APPLYING A FIXED POINT TECHNIQUE TO ASYMPTOTIC BEHAVIOR AND BOUNDARY VALUE PROBLEMS IN ORDINARY DIFFERENTIALS EQUATIONS (*)

by J. D. SCHUUR (in East Lansing) (**)

SOMMARIO. - Si usa un metodo di punti fissi per trovare soluzioni di equazioni differenziali della forma $Lx = f(t, x)$.

SUMMARY. - We use a fixed point method to find solutions to differential equations of the form $Lx = f(t, x)$.

Introduction. - Let $I \subset [0, \infty)$ be an interval and $0 \leq m < n$; let $a_i(t, v_0, \ldots, v_m) \ (0 \leq i \leq n - 1)$ be continuous on $I \times R \times \ldots \times R$; and let $L_n[x](t) = x^{(n)}(t) + \sum_{i=0}^{n-1} a_i(t, u(t), \ldots, u^{(m)}(t)) x^{(i)}(t)$.

For a fixed $u \in C^n(I),$

(1 u) $L_n[x](t) = 0, \ t \in I,$

is a linear differential equation. And

(2) $L_n[x](t) = 0, \ t \in I$

is a nonlinear differential equation. The problem of finding solutions

(*) Pervenuto in Redazione il 28 marzo 1987.
This paper was presented at the «Colloquium on Topological Methods in BVP's for ODE’s», held at the International School for Advanced Studies (S.I.S.S.A.), Trieste, May 1984.
Research partially done at the Istituto Matematico «U. Dini», Firenze (Italy).
of (2) which satisfy a suitable property P can be transformed into
the problem of finding fixed points of the mapping $u \rightarrow Tu = \{\text{Solutions of (1) u} \text{ satisfying } P\}$.

This technique was used by Schauder to show the existence of
solutions of partial differential equations. And it has been used to
study systems of the form

\[(3) \quad x' = A(t, x) x + b(t, x).\]

Here $A(t, x)$ is an $n \times n$ matrix-valued function and $b(t, x)$ is a
vector-valued function, both defined on $I \times R$. Conti, [3] and [4],
studied boundary value problems for (3) (see also Anichini [1] and
[2], [5], [12], [15]) and the asymptotic behavior of solutions of
(3) was studied by Corduneanu [8] and Kartsatos [13].

We shall use the technique to study two problems.

1) When does the equation

\[(4) \quad (r(t) x^{(n)})^{(n)} = f(t, x) x\]

have solutions which are asymptotic to t^m, $0 \leq m \leq 2n$?

2) When does (2) have a solution which satisfies

\[x(t_i) = b_i, \quad 1 \leq i \leq n, \quad t_1 < \ldots < t_n?\]

1. - In this section we discuss equation (4). To simplify the
presentation we shall assume that $n = 2$ and, in sections of the
proofs, that $r(t) = 1$. But the results hold for the more general case.
We have

\[(1.1) \quad (r(t) x'')'' = f(t, x) x, \quad a \leq t < \infty,\]

where $f(t,x)$ is continuous and positive on $[a, \infty)$ and $r(t) \in C^2[a, \infty)$

with $\int_0^\infty \frac{du}{r(u)} = \infty$.

Notation.

\[E_k(x(t)) = \begin{cases} x^{(k)}(t) & \text{for } k = 0, 1; \\ (r(t) x''(t))^{(k-2)} & \text{for } k = 2, 3, 4 \end{cases}\]

\[R_k(t, x) = \begin{cases} (s - t)^k & \text{for } k = 0, 1; \\ \frac{k!}{s} \int_0^s \frac{(u - t)(s - u)^{k-2}}{r(u)} \, du & \text{for } k = 2, 3; \\ & \text{for } a \leq s, \quad t < \infty. \end{cases}\]

Let $k \in [0, 3]$ be given.
\[S^i_k(t) = \begin{cases} R_k^{(i)}(t, a) & \text{for } i = 0, 1; \\ r(t) R_k^{(i)}(t, a) & \text{for } i = 2, 3 \end{cases} \begin{array}{c} 0 \leq i \leq k, \ (i) = \frac{d^i}{dt^i} \end{array} \]

\[S^k_i(t) = \begin{cases} R_i^{[k]}(a, t) & \text{for } k = 0, 1; \\ r(a) R_i^{[k]}(a, t) & \text{for } k = 2 \end{cases} \begin{array}{c} k < i \leq 3, \ [k] = \frac{d^k}{da^k} \end{array} \]

Theorem 1.1 - In (1.1) assume that \(f(t, x) \) is either increasing or decreasing with respect to \(x \) for \(t \in [a, \infty) \) and let \(k \in [0, 3] \) be given. a) If (1.1) has a solution \(x_k \) satisfying \(\lim_{t \to \infty} x_k(t) / R_k(t, a) = 1 \) (1.2), then

\[\lim_{t \to \infty} E_i(x_k(t)) / S^i_k(t) = 1 \quad \text{for } 0 \leq i \leq k, \]

\[\lim_{t \to \infty} E_i(x_k(t)) / S^k_i(t) = 0 \quad \text{for } k < i \leq 3, \quad \text{and} \]

\[\int_0^\infty R_3(a, s) f(s, cR_k(a, s)) \, ds < \infty \quad \text{for some } c > 0 \quad \text{hold.} \]

b) If (1.4) holds, then (1.1) has a solution \(x_k \) satisfying (1.2).

To prove the theorem by the fixed point technique we need to know the behavior of the linear equation associated with (1.1), viz.

\[(r(t) x''')'' = p(t) x, \] where \(p \) is continuous and positive on \([a, \infty) \) and \(r \) satisfies the previous hypotheses. In this theorem we shall let \(r(t) = 1 \) to simplify the discussion.

Theorem 1.2 - Let (1.5) be given with \(r(t) = 1 \) and let \(k \in [0, 3] \) be given. a) If (1.5) has a solution \(x_k \) satisfying (1.6)

\[\lim_{t \to \infty} x_k(t) / t^k = 1, \]

then

\[\lim_{t \to \infty} x_k^{(i)}(t) / t^{k-i} = \begin{cases} 1 & \text{for } 0 \leq i \leq k \\ 0 & \text{for } k < i \leq 3, \end{cases} \]

\[\int_a^\infty t^i p(t) \, dt < \infty \quad \text{hold.} \]

b) If (1.8) holds, then for each \(k \in [0, 3] \), (1.5) has a solution satisfying (1.6).

Proof of Theorem 1.2. We shall outline the proof for the case \(k = 2 \). A complete proof is given in [11].

a) If \(x_2(t) \sim t^2 \), it can then be shown that for all \(t \) sufficiently large

\[x_2(t), x'_2(t), x''_2(t) > 0 \quad \text{and} \quad x'''_2(t) < 0. \]
We are then justified in differentiating once to obtain \(x'_2(t) \sim t \) and we also see that \(\lim_{t \to \infty} x''_2(t) \) exists.

Using Taylor's theorem we have

\[
(1.10) \quad x_2(t) = \sum_{k=0}^{3} \frac{(-1)^k x^{(k)}_2(b)}{k!} (b - t)^k + \int_{t}^{b} \frac{(s - t)^3}{6} p(s) x_2(s) \, ds
\]

and hence

\[
x''_2(t) - x''_2(b) = - x''_2(b) (b - t) + \int_{t}^{b} (s - t) \, p(s) x_2(s) \, ds.
\]

The limit on the lefthand side exists; each of the terms on the righthand side is positive; hence the limit of each term on the righthand side exists. Using \(x_2(t) \sim t^2 \), (1.8) follows. And by proving that \(\lim_{t \to \infty} x''_2(b) (b - t) = 0 \) we also obtain \(x''_2(b) \sim 1 \).

To prove this part of the theorem for general \(r(t) \) we have \(E_k(x_2(t)) \), \(k = 0, 1, 2, 3 \) in (1.9) and (1.10) becomes

\[
x_2(t) = \sum_{k=0}^{3} \frac{(-1)^k E_k(x_k(b))}{k!} R_k(t, b) + \int_{t}^{b} R_3(t, s) \, p(s) x(s) \, ds.
\]

The \(S_k \)'s are associated with the derivatives of \(R_k \).

b) Assume that (1.8) holds and choose \(c \) such that

\[
\int_{c}^{\infty} \frac{(s - t)^3}{6} p(s) \, ds < 1.
\]

Let \(X \) be the space of functions which are continuous on \([c, \infty)\) and for which \(\| x \| = \sup \{ |x(t)| / t^2 : 0 \leq t < \infty \} \) exists. Then

\[
Tx(t) = t^2 + \int_{c}^{t} \frac{(s - t)^3}{6} p(s) x(s) \, ds
\]

is a contraction mapping on \(X \) and its fixed point will be \(x_2 \). This completes the proof.

Proof of Theorem 1.1. Again assuming \(r(t) = 1 \) and \(k = 2 \).

a) If \(x \) is a solution of (1.1) which satisfies (1.2), then \(x_2 \) is a solution of the linear equation \(x'' = f(t, x_2(t)) \) \(x \) and, by applying Theorem 1.2, (1.3) and (1.4) hold.

b) Assume that (1.4) holds and that \(f(t, x) \) \(x \) is increasing with respect to \(x \). We shall apply the following fixed point theorem of Pan and Glicksberg (see [17]).

1.11 - Thm.) If \(K \) is a closed, convex, nonempty subset of a Frechet space \(X \) and if \(T \) satisfies: i) for each \(u \in K \), \(Tu \) is a nonempty, compact, convex subset of \(X \); ii) \(T \) is a closed mapping; and iii) \(TK \) is contained in a compact subset of \(K \); then there is a \(u \in K \) such that \(u \in Tu \).
Let X be the space of functions which are continuous on $[a, \infty)$. For $x_n, x \in X, \|x_n - x\| \to 0$ means that $\sup_{t \in I} |x_n(t) - x(t)| \to 0$ uniformly on each compact subset $I \subset [a, \infty)$. Then $(X, \| \cdot \|)$ is a Fréchet space.

Let $K = \{x \in X : (c - 1) t^2 \leq x(t) \leq ct^2 \text{ on } [a, \infty)\}$. Then K is closed, convex, and nonempty. For $u \in K$, let $Tu = \{x \in K : x \text{ is a solution of } (1u) x'' = f(t, u(t))\}$. By Theorem 1.2, Tu is nonempty. Since Tu is a set of solutions of a linear equation it is convex.

Tu is compact: Let $I_m = [a, m], m > a$ an integer, let $u \in K$, and let $\{x_n\}$ be a sequence in Tu. On I_m, u and x_n, and hence x''_n and x'_n, are uniformly bounded. Hence by Ascoli's theorem some subsequence of $\{x_n\}$ converges uniformly on I_m, say to z_m. And z_m is seen to be a solution of $(1u)$ with $(c - 1) t^2 \leq z_m(t) \leq ct^2$ on I_m. Using a sequence of I_m's and a diagonalization argument on the z_m's, it will follow that $T(u)$ is compact in X.

Tu is a closed mapping (i.e., $u \in K$ with $u_t \to u_0 \in K$ and $x_t \in T(u_t)$ with $x_t \to x_0$ implies $x_0 \in T(u_0)$) and TK is compact: The arguments are similar to those of the preceding paragraph.

Thus there is a $u \in K$ with $u \in Tu$, this is our x_2, and Theorem 1.1 is proved.

REMARKS - Theorem 1.1, the analogous theorem with f negative, and related results on the behavior of solutions may be found in Edelson, Perri, and Schuur, [9], [10], [16] and in the references listed there.

The equation $(p(t) f(x) x')' = q(t) g(x)$ also includes some interesting examples and problems - see [14].

2. In this section we let

$$L_u [x](t) = x^{(n)}(t) + \sum_{i=0}^{n-1} a_i(t, u(t), u'(t)) x^{(i)}(t) = 0$$

for $0 \leq t \leq 1$, where the $a_i(t, u, v)$ are continuous on $[0, 1] \times R \times R$ and we have the conditions

\begin{equation}
(2.1) \quad x^{(i-1)}(t_j) = b_j^{i-1}. \quad 0 = t_1 < \ldots < t_m = 1
\end{equation}

where $1 \leq m \leq n, 1 \leq i \leq I(j), \sum_{j=1}^{m} I(j) = n$ and the b_j^i's are constant.

We shall also write (2.1) as

\begin{equation}
(2.1a) \quad Mx = b \quad \text{where } M : C^{(n)}[0, 1] \to R^n \text{ is continuous and linear}
\end{equation}

and $b = \col (b_1^{0}, \ldots, b_m^{I(m)-1})$.

We seek a solution of

\[(2.2) \quad L_x [x] (t) = 0 \]

which satisfies (2.1). We also use the linear equation

\[(2.3) \quad L_u [x] (t) = 0, \quad u \in C^1 [0,1] \text{ given} . \]

Theorem 2.1 - Assume that the roots of the algebraic equation

\[\lambda^n + a_{n-1} (t, \nu, w) \lambda^{n-1} + \ldots + a_0 (t, \nu, w) = 0\]

are real and satisfy

\[(2.4) \quad \mu_0 \leq \lambda_1 (t, \nu, w) \leq \lambda_2 (t, \nu, w) \leq \ldots \leq \lambda_{n-1} \leq \lambda_n.\]

For \(0 \leq t \leq 1, -\infty < \nu, w < \infty\) where \(\mu_0 < \mu_1 < \ldots < \mu_n\). Then (2.2), (2.1) has a solution.

Remarks - The bounds on the \(a_i\)'s are not given explicitly, but they are contained in (2.4). From (2.4) it follows that there exist constants \(A_i\) such that

\[(2.5) \quad |a_i (t, \nu, w)| \leq A_i, \quad A_i = A_i (\mu_0, \ldots, \mu_n),\]

For \(0 \leq i \leq n - 1, \quad 0 \leq t \leq 1, -\infty < \nu, w < \infty .\)

First we need some results for a linear equation. Consider

\[(2.6) \quad x^{(n)} (t) + \sum_{i=0}^{n-1} a_i (t) x^{(i)} (t) = 0\]

\[(2.7) \quad \lambda^n + a_{n-1} (t) \lambda^{n-1} + \ldots + a_0 (t) = 0\]

where the \(a_i\)'s are continuous and \(|a_i (t)| \leq A_i (A_i \text{ given in (2.5)})\) for \(0 \leq t \leq 1, \quad 0 \leq i \leq n - 1 .\)

Assume that the roots of the algebraic equation (2.7) are real and satisfy

\[(2.8) \quad \mu_0 \leq \lambda_1 (t) \leq \mu_1 \leq \ldots \leq \mu_{n-1} \leq \lambda_n (t) \leq \mu_n, \quad 0 \leq t \leq 1 ,\]

where the \(\mu_i\)'s are given in (2.4). Then the following hold.

i) There exists a set of \(n\) solutions \(x_1, \ldots, x_n\) of (2.6) satisfying

\[x_1 (0) = 1, \quad x_i (t) > 0, \quad \mu_{i-1} \leq x_i (t) / x_i (t) \leq \mu_i,\]

for \(0 \leq t \leq 1, \quad 1 \leq i \leq n .\) (Hence \(|x_i (t)| \leq e^{\mu_i}, \quad 0 \leq t \leq 1\).

Proof. See [7], Chapter 3.

ii) If there exists a constant \(B_1\) such that a solution \(x\) of (2.6) satisfies \(|x (t)| \leq B_1, \quad 0 \leq t \leq 1,\) then there is a constant
\[B = B(B_1, A_0, \ldots, A_{n-1}) \]
such that \(|x^{(j)}(t)| \leq B, \ 0 \leq t \leq 1, \ 0 \leq j \leq n. \)

Proof. See [6], Chapter 5.

(iii) Let \(x_1, \ldots, x_n \) be the fundamental set of solutions of (2.6) given in (i) and let \(X \) be the matrix with \(x^{(k-1)}_i, \ 1 \leq k \leq n, \) as its \(i \)-th column. From (ii) we have a constant \(B = B(\mu_0, \ldots, \mu_n) \) such that \(|x^{(k-1)}(t)| \leq B, \ 0 \leq t \leq 1, \ 1 \leq i, k \leq n. \) Also there is a constant \(\beta = \beta(\mu_0, \ldots, \mu_n) \) such that \(\det X(t) \geq \beta > 0 \) for \(0 \leq t \leq 1. \)

Proof. See [7], Chapter 3.

(iv) For each \(b \in \mathbb{R}^n \) the problem (2.6), (2.1) has a unique solution, call it \(x_b, \) and there exists a constant \(C = C(M, b, \mu_0, \ldots, \mu_n) \) such that \(|x^{(k)}(t)| \leq C, \ 0 \leq k \leq n-1, \ 0 \leq t \leq 1. \)

Proof. Let \(X \) be the matrix given in (iii). Then (2.1a) can be written as

\[(2.9) \quad MXc = b, \ c \text{ an } n \times 1 \text{ vector} \]

we have a mapping from \(\mathbb{R}^n \) into \(\mathbb{R}^n; \) we shall denote it by \((MX). \)

Condition (2.8) implies that equation (2.6) is disconjugate, i.e. each nontrivial solution of (2.6) has less than \(n \) zeros. (See [7], Chapter 3). Using (2.1) we see that \((MX) c = 0 \) has only the trivial solution and hence \((MX) c = b \) has a unique solution for each \(b. \)

Let \(M_j = (m_{rs}) \) be the \(I(j) \times n \) matrix with \(m_{rs} = 1 \) if \(r = s, \)

\(m_{rs} = 0 \) if \(r \neq s \) and let \(b_j = \text{col} (b_j^0, \ldots, b_j^{(l-1)}). \) Then (2.9) can be written as

\[M_j X(t_j) c = b_j, \ 1 \leq j \leq m, \] or

\[\text{diag}(M_1, \ldots, M_m) \text{col}(X(t_1), \ldots, X(t_m)) c = \text{col}(b_1, \ldots, b_m). \]

We know that the \(n \times n \) matrix on the left is nonsingular, call it \((MX). \) And since each \(M_j \) is a constant matrix; \(|x^{(k)}(t_j)| \leq B; \) and \(|\det X(t_j)| \geq \beta, \) we can show that \((MX)^{-1} \) is bounded. Hence there is a \(C_0 = C_0(M, B, \beta) \) such that \(||c|| \leq C_0 ||b|| \) and a \(C = C(b, M, B, \beta) \) such that \(||\text{col}(x^{(1)}(t), \ldots, x^{(n-1)}(t))|| = ||X(t) c|| \leq C, \ 0 \leq t \leq 1, \) (\(|| \cdot || \) is absolute value; \(|| \cdot || \) is Euclidean norm) and (iv) is proved.

Proof of Theorem 2.1. This time we can use the Schauder-Tychonov Theorem.

Let \(X \) be the Banach space of \(C^1 \)-functions on \([0,1] \) with

\[|x| = |x|_0 + |x'|_0 \text{ for } x \in X. \] (\(|x|_0 = \text{sup} \{|x(t)|: 0 \leq t \leq 1\} \).
Let \(K = \{ x \in X : |x|_1 \leq 2C \} \). Then \(K \) is closed and convex.

For \(u \in K \) let \(Tu \) be the solution of (2.3), (2.1). Then \(Tu \) is well-defined and \(Tu \in K \).

\(T \) is continuous: Let \(u_1, u_2, \ldots \rightarrow u_0 \) in \(K \) and let \(Tu_n = x_n, n \geq 0 \).

From (iv), \(|x^{(k)}_n|_0 \leq C, 0 \leq k \leq n \). By Ascoli’s theorem we have a subsequence \(\{x_m\} \) such that \(x^{(k)}_m \rightarrow z^k, 0 \leq k \leq n \), as \(m \rightarrow \infty \). (We take limits in the differential equation for the case \(k = n \)). Then by taking the limit in

\[
x^{(n)}_m + a_{n-1}(t, u_m(t), u'_m(t)) x^{(n-1)}_m + \ldots = 0, \quad Mx_m = b
\]

and knowing that the solution to (2.3), (2.1) is unique we see that \(z^k = x^{(k)}_0, 0 \leq k \leq n \). The uniqueness also tells us that the full sequence \(\{x_n\} \) converges to \(x_0 \).

\(TK \) is closed and compact: The proof is similar to that of the preceding paragraph.

Hence the mapping \(T : K \rightarrow K \) has a fixed and the theorem is proved.

REFERENCES

[10] EDELSON, A. L. and J. D. SCHUUR, Nonoscillatory solutions of \((r_2 x^{(n)}(t))^n \pm f(t, x) x = 0 \), Pacific J. Math. 10 (1983), 313-325.
\[(r(t)x^{(n)})^{(n)} = f(t,x)x, \]
preprint.

