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SOMMARIO. - In questo lavoro, mediante la teoria di Morse, viene data
una stima del numero delle regioni nodali delle soluzioni del problema
=Au = de(D)u+ [uf2uinQ,u € HNQ), dove @ C RV,
N > 3, 2unaperto connesso, limitato e regolare,p € (2,2 N/(N —2)]1,
c(z) € LUQ).q >p/(p—2) e €R.

SUMMARY. - In this paper we are concerned with the problem —Ay =
Ae(z)u + Iulp‘zu inQ,u € H(}(Q),whereQ C RV N > 3,is
a smooth bounded domain, p € (2,2N/(N - 2)], c(z) € LI(Q),

g > p/(p—2)and ) € R. Using the Morse theory, we estimate the
number of the nodal regions of the solutions of the above problem.

1. Introduction.

This note deals with the problem of estimating the number of the nodal
regions of the solutions of the nonlinear elliptic problem

(1.1) ~Au=A(D)u+ |[ul~2y in Q
' u € Hy(Q)

where Q C R¥, N > 3, is a bounded smooth domain, ) is a real param-
cter, 2 <p< 27 =2N/(N -2) and o2) € L(Q), ¢ > p/(p—2).
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Throughout thispapcr | || |- denote respectively the norms in
HY{(Q) and LT(Q), (1 < r < +00), 2* is the critical Sobolev exponent
for the embedding H (} (Q) 2, LT(Q), namely the exponent such that j
is continuous but not compact, and S defined by

S=inf{julP: weHNRQ), l|uhe=1}

is the best constant for the Sobolev embedding Hi (Q) -1 L2'(Q).
Solving problem (1.1) is equivalent to finding critical points of the
energy functional

(1.2) Hu) = % fn |Vu|2da:—-;— fg c(z)uldz—

1
—~ Efn lulPdz, u € H}(Q).

Since c(z) € LI(Q), ¢ > p/(p — 2), standard computations show
that f, € C*(H}(Q),R) and that

(1.3) dzf;(u) [wy,w2] =/ Vw1Vw2da:—)\/ () wywrdz—
Q Q
—(p—l)/ |u|”‘2'w1w2da:, wl,qu‘GH&(Q) )
9) - ‘ :

If u is a critical point of f, we denote by Z (u) the number of the
nodal regions of u, i.e.

Z(u) =# {connected components of Q\uv'({0}},

and by i( u) the Morse index of u, i.e. the number of the negative eigenval-
ues (repeated according to their multiplicity) of the operator f;'(u) defined
by (A'(w)wi,w2) = & fr(u) - [wr, w2].

Recently Benci and Fortunato [BF] have investigated the same ques-
tion for (1.1) under the condition c(z) = 1 and, using Morse theory have
proved that, if A\n < X < Ane1, (i, 1 € N*, being the i-th eigenvalue of
—A with zero Dirichlet boundary data), then there exists at least a solution
of (1.1) with Z(u) < i(u) = n+ 1.
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A relation between the Morse index and the nodal regions of solutions
for elliptic problems have been proved also by C.V. Coffmann [C] when
N = 1 and by Bahry and P.L. Lions [BL] for equations with superlinear
nonlinearities. :

In order to study (1.1), we consider the linear problem related to (1.1)

(1.4) —Au=ve()u, ueH(Q).

We suppose that the measure of the set To = {z € Q : c(z) =0} is
zero. Then it is well known that the eigenspace of (1.4) corresponding to
zero is {0}.

SetTi ={z€Q :c(z) >0}and T = {z € Q : c(z) < 0}.
Manes and Micheletti in [MM] proved that, if the measure of T} (resp.
T3) is positive, then the positive (resp. negative) eigenvalues of (1.4) are a
divergent sequence

- O<u<m<n<L...

(resp. ...pu3<p2<p1<0).

Let us remark that, when the measure of the set T} (resp. T3) is zero,
there are no positive (resp. negative) eigenvalues of (1.4). Under this as-
sumption, it is easy to see that, if p < 2* and ¢(z) is a smooth function
(e.g. an Holder continuous function), then, for every A > O (resp. A < 0),
the problem (1.1) possesses a positive solution. On the contrary, if Q is
starshaped, p = 2*, c(z) < 0 ae. (resp. c(z) > 0 ae) and A > 0
(resp. A < 0), using the Pohozaev identity, it is not difficult to show that
the problem (1.1) has no solution. ’

In what follows if p < 2* we assume that the condition below holds

(H1) if X > 0 (resp. X < 0), the measure of the set T (resp. T3) is
positive. '

While if p = 2*, in order to overcome the lack of compactness of fy,
we need the stronger condition

(H2) ifX > 0 (resp. A < 0), there is a ball B,(z0) = {z € RY :

|z — 20| < p} C Q, such that inf c(z) >0 (resp. sup c(z) < 0).
2€B,(z0) z€B,(20)
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The main results of the paper are the following theorems.

THEOREM 1.1. Let p = 2* and suppose that ( H2) holds. IfFN > 5
and v, < X < Uns1 OF finsel < A < Uiy, n € N*, then the problem (1.1)
has at least a non trivial solution u with Z(u) <i(uy=n+1.IfN=4
the same coniclusion holds when v, < A < Upt1 OF fine1 < A < fig,
nc N+,

THEOREM 12. Let2 < p < 2*, N > 3. If (Hy) holds and v, <
A < Unt1 OF g1 < ) < in, n € N*, then the problem (1.1) has at least
a non trivial solution u with Z(u) < i(u) = n+ 1.

2. We start proving a lemma which gives an upper bound to the number
of the nodal regions of a solution 4 of (1.1), through the Morse index of u.
Analogous results were obtained in [BF] and in [BL].

Our proof contains also an estimate of the Morse index of the restric-
tion of u to each nodal region.

LEMMA 2.1. Let u be a solution of (1.1). Then we have

(2.1) Z(u) <#(u) < +o00.

Proof. (2.1) trivially holds if u = 0. Let u be a non trivial solution of
(1.1). Since c(z) € L¥?, N > 3, using a result of Brezis and Kato [BK],
we obtain u € L}(Q), forevery t, 1 < t < +00, 5o, by classical results
veC¥(Q),0<a<.

Consider the linearized problem

(22)  —Av=qlic(z) +(p— DuP2lv, veH{(Q).

It is easy to see that  # O is an eigenvalue of (2.2) if and only if
(n— 1) /nis an eigenvalue of f)/(u).
~ So, since o(z) € LV?*9(Q), ¢ > 0, the spectrum of f'(u) is dis-
crete (see [CH], [MM]) and i(u) < +00.
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Now, let Q;, ; = 1,...,s be the connected components of
Q\u1({0}) and set o

u(z) =z €y
uj(:z:)={ J=1,2,...,s.
0 .'L'¢Qj

Obviously u; € Hy(Q) NHI(Q,) NC**(£;), 0 < a < 1, is 2 solution
of the problem

(2.3) —Av=Jc(z)v+ [vP2v, ve H(Q).

Let i be the Morse index of u, i.e. the number of the negative eigen-
values of the restriction of fJ'(u;) to H}( Q).

If we denote with Ye[ h] the k-th eigenvalue of the linear problem
—Av =qhv,v € Hy(Q)), h € LN?*9(Q,), 6 > 0, from

Vu;Vpdzs = / (Ae(z) + Iujlp'z)ujgodx , QE H&(Q,-) ,
Qy

Q;
we get that yx[ Ac(z) + |u;|P~2] = 1, for some k.

Since u; does not change signin Q;,itis k = 1 (see [MM]).
Moreover, by the comparison property of the eigenvalues we deduce

I=mlxe(z) + [u; "] > mlAe(2) + (p — 1)|uy P27 .

Then i; > 1 (see [A]) and (2.1) holds. 4]

To prove theorem 1.1 and theorem 1.2 we shall use the following result
contained in [B] and in [BF].

THEOREM 2.2. Let I be a C? functional on a real Hilbert space E
andlet E =W & V, where W is an n-dimensional space and V = Wi,

Suppose that for each critical point u of I, I"(u) has a discrete spec-
trum and that I satisfies the Palais-Smale condition (PS)in] — oo, BI,
(B>0),ie.: ' ‘

any sequence {um} C E, such that I(u,) — c, ¢ < B, and
I'(up) — 0, hasa converging subsequence.
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Moreover assume that there exist constants Ry, R», R3 > 0, with
Ri > R3,andz €V, ||z|| = 1, such that |

(2 .4) sup I(Q) < B
(2.5) I(w) >¢>0, ueW?, ||ul|=Rs
(2.6) (W) <0, uwedqQ

where () is the set

Q={y+tz:yeW,|y||< Rz, t €[0,R1]}.
Then I possesses a critical point u with Morse index
(u) <n+1.

Moreover ¢ < I(u) < sup I(Q). ¢

3. Proof of theorem 1.1.

First of all we notice that, if p = 2*, f) satisfies the (P.S.) condition
in the energy range ] — oo, % S™/? [ (see [BN], [CFS]).

We denote by v; and m normalized eigenfunctions corresponding re-

spectively to the eigenvalues v; and p; of the problem (1.4) and by M (v;)
and M (pu;) respectively the corresponding eigenspaces.
, By classical results of regularity the functions v; and m;,j = 1,2,...,
belong to C%*(Q),0 < a < 1. Besides they are a complete ortonormal
system in H} (Q) (see [MM])).

Let us introduce the sets

1 ! = : : L= :
(3.1 H, jE%lM(vj)ejég+M(M;), HZ ,%nM(V’)

(32) H?

My M), H:= @ M(y
,-2?»,1 (“1)@]-§E+ (v5) z ,-2, (15)

where the closure is taken in Hj (Q).
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Now, if zp and B, = By(z0) are respectively the point and the ball
in hypothesis ( H,), we set for each u>0

(3.3) Yu(2) = $(2) uy(z)
where ¢ € C§°(B,), ¢(z) = 1in B2 = Bpja(z0), and

[N(N —2)pu]N-2/4
[p+ |.'L' — % |2](N—2)/2 ’

uu(x) =

Moreover, let us denote by Pi,Pi i=1 , 2, the projector operators
on the space H} and H' respectively.
So, arguing as in [BF], we set

i P, g,—Piy,
34 = —+Yu__ T =12
CY R T T e R

and

Qu={v +ti:u € H , |ju||<R:, te [0,Ri1}.

We claim that, when N > 5 and v, < A< Unp (TeSp. pipe1 <
A< pn),n €N, the assumptions of theorem 2.2. are verified if we put
B=%SV2, vV = H! (resp. H?), W = H! (tesp. H2),Q = Q, (resp.
Q}), with suitable y, R;, Rz, Rs. The same statement holds, if N = 4
and v, <X < Upe1 ((SP. L1 < A < p).

In order to prove our claim we recall the following estimates, for
p — 0 (see [BN], [CFP], [F])

(3.5) 1ull” = 872 + O(uV-2/2)
(3.6) a3 = SN2+ O(uM/2)
(3.7) [Yul1 = O(uV-214y

(1) Here and in the sequel we denote by O(u°), a>0, a function g such that lgw) | <
const. u® near p = 0.
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Moreover easy calculations show that

(38) [ = { QDT NIVE) for27/2 <r <2
‘ #lr =1 o(pt'?) forl<r<2and N=4.
The next lemmas hold

LEMMA 3.1. If ¢, and J"‘ (1= 1,2) aredefined as in (3.3) and (3.4),
then, as u — 0, we have |

) N/2 l+a (2 .
(3.9) ||p;¢”||2={3 +O(uM), a>0®, if N>5

S? + O(p) if N=4
1i=1,2,
ziper_ [OWY) i N>S5
(3.10) hl)“ 2% 1 = {0(”’1/2) if N: 4 1= 1,2 s
.. [N=-2 (1+a)(N+2)
whereb—mm{ T AN =D }

Ti N2 kip+ O(p'*®) if N2>35
(3.11) /C($)|¢u(’”)| dz 2 {kzullogul +0(p) if N=4
0

1=1,2,when inf c(z) >0,
. 2€B,

i 12 —k3p + O(p'*®) if N >35
(3.12) /c(:n)ltl),,(z)l dz < {_.k4p,|log pl+O(p) f N=4
Q

i1=1,2,when sup c(z) <0,
z€B,

S% + O(p) if N=4

. . N/2 l+a :
(3.13) |P1¢,,|§.={S +0(p*®) if N>5 =12,

(2) In what follows with the same symbol « we will indicate different positive
exponents.
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i[OOy i NSs

where ky (s = 1,...,4) are suitable positive constants (3 .

LEMMA 32. Ifu = = + t¢}, withu~ € H' (i=1,2) andt € R,
for i small enough, we have

* ~ . ® 1 - *
(3.15) |uf3e > [th3: + 5|u-|§. — 2" A(p)

O(u™*®) if N>5
Wwhere A(u) = {08}/3; ifN=4.

Proof of lemma 3.1. Let us set P1y, = 3"}, axvs and P2y, =
E,l:-—-l bxmy.

Verification of (3.9)

,, 1/2
(3.16) ||Ply,||= (E%) =
k=1
1/2

n 2
= [Eu,f (/ﬂ c(m)ﬂl),,(z)vk(x)dZ) ] <

k=1

. 1/2

< (Setm) [ oo <
k=1 Q

< const. |c|s|tpls/s-1y ,

where 1 < s < gq.
Respectively

n 1/2
(3.17)  ||P24,|| < (Zuilmk&) /ﬂ |e(2) Py ldz <
k=1

< const. [cls|¥uls/s-1)

(3) In what follows with k, (se N) we will deaote positive constants.
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where 1 < s < g.
So by (3.8), with suitable r, (3.16) and (3.17) we obtain

‘- O(u#®/2y i N>5 .
319 IEwl={ ot ) A NZs =L

Thus by (3.5) and (3.18) it follows

“Pi'/’u”2 = ”‘/"MHZ - ”Pi'/’AuHZ =

_[SN2 4+ O(u**) if N>S (=12
T S%+ 0w if N=4 oo
Venﬁcaﬁon of (3.10)
Arguing as above we obtain
i Joutenry i N>s
(3.19) |PLYyu|oo = {O(ul/z) N4 % 1,2.

For N > 5, combining (3.8), (3.9) and (3.19) we get

N 1 e
AT R [Yu — Piopl3.m] <
<ISM2 + O )2 ([ylaeos + [Pl ¥ <

< [SN/2 + O(M““)](1—2*)/200nst.[O(p(N_Z)/4) + O(“gua%gnz)] .
Then, for 4 — 0, we have

[Wi5ci =0 i=1,2,

where b= min N-2 (1+a)(N+2)] l
- 4 ' 2AN-=-2) 2"
Analogously, in case N = 4, (3.10) follows by (3.8), (3.9) and (3.19).

Verification of (3.11)
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Setk = inf c(z).If N > 5, we have
z€B,

2 4 = 2 = [N(N = 2)u]¥-2/2
/‘;C(m)wpdx - -/B:p(C(x)¢ (@) =k [+ |z — zo|*]VN-2 dz+
= [N(N —2)u](¥N-2/2

+ k
Ry [p+ [z — 3o 2]N-2

[ -puee
R¥N\B, [u,+ |$ - m0l2]N—2

dz—

dz >

> u(N-2/2 / [e(2)¢?(3) — K[ N(N — 2) | N-2/2 ;
- BP\Bp/Z [I-lr'l" |$ — T |2]N—2

~ L[N(N =2)]¥-2/2 L [N(N = 2)]V-2/2
_/RN\Bpk [z zoPHD 4| *H vt (1% |z|21V-2

Therefore, by (3.9), (3.19) and the above relation

| cta) i s = | AP BIPR—(PE$?) > ks O(ut*) .

In case N = 4, arguing as in [BN] (see verification of (1.13)), we
have

(3.20) /c(z)¢3dx=/c(x)¢2(z) __Ju dz >
Q Q

(b |z —z0[?)2 ™ =

2 i 8u
2 [ , (DF@ B da

- 8u
+ k dzx =
/B,, (b + [z —2o2)2 ™

= O(p) + ksp|log |

So, from (3.9), (3.19) and (3.20) we obtain the relation (3.11).

Verification of (3.12)
It is analogous to (3.11)’s one.
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Verification of (3.13)
Easy calculations prove that (see also [CFP], Remark (2.4))

(321) ||Piulze — [9ul3e] < const. {9321 |PE huloo + | PEep,[30} .

Incase N > 5, from (3.19) it follows
(3.22) |Pi, 5 = O™ i=1,2.
So, by (3.8), (3.19), (3.21) and (3.22) we get
(3.23) [I1Pivul3e — |9ul3e| = O(u™®) i=1,2.
Therefore, combining the relations (3.6) and (3.23) we obtain
|Pigl3 = S¥? + Oo(u™t) i=1,2.

Analogously in case N = 4 we deduce the relation (3.13) by (3.6),
(3.8), (3.19) and (3.21).

Verification of (3.14)
It follows immediately from (3.7), (3.9) and (3.19). &

Proof of lemma 3.2. Arguing in a similar way than in [CFP] (see
(2.10)), by (3.10) we deduce that

(324 |lul3s — [tPil3 — Ju7134] < |
< ks (|5 tPh11 + [t 52w |2e) <

1y i mioe | R . T2t
(3:240) < kst” uTlee[BLBTE+ Slum B+ krt” [BLET <

1 » - ~ ~ =
< B+ P Thsl B + k18,17
Then by (3.14) we get immediately (3.15). ' ¢

Now we are able to show that

1 if vy <A< and N >5
1 2 N/2 n N nt+1 =
(325  sup Q) < S if y, <\<wy; and N =4
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1 if <A< dN>5
(resp. sup f,\(Qz) < FSN/z if Z:: <A< z: :;lld N ;4)

for 4 small enough.

In order to do this we notice that for every u € H}(Q) such that
llull* = X [ o(z)u2dz > 0,

2 _ 2 5 \ NJ2
sup fr(tu) = 1 (”““ Mo o(D)u d:z:) |

teR N IuI%'

Therefore (3.25) holds, if we prove‘that
(3.26) |lu|f> - )\/ c(z)u’dz < S onGy (resp. G2)
Q

where G; = {u € Hy(Q) :u=u +tfi,u~ € H ,t R, |u]p. = 1},
1=1,2, ,
Since u € G (resp. G), by lemma 3.2. it is easily seen that, if 4 is

sufficiently small
1
2 *

< = .
IS ()

Then if N > 5, using (3.9), (3.11) (resp. (3.12)), and (3.13), for
u € G (resp. G2) we deduce

||ulf? —A/ c(:z)uzd:z=/[IVu—lz—Ac(a:)(u“)zldm+
Q Q

+ (PP - A /ﬂ (2 (1) 2dz) <

S — ko + O(u'*®)
[1+ O(M1+a)]2/2*

(msp.=/[|Vu’|2—)\c(:z:)(u")z]d:r+
Q

<S

LAk —A/Q (2 ($)2dz) <

S+ AKiop+ O(plte)
[1+ O(“l+a)]2/2* < S)

for 4 sufficiently small.
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Incase N = 4, by (3.9), (3.10), (3.11), (3.13), (3.14) and (3.24a), we
obtain

(3.27) ||u||2—)\/ c(z)ulds <
Q
- 71 2 _ 71 2d .
<Gn - [ dor(w)dos ol Ifglcl;w)('/’u) 2Bl <
m
C2 . S—Nkupllogal+ O 3, _
<= [ da)(u)idgs T2REEHEOW (1 2y

+ kpt*p!?|u|s + O(u?)1? <
< (u,,-x)f A z)(u)2da + kipt* pl?|u |4+
Q

. S — Aknp|log p| + O(u)
1+ O(p)

(resp. < (im— ) f o(2) (u™) 2 dx + kst 2 |u=|s+
: Q

+ S+ )\k14p|log }Ll + O(/.l.)
1+ 0(u)

(1+0(u?),

(1+0(p?)) .
We put

B(uyu) = (v =) [ o)) 2ot bt ul
Q

(resp. =(u,,—x)/ c(z)(u7)dz + ki3t p! 2 |u~|s)
Q

and we observe that

_ _ kisu kis 1
28 . .
(3.28) B(u,u)SOOrB(u,u)sx__yn (reSp Sﬂn—A)

So using (3.27) and (3.28) we get (3.26).

Now set u = u~ + t{b,l‘ with u= = P agvy € H! (resp. u =
u + tt/J;‘: withu™ = Y ¢_; bpmi € H2).
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By lemma 3.2. we infer

1 2 .
Alw) < —f (IVe™> = Me(2) (u7) ) dz + 1 f(le/;1|2_

IA

—Ae(2)(9,)2da —-[ ™3 + (19} |2~—A(u))]

22<1_ >°k+—/(|V¢ |2—>\C(z)(¢) Ydz—

/ » 2*/2
- ;(I@,‘,I%I ~ A(p) -9 (Za%)
k=1

0_N-2( 1 i)z'/z
a 4N lCIN/Z Un
(rcsp filu) < = 5 z; (1 - —) + —/ (|V11)2|2

n 2*/2
—e(2)(§2)?)ds — —(|¢2 —Ap) - ¢ (Z b%)
k=1

where

where
g N-2 ( 11 )2/2 '
4N |ClN/2 | 12n)|
This easily implies that
(3.29) f(u) <0 on 8Q, (resp. 8Q?),

for R; and R, suitable large.
The final step is to show that

(3.30) Alw) >a>0 if ue H (resp. H?), ||u|| = Rs .

Sety = Z div; + E hjm; (resp. u = zd,v, + E hjmy).

1=m+1 J=m+1
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We have

fi(u) = Ilull ——[

Z dZ/ c(:z:)'v,-zdm+

i=nt 1

[> o] 1 .
+ Eh?/ c(:z)mf-d.z} - ?-|u|%. =
=1
X\ 1 ;21
nunz——[z A } = lulf

=n+1

1 .
> i ~ 5 (2 & + th) — kullulf?" =

i=nt+1

1 2 A 2‘
= — 1] —— 1} —-%
Al ( vn+1> 18 ||ul]

(resp. fr(u) > ... > HulP(1 = 22) —kiolful[*") .

Then (3.30) follows for ||u|| = R3 small enough.

Thus we can apply theorem 2.2. to the functional fy. By this and by
lemma 2.1., we deduce that there exists a non trivial solution u of (1.1)
such that

Z(u) <n+1. &

4. Proof of Theorem 1.2.

Since 2 < p < 2*, standard computations show that the functional
£, fulfils the (P.S.) condition.

Let HY, H!, i = 1,2 be the sets introduced in (3.1) and in (3.2)
respectively, and set

={u" +tvp1 tu” E H!, ||v"|| € R2, t € [O,R11}
Q2 = {‘u._+ tmn+1 U € HE) “u’—” S RZ) te [O: Rl]} .

Then, if U < X < Vi1 (T€SP. tne1 < X < pg), it is easily seen that
for R3 small enough

fA(w) >a>0, YueH] (resp. H2), |lull = Rs .
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Moreover, since c(z) € LP/*-2(Q), if R; and R, are sufficiently
large, we obtain

Aw) <0, YuedQ' (resp.dQ?).

Then by theorem 2.2. and by lemma 2.1. the conclusion follows. &

REMARK 4.1. We notice that, if ) €10,1[ (resp. X €]u1,0[),
the operator (—A — A\c(x)) is coercive. Then, the existence of a solution
u > 0 of (1.1) is well known for2 < p < 2*(if p € (2,2%) see for
instance [AR], if p = 2* see [BN]).

If ¢c(z) is a smooth function and c(z) > 0 (resp. c(z) < 0), u
is a classical solution and, by the strong maximum principle, u > 0 (i.e.
Z(u) =1).
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