ON THE GENERAL HYPERPLANE SECTION
OF A CURVE IN CHAR. P (%)

by EDOARDO BALLICO (in Trento) (**)

SOMMARIO. - Sia C una curva di grado d in P™, n > 4. In caratteristica
positiva la generica sezione iperpiana, CN\ H, di C Puo avere varie patolo-
gie (e.g. il suo gruppo di monodromia G puo non essere il gruppo simmet-
rico Sg). Assumiamo che il lemma delle trisecanti valga per C. Allora si

dimostra qui che d = 2" conk > n—1eQ ¢isomorfo al gruppo affine
AGL(k,2) suF, el'isomorfismorispettaI'azione di G su CN.H e I'azione
di AGL(k,2) su sz.

SUMMARY. - Let C C P*, n > 4, be a curve of degree d; in characteristic
P > O the general hyperplane section of C may have monodromy group, G,
different from the full symmetric group. Assume that the trisecant lemma holds
for C and that d > 22. Here we prove that d = 2* for some integer k >
n—1and G = AGL(k,2) (the affine group over 5 ): this isomorphism
respects the action of G on the general hyperplane section and the action of
AGL(k,2) on Ff. Furthermore if n >S5,thenp=2.

This note is an addendum to the characteristic p part of the very nice
thesis of J. Rathmann (see [R]).

Fix an algebraically closed field F. All the schemes considered in
this note will be algebraic over F. Fix an integral, non degenerate curve
C C P". Let P™ be the set of hyperplanes of P* and T C C x P™ be
the incidence correspondence. The projection p2: T — P™ is finite and
separable (Bertini’s theorem). Let G be the Galois group of the normal ex-
tension of the function field F (P*") of P o generated by F(I"). Gis called
the monodromy group of the general hyperplane section of C, because it
acts as permutation group of the general fiber of p,. If char(F) = 0,
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then G is always the full symmetric group on deg( C) elements ([H]). This
implies that for a general hyperplane H, any subset S of H N C with
card(S) < n, spans a linear space of dimension card (S) — 1; we will
say that the “linear general position” holds for C (or for CN H) if this last
property is satisfied (in [SV] it is called “general position”). However the
linear general position property may fail if chart (F) = p > 0 (and hence
the Galois group can be smaller); as remarked in [R], to have the linear
general position property (and much more!) it is sufficient to know that the
monodromy group contains the alternating group. From now on we assume
always char(F) = p > 0. As in [B] we will say that the curve C is very
strange if the linear general position property fails for C. In [R], th2.4, J.
Rathmann showed that if » > 4 and C is not very strange then either G
is the full symmetric group or the alternating group or one of the Mathieu
groups My, d = 11,12,23 or 24, in their standard representation (hence
d = deg(C)). Rathmann’s theorem used the classification of 4-transitive
finite groups. Indeed in [R], th. 2.4, it is given also the list of 3-transitive
groups (with the obvious slip of the 3-transitive group My, ); this list ob-
viously gives the possible monodromy groups for not very strange C even
for n= 3. Simultaneously Rathmann proved that if d > 24 and C is very
strange either a general secant line to C intersects C at more than 2 points
(i.e. the “trisecant lemma” fails) or every plane spanned by points of C

- contains at least 4 points of C. The aim of this note is the proof that if
n> 5 and p # 2 the trisecant lemma fails for all very strange curves; if
p = 2 this may not be true (see the examples in 2.2). More premscly we
prove the following result.

THEOREM 0.1. Fix a very strange curve C spanning P*,n > 4; set
d := deg(C); let G be the monodromy group of the general hyperplane
section of C. Assume that the trisecant lemma holds for C and thatd > 22.
Then d = 2* for some integer k > n— 1 and G ~ AGL(k,?2) (the affine
group over F5; this isomorphism respects the action of G on the general

hyperplane section and the action of AGL(k,2) on F2 Furthermore if
n>5,thenp=2.

The proof of this statement uses results and methods from R] ‘and
[BH]. The proof of 0.1 will be given in the first part of §2. Then in 2.1
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we will show that 0.1 gives some restrictions on the degree of very strange
curves. In 2.2 and 2.3 we will consider in more detail the case p = 2;
in 2.2 we will give the promised examples, while in 2.3 we will analyze
the structure of their general linear sections, and show thatif k = n — 1
(the minimal degree case) up to a projective transformation the example
given is the only rational very strange curve for which the general secant
line is not multisecant. In 2.4 we will discuss why the results in [B] and
0.1 allows one to avoid an unpleasant restriction (characteristic O or the
assumption that the linear general posmon principle holds for the general
linear section) in [SV], th. 2.

This paper is dedicated to the memory of Giorgio.

§1. Fix a generically etale dominant morphism e : X — Y with Y
integral and a general point z € Y;; over which a is finite and etale. Set
= deg(a). We want to define the monodromy group M(X/Y) (or
M(Y) if there is no danger of misunderstanding) of . Lett : T — Y
be a morphism with T integral and z € t(T"); assume that the pull-back
(by T)b : Xr — T has ndisjoint section s;, 1 < i < n,i.e. Xp splits
into » components mapped isomorphically by b onto T'. Fix points e, f €
t~1(z). Use t to identify b=(e) and b=1( f) with a—(z); then si(e) —
si(f) induces a permutation of a='(z). The group of permutations of
a~!(z) obtained in this way for general z is called the monodromy group
M(X/Y) of a ([BH)). If X is integral, let L be the normalization of the
degree n extension of function field F (X) /F(Y) and let G be the Galois
group of L /F(Y’). By [BH], prop. 1, G contains M(X/Y") (by 1.2 below
G = M(X/Y), but we do not need this result). In this section, in view of
future applications, we give 2 addenda (1.1 and 1.2) to [BH]; to prove 0.1
we do not need 1.2 and also 1.1 will not be used in a very essential way.

LEMMA 1.1. If T is irreducible in Y,y and X — Y is generically

unramified at the points of T, there is an inclusion of M( Xq[T) into
M(X/Y).

Proof. By assumption there is an open subset W of Y such that W' :=
WNT # @ and X — Y is etale over W. Of course, if we have a section of
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Xw — W' this section will not lift in general to a section of Xy — W,
even on some Zariski open dense subset of W. Assume, after an etale base
change T — T, that X1 — T" has n sections s; defining an element g of
M(Xr/T). We may find etale morphisms Z — A — W with A — W
extending ' — T and such that Xz/Z has d sections w; which, on a
suitable base point, agree with the value of the pull-back of the sections
s;. By the irreducibility of T" and T", these sections w; will agree, when
both are defined, with the pull-back of the sections s;. This means that
g€ MX/[Y). <

REMARK 1.2. If X is integral, then the monodromy group M :=
M(X]/Y) is the Galois group G of the normalization L of F (X) /F(Y).
Indeed take (passing to a Zariski open subvariety) a coveringt : Y’ —» Y
with F(Y') = L. By the definition of the splitting field of a polynomial,
the fiber product j : X' — Y’ of X — Y by ¢ splits into » components
mapped isomorphically over the base, i.e. j has un sections s;. Take a
general z € X. Choosing suitable a, b € t~ (), we may assume that the
permutation of the fiber over z given by s(a) and s(b) is any fixed element
of G, buy the definition of the action of the Galois group as permutation
group. - ¢

§2. Proof of 0.1: Fix an integral non-degenerate curve C C P*, n > 4
such that a general secant line to C intersects C exactly at two points, but
such that a general plane spanned by 3 points of C contains exactly a points
of Cwitha > 4. Set d := deg(C). Let G be the monodromy (or, if you
prefer, the Galois) group associated to C. The assumption on the secant
lines to C means that G is 3-transitive, while the assumption on the secant
planes means that G does not act 4-transitively (e.g. use semicontinuity
and 1.1).

Step 1: Fix 3 general points P;, i = 1,2,3 of C; let V be the plane
spanned by these points. Consider the family T of hyperplanes contain-
ing V. By 1.1 the family T shows that the stabilizer in G of 3 elements has
orbits of cardinality at least d — a. Thus card (G) > d(d—1)(d—2) /(d—
a). Now we want to check thatd — 2 > (a — 1) (a —2). Taking a general
linear projection we reduce to the case n = 4. Take a general hyperplane
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H and fix a point P € C N H and let 7 be the projection of H into P2
from P. By assumption S := 7((C N H)\P) is formed by d — 1 points
such that each line containing 2 of this points contains a — 1 points of S;
projecting S from one of its points, we get the inequality.

Step 2: since the monodromy group is 3-transitive but not 4-transitive
and d > 22, by [R], th. 2.4 (plus the case of M>;), we have to check only
two cases for G.

(a) First assume that there is a prime r and an integer k > 0 such that
d = 1+ g, where ¢ = ¥, and G is a group containing PSL(2,q) and
contained in Aut(PSL(2,q)) =: PTL(2,q) (see below) such that the
representation of G is isomorphic to the restriction of the following action
of PT L(2, q) onthe projective line with g+ 1 elements: and element g of
PT L(2, g) is given by an automorphism ¢ of F, as field and by a, b, c,d €
Fy with ad — bc # 0, so that g(z) = (at(z) + b)/(ct(z) + d) if T €
Fq C P(F}); thus card (G) < card (PTL(2,q)) = (g+ 1)g(q — 1)k,
contradicting the lower bound for card (G) and the inequality for o found
in step 1.

(b) Now assume d = 2* with k > 0 and G ~ AGL(k,2) (the affine
linear group of F¥). Note that any element of G maps coplanar points
into coplanar points (for the monodromy group use semicontinuity), But
consider the action of AGL(k,2) on F¥; AGL(k,2) acts 4-transitively
on the 4-ple of non-coplanar (in F¥) points. Thus ¢ = 4. Now assume
n 2> 5. For the same reason a general ¢-dimensional linear subspace V; of
P? (with1 < ¢t < n—2) spanned by points of C contains exactly 2¢ points
of C. We will see now that for¢ = 3 this implies that p = 2. Projecting V;
into P2 from one of its points we find a configuration T' of 7 points [ P;],
1 <3 < 7, such that each line containing at least 2 points of T' contains
exactly 3 points of T'; up to a change of indices, we choose homogeneous
coordinates such that P, = (1,0,0), P, = (0,1,0), P; = (0,0,1),
Py = (1,1,1) and then Ps = (1,1,0), Ps = (1,0,1), P; = (0,1,1);
p = 2 is equivalent to the fact that Ps, P and P; are collinear. This gives
easily also the inequality k > n— 1 (or see remark 2.1 just below). &

REMARK 2.1. We will show now that 0.1 imposes some restric-
tions (depending on p) on the possible (d,n, p) such that there is a non-
degenerate very strange curve C in P*; in particular we will show that
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d > 2p™? if p > 2. Indeed fix such a-curve C. Assume n > 3. By [R],
th. 2.4, C is strange. Let D C P™! be the image of C under the projec-
tion from the strange point of C; D spans P™! and deg(D) < deg(C)/p.
First assume p > 2. Since C is very strange, by 0.1 a general secant line
to C is multisecant. Thus the same happens to D. Thus D is very strange;
if n—1 > 3, we may continue, until we arrive at a very strange curve
A C P3; we find deg(C) > p™ 3 deg(A); projecting A into P2 we see
thatdeg( A) > 2p. Butif we know more on C or A, we have other bounds
on deg(A) and deg(C); let v(1) (resp. v'(1)) be the number of points at
which a general secant line intersects C (resp. A); note that by construc-
tion v'(1) > v(1); note that A is not contained in a surface of degree less
that v'( 1) ; thus projecting A from one of its points we get a plane curve of
degree at least v'( 1); thus we find deg(A) > 1+ v/(1)(v'(1) — 1), hence
deg(C) > p™3(1+ v(1)(v(1) — 1)). Now assume p = 2. The same
proof works until we are in P* and then show exactly when it fails (see
also 2.3). ¢

REMARK 2.2. Here we assume p = 2. For every n > 4 and every
k > n—1 we give an example (very well-known) of a rational non degen-
erate curve C C P* with deg(C) = 2* and AGL(k,2) as Galois group.
Fixnpowers a(1l) < ... < a(n) of 2 witha(1) = 1 and a(2) = 2. Take
as C the rational curve with affine parametrization (t*(V ... t¥"), Let
V: be a general linear space spanned by C N V; and with dim(V;) = ¢. It
is easy to check that in V; C N V; has exactly the linear structure of F¥.
When k£ > 4 from these examples we get easily non-trivial families of ra-
tional examples: e.g. if 2a(n— 1) < a(n), in the parametrization take
tom™ 4 i t20(n-1) 4 ingtead of t3(" . $

PROPOSITION 2.3. Fix n > 4 and any C as in the exceptional case
of 0.1 (i.e. with monodromy group AGL(k,n) withk > n—1). For
1 <t < n—2 write V; for a general t-dimensional linear space spanned
by CNV;. Then:

(a) Card (CNV;) = 2* for every t.

(b) For every t the set C N V; does not depend (up to a projective
transformation) upon the choice of C.

(c)If k = n— 1 the following holds: the normalization N of C has
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genus g < 1 andif g = O then C is uniquely determined (up to a projective

transformation) and hence it has a parametrization as in 2.2 with a(i) =
2+,

Proof. Part (a) was proved in the last part of the proof of 0.1.

Proof of part (b): This is essentially an elementary assertion about
points which in the terminology of 2.4 below are in linear semi-uniform po-
sition and are “very few”. Fix a subset S of a linear space V,
dim(V) = mand S C V, card (V) = 2™1, S spanning V, such
that for every ¢ and every t-dimensional linear subspace V; spanned by
S N Vi, we have card (S N V;) = 2!, Fix any point P € S. Consider
the projection hp of V\{P} from P onto a projective subspace, W, with
r:=dim(W) = m — 1. SetT := (S\{P}). We have card (T) = 27 !;
furthermore for every t > O and every ¢-linear subspace W; of W with
dim(W;) = t and W, spanned by T'N W;, we have card (TNW;) = 2¢-1,
First we show (by induction on r) the uniqueness of T" up to projective
transformations, i.,e. that T is uniquely determined if we give TV C T
with card (T") = r + 2 and T in linear general position. The case r = 2
was the last part of the proof of 0.1. Now assume r > 2 and the resuit for
r—1; fix (W', T") and project from one of the points of 7" we get exactly
the case r — 1, for cardinality reasons (i.e. the fact that for such Wi, W,_;,
we have W, N W,_1 N T # 0 even when W,_; does not contain W;);
essentially we know r + 1 projections of T and this is more than enough.
Now in the same way we pass from (hp(V\{P}, hp{S\{P})) (for ail
possible choices of P € S)to (V,S).

Proof of part (c): Now we assume k = n — 1; we want to prove that
g < 1 and the uniqueness of C when g = 0. We use induction on n; the
starting point of the induction (n = 4), will be done at the end; for the
moment assume n > 4. Now the same trick as in the proof of part (b)
works even if t = n— 1. Fix C and C’ with the same properties as in 0.1,
C being given by the parametrization of 2.2 with a(;) = 27-1 forall j. We
may choose a general hyperplane H and then move C’ by an element of
Aut(P") in such a way that H NC = H NC' and that the strange point P,
of C is the strange point of C'.- Projecting C and C' from P we find very
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strange curves D and D' in P!, For degree reasons and the proof of 2.1,
D and D' must be very strange curves of minimal degree 22 in P!
(in particular P ¢ C' and the projection C' — D' is purely inseparable
of degree 2). Since the projection is purely inseparable, C' and D' are
birational; thus by inductiong < 1. Assumeg = 0. By induction D and D’
are projectively equivalent; we may assume D = D'. Hence if (u,u?,..)
is the parametrization of D' = D, setting u = t2 and P = (0,1;0;...;0),
we get a parametrization ( A(t),t%,t*...) of C'; changing coordinates we
may even assume that A(t) has no power of 2 as addenda with non-zero
coefficient. Writing down the condition that the plane spanned by 3 general
points of C contains a fourth point z of C' (knowing even that D = D,
i.e. knowing the projection of 7 in H from P we get the linearity of A.
Now assume n = 4, hence d = 16 and use the same notations. Now
deg(D') < 4 for degree reasons and the inseparability of the projection
(hence p = 2 evenif n = 4). Thus D' (hence C' ) has geometric genus
g < 1. Assume g = 0. C' is a projection of the rational normal curve
Y C P? from a 3-dimensional linear space ). Take a parametrization
X = u} u?“', 0 < 7 < 8 of Y; we see that every tangent line to Y
intersects the linear space Q' := {Xp = X, = X4 = X¢ = Xg = 0};
since C' is strange, () has the same property; since Y spans P2, we have
Q = Q'; this means exactly that C = C' (up to a projective transformation).

¢

We stress that we do not have examples of curves C as in 2.3 for the
caseg = 1.

REMARK 2.4. Here we will show that 0.1 and 2.1 allows one to avoid
the assumption of ““general position” (“linear general position” in our termi-
nology) from [SV], th. 2 i.e. to avoid the distinction between characteristic
0 and characteristic p in that statement (not in the proofs!). We do not claim
that 0.1 and 2.1 are necessary for this purpose; the results and methods of
[B] would be sufficient, but 0.1 and 2.1 allows one some simplifications.
Recall from [B] that a finite set S C P™ is called in linear semi-uniform
position if for every ¢t with0 < t < m, there is an integer v(t) such that
every linear space V' C P™ with dim(V)) = t and V spanned by SN V,
we have card (S N V) = v(t); in particular S is in linear general position
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if and only if it is in linear semi-uniform position with v(£) = ¢ + 1 for
every t. The general hyperplane section of every integral non degenerate
curve is in linear semi-uniform postition. By the structure of the proofs
in [SV] (inductive proofs of th.1 and th. 2, the Main Lemma in §4) it is
obvious that to reach our goal it is sufficient to fix an irreducible variety
V of degree d and assume that a general O-dimensional linear section S of
V is formed by d points in linear semi-uniform position (but not in linear
uniform position) in P™, and prove [SV], th. 1, for S. In this situation, part
(i) of th. 11in [SV]is [B], th. 0.1 (or see the proof of part (ii)). We leave
to the reader to check (using also 2.1 and [R], §2) the cases with d <22,
Assume d > 22. By 0.1 we may assume that v(1) > 2 (i.e. s = 1 in the
terminology of [B]). By Castenuovo-Mumford’s lemma it is sufficient to
check that h'(P™, Ig(t)) = O for all ¢ such that (¢ + 1) > {d/m} with
“{z}” meaning “minimal integer > z”’}. Look at [B], lemma 2.5; in our
situation we have s = 1,e:= v(1) —=1 > 1, 3 := e — 1. Fix the integer
t with (t + 1) > {d/m}. By [B], lemma 2.5 it is sufficient to check the
following inequality:

I+e((t—-2)(m-1)+1) >d ($)
If e = 2 (hence z = 1), (§) is easy. By the second part of 2.1, we have
t > 2z + 2; hence we conclude ife > 3. ¢
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