ALGEBRA OF PSEUDO-DIFFERENTIAL C*-OPERATORS(*)

by NOOR MOHAMMAD (in Islamabad)(**).

SOMMARIO.- In questo lavoro si studia l' algebra degli operatori pseudo-differenziali nel contesto delle C*-algebre. In particolare si fa vedere che lo spazio di tutti gli operatori pseudo-differenziali su una varietà compatta è un algebra involutiva.

SUMMARY.- In this paper we study the algebra of pseudo-differential operators in the context of C*-algebras. We essentially show that the space of all pseudo-differential operators on a compact manifold is an involutive algebra.

1. Introduction

Various functional methods have been intensively applied to topology during the last decade. The technique of C*-algebras is quite useful in a number of problems connected with topological properties of manifolds. In particular, C*-algebras and their representations play an important role in K-theory and problems associated with it. Several authors have obtained interesting results concerning pseudo-differential operators in the framework of C*-algebras. Mishenko [5] and [6] interpreted several versions of the theory of pseudo-differential operators in terms of C*-algebras, that is, elliptic pseudo-differential operators on a compact manifold; pseudo-differential operators on a Euclidian space, operators with almost periodic functions etc. Mishenko and Fomenko [7] derived analogues of the well-known Atiyah-Singer index formulas in this situation.

In this paper we study the algebra of pseudo-differential operators in the framework of C*-algebras. We essentially prove that every pseudo-differential operator of order \(m\) admits an adjoint operator, in this case, which is again a pseudo-differential operator. Consequently, we get that the space of all pseudo-differential operators on a compact manifold is an involutive algebra. This kind of problem has been discussed, in the classical case, by Hörmander [1], Kohn and Nirenberg [2] and Kumano-go [3].

(*) Pervenuto in Redazione il 9 settembre 1988.
(**) Indirizzo dell'Autore: Department of Mathematics, Quaid-I-Azam University, Islamabad (Pakistan).
and [4] among many others. The formulation of such a problem naturally arises when one seeks analogues of the Atiyah-Bott formulas for this case.

Regarding the general theory of pseudo-differential operators we refer to [10].

2. Preliminaries

Let A be any C^*-algebra with an identity and K a right A-module. Recall the definition of a Hilbert C^*-module as in ([9] and [5]).

Definition 2.1. A pre-Hilbert C^*-module is a right A-module K equipped with an inner product $\langle \cdot, \cdot \rangle : K \times K \to A$ satisfying $\forall x, y, z \in K, \lambda \in C$ the following conditions:

i) $\langle x, x \rangle \geq 0; \langle x, x \rangle = 0$ only if $x = 0$;
ii) $\langle x, y \rangle = \langle y, x \rangle^*$;
iii) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle; \langle x, \lambda y \rangle = \lambda \langle x, y \rangle$;
iv) $\langle xa, y \rangle = a^* \langle x, y \rangle; \langle x, ya \rangle = \langle x, y \rangle a$.

For all $x \in K$, $\|x\|_K^2 = \|\langle x, x \rangle\|$ defines a norm on a pre-Hilbert C^*-module K. Moreover, it satisfies $\|\lambda a\|_K \leq \|\lambda\|_K \cdot \|a\|$ and $\|\langle x, y \rangle\| \leq \|x\|_K \cdot \|y\|_K$, $\forall x, y \in K, a \in A$. The inner product gives the homomorphism

$$\varphi : K \to K^* = \text{Hom}_A(K, A)$$

which is not, however, an isomorphism for an arbitrary C^*-algebra A, in contrast to the case where A is the field of complex numbers.

For this reason, a supplementary condition is imposed.

v) the homomorphism $\varphi : K \to K^* = \text{Hom}_A(K, A)$ is an isomorphism. This guarantees the existence of an adjoint to any bounded homomorphism of Hilbert C^*-modules.

We shall use the following terminology. A pre-Hilbert C^*-module K which is complete with respect to the norm $\|\cdot\|_K$, together with an inner product satisfying (i)-(iv), is called a Hilbert C^*-module. If (v) is also satisfied, then K is called self-dual. The inner product $\langle \cdot, \cdot \rangle$ will be called a Hermitian product. Denote by $\text{Hom}_A^*(K_1, K_2)$ the space of A-homomorphisms $T : K_1 \to K_2$ having adjoints, that is, homomorphisms T^* such that
\[<Tx, y> = <x, T^*y>, x \in K_1, y \in K_2. \]

It is clear that \(\text{Hom}_A^*(K_1, K_2) \subset \text{Hom}_A(K_1, K_2) \) is a closed subspace in the operator norm. Also, the space \(\text{End}_A^*(K) = \text{Hom}_A^*(K, K) \) is a \(C^* \)-algebra. If we denote by \(K^\# = \text{Hom}_A^*(K, A) \), then the homomorphism \(\phi : K \to K^\# \) induced by the inner product \(<x, y> \) realizes the isomorphism \(\phi : K \to K^\# \subset K^*. \)

Thus we have a natural category \(\mathcal{J} \) whose objects are Hilbert \(C^* \)-modules and whose morphisms are operators in \(\text{Hom}_A^*(K_1, K_2) \).

Examples of such objects are numerous. For instance, the \(C^* \)-algebra \(A \) itself as well as the direct sum \(A^k \) of \(k \) copies of \(A \), with the Hermitian product given by \(<x, y> = \sum_{i=1}^{k} x_i^* y_i \), is a Hilbert \(C^* \)-module. Also, these modules are self-dual. Furthermore, \(A^k \) is projective relative to epimorphisms.

Denote by \(l_2(A) \) the space of sequences \(x = (x_1, \ldots, x_n, \ldots) \forall x_n \in A \), which satisfy the condition that \(\sum_{n=1}^{\infty} x_n^* x_n \) converges in \(A \). We can define a Hermitian product in \(l_2(A) \) by putting

\[<x, y> = \sum_{n=1}^{\infty} x_n^* y_n \quad (2.1) \]

and hence the norm by

\[\|x\|^2 = \| \sum_{n=1}^{\infty} x_n^* x_n \|. \quad (2.2) \]

The convergence of the series (2.1) follows from an analogue of Cauchy's inequality for \(C^* \)-algebras (see [7]):

\[\| \sum_{n=1}^{\infty} x_n^* y_n \|^2 < \| \sum_{n=1}^{\infty} x_n^* x_n \| \cdot \| \sum_{n=1}^{\infty} y_n^* y_n \|. \quad (2.3) \]

Then \(l_2(A) \) is a Hilbert \(C^* \)-module ([7]).
For the sake of simplicity we also assume that each Hilbert C*-module K has at most a countable set of generators, that is, a countable subset whose A-linear span is dense in K.

THEOREM 2.1 ([6]). Every countably generated Hilbert C*-module is a projective object in the category \mathcal{M} relative to epimorphisms.

If the Hilbert C*-module K is finitely generated, then K is self-dual, for there is an epimorphism $f : A^k \to K$ having an adjoint. Then by Theorem 2.1, K is a direct summand in the module A^k and is, therefore, self-dual.

3. Vector A-bundles and pseudo-differential operators over C*-algebras

DEFINITION 3.1. Let A be a C*-algebra. By a vector A-bundle we mean a locally trivial fibre bundle $\xi = (E, p, M, F, G)$ where E is a total space, M is the base of the fibre bundle, $p : E \to M$ is a projection, F is a fibre of the fibre bundle which is finitely generated projective Hilbert C*-module and G is the structural group equal to $\text{Aut}_A(F)$, the group of A-automorphisms of the Hilbert C*-module F. If F is a free, k-dimensional Hilbert C*-module, then $\text{Aut}_A(F)$ is the same as the group of invertible k^{th}-order matrices with coefficients in A.

Suppose that the base M is a compact smooth manifold (of class C^∞). Denote by $\Gamma(\xi)$ the space of continuous sections of the bundle ξ. The space $\Gamma(\xi)$ is endowed with the natural structure of Hilbert C*-module, coinciding with the structure of the Hilbert C*-module in each fibre F when $\Gamma(\xi)$ is restricted to F. Each A-bundle ξ admits a fibre Hermitian product with values in A. Thus if $u_1, u_2 \in \Gamma(\xi)$ are two sections, then a continuous function $\langle u_1, u_2 \rangle \in C(M, A)$ is defined, $C(M, A)$ being the algebra of continuous functions on M with values in A. Without loss of generality we can assume that the gluing functions of the vector bundle are smooth sections (of class C^∞), and denote by $\Gamma^\infty(\xi)$ the space of smooth sections (of class C^∞) of the bundle ξ. We can then choose the fibre Hermitian product to be smooth, i.e. for any two sections $u_1, u_2 \in \Gamma^\infty(\xi)$, the function $\langle u_1, u_2 \rangle \in C^\infty(M, A)$, where $C^\infty(M, A)$ is the space of smooth functions (of class C^∞) with values in A.

We now want to introduce Sobolev norms in $\Gamma^\infty(\xi)$. First we consider the local situation.

Let $X \subset \mathbb{R}^n$ be a bounded open set, and $C^\infty_0(X, A)$ the ring of smooth functions (of class C^∞) with compact supports and with values in A. Let
$S(\mathbb{R}^n, A)$ denote the space of C^∞-functions whose derivatives decrease faster than any power of $\|x\| = \left(\sum_{i=1}^{n} x_i^2\right)^{\nu_2}$ as $\|x\| \to \infty$.

For $u \in S(\mathbb{R}^n, A)$ we define the Fourier transform $\hat{u}(\xi)$ by

$$\hat{u}(\xi) = \int e^{-i x \cdot \xi} u(x) dx,$$

(3.1)

where $\xi \in \mathbb{R}^n$, $x \cdot \xi = x_1 \xi_1 + \ldots + x_n \xi_n$ and dx is the Lebesgue measure on \mathbb{R}^n.

The inverse Fourier transform can be defined as

$$u(x) = \int e^{i x \cdot \xi} \hat{u}(\xi) d\xi,$$

(3.2)

where $d\xi = (2\pi)^{-n} d\xi$.

We denote by Δ the operator

$$\Delta = -\sum_{i=1}^{n} \frac{\partial^2}{(\partial x_i)^2}.$$

For $u \in C_0^\infty(X, A)$ we put

$$\|u\|_s^2 = \| \int_X ((1 + \Delta)^s u^*(x)) u(x) dx \|.$$

(3.3)

where s is any real number, and denote by $H_0^s(X, A)$ the completion of $C_0^\infty(X, A)$ relative to the Sobolev norm (3.3). Then

Lemma 3.1 ([7]). The space $H_0^s(X, A)$ is isomorphic to $l_2(A)$ as a Hilbert C^*-module.

Note that a Hermitian product in $H_0^s(X, A)$ is given by

$$\langle u, v \rangle_s = \int_X ((1 + \Delta)^s u^*(x)) v(x) dx.$$

(3.4)

For $s = 0$, $H_0^0(X, A)$ equals $L_2(X, A)$ where $L_2(X, A)$ denotes the space of such measurable functions (i.e. classes) f, for which the integral $\int_X f^*(x)$
\(f(x) \, dx \) converges. Likewise, in \(L_2(X, A) \) we have a Hermitian product defined by

\[
<f, g> = \int_X f^*(x) g(x) \, dx,
\]

and denote the induced norm by \(\| \cdot \|_{L_2} \).

Let \(E \) be trivial \(A \)-bundle on the domain \(X \) with fibre \(P \), where \(P \) is a finitely generated projective Hilbert \(C^* \)-module with a nondegenerate, positive definite inner product with values in \(A \). For the sake of simplicity, we assume that \(P \) is \(A^k \), where \(A^k \) is a direct sum of \(k \)-copies of \(A \). Analogous to (3.3) we define Sobolev norms in the space \(\Gamma_0^s(X, A^k) \) of sections with compact support by

\[
\| u \|_s^2 = \int_X < (1 + \Delta)^s u(x), u(x) > \, dx.
\]

The completion of the space relative to the Sobolev norm is denoted by \(\mathcal{H}_0^s(X, A^k) \). Then it follows trivially from Lemma 3.1 that the Hilbert \(C^* \)-module \(\mathcal{H}_0^s(X, A^k) \) is isomorphic to the module \(l_2(A^k) \), the direct sum in the module \(l_2(A) \times \cdots \times l_2(A) \).

Similarly one can verify that, \(L_2(X, A^k) \) is the same as \(\mathcal{H}_0^0(x, A^k) \) for \(s = 0 \), in which the Hermitian product is given by

\[
<f, g> = \int f(x), g(x) \, dx; \quad <f(x), g(x)> = : \sum_{i=1}^{k} f_i^*(x) g_i(x).
\]

We now define pseudo-differential \(A \)-operators in spaces of sections of \(A \)-bundles \(E_1 \) and \(E_2 \). Let \(\pi : T^* X \to X \) be the natural projection of a cotangent bundle. Consider the pre-images of the bundles \(\pi^*(E_i) \), \(i = 1, 2 \), taking account of the fact that the inner product in each fibre is induced by the inner product in the fibres of \(E_i \). Without loss of generality, we assume that \(E_i = E, i = 1, 2 \), with fibre \(A^k \). We consider the \(A \)-homomorphisms of the bundles \(a : \pi^*(E) \to \pi^*(E) \) as a family of \(A \)-homomorphisms

\[
a(x, \xi) : A^k \to A^k
\]

parametrized by points of the cotangent bundle \((x, \xi) \in T^* X \). Suppose that \(a(x, \xi) \) satisfy the following conditions:
(a) \[\| \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi) \| \leq C_{\alpha, \beta} \langle \xi \rangle^{m-|\alpha|} \] (3.8)

where \(\langle \xi \rangle \) stands for \((1 + \sum_{i=1}^{n} \xi_{i}^{2})^{1/2} \), \(\alpha, \beta \) are multi-indices of non-negative integers and \(m \) being any real number.

(b) \(a(x, \xi) \) have compact support in the variable \(x \), that is, \(\pi(\text{supp } a) \subset X \) is a compact set.

We shall call the homomorphism satisfying conditions (a) and (b) the symbol of the pseudo-differential \(A \)-operator \(T \), which is defined by:

\[T u(x) = \int e^{ix \cdot \xi} a(x, \xi) \hat{u}(y) \, d\xi, \] (3.9)

where \(u \in \Gamma_{0}^{\infty}(X, A^{k}) \).

The number \(m \) is called the order of the operator \(T \). We shall denote by \(S^{m} \) the class of symbols satisfying the properties (a) and (b) as given above.

THEOREM 3.1. The operator \(T \) defined by (3.9) is a continuous map from \(\Gamma_{0}^{\infty}(X, A^{k}) \) into itself.

The proof of Theorem 3.1 is an easy computation (see [8]).

By means of Theorem 3.1, we can extend the operator \(T \) as a continuous map of \(S(R^{n}, A^{k}) \) into \(S(R^{n}, A^{k}) \).

THEOREM 3.2. ([7]). Every pseudo-differential \(A \)-operator \(T \) of order \(m \):

\[T : H_{0}^{s}(X, A^{k}) \to H_{0}^{s-m}(X, A^{k}) \]

is a bounded operator in the Sobolev norms.

It now follows trivially from Theorem 3.2 the following:

THEOREM 3.3. \((L_{2}\text{-continuity})\). A pseudo-differential \(A \)-operator \(T \) of order zero can be extended to a bounded map of \(L_{2}(R^{n}, A^{k}) \) into \(L_{2}(R^{n}, A^{k}) \), i.e., there exists a constant \(C > 0 \) such that

\[\| Tu \|_{L_{2}} \leq C \| u \|_{L_{2}}, \quad u \in \Gamma_{0}^{\infty}(X, A^{k}) \].
Next we consider the adjoint of a pseudo-differential A-operator. Note that

$$< u, v > = \int < u(x), v(x) > \, dx,$$

where $u, v \in \Gamma_0^\infty(X, A^k)$ and $< u(x), v(x) >$ equals $\sum_{i=1}^{k} u_i^*(x) \, v_i(x)$.

Theorem 3.4. Every pseudo-differential A-operator T of order m admits an adjoint operator, T^*, given by

$$< Tu, v > = < u, T^* v >, \, u, v \in \Gamma_0^\infty(X, A^k), \quad (3.10)$$

which is again a pseudo-differential A-operator.

Proof (see also [8]): We can write for $u, v \in \Gamma_0^\infty(X, A^k)$,

$$< Tu, v > = \iint e^{-i(x-y) \cdot \xi} \, u^*(y) \, a^#(x, \xi) \, v(x) \, dyd\xi dx.$$

$$= \int u^*(y) \left\{ \iint e^{i(y-x) \cdot \xi} \, a^#(x, \xi) \, v(x) \, dxd\xi \right\} \, dy,$$

where $a^#(x, \xi) = (a_{ij}^*(x, \xi))$, the matrix of the symbol $a(x, \xi)$ being $a_{ij}(x, \xi)$. Hence it follows that

$$T^* v(x) = \iint e^{i(x-y) \cdot \xi} \, a^#(y, \xi) \, v(y) \, dyd\xi,$$

which is evidently a pseudo-differential A-operator. One can see easily that (3.10) determines T^* uniquely.

Thus a pseudo-differential A-operator is a morphism in the category \mathcal{A}, described in the preceding section.

Theorem 3.5. Let T be a pseudo-differential A-operator with symbol $a(x, \xi)$ and let T^* be its adjoint operator. Then the symbol of T^* has the following expansion:

$$a^*(x, \xi) = \sum_{\alpha} \frac{1}{\alpha!} \partial_\xi^\alpha D_x^\alpha a^#(x, \xi)$$

(3.12)

where the asymptotic sum runs over all multi-indices α.
THEOREM 3.6. (Composition). Let S and T be pseudo-differential A-
operators with symbols $a(x, y) \in S^{m_1}$ and $b(x, \xi) \in S^{m_2}$ respectively. Then $R = ST$ is a pseudo-differential A-operator with symbol $r(x, \xi) \in S^{m_1 + m_2}$, and one has the analogue of Leibniz's formula:

$$r(x, \xi) \sim \sum_{\alpha} \frac{1}{\alpha!} \partial_{\xi}^\alpha b(x, \xi) \cdot D_x^\alpha a(x, \xi). \quad (3.13)$$

Proof of Theorem 3.6.: One can write

$$R u(x) = \iint e^{i(x \cdot y + \xi \cdot \eta)} b(x, \xi) \int e^{i \eta \cdot \eta} a(y, \eta) \, dy \, d\eta \, d\xi$$

$$= \int r(x, \eta) e^{i x \cdot \eta} a(\eta) \, d\eta,$$

where

$$r(x, \eta) = \iint e^{i(x \cdot y - \eta \cdot \xi)} b(x, \xi) a(y, \eta) \, dy \, d\eta \, d\xi.$$

It can be shown easily, as in the classical case, that $r(x, \xi) \in S^{m_1 + m_2}$, and by Taylor's formula

$$r(x, \eta) = \iint \left(\sum_{\alpha | \leq N} \frac{1}{\alpha!} \partial_\eta^\alpha b(x, \eta)(\xi - \eta)^\alpha \right) \cdot a(y, \eta) e^{i(x \cdot y)(\xi \cdot \eta)} \, dy \, d\eta \, d\xi + r_N.$$

Integrating first with respect to y and then with respect to ξ, one verifies that

$$\iint e^{i(x \cdot y)(\xi \cdot \eta)} a(y, \eta)(\xi, \eta)^\alpha \, dy \, d\xi = D_x^\alpha a(x, \eta).$$

Hence

$$r(x, \eta) = \sum_{|\alpha| \leq N} \frac{1}{\alpha!} \partial_\eta^\alpha b(x, \eta) \cdot D_x^\alpha a(x, \eta) + r_N.$$

It remains to show that $r_N \in S^{m_1 + m_2 - N}$. This can be done in a similar way as the corresponding assertion in the case of classical pseudo-differential operators, provided we take into consideration the standard estimates while applying to a C^*-algebra.
The proof of Theorem 3.5. uses Taylor's formula as above, and can be proved as in the classical case. Therefore, we omit the proof.

As a consequence of Theorems 3.2., 3.4., 3.5. and 3.6., the class \(S^\infty = \bigcup_{m \in \mathbb{R}} S^m \) makes an involutive algebra in the sense that if \(T_i \in S^m_i, i = 1, 2, \) then \(T_1 + T_2 \in S^m \) for \(m = \max(m_1, m_2) \) and \(T_1 \cdot T_2 \in S^{m_1 + m_2} \).

In order to define a pseudo-differential \(A \)-operator in sections of the \(A \)-bundles \(E_1 \) and \(E_2 \) on a compact manifold \(M \), we consider the atlas \(\{ X_\alpha \} \) of charts of the manifold \(M \), in each of which the bundles \(E_1 \) and \(E_2 \) are trivial. Let \(\alpha : \pi^*(E_1) \to \pi^*(E_2) \) be a \(A \)-homomorphism satisfying (3.8). Let \(\{ \varphi_\alpha \} \) be a partition of unity subordinated to the covering \(\{ X_\alpha \} \), and let \(\psi_\alpha \) be functions such that \(\psi_\alpha \| \text{supp } \varphi_\alpha \equiv 1 \) and \(\text{supp } \varphi_\alpha \subset X_\alpha \). We then put

\[
Tu(x) = \sum_\alpha [T_\alpha(\varphi_\alpha u)](x); \tag{3.14}
\]

where \(u \in \Gamma^\infty(M, E_1) \) and \(T_\alpha \) is the pseudo-differential \(A \)-operator defined by (3.9) in the chart \(X_\alpha \) by means of the symbol \(a_\alpha(x, \xi) = a(x, \xi) \psi_\alpha(x) \).

Using the partition of unity \(\varphi_\alpha \) and (3.4), we define Sobolev norms in the space of sections \(\Gamma^\infty(M, E_1) \). Let \(u_1, u_2 \in \Gamma^\infty(M, E_1) \) be arbitrary sections. We put

\[
<u_1, u_2>_s = \sum_\alpha \int (1 + \Delta_\alpha)^s \varphi_\alpha(x) u_1(x), \varphi_\alpha(x) u_2(x)) \, dx,
\]

\[
\|u\|_s^2 = \|<u, u>_s\|. \tag{3.15}
\]

The completion, relative to the Sobolev norm, of the space of sections \(\Gamma^\infty(M, E_1) \) will be denoted by \(H^s(M, E_1) \). In general, if an operator \(T : H^s(M, E_1) \to H^{s-m}(M, E_2) \) is bounded for all \(s \), then we shall say that the operator \(T \) is of order \(m \). We now formulate some necessary propositions for later use.

Theorem 3.7. The pseudo-differential \(A \)-operator \(T : H^s(M, E_1) \to H^{s-m}(M, E_2) \) of order \(m \) defined by (3.14) is bounded in the Sobolev norms.
THEOREM 3.8. The definition of pseudo-differential A-operator (3.14) does not depend on the partition of unity φ_α, the functions ψ_α, or the local coordinates system to within operators of smaller order.

THEOREM 3.9. Let a_1 and a_2 be symbols of the pseudo-differential A-operator T_1 and T_2 respectively. Then the operator T_3 and $T_2 T_1$, where $a_3 = a_2 a_1$ (i.e., composition of symbols), differ by an operator of lower order.

The proof of Theorems 3.7.-3.9. is entirely analogous to that of the same propositions for the case of classical pseudo-differential operators, provided account is taken of the special features in applying the standard estimates in case of a C^*-algebra, for instance, which were introduced in the proof of Lemma 3.2. [7].

Likewise, with obvious modifications one can extend Theorem 3.4. to a compact manifold:

THEOREM 3.10. Every pseudo-differential A-operator T, $T : H^s(M, E_1) \rightarrow H^{s-m}(M, E_2)$ of order m has an adjoint, T^*, which is also a pseudo-differential A-operator.

Summarizing all this, we have

THEOREM 3.11. The class $S^\infty = \bigcup S^m$ of pseudo-differential A-operators on a compact manifold M, is an involutive algebra. Here S^m denotes the class of pseudo-differential A-operators $T : H^s(M, E_1) \rightarrow H^{s-m}(M, E_2)$ of order m.
REFERENCES

