is uniformly integrable. Take E € ¥ and notice

/ fldP = f |F1dP + f |ldP
E En[|f|<el En[|f]>c]

g/ch+/ If|dP
E [ f]>c]

=cP(E)+/ IFdP .
[1f]>el

This holds in particular for E = Q and so for any ¢ > 0

that

171l < e+ [{ L

which, if we choose ¢; > 0 so that f[lfl>cnl |fIdP < 1forall f € K,
gives
Ifll<er+1.

K isbounded in L;( P). Again, for general E € ¥

f |f|dchP(E)+f |f|dP
E Uf]>el

tells us that if we choose c big enough then f[ 1>l | f|dP can be made small
uniformly for f € K; this having been done, careful control of P( E) will
ensure complete control of [, | f|dP uniformly for f € K. More precisely,
if € > 0 is given then K ’s uniform integrability assures us of ac > 0 so
that f[|f|>c] |fIdP < €/2 forall f € K; but now should P(E) < = then
Je|fldP < eforall f € K.

Conversely, suppose K is bounded and foreach e > 0 thereisa § >0

such that whenever P(E) < § wehave [, |f|dP < eforall f € K. Then,
regardless of ¢ > 0, we have

cxilfisa < |Flxtif>a

and so

Pilfl>a< [ 1ndP< [ Iflap= i)

[ f]>el
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If welet M = sup{||f||: : f € K} then we see that
M
Pllfl > cl L =

forall f € K. It follows that if c is chosen so that -‘ci < 6 (6 corresponding

to the ever-present € > 0) then P[|f]| > ¢] < & so Jis15a [f1@P < e for
all f € K and K is uniformly integrable.

EXAMPLES.
1. Suppose p > 1. Then bounded subsets of L,(P) are uniformly inte-
grable. Indeed, sets that are bounded in L,(P) are bounded in L ( P)

and Holder’s inequality ensures us that for E € £ and ||f]|, < M we
have

/Elf [dP < ||£llpllx£lly < MP(E)'/e

where %+ % = 1.

2. More generally, if @ : [0,00) — [0,00) is an increasing function
such that & — 00 as z — oo and if [ ©(|f(w))dP(w) < M <
oo for all f € K, then K is uniformly integrable. Indeed, ife > 0 is
chosen then one can find T, such that @ (t) /t > M/e forallt > T,
It follows that for all f € K

[ indP<s [ @olap<e.
[ f]>T,] [f]>Ts]

We hasten to add that conditions such as 2. arise frequently in both
harmonic analysis and probability in the study of tail behaviour of special
sums.

Actually, 2. is quite close to the heart of things with regards to uniform
integrability. Here’s an old gem of de la Vallée Poussin.

THEOREM 2. (de la Vallée Poussin). For K C L1( P) to be uniformly
integrable it is both necessary and sufficient that there exist a convex even
function ® : R — R such that ®(0) = 0, limy0o 22 = 00 and
SUP feg JO(f(w)])dP(w) < oo.

As one might expect, not all (bounded) subsets of L ;—spaces are uni-
formly integrable. To highlight a natural example we look to L[0, 1].
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EXAMPLE. Suppose that (f,) C L1[0, 1] are disjointly supported
functions, non-negative real-valued and having fol fa(t)dt = 1 for each
n. DRAW the graphs of such! It ought to be plain that the supports of f,
necessarily shrink to a set of measure zero yet in no way can we force the
indefinite integrals to behave. In fact, and this is very instructive, for such
a sequence ( f,,) it is so that regardless of scalars (a,) we have

DN anfalli =) lanl s

after all, [Znanfa| = Zn|as|fs so integrating term—by-term soon reveals
(41).

Part and parcel of the study of uniform integrability is the remarkable
fact that the above example is, in a very strong sense, the only obstruction
to a bounded set’s uniform integrability. Before we come to understand
why this is so, it is important to relate uniform integrability with the “weak
topology” of the Banach space L;( P).

Weak topologies on Banach spaces came to be because the norm topol-
ogy of a Banach space is inadequate. There are two weak topologies of
interest to us. They are delicate to the touch, each has its own character
and we must be careful to be sympathetic to each.

First, let us talk about the weak topology of a Banach space X. Sup-
pose we denote by X * the linear topological dual of X, that is, X* consists
of the linear continuous functionals on X. X* is itself a Banach space and
there is a weakest locally convex linear topology on X which ensures each
member z* of X* of its continuity; this is what’s called the weak topology.
It’s a linear topology on X in which a net (z4), converges to £ € X if
(2*(34q))q converges to £*z for each z* € X*. Every weak neighborhood
of zero contains a set of the form

W(ai,..., 25,6 = [ \[zi(2)| < €],
k<n

sets which contain subspaces of finite codimension. The weak topology
is a locally convex linear topological Hausdorff topology on X such that
the dual of X, when X is equipped with this topology, is X*. The weak
topology is not complete nor is it metrizable if X is infinite dimensional. -
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Nevertheless, the weak topology is a good friend in the study of the finer
structure of X .

Starting with the Banach space X passto X™* and on X* we can define
the “weak*” topology; a net (z%)a in X* converges in the weak* topology
to an z* € X* if (z}(7))q converges to z*(z) foreachz € X. Again,
the weak* topology in X* is a locally convex linear Hausdorff topology;
the dual of (X*, weak*), the topological dual is X! In fact, the weak*
topology is defined so as to make such so. Every weak* neighborhood of
zero contains a set of the form

W(z1,...,2n,€) = [|[|2*(zk)| < €] .
k<n

The weak* topology is neither complete nor metrizable if X is infinite
dimensional.

The weak and weak* topologies are kin. They are not the same (in
general) but each helps understand the other. Principal in this understand-
ing is an appreciation of compactness in each topology.

The weak* topology appreciates bounded sets: if B C X*isabounded
set, then B¥" is weak* compact. This is a famous theorem of Alaoglu.

In the weak topology, compactness is more elusive but, like the fair
maiden, it is worth pursuing. IN FACT, the famous theorem of Eberlein
and Smulian tells us that a subset K of a Banach space is relatively weakly
compact if and only if K is relatively weakly sequentially compact, a sit-
uation which occurs precisely when K is relatively countable compact;
what’s more, if K is a weakly compact subset of X and A C K thenevery
point of A¥*%* is the weak limit of a sequence of points from A. Weak
compactness, once in hand, is an analyst’s dream. All’s well — sequences
suffice!

How does one ascertain when a relatively weakly compact set is so?
Here’s the basic strategy — the only general strategy available. Take a set
K in the Banach space X that’s norm bounded (by the way the Banach—
Steinhaus theorem should warn us off looking for weakly compact sets in
all the wrong places — they are norm bounded). Look at K as a subset of
X* and take K’s weak* closure K" up in X**: if K%¥" never passes
outside of X then K is relatively weakly compact and K *¢%* g precisely,
K%, Thatthisissoisa simple comparison—of-topologies argument made
possible through the good graces of K**"’s weak* compactness.
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Okay, so what? Here’s what!

THEOREM 3. (Dunford-Pettis). A subset K of L1(P) is relatively
weakly compact if and only if K is uniformly integrable.

This theorem is more than fifty years old. It is still stunning. What's
more, its proof is still worthy of serious study.

On the one hand, we have the duality concepts so pertinent to the
notion of weak compactness. How can they be handled, controlled? Here’s
how! The dual of L{(P) is Lo (P) where the action of g € L(P) on
an f € L1(P) is given by

o(f) = fg F(w)g(w)dP(w) ;

this is the Radon-Nikodym Theorem in action. Under this identification,
l19]loo = 119]|L.(p)+ and all is well in life.

What about L ,( P)*? Here we hit asmall, a very small, snag, L,,( P)*
can be described but it requires us to pass into the nether-land of finitely
additive measures. More precisely, if 4 : ¢ — R is a bounded, finitely
additive measure, then f gdu can be made sense of for any g € Loo(u).
How? Well, if g were simple, then it’d be easy and it’d be easy to see that
| [ 9dp| < ||9]lool2|(2) where ||g||oo is the (essential) supremum norm of
g € Loo(P) and |p|(Q) is p’s total variation. The density of simple func-
tions in L ( P) tells us that [ gdu is well-defined for each g € Loo(P).
The careful student will note that we’ve told a small lie here — one ought to
make sure that [, gdp = [, hdp foreach E € X ensures g = h P-almost
surely—so one must ask of y that |u|( E) = 0 whenever P(E) = 0.

So be it.

Here’s the punch line: Ly (P)* can be identified with the (Banach)
space ba,(Z) of all bounded additive measures i : ¥ — R that vanish on
P-null sets. Here the identification of z* with y entails

2*(g) = /Q o(w)du(w) ,

where

llz"|| = lul (L) .
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All this is well-known and easy.
Take K C L1(P) and suppose K is uniformly integrable. Thanks to
Theorem 1, we know that K is L ( P)-bounded and that for each ¢ > 0

thereisa§ > 0 so that [ |f|dP < eforall f € K whenever P(E) <
6. BUT K'’s boundedness ensures us that j ®eck* C Lo(P)* is weak*

compact. If we take u € K"***" then u(xz) can be approximated by
xe(f)’s where f € K, that is, we know that at least

[u(B)| = |u(xEg)| < sup I/ fdP|
feEK JE

_<_supf |f|dP .
E

feK

It follows that given ¢ > O thereisa § > 0 so that if P(E) < 6 then
[u(E)| < € : p is countably additive and P—continuous, y belongs to
Li(P)!

The converse is not so easy, nor should it be. There are bigger fish
to fry. In fact, a critical argument in establishing the converse goes back
to Lebesgue and Vitali (albeit their interest was in case of Q = [0,1],

Z = {Lebesgue measurable sets} and P = Lebesgue measure). Here’s
what Lebesgue and Vitali had to say (about this).

THEOREM 4. (Lebesgue-Vitali). If ( f,,) is a bounded sequence in
L1(P) such that for each E € T we have

lim / fadP =0,
n JE
then {fy, : n € N} is uniformly integrable.

If not(!) then there is an €, > 0O such that regardless of m € N and
6>0thereisan Es= E € X with P(E) < 6 and an n > m such that

I/ fadP| > ¢, .
E

THINK ABOUT IT!
OK?
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Find E; € ¥ and n; so that

| fmdpl > €
Ey

Find 6; > O so that if P(E) < é;, then [ |f, |dP < ¢
Find E; € X and mp > m so that P(B;) < & yet

| fnzdplzfo-
E;

Find §; > 0 so thatif P(E) < 6;, then [, |fy, |[dP < £ and, if you
must, ensure yourself that §; < 6;/2.

Continue in this way to find sequences ( Ey) in X, positive integers
m<m<...<mn <...and positive numbers §; > 0 so that 6,1 <
6k/ 2 and

[ fudPize
E;
while

P(Eg+1) < 6;/2

and if P(E) < &, then | fE fudP| < 3. OK?
Of course, it follows that

P(Ege1U...UEgqnU..)) < P(Egs1) + ...+ P(EBrem) + ...

51: 5k+1

< I

< &
so that

€0
_/ | foe | < ik
Ep U UEg mU...
If we let
Ar = Ek\(Egs1 U.. .U Egen U.. 1)

then

| [ fwdP|= | fudP|
A E\(Ex1U.)

NLMWFI fudP|

Eyn( Ege1U...)
€0
>3—.
= %
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But the A}’s are pairwise disjoint and A, C E; so

P(Ap 1 U...U..) < & .

Letk; =1.
Let k2 be any m > k; so that

[ fmapl<
Ay, 4
Let k3 be any m > k, so that

€0
A"l UA[;2

In general, k; will be any m > k;_; such that

€0
| faydPl < 2.
Aw U Ay,

A consequence? Of course,

3
[ fog@Pl2 2eo
Ay,

Also,

P(Ag, UAg,,U...U..) <

S P(Ak;+l UAIC,'+2 U e

< 51;}
so that

€0
T, | < =
|'/;1k- UA;. U nk]l 4

j+1 j42
Let@Q = A UAL U...
Then regardless of j

f f,,,;j dP = ( + /
Q A, U...UA;;’.__l A

kj

+ f ) foe, AP
Aki*'l UAki+2 u...

49
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which in modulus must be
> e /4.

OOPS!

How does the Lebesgue—Vitali Theorem relate to the Dunford—Pettis
Theorem? Well, suppose K C L;(P) is relatively weakly compact. To
show K is'uniformly integrable consider the alternative: K is bounded so
there must be an g > O so that regardless of n we can find f, € K and
E. € X so that even though P(E,) < ¢, | [ fadP| > €. But (f,)
must have a weakly convergent subsequence ( f,, ) with weak limit f, say
in L1 (P); it follows that (gx = f,,, — f) is a bounded sequence in L ( P)
that goes to zero weakly. In particular, foreach E € ¥

lim/gde=0
k JE

{9k : k > 1} must be uniformly integrable thanks to the Lebesgue—Vitali
Theorem. It follows that {gy + f : k > 1} = {f,, : k > 1} is uniformly
integrable too. OOPS! . '

Crucial to the above argument is the fact that both relative weak com-
pactness and uniform integrability are sequential in nature. A set K C
L1(P) is relatively weakly compact (respectively uniformly integrable) if
and only if every sequence ( f,,) from K has a subsequence ( f,, ) such that
{fw) such that {f,, : k > 1} is relatively weakly compact (respectively,
uniformly integrable).

ACTUALLY, the proof of the Lebesgue—Vitali Theorem holds promise
for much more than what’s delivered in the Dunford—Pettis Theorem. A
careful inspection of the proof as presented above will soon uncover the
following: if K is a bounded non uniformly integrable subset of L;( P)
then one can find a sequence ( fi) in K, and € > 0 and a sequence ( E)
of pairwise disjoint members of X such that for all &

| frdP| > €.
E;

Now for a real treat.

Rosenthal’s Lemma. Let (u,) be a bounded sequence of bounded
real-valued finitely additive measures defined onX, € > 0 and (E,) be a
sequence of pairwise disjoint members of .
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Then there is an increasing sequence (m) of positive integers such
that for each k.

|t (Ui B < €.

Proof. Let||u,|[1 < M foralln. SplitN into a countable union Up M),
of pairwise disjoint, infinite subsets M,.

Optimistically speaking, MAYBE there’s a p for which no k € M,
satisfies

|kl (Usens, j7eEf) > €.
If this happens, then I'm happy since it means that for each k € M,,

|kl (Ujen, i Br) < €
and all that need be done is list the members of M, in ascending order

Mp = {m1 < my <N}.
Realistically, it may be that for each p there’s a kp € M, such that

|k, [(Usens, jp, Ej) > €.

Notice that
| [(Ug Bi) + |k, |(Ujens, 24, B
< | l(UgEy) + |2k, |(Un B\ U, Ex,)
<M.

Hence

|k, |(UEE) < M — €.

Replacing () by ( ki,) and ( Ey) by (Ey,) in our arguments above
we can take an optimistic view, which will be quickly rewarded if appli-
cable or we can take a realistic view. Realistically though we soon find
ourselves with an inequality of the form

|k, [(UEL,) < M —2¢.

M is only so big so realism only lasts so long. Sooner or later (but some-

time) optimism wins the day. And when it does Rosenthal’s lemma is
proved.
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We have in mind to apply Rosenthal’s lemma to a sequence ( f,,) in
the norm bounded non-uniformly integrable set K C L;( P) which comes
accompanied by an € > 0 and asequence ( E,,) of pairwise disjoint meme-
bers of X such that

l[E"fndPlzé-

The measures we wish to consider are p,(E) = [ fadP and € = €/2.
The result is a sequence n; T oo such that

/ \fruldP <
Ush En;

So what? Well, here’s what: if (a,,) is any scalar sequence then

(ST Y

|| Zkakfu |1 2 / |Zkak fa, (w) |dP(w)

Ug E',.k

> [ 1Bsnfu (@), @)1EPW) — [ [Broifo () x4, ()| 4Pw)

> 5 f 0k Foe ()| dP(w) — Zea | For () |dP(w)

B, Ujsk En;

_ €
> Ezklan{ - EZklakl ]

Since ( f,, ) is bounded (say by M) we always have

1) arfullt < MY lak|
k k

SO

5 Yo lonl <[ Y anfall < M Yo
k k k

We’ve proved the following.

THEOREM 6 (Kadec—Pelczynski). If K is a bounded non—uniformly
integrable subset of L1 ( P) then K contains a sequence which is equivalent
to the unit coordinate vector basis of ;.

In truth, more is so. The sequence extracted above is what Rosenthal
called “relatively disjoint”. Such sequences span complemented copies of
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¢y in L1(P). Since there are uncomplemented copies of £; in [1[0, 1]
(though they’re not easily located), this indicates the special character of
the above line of argumentation. Before broaching a new line of investi-
gation involving uniform integrability and weak compactness in L;( P) it
seems worth while to collect a number of equivalent conditions some of
which we’ve seen and some of which we’ve not seen.

THEOREM 7. Let K be a subset of L1( P). Then the following state-

ments regarding K are equivalent.

1.
2.

3.

K is uniformly integrable.

K is bounded andfor eache > 0 thereisa$ > 0 such that ifP(E) <
6 then [, |f|dP < eforall f € K.
For each e > 0 thereisa c, > 0 so that for ¢ > Co

I/ fdP|<e forall f € K .
[1f[>c]

K is bounded andfor eache > O thereisa§ > O such that if P( E) <L
6 then| [, fdP| < eforall f € K.
K is relatively weakly compact.

No sequence in K is equivalent to the unit coordinate vector basis of
4.

K is bounded and given any sequence ( E,) of pairwise disjoint mem-
bers of

limlf fdP| =0, uniformly f € K .
n E,

There are a few surprises in this next theorem.

THEOREM 8. Let X be a closed linear subspace of Li(P). The

Jollowing statements about X are equivalent.

1.

Bx is uniformly integrable.

2. By is weakly compact.

3. X is reflexive.

4,

5. X contains no subspace isomorphic to ¢, that's complemented in

X contains no subspace isomorphic to £;.

L1(P).
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6. X does not contain £%’s uniformly. A Banach space contains £}’s uni-
formly if there is a K > O so that for each nthereisal — 1, linear
operator u, : £} — X such that ||u,|| ||u;}|| < K.

7. X does not contain £}'s uniformly complemented.

8. Thereis 1 < p < 2 and a probability . on X such that X is isomor-
phic to a closed linear subspace of Ly(u).

One would be irresponsible if when talking about uniform integrabil-
ity no notice was given to probability. To give a bit of the background we
recall that if ¥y is a sub—o—field of the o—field £ and f € L;(P) then
there is a Z,~measurable function, called the conditional expectation of f
given X,, denoted by E ( f|Z,) defined by the relationship

/E fdp = /E E(f[S,)dP

whenever F € X,.
This follows, by the way, from the Radon-Nikodym Theorem applied

to the measure [, fdP(E € Z,) which is absolutely continuous with re-
spect to P’s restriction to Z,,.

We list here a number of properties enjoyed by the conditional expec-
tation; their proofs may be found in many books on probability, a few in
analysis and too few in measure theory.

THEOREM 10.

1. E(|%,) takes L1(Z, P) into L1(Z, P) in a linear, monotone non—
increasing manner with E( f|Z,) actually in L1(X,, P) for each f €
Li(Z, P); further more, for f € L1(Zo, P),E(f|Z) = f P|z,—
almost surely so that E (|Z,) is a linear projection of L1(X , P) onto
L1(Z,, P).

2. If fu, fo € L1(Z,P) and f, 1 f, almost surely, then E(falZ) T
E ( fo|Z,) Plz, almost surely.

3. If fu, f. 9 € L1(Z, P) and | f,| < g almost surely while f = lim,, f,
almost surely, then E( f|Z,) = lim, E( f,|X,) P|, almost surely.

4. If ! is a sub o—field of X, and f € L(Z,P), then E(fIZ"
E (E (f|Z,) |Z") P|z+ almost surely.

5.If f,gand fg € Li(Z,P) with f € Li1(Z,, P) then E ( fg|%,)
fE(g|Z,) P|z, almost surely.
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6. If1 <p<Looand f € Ly(Z,, P) then E(f|%,) € Lo,(%,P) and

ECHZ I < 111l

A sequence ( f,) in L1(Z, P) is called a martingale if there is a cor-
responding increasing sequence (Z,) of sub o—fields of ¥ such that fn 18
2, measureable and E ( £, [Z,) = f«P|z, almost surely.

Though martingales have been under intense scrutiny for better than
half a century, the grand dad of martingale theorems is still one of the most
stunning.

THE MARTINGALE CONVERGENCE THEOREM (Doob) Every L,-
bounded martingale sequence is almost surely convergent.

It is natural to ask when a martingale is convergent in mean. The
result, also due to Doob, is as follows:

MEAN CONVERGENCE OF MARTINGALES An L,—bounded mar-
tingale sequence converges in L1—mean if and only if it is uniformly inte-
grable.

Of course the L;-boundedness cited above is done so for emphasis
and is not necessary since each of the pertinent conditions implies ;-
boundedness.

Doob’s Theorem on mean convergence was proved by Doob directly
using the very definition we started with of uniform integrability. However,
it could have been culled from an old result of Vitali which in our terms
goes as follows.

THEOREM 11 (Vitali). A subset K of L1( P) is relatively norm com-
pact if and only if it is relatively weakly compact and relatively L,( P)—

compact (i.e. relatively compact in the topology of convergence in pro-
bability).

Proof. Suppose K is relatively weakly compact and relatively L,—
compact. Let (f,) C K andlet M = sup{||f|| : f € K}. Thereis a
subsequence (g,) of ( f,) that converges in L,( P) to some f; the M-ball
in L1 (P) is Lo—closed, thanks to Fatou’s Lemma and so llfll1 £ M. Of
course gp, —f — 0 in Lo(P) and {g,— f : n> 1} is uniformly integrable.
Therefore given € > 0 there’sa § > 0 so that whenever P(E) < 6 we
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have [ |9» — f|dP < e, for all n. Moreover, there isan N = N, € N so
that if n > N then
' Pllgn—fl> €l <6

after all (g, — f) is L,( P)-null. Let n > N and you realize that

||9n-;flll=/ +/ lgn — fldP < e+ €= 2¢
llgn—FfI<el  Jl|gn—fl>el

and so ||g, — f||1 — O.
Martingales are ever present in the study of weak convergence in
L1(P). Here’s why.

THEOREM 12 (Gaposhkin). Suppose (Q , X, P) is a non—atomic prob-
ability space and ( f,,) is a weakly null sequence in L1( P), then thereis a
subsequence (g,) of (f,) and a sequence (d,) C L1(P) such that

> " llgn — dalls < 00
n

and yet for each n,
E(d,|d1,...,dn-1) =0 almost surely .

Such sequences are called martingale difference sequences because
if we let H, = X2 ,d; then (H,) is a martingale sequence. Martingale
difference sequences enjoy many of the properties of independent random
variables and all the properties of orthogonal sequences.

Remarkable as Gaposhkin’s Theorem is, its proof is more so.

Proof. Letm; = 1.

Choose A( D and A( D to be disjoint members of T with A(ll) U A(Zl) =
Q and P(A“)) P(A(D)

Define d; = xAgn — X4 Plainly, [ didP = 0 and ||fs —d|: <
maX(l,22IIf:

I#2  For future convenience, we let B = max(1,2||f1]|+ 2).
Pick np > m; so that

(1) '
[ miPI< 557 =12
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Approximate f,, on A(ll) and A(zl) by simple functions ffz) and féz) SO
closely that

1
/Agn |fm = £iP|dP < P—;-f%)-)- i=1,2.
Set
Fo= A0 xap + 137 xap0
Put
dy = f» —E(f2|d1) .
Of course,

E(d2|d1) =0 almost surely .

It is plain and easy to see that on Af- D,

1
E = — ;
therefore, on A{" we have almost surely that

|E(f2]d1)|
< lE(]?Z - fnz |dl)| + IE(fnz Idl)l

_ 1 . 1

1 P(AD) 1
< P(ADy 3-22 © P(A&")I/Agn T 0P
1 1 PAY) 2

S 3.22 " P(AMy 3.22  3.22°

Now we can compute ||dy — fi, ||1: We do it piecemeal:

_/A(-,) |d2 — fo, |dP = /A‘.” |72 —E(f|d1) — fu |dP

<[ V= tuldP+ [ E(hlanap)
ASI) Af-l)

o Py | 2PA”) _ PA®)

= 3.22 3.22 7 22









































































