GETTING A SOLUTION
BETWEEN SUB- AND SUPERSOLUTIONS
WITHOUT MONOTONE ITERATION (*)

by PHILIPPE CLÉMENT and GUIDO SWEERS (in Delft) (**)
1. - Introduction and main result.

We consider the following nonlinear boundary value problem:

\begin{equation}
\begin{aligned}
-\Delta u = f(x, u) & \quad \text{in } \Omega, \\
u = g & \quad \text{on } \partial \Omega,
\end{aligned}
\end{equation}

where Ω is a bounded domain of \mathbb{R}^N.

For f we only assume

\text{(H 1)} \quad f : \Omega \times \mathbb{R} \to \mathbb{R} \quad \text{is continuous.}

We also assume that

\text{(H 2)} \quad g : \partial \Omega \to \mathbb{R} \quad \text{is continuous.}

In this note we are interested in the existence of solutions of

\text{(1)} \quad \text{lying between sub- and supersolutions defined in a rather weak sense. Due to the special form of the left hand side we can define}

\text{Definition 1 - A function u is called a sub (super) solution of (1) if}

\begin{enumerate}
\item[i)] $u \in C(\overline{\Omega}; \mathbb{R})$
\item[ii)] $\int_{\Omega} (u(-\Delta \varphi) - f(x, u) \varphi) \, dx \leq (\geq) 0$ for every $\varphi \in \mathcal{D}^+(\Omega)$
\item[iii)] $u \leq (\geq) g$ on $\partial \Omega$
\end{enumerate}

are satisfied, where $\mathcal{D}^+(\Omega)$ consist of all nonnegative functions in $C_0^\infty(\Omega)$.

\text{Definition 2 - A function u is called a solution of (1) if}

\begin{enumerate}
\item[i)] $u \in C(\overline{\Omega}; \mathbb{R})$
\item[ii)] $\int_{\Omega} (u(-\Delta \varphi) - f(x, u) \varphi) \, dx = 0$ for every $\varphi \in C_0^\infty(\Omega)$
\item[iii)] $u = g$ on $\partial \Omega$
\end{enumerate}

are satisfied.

If f satisfies some additional assumption, like for example $u \to f(\cdot, u) + \omega u$ is increasing for some $\omega \in \mathbb{R}$, and if $\partial \Omega$ satisfies some smoothness condition, then the following is known, see [2] [5] [6, Ch. 10] [3].

If \underline{u} is a subsolution, \overline{u} is a supersolution such that $\underline{u} \leq \overline{u}$, then problem (1) possesses a minimal and a maximal solution in the order interval $[\underline{u}, \overline{u}]$. These solutions are obtained by using the method of monotone iterations.
In [1] another method is used to prove the existence of a solution lying between a sub- and a supersolution for a very general quasilinear elliptic problem. The goal of this note is to show the existence of a solution lying between a sub- and supersolution, assuming only the continuity of \(f \) and for a much larger class of sub- and supersolutions.

We shall use the Schauder fixed point theorem and a version of the strong maximum principle.

Observe that if \(f = 0 \), then problem (1) possesses a solution for every \(g \in C(\partial \Omega) \), if and only if all boundary points are regular, see [4, Th. 2.14]. Therefore we assume

\[(H3) \quad \Omega \text{ is a bounded domain of } \mathbb{R}^N \text{ and every point of } \partial \Omega \text{ is regular.}\]

Then we have

**Theorem - Assume (H1), (H2) and (H3), and let \(u \) respectively \(\bar{u} \) be a sub-respectively a supersolution of problem (1), satisfying \(u \leq \bar{u} \) in \(\bar{\Omega} \).

Then problem (1) possesses at least one solution \(u \) satisfying \(u \leq u \leq \bar{u} \) in \(\bar{\Omega} \).

2. - Proof.

We shall proceed in four steps.

Step 1 - Reduction to homogeneous boundary condition.

Let \(h \) denote the unique harmonic function on \(\Omega \), continuous on \(\bar{\Omega} \), satisfying \(h = g \) on \(\partial \Omega \). Set \(v = u - h \). Then \(u \) is a solution of problem (1) if and only if \(v \) is a solution of

\[
\begin{align*}
-\Delta v &= f(x, h(x) + v) \quad \text{in } \Omega, \\
\quad v &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\]

Observe that the modified right hand side again satisfies (H1). Since both \(u - h \) and \(\bar{u} - h \) are sub- respectively supersolution for the modified problem and are also ordered, we may assume without loss of generality that \(g = 0 \).

Step 2 - Modification of \(f \).

Define \[\]
\[f^*(x, u) = \begin{cases} f(x, u) & \text{if } u < \underline{u}(x), \\ f(x, \underline{u}(x)) & \text{if } \underline{u}(x) \leq u \leq \bar{u}(x), \\ f(x, \bar{u}(x)) & \text{if } \bar{u}(x) < u, \end{cases} \quad \text{and } x \in \bar{\Omega}. \]

Then \(f^*: \bar{\Omega} \times \mathbb{R} \to \mathbb{R} \) is continuous and bounded. Note that, if \(u \) is a solution of

\[
\begin{cases} -\Delta u = f^*(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}
\]

and \(\underline{u} \leq u \leq \bar{u} \) in \(\bar{\Omega} \), then \(u \) is a solution of (1) with \(g = 0 \). In fact every solution of (3) satisfies \(\underline{u} \leq u \leq \bar{u} \) in \(\bar{\Omega} \). This is done in

STEP 3 - Use of the maximum principle.

Let \(u \) be a solution of (3) and set \(\Omega^+ = \{ x \in \Omega ; \bar{u}(x) < u(x) \} \). We want to prove that \(\Omega^+ \) is empty. Assume to the contrary that \(\Omega^+ \) is not empty. First, note that \(\Omega^+ \) is open, since \(u \) and \(\bar{u} \) are continuous. Moreover we have

\[
\int_{\Omega^+} (u - \bar{u}) (-\Delta \varphi) \, dx \leq \int_{\Omega^+} (f^*(x, u(x)) - f(x, \bar{u}(x))) \varphi \, dx = 0
\]

for every \(\varphi \in \mathcal{D}^+(\Omega^+) \).

Then \(u - \bar{u} \in C(\bar{\Omega}^+) \) is subharmonic and nonnegative in \(\Omega^+ \). Such functions achieve its maximum at the boundary, see [4].

Since \(u - \bar{u} = 0 \) on \(\partial\Omega^+ \) it follows that \(u = \bar{u} \) in \(\Omega^+ \). Hence \(\Omega^+ \) is empty, a contradiction. Similarly one proves that \(\underline{u} \leq u \) in \(\bar{\Omega} \).

STEP 4 - Application of Schauder fixed point theorem.

It remains to show that problem (3) possesses a solution. Let us recall that problem (1) with \(f \) depending only on \(x \) and \(g = 0 \) has exactly one solution \(u \in C(\bar{\Omega}) \). Let \(K: C(\bar{\Omega}) \to C(\bar{\Omega}) \) denote the solution operator, that is \(u = Kf \). Then it is known that \(K \) is a linear compact operator in \(C(\bar{\Omega}) \) equipped with the usual maximum norm \(\| \cdot \| \) (see also Appendix).

Let \(F: C(\bar{\Omega}) \to C(\bar{\Omega}) \) denote the Niemytski operator associated with \(f^* \), that is

\[
F(u)(x) = f^*(x, u(x)) \quad \text{for } u \in C(\bar{\Omega}), \ x \in \bar{\Omega}.\]

Then \(F \) is continuous and there is \(M > 0 \) such that \(\| F(u) \| \leq M \).
Finally observe that \(u \) is a solution of problem (3) if and only if \(u \) satisfies
\[
u = KF(u).
\]

A straightforward application of the Schauder fixed point theorem guarantees the existence of such solution. This completes the proof of the theorem. ■

Remark - If \(u \) is a solution of (1), then it follows from standard regularity theory theorems that \(u \in W^{2,p}_{\text{loc}}(\Omega) \) for all \(p \in [1, \infty) \), although \(\bar{u} \) and \(\tilde{u} \) do not need to possess such regularity.

3. - Appendix.

Proposition - Let \(\Omega \) satisfy (H3) and \(f \in C(\bar{\Omega}) \), then there exists a unique \(u \in C(\bar{\Omega}) \) satisfying
\[
i \int_{\Omega} (u(-\Delta \varphi) + f \varphi) \, dx = 0 \quad \text{for every} \quad \varphi \in C_0^{\infty}(\Omega),
\]
\[
i u = 0 \quad \text{on} \ \partial \Omega.
\]

Moreover the mapping \(f \mapsto u \) is compact in \(C(\bar{\Omega}) \).

Proof. The uniqueness is a direct consequence of the maximum principle for harmonic functions. For the existence we extend \(f \) by 0 outside of \(\bar{\Omega} \) and set
\[
w(x) = \int_{\mathbb{R}^N} \Gamma(x - y) \, f(y) \, dy,
\]
the Newtonian potential of \(f \), see [4, p. 50].

Then \(w \in C^1(\bar{\Omega}) \), see [4, Lemma 4.1], and the mapping \(f \mapsto w \) from \(C(\bar{\Omega}) \) in \(C^1(\bar{\Omega}) \) is continuous, where \(C(\bar{\Omega}) \) and \(C^1(\bar{\Omega}) \) are equipped with the usual norm. Since \(C^1(\bar{\Omega}) \) is compactly imbedded in \(C(\bar{\Omega}) \), the mapping \(f \mapsto w \) from \(C(\bar{\Omega}) \) into \(C(\bar{\Omega}) \) is compact.

Let \(h \in C(\bar{\Omega}) \) be the unique harmonic function satisfying \(h = w \) on \(\partial \Omega \) (here we use (H3)). Then \(u = w - h \) is a solution of i), ii). Since the mapping \(w \mapsto h \) from \(C(\bar{\Omega}) \) into \(C(\bar{\Omega}) \) is continuous we have that the mapping \(f \mapsto u \) from \(C(\bar{\Omega}) \) into \(C(\bar{\Omega}) \) is compact. ■
REFERENCES

