NODAL REGIONS FOR SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS (*)

by Luisa Di Piazza (in Palermo) and Caterina Maniscalco (in Cosenza) (**)

SOMMARIO. - In questo lavoro, mediante la teoria di Morse, viene data una stima del numero delle regioni nodali delle soluzioni del problema $-\Delta u = \lambda c(x)u + |u|^{p-2}u$ in Ω , $u \in H_0^1(\Omega)$, dove $\Omega \subset \mathbb{R}^N$, $N \geq 3$, è un aperto connesso, limitato e regolare, $p \in (2, 2N/(N-2)]$, $c(x) \in L^q(\Omega)$, q > p/(p-2) e $\lambda \in \mathbb{R}$.

SUMMARY. - In this paper we are concerned with the problem $-\Delta u = \lambda c(x)u + |u|^{p-2}u$ in Ω , $u \in H_0^1(\Omega)$, where $\Omega \subset \mathbb{R}^N$, $N \geq 3$, is a smooth bounded domain, $p \in (2,2N/(N-2)]$, $c(x) \in L^q(\Omega)$, q > p/(p-2) and $\lambda \in \mathbb{R}$. Using the Morse theory, we estimate the number of the nodal regions of the solutions of the above problem.

1. Introduction.

This note deals with the problem of estimating the number of the nodal regions of the solutions of the nonlinear elliptic problem

(1.1)
$$\begin{cases} -\Delta u = \lambda c(x)u + |u|^{p-2}u & \text{in } \Omega \\ u \in H_0^1(\Omega) \end{cases}$$

where $\Omega \subset \mathbb{R}^N$, $N \geq 3$, is a bounded smooth domain, λ is a real parameter, $2 and <math>c(x) \in L^q(\Omega)$, q > p/(p-2).

^(*) Pervenuto in Redazione il 23 novembre 1991. Lavoro svolto nell'ambito dei programmi nazionali di ricerca del M.U.R.S.T..

^(**) Indirizzi degli Autori: L. Di Piazza: Dipartimento di Matematica ed Applicazioni – Università degli Studi di Palermo – Via Archirafi, 34 – 90123 Palermo (Italy); C. Maniscalco: Dipartimento di Matematica – Università degli Studi della Calabria – 87036 Arcavacata di Rende (CS) (Italy).

Throughout this paper $|| \ ||, \ ||_r$ denote respectively the norms in $H^1_0(\Omega)$ and $L^r(\Omega)$, $(1 \le r \le +\infty)$, 2^* is the critical Sobolev exponent for the embedding $H^1_0(\Omega) \xrightarrow{j} L^r(\Omega)$, namely the exponent such that j is continuous but not compact, and S defined by

$$S = \inf\{||u||^2 : u \in H_0^1(\Omega), |u|_{2^*} = 1\}$$

is the best constant for the Sobolev embedding $H_0^1(\Omega) \xrightarrow{j} L^{2^*}(\Omega)$.

Solving problem (1.1) is equivalent to finding critical points of the energy functional

(1.2)
$$f_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{\lambda}{2} \int_{\Omega} c(x) u^2 dx - \frac{1}{p} \int_{\Omega} |u|^p dx, \ u \in H_0^1(\Omega).$$

Since $c(x) \in L^q(\Omega)$, q > p/(p-2), standard computations show that $f_{\lambda} \in C^2(H_0^1(\Omega), \mathbb{R})$ and that

$$(1.3) d^{2} f_{\lambda}(u) \cdot [w_{1}, w_{2}] = \int_{\Omega} \nabla w_{1} \nabla w_{2} dx - \lambda \int_{\Omega} c(x) w_{1} w_{2} dx - (p-1) \int_{\Omega} |u|^{p-2} w_{1} w_{2} dx, \quad w_{1}, w_{2} \in H_{0}^{1}(\Omega) .$$

If u is a critical point of f_{λ} , we denote by Z(u) the number of the nodal regions of u, i.e.

$$Z(u) \equiv \# \{\text{connected components of } \Omega \setminus u^{-1}(\{0\})\}$$
,

and by i(u) the Morse index of u, i.e. the number of the negative eigenvalues (repeated according to their multiplicity) of the operator $f_{\lambda}''(u)$ defined by $(f_{\lambda}''(u)w_1, w_2) = d^2 f_{\lambda}(u) \cdot [w_1, w_2]$.

Recently Benci and Fortunato [BF] have investigated the same question for (1.1) under the condition c(x) = 1 and, using Morse theory have proved that, if $\lambda_n \leq \lambda < \lambda_{n+1}$, $(\lambda_i, i \in \mathbb{N}^+$, being the *i*-th eigenvalue of $-\Delta$ with zero Dirichlet boundary data), then there exists at least a solution of (1.1) with $Z(u) \leq i(u) = n+1$.

A relation between the Morse index and the nodal regions of solutions for elliptic problems have been proved also by C.V. Coffmann [C] when N=1 and by Bahry and P.L. Lions [BL] for equations with superlinear nonlinearities.

In order to study (1.1), we consider the linear problem related to (1.1)

$$(1.4) -\Delta u = \nu c(x)u, \quad u \in H_0^1(\Omega).$$

We suppose that the measure of the set $T_0 = \{x \in \Omega : c(x) = 0\}$ is zero. Then it is well known that the eigenspace of (1.4) corresponding to zero is $\{0\}$.

Set $T_1 = \{x \in \Omega : c(x) > 0\}$ and $T_2 = \{x \in \Omega : c(x) < 0\}$. Manes and Micheletti in [MM] proved that, if the measure of T_1 (resp. T_2) is positive, then the positive (resp. negative) eigenvalues of (1.4) are a divergent sequence

$$0 < \nu_1 < \nu_2 \le \nu_3 \le \dots$$
(resp. $\dots \mu_3 \le \mu_2 < \mu_1 < 0$).

Let us remark that, when the measure of the set T_1 (resp. T_2) is zero, there are no positive (resp. negative) eigenvalues of (1.4). Under this assumption, it is easy to see that, if $p < 2^*$ and c(x) is a smooth function (e.g. an Hölder continuous function), then, for every $\lambda \geq 0$ (resp. $\lambda \leq 0$), the problem (1.1) possesses a positive solution. On the contrary, if Ω is starshaped, $p = 2^*$, $c(x) \leq 0$ a.e. (resp. $c(x) \geq 0$ a.e.) and $\lambda \geq 0$ (resp. $\lambda \leq 0$), using the Pohozaev identity, it is not difficult to show that the problem (1.1) has no solution.

In what follows if $p < 2^*$ we assume that the condition below holds

 (H_1) if $\lambda > 0$ (resp. $\lambda < 0$), the measure of the set T_1 (resp. T_2) is positive.

While if $p = 2^*$, in order to overcome the lack of compactness of f_{λ} , we need the stronger condition

$$(H_2)$$
 if $\lambda > 0$ (resp. $\lambda < 0$), there is a ball $B_{\rho}(x_0) = \{x \in \mathbb{R}^N : |x - x_0| \le \rho\} \subseteq \Omega$, such that $\inf_{x \in B_{\rho}(x_0)} c(x) > 0$ (resp. $\sup_{x \in B_{\rho}(x_0)} c(x) < 0$).

The main results of the paper are the following theorems.

THEOREM 1.1. Let $p = 2^*$ and suppose that (H_2) holds. If $N \ge 5$ and $\nu_n \le \lambda < \nu_{n+1}$ or $\mu_{n+1} < \lambda \le \mu_n$, $n \in \mathbb{N}^+$, then the problem (1.1) has at least a non trivial solution u with $Z(u) \le i(u) = n+1$. If N = 4 the same conclusion holds when $\nu_n < \lambda < \nu_{n+1}$ or $\mu_{n+1} < \lambda < \mu_n$, $n \in \mathbb{N}^+$.

THEOREM 1.2. Let $2 , <math>N \ge 3$. If (H_1) holds and $\nu_n \le \lambda < \nu_{n+1}$ or $\mu_{n+1} < \lambda \le \mu_n$, $n \in \mathbb{N}^+$, then the problem (1.1) has at least a non trivial solution u with $Z(u) \le i(u) = n+1$.

2. We start proving a lemma which gives an upper bound to the number of the nodal regions of a solution u of (1.1), through the Morse index of u.

Analogous results were obtained in [BF] and in [BL].

Our proof contains also an estimate of the Morse index of the restriction of u to each nodal region.

LEMMA 2.1. Let u be a solution of (1.1). Then we have

$$(2.1) Z(u) \leq i(u) < +\infty.$$

Proof. (2.1) trivially holds if $u \equiv 0$. Let u be a non trivial solution of (1.1). Since $c(x) \in L^{N/2}$, $N \geq 3$, using a result of Brezis and Kato [BK], we obtain $u \in L^t(\Omega)$, for every $t, 1 \leq t < +\infty$, so, by classical results $u \in C^{0,\alpha}(\bar{\Omega}), 0 < \alpha < 1$.

Consider the linearized problem

(2.2)
$$-\Delta v = \eta [\lambda c(x) + (p-1)|u|^{p-2}]v, \quad v \in H_0^1(\Omega).$$

It is easy to see that $\eta \neq 0$ is an eigenvalue of (2.2) if and only if $(\eta - 1)/\eta$ is an eigenvalue of $f_{\lambda}''(u)$.

So, since $c(x) \in L^{N/2+\sigma}(\Omega)$, $\sigma > 0$, the spectrum of $f''_{\lambda}(u)$ is discrete (see [CH], [MM]) and $i(u) < +\infty$.

♦

Now, let Ω_j , $j=1,\ldots,s$ be the connected components of $\Omega \setminus u^{-1}(\{0\})$ and set

$$u_j(x) = \begin{cases} u(x) & x \in \Omega_j \\ 0 & x \notin \Omega_j \end{cases} \quad j = 1, 2, \dots, s.$$

Obviously $u_j \in H^1_0(\Omega) \cap H^1_0(\Omega_j) \cap C^{0,\alpha}(\bar{\Omega}_j)$, $0 < \alpha < 1$, is a solution of the problem

(2.3)
$$-\Delta v = \lambda c(x) v + |v|^{p-2} v, \quad v \in H_0^1(\Omega_j).$$

Let i_j be the Morse index of u_j , i.e. the number of the negative eigenvalues of the restriction of $f_{\lambda}''(u_j)$ to $H_0^1(\Omega_j)$.

If we denote with $\gamma_k[h]$ the k-th eigenvalue of the linear problem $-\Delta v = \gamma h v, v \in H_0^1(\Omega_j), h \in L^{N/2+\sigma}(\Omega_j), \sigma > 0$, from

$$\int_{\Omega_j} \nabla u_j \nabla \varphi dx = \int_{\Omega_j} (\lambda c(x) + |u_j|^{p-2}) u_j \varphi dx , \quad \varphi \in H_0^1(\Omega_j) ,$$

we get that $\gamma_k[\lambda c(x) + |u_j|^{p-2}] = 1$, for some k.

Since u_j does not change sign in Ω_j , it is k = 1 (see [MM]).

Moreover, by the comparison property of the eigenvalues we deduce

$$1 = \gamma_1[\lambda c(x) + |u_j|^{p-2}] > \gamma_1[\lambda c(x) + (p-1)|u_j|^{p-2}].$$

Then
$$i_j \geq 1$$
 (see [A]) and (2.1) holds.

To prove theorem 1.1 and theorem 1.2 we shall use the following result contained in [B] and in [BF].

THEOREM 2.2. Let I be a C^2 functional on a real Hilbert space E and let $E = W \oplus V$, where W is an n-dimensional space and $V = W^{\perp}$.

Suppose that for each critical point u of I, I''(u) has a discrete spectrum and that I satisfies the Palais-Smale condition (P.S.) in $]-\infty$, $\beta[$, $(\beta>0)$, i.e.:

any sequence $\{u_m\} \subset E$, such that $I(u_m) \to c$, $c < \beta$, and $I'(u_m) \to 0$, has a converging subsequence.

Moreover assume that there exist constants R_1 , R_2 , $R_3 > 0$, with $R_1 > R_3$, and $z \in V$, ||z|| = 1, such that

$$(2.4) sup I(Q) < \beta$$

(2.5)
$$I(u) \ge \zeta > 0$$
, $u \in W^{\perp}$, $||u|| = R_3$

$$(2.6) I(u) \le 0 , u \in \partial Q$$

where Q is the set

3. Proof of theorem 1.1.

$$Q = \{y + tz : y \in W, ||y|| < R_2, t \in [0, R_1]\}.$$

Then I possesses a critical point u with Morse index

$$i(u) < n+1$$
.

Moreover
$$\zeta \leq I(u) \leq \sup I(Q)$$
.

First of all we notice that, if $p=2^*$, f_{λ} satisfies the (P.S.) condition in the energy range $]-\infty, \frac{1}{N}S^{N/2}$ [(see [BN], [CFS]).

We denote by v_j and m_j normalized eigenfunctions corresponding respectively to the eigenvalues v_j and μ_j of the problem (1.4) and by $M(v_j)$ and $M(\mu_j)$ respectively the corresponding eigenspaces.

By classical results of regularity the functions v_j and m_j , j = 1, 2, ..., belong to $C^{0,\alpha}(\bar{\Omega})$, $0 < \alpha < 1$. Besides they are a complete ortonormal system in $H_0^1(\Omega)$ (see [MM]).

Let us introduce the sets

$$(3.1) H_+^1 = \overline{\bigoplus_{j>n+1} M(\nu_j) \oplus \bigoplus_{j\in\mathbb{N}^+} M(\mu_j)}, H_-^1 = \bigoplus_{j\leq n} M(\nu_j)$$

$$(3.2) H_+^2 = \overline{\bigoplus_{j \geq n+1} M(\mu_j) \oplus \bigoplus_{j \in \mathbb{N}^+} M(\nu_j)}, H_-^2 = \bigoplus_{j \leq n} M(\mu_j)$$

where the closure is taken in $H_0^1(\Omega)$.

Now, if x_0 and $B_{\rho} \equiv B_{\rho}(x_0)$ are respectively the point and the ball in hypothesis (H_2) , we set for each $\mu > 0$

$$(3.3) \psi_{\mu}(x) = \phi(x)u_{\mu}(x)$$

where $\phi \in C_0^\infty(B_\rho)$, $\phi(x) = 1$ in $B_{\rho/2} \equiv B_{\rho/2}(x_0)$, and

$$u_{\mu}(x) = \frac{[N(N-2)\mu]^{(N-2)/4}}{[\mu + |x-x_0|^2]^{(N-2)/2}}.$$

Moreover, let us denote by P_+^i , P_-^i , i=1,2, the projector operators on the space H_+^i and H_-^i respectively.

So, arguing as in [BF], we set

(3.4)
$$\tilde{\psi}_{\mu}^{i} = \frac{P_{+}^{i}\psi_{\mu}}{||P_{+}^{i}\psi_{\mu}||} = \frac{\psi_{\mu} - P_{-}^{i}\psi_{\mu}}{||\psi_{\mu} - P_{-}^{i}\psi_{\mu}||}, \quad i = 1, 2$$

and

$$Q_{\mu}^{i} = \{u^{-} + t\tilde{\psi}_{\mu}^{i} : u^{-} \in H_{-}^{i}, \quad ||u^{-}|| \leq R_{2}, \quad t \in [0, R_{1}]\}$$

We claim that, when $N \geq 5$ and $\nu_n \leq \lambda < \nu_{n+1}$ (resp. $\mu_{n+1} < \lambda \leq \mu_n$), $n \in \mathbb{N}^+$, the assumptions of theorem 2.2. are verified if we put $\beta = \frac{1}{N}S^{N/2}$, $V = H_+^1$ (resp. H_+^2), $W = H_-^1$ (resp. H_-^2), $Q = Q_\mu^1$ (resp. Q_μ^2), with suitable μ , R_1 , R_2 , R_3 . The same statement holds, if N = 4 and $\nu_n < \lambda < \nu_{n+1}$ (resp. $\mu_{n+1} < \lambda < \mu_n$).

In order to prove our claim we recall the following estimates, for $\mu \to 0$ (see [BN], [CFP], [F])

(3.5)
$$||\psi_{\mu}||^2 = S^{N/2} + O(\mu^{(N-2)/2})^{(1)}$$

(3.6)
$$|\psi_{\mu}|_{2^*}^{2^*} = S^{N/2} + O(\mu^{N/2})$$

(3.7)
$$|\psi_{\mu}|_{1} = O(\mu^{(N-2)/4}).$$

⁽¹⁾ Here and in the sequel we denote by $O(\mu^a)$, $\alpha>0$, a function g such that $|g(\mu)| < \text{const. } \mu^a \text{ near } \mu = 0$.

Moreover easy calculations show that

(3.8)
$$|\psi_{\mu}|_{r}^{r} = \begin{cases} O(\mu^{[2N-(N-2)r]/4}) & \text{for } 2^{*}/2 < r < 2^{*} \\ O(\mu^{r/2}) & \text{for } 1 < r < 2 \text{ and } N = 4 \end{cases}$$

The next lemmas hold

LEMMA 3.1. If ψ_{μ} and $\tilde{\psi}^{i}_{\mu}$ (i=1,2) are defined as in (3.3) and (3.4), then, as $\mu \to 0$, we have

(3.9)
$$||P_{+}^{i}\psi_{\mu}||^{2} = \begin{cases} S^{N/2} + O(\mu^{1+\alpha}), & \alpha > 0^{(2)}, & \text{if } N \geq 5\\ S^{2} + O(\mu) & \text{if } N = 4 \end{cases}$$

i=1,2

where
$$b = \min \left\{ \frac{N-2}{4}, \frac{(1+\alpha)(N+2)}{2(N-2)} \right\}$$
,

(3.11)
$$\int_{\Omega} c(x) |\tilde{\psi}_{\mu}^{i}(x)|^{2} dx \ge \begin{cases} k_{1}\mu + O(\mu^{1+\alpha}) & \text{if } N \ge 5 \\ k_{2}\mu |\log \mu| + O(\mu) & \text{if } N = 4 \end{cases}$$

$$i = 1, 2$$
, when $\inf_{x \in B_{\rho}} c(x) > 0$,

(3.12)
$$\int_{\Omega} c(x) |\tilde{\psi}_{\mu}^{i}(x)|^{2} dx \leq \begin{cases} -k_{3}\mu + O(\mu^{1+\alpha}) & \text{if } N \geq 5 \\ -k_{4}\mu |\log \mu| + O(\mu) & \text{if } N = 4 \end{cases}$$

$$i = 1, 2$$
, when $\sup_{x \in B_{\rho}} c(x) < 0$,

⁽²⁾ In what follows with the same symbol α we will indicate different positive exponents.

(3.14)
$$|\tilde{\psi}_{\mu}^{i}|_{1} = \begin{cases} O(\mu^{(1+\alpha)/2}) & \text{if } N \geq 5\\ O(\mu^{1/2}) & \text{if } N = 4 \end{cases} \quad i = 1, 2,$$

where k_s (s = 1, ..., 4) are suitable positive constants (3).

LEMMA 3.2. If $u=u^-+t\tilde\psi^i_\mu$, with $u^-\in H^i_-$ (i=1,2) and $t\in {\bf R}$, for μ small enough, we have

$$|u|_{2^*}^{2^*} \ge |t\tilde{\psi}_{\mu}^i|_{2^*}^{2^*} + \frac{1}{2}|u^-|_{2^*}^{2^*} - t^{2^*}A(\mu)$$

where
$$A(\mu) = \begin{cases} O(\mu^{1+\alpha}) & \text{if } N \geq 5 \\ O(\mu^{2/3}) & \text{if } N = 4 \end{cases}$$
.

Proof of lemma 3.1. Let us set $P_-^1\psi_\mu=\sum_{k=1}^n a_kv_k$ and $P_-^2\psi_\mu=\sum_{k=1}^n b_km_k$.

Verification of (3.9)

$$(3.16) \quad ||P_{-}^{1}\psi_{\mu}|| = \left(\sum_{k=1}^{n} a_{k}^{2}\right)^{1/2} =$$

$$= \left[\sum_{k=1}^{n} \nu_{k}^{2} \left(\int_{\Omega} c(x) \psi_{\mu}(x) \nu_{k}(x) dx\right)^{2}\right]^{1/2} \leq$$

$$\leq \left(\sum_{k=1}^{n} \nu_{k}^{2} |\nu_{k}|_{\infty}^{2}\right)^{1/2} \int_{\Omega} |c(x) \psi_{\mu}| dx \leq$$

$$\leq \text{const.} |c|_{s} |\psi_{\mu}|_{s/(s-1)},$$

where $1 < s \le q$. Respectively

(3.17)
$$||P_{-}^{2}\psi_{\mu}|| \leq \left(\sum_{k=1}^{n} \mu_{k}^{2} |m_{k}|_{\infty}^{2}\right)^{1/2} \int_{\Omega} |c(x)\psi_{\mu}| dx \leq$$

$$\leq \operatorname{const.} |c|_{s} |\psi_{\mu}|_{s/(s-1)} ,$$

⁽³⁾ In what follows with k_s ($s \in \mathbb{N}$) we will denote positive constants.

where $1 < s \le q$.

So by (3.8), with suitable r, (3.16) and (3.17) we obtain

(3.18)
$$||P_{-}^{i}\psi_{\mu}|| = \begin{cases} O(\mu^{(1+\alpha)/2}) & \text{if } N \geq 5 \\ O(\mu^{1/2}) & \text{if } N = 4 \end{cases} \quad i = 1, 2.$$

Thus by (3.5) and (3.18) it follows

$$\begin{aligned} ||P_{+}^{i}\psi_{\mu}||^{2} &= ||\psi_{\mu}||^{2} - ||P_{-}^{i}\psi_{\mu}||^{2} = \\ &= \begin{cases} S^{N/2} + O(\mu^{1+\alpha}) & \text{if } N \geq 5\\ S^{2} + O(\mu) & \text{if } N = 4 \end{cases} \quad i = 1, 2. \end{aligned}$$

Verification of (3.10)

Arguing as above we obtain

(3.19)
$$|P_{-}^{i}\psi_{\mu}|_{\infty} = \begin{cases} O(\mu^{(1+\alpha)/2}) & \text{if } N \geq 5 \\ O(\mu^{1/2}) & \text{if } N = 4 \end{cases} \quad i = 1, 2.$$

For $N \geq 5$, combining (3.8), (3.9) and (3.19) we get

$$\begin{split} |\tilde{\psi}_{\mu}^{i}|_{2^{*}-1}^{2^{*}-1} &= \frac{1}{||P_{+}^{i}\psi_{\mu}||^{2^{*}-1}} |\psi_{\mu} - P_{-}^{i}\psi_{\mu}|_{2^{*}-1}^{2^{*}-1} \leq \\ &\leq [S^{N/2} + O(\mu^{1+\alpha})]^{(1-2^{*})/2} (|\psi_{\mu}|_{2^{*}-1} + |P_{-}^{i}\psi_{\mu}|_{2^{*}-1})^{2^{*}-1} \leq \\ &\leq [S^{N/2} + O(\mu^{1+\alpha})]^{(1-2^{*})/2} \operatorname{const.}[O(\mu^{(N-2)/4}) + O(\mu^{\frac{(1+\alpha)(N+2)}{2(N-2)}})] \; . \end{split}$$

Then, for $\mu \to 0$, we have

$$|\tilde{\psi}_{\mu}^{i}|_{2^{*}-1}^{2^{*}-1} = O(\mu^{b}) \quad i = 1, 2,$$

where
$$b = \min \left\{ \frac{N-2}{4}, \frac{(1+\alpha)(N+2)}{2(N-2)} \right\} > \frac{1}{2}$$
.

Analogously, in case N = 4, (3.10) follows by (3.8), (3.9) and (3.19).

Verification of (3.11)

Set $\tilde{k} = \inf_{x \in B_{\rho}} c(x)$. If $N \ge 5$, we have

$$\begin{split} &\int_{\Omega} c(x) \psi_{\mu}^{2} dx = \int_{B_{\rho}} (c(x) \phi^{2}(x) - \tilde{k}) \frac{[N(N-2)\mu]^{(N-2)/2}}{[\mu + |x - x_{0}|^{2}]^{N-2}} dx + \\ &+ \int_{\mathbb{R}^{N}} \tilde{k} \frac{[N(N-2)\mu]^{(N-2)/2}}{[\mu + |x - x_{0}|^{2}]^{N-2}} dx - \\ &- \int_{\mathbb{R}^{N} \backslash B_{\rho}} \tilde{k} \frac{[N(N-2)\mu]^{(N-2)/2}}{[\mu + |x - x_{0}|^{2}]^{N-2}} dx \geq \\ &\geq \mu^{(N-2)/2} \left[\int_{B_{\rho} \backslash B_{\rho/2}} \frac{[c(x)\phi^{2}(x) - \tilde{k}][N(N-2)]^{(N-2)/2}}{[\mu + |x - x_{0}|^{2}]^{N-2}} dx - \\ &- \int_{\mathbb{R}^{N} \backslash B_{\rho}} \tilde{k} \frac{[N(N-2)]^{(N-2)/2}}{|x - x_{0}|^{2(N-2)}} dx \right] + \mu \int_{\mathbb{R}^{N}} \tilde{k} \frac{[N(N-2)]^{(N-2)/2}}{[1 + |x|^{2}]^{N-2}} dx. \end{split}$$

Therefore, by (3.9), (3.19) and the above relation

$$\int_{\Omega} c(x) |\tilde{\psi}_{\mu}^{i}|^{2} dx = \int_{\Omega} c(x) ||P_{+}^{i} \psi_{\mu}||^{-2} [|\psi_{\mu}^{2} - (P_{-}^{i} \psi_{\mu})^{2}|] \ge k_{3} \mu + O(\mu^{1+\alpha}).$$

In case N=4, arguing as in [BN] (see verification of (1.13)), we have

$$(3.20) \int_{\Omega} c(x) \psi_{\mu}^{2} dx = \int_{\Omega} c(x) \phi^{2}(x) \frac{8\mu}{(\mu + |x - x_{0}|^{2})^{2}} dx \ge$$

$$\ge \int_{B_{\rho} \setminus B_{\rho/2}} (c(x) \phi^{2}(x) - \tilde{k}) \frac{8\mu}{(\mu + |x - x_{0}|^{2})^{2}} dx +$$

$$+ \int_{B_{\rho}} \tilde{k} \frac{8\mu}{(\mu + |x - x_{0}|^{2})^{2}} dx =$$

$$= O(\mu) + k_{5} \mu |\log \mu|.$$

So, from (3.9), (3.19) and (3.20) we obtain the relation (3.11).

Verification of (3.12)

It is analogous to (3.11)'s one.

Verification of (3.13)

Easy calculations prove that (see also [CFP], Remark (2.4))

$$(3.21) \quad \left| |P_{+}^{i}\psi_{\mu}|_{2^{*}}^{2^{*}} - |\psi_{\mu}|_{2^{*}}^{2^{*}} \right| \leq \operatorname{const.} \left\{ |\psi_{\mu}|_{2^{*}-1}^{2^{*}-1} |P_{-}^{i}\psi_{\mu}|_{\infty} + |P_{-}^{i}\psi_{\mu}|_{2^{*}}^{2^{*}} \right\}.$$

In case $N \ge 5$, from (3.19) it follows

$$(3.22) |P_{-}^{i}\psi_{\mu}|_{2^{*}}^{2^{*}} = O(\mu^{1+\alpha}) i = 1,2.$$

So, by (3.8), (3.19), (3.21) and (3.22) we get

(3.23)
$$||P_{+}^{i}\psi_{\mu}|_{2^{*}}^{2^{*}} - |\psi_{\mu}|_{2^{*}}^{2^{*}}| = O(\mu^{1+\alpha}) \quad i = 1, 2.$$

Therefore, combining the relations (3.6) and (3.23) we obtain

$$|P_+^i\psi|_{2^*}^{2^*} = S^{N/2} + O(\mu^{1+\alpha}) \quad i=1,2$$
.

Analogously in case N=4 we deduce the relation (3.13) by (3.6), (3.8), (3.19) and (3.21).

Verification of (3.14)

Proof of lemma 3.2. Arguing in a similar way than in [CFP] (see (2.10)), by (3.10) we deduce that

♦

 \Diamond

$$(3.24) \quad ||u|_{2^{*}}^{2^{*}} - |t\tilde{\psi}_{\mu}^{i}|_{2^{*}}^{2^{*}} - |u^{-}|_{2^{*}}^{2^{*}}| \leq \\ \leq k_{6}(|u^{-}|_{2^{*}}^{2^{*}-1}|t\tilde{\psi}_{\mu}^{i}|_{1} + |t\tilde{\psi}_{\mu}^{i}|_{2^{*}-1}^{2^{*}-1}|u^{-}|_{2^{*}}) \leq$$

$$(3.24a) \leq k_{6}t^{2^{*}-1}|u^{-}|_{2^{*}}|\tilde{\psi}_{\mu}^{i}|_{2^{*}-1}^{2^{*}-1} + \frac{1}{4}|u^{-}|_{2^{*}}^{2^{*}} + k_{7}t^{2^{*}}|\tilde{\psi}_{\mu}^{i}|_{1}^{2^{*}} \leq \frac{1}{2}|u^{-}|_{2^{*}}^{2^{*}} + t^{2^{*}}[k_{8}|\tilde{\psi}_{\mu}|_{1}^{2N/(N+2)} + k_{7}|\tilde{\psi}_{\mu}|_{1}^{2^{*}}].$$

Then by (3.14) we get immediately (3.15).

Now we are able to show that

(3.25)
$$\sup f_{\lambda}(Q_{\mu}^{1}) < \frac{1}{N} S^{N/2}$$
 if $\nu_{n} \le \lambda < \nu_{n+1}$ and $N \ge 5$ if $\nu_{n} < \lambda < \nu_{n+1}$ and $N = 4$

(resp. sup
$$f_{\lambda}(Q_{\mu}^2) < \frac{1}{N}S^{N/2}$$
 if $\mu_{n+1} < \lambda \le \mu_n$ and $N \ge 5$ if $\mu_{n+1} < \lambda < \mu_n$ and $N = 4$)

for μ small enough.

In order to do this we notice that for every $u \in H_0^1(\Omega)$ such that $||u||^2 - \lambda \int_{\Omega} c(x) u^2 dx > 0$,

$$\sup_{t\in\mathbb{R}} f_{\lambda}(tu) = \frac{1}{N} \left(\frac{||u||^2 - \lambda \int_{\Omega} c(x)u^2 dx}{|u|_{2^*}^2} \right)^{N/2}.$$

Therefore (3.25) holds, if we prove that

(3.26)
$$||u||^2 - \lambda \int_{\Omega} c(x) u^2 dx < S \text{ on } G_1 \text{ (resp. } G_2),$$

where $G_i = \{u \in H^1_0(\Omega) : u = u^- + t\tilde{\psi}^i_{\mu}, u^- \in H^i_-, t \in \mathbb{R}, |u|_{2^*} = 1\}, i = 1, 2.$

Since $u \in G_1$ (resp. G_2), by lemma 3.2. it is easily seen that, if μ is sufficiently small

$$t^{2^*} \le \frac{1}{|\tilde{\psi}_{\mu}^i|_{2^*}^{2^*} - A(\mu)} .$$

Then if $N \ge 5$, using (3.9), (3.11) (resp. (3.12)), and (3.13), for $u \in G_1$ (resp. G_2) we deduce

$$\begin{split} ||u||^2 - \lambda \int_{\Omega} c(x) u^2 dx &= \int_{\Omega} [|\nabla u^-|^2 - \lambda c(x) (u^-)^2] dx + \\ &+ t^2 (||\tilde{\psi}_{\mu}^1||^2 - \lambda \int_{\Omega} c(x) (\tilde{\psi}_{\mu}^1)^2 dx) \leq \\ &\leq \frac{S - \lambda k_9 \mu + O(\mu^{1+\alpha})}{[1 + O(\mu^{1+\alpha})]^{2/2^*}} < S \\ (\text{resp.} &= \int_{\Omega} [|\nabla u^-|^2 - \lambda c(x) (u^-)^2] dx + \\ &+ t^2 (||\tilde{\psi}_{\mu}^2||^2 - \lambda \int_{\Omega} c(x) (\tilde{\psi}_{\mu}^2)^2 dx) \leq \\ &\leq \frac{S + \lambda K_{10} \mu + O(\mu^{1+\alpha})}{[1 + O(\mu^{1+\alpha})]^{2/2^*}} < S) \end{split}$$

for μ sufficiently small.

In case N = 4, by (3.9), (3.10), (3.11), (3.13), (3.14) and (3.24a), we obtain

$$(3.27) ||u||^{2} - \lambda \int_{\Omega} c(x) u^{2} dx \leq$$

$$\leq (\nu_{n} - \lambda) \int_{\Omega} c(x) (u^{-})^{2} dx + \frac{||\tilde{\psi}_{\mu}^{1}||^{2} - \lambda \int_{\Omega} c(x) (\tilde{\psi}_{\mu}^{1})^{2} dx}{|\tilde{\psi}_{\mu}^{1}|^{2}} |t\tilde{\psi}_{\mu}^{1}|^{2} \leq$$

$$\leq (\nu_{n} - \lambda) \int_{\Omega} c(x) (u^{-})^{2} dx + \frac{S - \lambda k_{11} \mu |\log \mu| + O(\mu)}{1 + O(\mu)} (1 - \frac{3}{4} |u^{-}|^{4} + k_{12} t^{3} \mu^{1/2} |u^{-}|_{4} + O(\mu^{2}))^{1/2} \leq$$

$$\leq (\nu_{n} - \lambda) \int_{\Omega} c(x) (u^{-})^{2} dx + k_{12} t^{3} \mu^{1/2} |u^{-}|_{4} +$$

$$+ \frac{S - \lambda k_{11} \mu |\log \mu| + O(\mu)}{1 + O(\mu)} (1 + O(\mu^{2})) ,$$

$$(\text{resp.} \quad \leq (\mu_{n} - \lambda) \int_{\Omega} c(x) (u^{-})^{2} dx + k_{13} t^{3} \mu^{1/2} |u^{-}|_{4} +$$

$$+ \frac{S + \lambda k_{14} \mu |\log \mu| + O(\mu)}{1 + O(\mu)} (1 + O(\mu^{2})) .$$

We put

$$B(\mu, u^{-}) = (\nu_{n} - \lambda) \int_{\Omega} c(x) (u^{-})^{2} dx + k_{12} t^{3} \mu^{1/2} |u^{-}|_{4}$$

$$(\text{resp.} = (\mu_{n} - \lambda) \int_{\Omega} c(x) (u^{-})^{2} dx + k_{13} t^{3} \mu^{1/2} |u^{-}|_{4})$$

and we observe that

(3.28)
$$B(\mu, u^{-}) \le 0 \text{ or } B(\mu, u^{-}) \le \frac{k_{15}\mu}{\lambda - \nu_n} \left(\text{resp.} \le \frac{k_{16}\mu}{\mu_n - \lambda}\right)$$
.

So using (3.27) and (3.28) we get (3.26).

Now set $u = u^- + t\tilde{\psi}^1_{\mu}$ with $u^- = \sum_{k=1}^n a_k v_k \in H^1_-$ (resp. $u = u^- + t\tilde{\psi}^2_{\mu}$ with $u^- = \sum_{k=1}^n b_k m_k \in H^2_-$).

By lemma 3.2. we infer

$$\begin{split} f_{\lambda}(u) &\leq \frac{1}{2} \int_{\Omega} (|\nabla u^{-}|^{2} - \lambda c(x)(u^{-})^{2}) dx + \frac{t^{2}}{2} \int_{\Omega} (|\nabla \tilde{\psi}_{\mu}^{1}|^{2} - \\ &- \lambda c(x)(\tilde{\psi}_{\mu}^{1})^{2} dx - \frac{1}{2^{*}} \left[\frac{1}{2} |u^{-}|_{2^{*}}^{2^{*}} + t^{2^{*}} (|\tilde{\psi}_{\mu}^{1}|_{2^{*}}^{2^{*}} - A(\mu)) \right] \leq \\ &\leq \frac{1}{2} \sum_{k=1}^{n} \left(1 - \frac{\lambda}{\nu_{k}} \right) a_{k}^{2} + \frac{t^{2}}{2} \int_{\Omega} (|\nabla \tilde{\psi}_{\mu}^{1}|^{2} - \lambda c(x)(\tilde{\psi}_{\mu}^{1})^{2}) dx - \\ &- \frac{t^{2^{*}}}{2^{*}} (|\tilde{\psi}_{\mu}^{1}|_{2^{*}}^{2^{*}} - A(\mu)) - \vartheta \left(\sum_{k=1}^{n} a_{k}^{2} \right)^{2^{*}/2} \end{split}$$

where

$$\vartheta = \frac{N-2}{4N} \left(\frac{1}{|c|_{N/2}} \frac{1}{\nu_n} \right)^{2^*/2}$$

$$\left(\text{resp.} \quad f_{\lambda}(u) \le \frac{1}{2} \sum_{k=1}^{n} \left(1 - \frac{\lambda}{\mu_k} \right) b_k^2 + \frac{t^2}{2} \int_{\Omega} \left(|\nabla \tilde{\psi}_{\mu}^2|^2 - \frac{\lambda}{2^*} (|\tilde{\psi}_{\mu}^2|_{2^*}^{2^*} - A(\mu)) - \vartheta' \cdot \left(\sum_{k=1}^{n} b_k^2 \right)^{2^*/2} \right)$$

where

$$\vartheta' = \frac{N-2}{4N} \left(\frac{1}{|c|_{N/2}} \frac{1}{|\mu_n|} \right)^{2^*/2} \right).$$

This easily implies that

(3.29)
$$f_{\lambda}(u) \leq 0 \quad \text{on} \quad \partial Q_{\mu}^{1} \text{ (resp. } \partial Q_{\mu}^{2}),$$

for R_1 and R_2 suitable large.

The final step is to show that

(3.30)
$$f_{\lambda}(u) \ge \alpha > 0$$
 if $u \in H^{1}_{+}(\text{resp. } H^{2}_{+}), ||u|| = R_{3}$.
Set $u = \sum_{i=m+1}^{\infty} d_{i}v_{i} + \sum_{j=1}^{\infty} h_{j}m_{j}$ (resp. $u = \sum_{i=1}^{\infty} d_{i}v_{i} + \sum_{j=m+1}^{\infty} h_{j}m_{j}$).

We have

$$\begin{split} f_{\lambda}(u) &= \frac{1}{2}||u||^{2} - \frac{\lambda}{2}\left[\sum_{i=n+1}^{\infty}d_{i}^{2}\int_{\Omega}c(x)v_{i}^{2}dx + \right. \\ &+ \left.\sum_{j=1}^{\infty}h_{j}^{2}\int_{\Omega}c(x)m_{j}^{2}dx\right] - \frac{1}{2^{*}}|u|_{2^{*}}^{2^{*}} = \\ &= \frac{1}{2}||u||^{2} - \frac{\lambda}{2}\left[\sum_{i=n+1}^{\infty}d_{i}^{2}\frac{1}{\nu_{i}} + \sum_{j=1}^{\infty}h_{j}^{2}\frac{1}{\mu_{j}}\right] - \frac{1}{2^{*}}|u|_{2^{*}}^{2^{*}} \geq \\ &\geq \frac{1}{2}||u||^{2} - \frac{\lambda}{2\nu_{n+1}}\left(\sum_{i=n+1}^{\infty}d_{i}^{2} + \sum_{j=1}^{\infty}h_{j}^{2}\right) - k_{17}||u||^{2^{*}} = \\ &= \frac{1}{2}||u||^{2}\left(1 - \frac{\lambda}{\nu_{n+1}}\right) - k_{18}||u||^{2^{*}} \end{split}$$

(resp. $f_{\lambda}(u) \ge \ldots \ge \frac{1}{2}||u||^2(1-\frac{\lambda}{\mu_{n+1}})-k_{19}||u||^{2^*})$.

Then (3.30) follows for $||u|| = R_3$ small enough.

Thus we can apply theorem 2.2. to the functional f_{λ} . By this and by lemma 2.1., we deduce that there exists a non trivial solution u of (1.1) such that

$$Z(u) \leq n+1$$
.

4. Proof of Theorem 1.2.

Since $2 , standard computations show that the functional <math>f_{\lambda}$ fulfils the (P.S.) condition.

Let H_+^i , H_-^i , i=1,2 be the sets introduced in (3.1) and in (3.2) respectively, and set

$$Q^{1} = \{u^{-} + tv_{n+1} : u^{-} \in H_{-}^{1}, ||u^{-}|| \le R_{2}, t \in [O, R_{1}]\}$$

$$Q^{2} = \{u^{-} + tm_{n+1} : u^{-} \in H_{-}^{2}, ||u^{-}|| \le R_{2}, t \in [O, R_{1}]\}.$$

Then, if $\nu_n \le \lambda < \nu_{n+1}$ (resp. $\mu_{n+1} < \lambda \le \mu_n$), it is easily seen that for R_3 small enough

$$f_{\lambda}(u) \geq \alpha > 0$$
, $\forall u \in H^{1}_{+} (\text{resp. } H^{2}_{+}), ||u|| = R_{3}$.

Moreover, since $c(x) \in L^{p/(p-2)}(\Omega)$, if R_1 and R_2 are sufficiently large, we obtain

$$f_{\lambda}(u) \leq 0$$
, $\forall u \in \partial Q^1 \text{ (resp. } \partial Q^2)$.

Then by theorem 2.2. and by lemma 2.1. the conclusion follows. \diamond

REMARK 4.1. We notice that, if $\lambda \in]0, \nu_1[$ (resp. $\lambda \in]\mu_1, 0[$), the operator $(-\Delta - \lambda c(x))$ is coercive. Then, the existence of a solution $u \geq 0$ of (1.1) is well known for $2 (if <math>p \in (2, 2^*)$ see for instance [AR], if $p = 2^*$ see [BN]).

If c(x) is a smooth function and $c(x) \ge 0$ (resp. $c(x) \le 0$), u is a classical solution and, by the strong maximum principle, u > 0 (i.e. Z(u) = 1).

REFERENCES

- [A] Ambrosetti A., Differential equations with multiple solutions and nonlinear functional analysis, Proc. Equadiff. 82, Springer Lec. notes (1983), 10-37.
- [AR] AMBROSETTI A. and RABINOWITZ P.H., Dual variational methods in critical points theory and applications, J. Funct. Analysis 14, (1973), 349-381.
- [BF] BENCI V. and FORTUNATO D., A remark on the nodal regions of the solutions of some superlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 123-128.
- [BK] Brezis H. and Kato T., Remarks on the Schrödinger operator with singular complex potential, J. Math. Pures et Appl. 58 (1979), 137-151.
- [BL] BAHRY A. and LIONS P.L., Solutions of superlinear elliptic equations and their Morse indices, preprint.
- [BN] Brezis H. and Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
- [C] COFFMAN C.V., Lyusternik-Schnirelman theory: complementary principles and the Morse index, Nonlinear An., Theory Methods & Applications, 12 n. 5 (1988), 507-529.
- [CFP] CAPOZZI A., FORTUNATO D. and PALMIERI G., An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré, Anal. Nonlineaire, 2 (1985), 463-470.
- [CFS] CERAMI G., FORTUNATO D. and STRUWE M., Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré, Anal. Nonlinaire, 1 (1984), 341-350.
- [CH] COURANT R. and HILBERT D., Methods of mathematical physics, Vol. I, Interscience, New York, 1953.

- [F] FORTUNATO D., Problemi ellittici con termine non lineare a crescita critica, Proceedings of the meeting "Problemi differenziali e teoria dei punti critici" (Bari, marzo 1984).
- [MM] Manes A. and Micheletti A.M., Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. U.M.I. (4) 7, (1973), 285-301.
- [P] POHOZAEV S.J., Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Doklady 6, (1965), 1408-1411.