A GENERALIZATION
OF THE CONLEY-INDEX THEORY (*)

by VIERT BENCI (**)

SoMMARI0. - Si presenta una generalizzazione della teoria dell’indice
di Conley agli spazi di dimensione infinita. Si da poi un’appli-
cazione che generalizza un ben noto teorema di Krasnoselski.

SUMMARY. - We present a generalization of the Conley index theory
to infinite dimensional spaces. We give an application which
generalizes a well known theorem of Krasnoselski.

Introduction

The Morse theory, in spite of the fact that has been the first to
be generalized to a functional analytic contest, did not give as many

results as the theory of Ljusternik and Schnirelman (at least in
P.D.E.s).

We think that there are two main reasons for this.

First the functional of variations occurring in many concrete
problems are of class C! and not C? as the Morse theory requires.

(*) Conferenza tenuta al «Meeting on Variational Methods in Differential Pro-
blems» (Trieste, 26-28 settembre 1985).

(**) Indirizzo dell’Autore: Istituto di Matematica Applicata «Ulisse Dini» - Uni-
versitd degli Studi - I 56100 Pisa - Ttaly.
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Second, the possible degeneracy of the critical points occurring
in these problems causes troubles with Morse theory.

We feel that these difficulties can be avoided adapting the
Conley ideas to a functional analytic contest.

For this reason we are developing a theory which, I hope, will
be a new tool to treat variational problems.

In this paper we present part of this theory.

At the end of Section 3, we study a simple example obtaining
a result which, as far as I know, cannot be obtained by other known
theories. '

1. The homotopic index
Let M be a metric space on which a semiflow 1 is defined i.e.
a map
Nn:RtxXxM->M
such that 1(0,x) = x and _
n(t,n(t2,x)) =n(ti+ t2,x) (t1,t2€ R*,x € M).

When no ambiguity is possible we will write x - ¢ instead of
n(t,x).

A semiflow which is defined for every t € R is called a flow.
If X is any subset of M and T a positive constant we set

G'(X) =G"(X,n) ={xeM:x-[0,T] CM}ﬂ{tQ;q(t,X)}.

If 1 is a flow, clearly we have

GI(X)={xeM:x-[-T,TlcX}= N n(t,X).
te[-T,T]

Also we set

r=3X(n) ={XcM:X is closed and 3T >0 s.t. GT'(X,n) c:)z'},

where X denotes the interior of X.

DEF. 1.1 - A pair of closed subset of X, (N,No), with Noc N, is
called INDEX PAIR if

(i) N —No€ X (A denotes the closure of A);

(ii) No is positively invariant with respect to N (i.e. x € Ny and
x-[0,t]cN=x-1[0,t] € No);
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(iii) Ny is an EXIT set for N (i.e. x € N and

x:[0,t]c N= 3+t €[0,t] such that x -t € Ny).

We say that (N, No) is an index pair for X € X if GV )N—-Noc X
and there exists T > 0 such that G'(X) c N —No.

Now it is necessary to recall some concepts from the homotopy
theory.

If X is a topological space and A4 is a closed subset then X /A
denotes the spaces obtained by X indentifying all the points of A.

Two spaces X/A and Y/B are called homotopic equivalent
if there are maps ¢:X/A—Y/B and Y:Y/B—>X/A such that
9([A]) = [B]; ¥([B]) = [A] and such that ¢y and Y°¢ are homo-
topic to the identity by homotopies which leaves the points [A] and
[B] fixed respectively.

The class of all spaces homotopically equivalent to X/A is called
homotopy type of X/A and denoted by [X/A].

The homotopy type of X/X is denoted by 0; if X is a con-
tractible space, the homotopy type of X/ is denoted by 1.

Moreover, by convention, we set ¢ [ = _Q .

DEF. 1.2 - For X € X, the homotopy index of X is the homotopy
type of an index pair (N,N,) relative to X; in formula we write

h(X) = h(X,n) = [N/No].
The Def. 1.2 makes sense if we prove that

1.1 (a) VX € X there exists an index pair (N, Ny) for X;
(1.1 (b) if (N,No) and (N, No) are two index pairs relative to X,
then [N/No] = [N/N¢].

In order to prove (1.1) some work is necessary. First, we need
an other notation; for T > 0 we set

(1.2) T(X) =T7(X,n) ={xeGT(X,n) :x-[0,T]N X = ¢ }.
We need now a technical lemma:
LemMA 1.3 - Suppose that X, Y € 3; then
() XcY=G'(X) cGI(Y) for every T >0 ;
(i) Th'>T>0=>G"(X) c G'(X);
(i) GN+T(X) = GT(G™:(X));
(V) if GT(X) € X then G (X)  int GT(X):
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(v) if X € T then GT(X) and n(t,X) belong to X;
(vi) GT(X) is closed;
(vii) TT(X) is closed;
(viii) T7(X) < dGT(X) .
Proof. (i), (ii) and (iii) follow easily from the definition of
G"(X).
(iv) First of all observe that

(1.3) if xe GT(X), then x - ¢ is defined for te [—T,T] i.e. we can
go back in time up to the point —7; and this by the definition of
GT(X).

In order to prove (iv) we argue indirectly and we suppose that
there exists y € G7(X)NAGT(X). Then there exists a sequence
yn—>y such that y. [T, T] ¢ X. This implies that there exists times
t,€ [—T,T] such that y, - t.¢ X; we can extract a sequence t’, such

that t,—1, so we have that y,- t\»—>y - 7€ 0X. Since y € GZ(X),
y-[—2T,2T1c X and so y - 1 € G'(X) (since 7| < T).

And this contradicts our assumption that GT(X) Nax = ¢.
(v) GT(X) € £ by (iv) and (vi), n(t,X) € T by the continuity of 7.
(vi) We have GT(X) ={ N T]'r)(t,X)}ﬂ{xe X:x-[0,T]c X}.

tel0,

The first set in the above formula is closed since for every
t>0,n(t,X) is closed. If we set Ar=n(t, - ), then
{(xeX:x-[0,T]cX}= N A;l(X).

tef0,T]
So also this set is closed. Therefore GT(X) is closed.
(vii) Let {x.} cI7(x) with x,—>X%. Then there exists t,€[0,7T]
such that x, - t. € 9X . Let t’» be a subsequence of ¢, converging to
some 7€ [0,T] then x, - t'’»—>Z% - ¢ € 90X . Therefore x € I (X).
(viii) Let xe€ IT(X); then 3te[0,T] such that x - t € 0X; thus
there exists a sequence y, € X° (X° denotes the complement of

X in M) converging to x-t. This implies that y.( —t) - x. But
ya(—1t) ¢ GT(x), therefore x € GT(X).

Now we can prove (1.1)
TuEeoREM 1.4 - (Existence of index pairs). Let X € Z and let T be

large enough that G (X) 3( Then
(GT(X) ,ITT(X))
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is an index pair for X.

Proof. By Lemma 1.3 (vi), (vii), GT(X) and I'’(X) are closed.
We have to check points (i), (ii) and (iii) of Def. 1.2.

(i) By Lemma 1.3 (viii), GT(X) —T7(X) = G'(X); so by Lemma
(1.2), the conclusion follows.
(i) Let x e IT(X) and suppose that
(14) =x-[0,t] cG7(X).
We want to prove that X - [0,t] cT7(X). Suppose that this fact

is not true; then there exists 7 € [0,¢] such that x - 7¢ I'7(X).
Now set

t"=inf{~ e [0,1]:x-7¢T7(X))}.
Clearly t € [0,t) and

(1.5) (@) x- " eIT(X) since I'T(X) is closed by Lemma 1.3 (vii);
’ () x- (" +¢,) ¢ T7(X) (with &, > 0 and €.—0).

If we set y=x-#, by (1.5) and the definition of I7(X) we
have

y-[0,TIN3X = ¢,
Y len, T1NOX = ¢ .
From the above formulas we have that
(16) yeoXx.
On the other hand, by (14), ye GT(X) and by our assumptions
yE }% ; this fact contradicts (1.6). |
(iii) It is trivial.

THEOREM 1.5 - (Equivalence of index pairs) Let (N ,No) and
(N,No) be two index pairs such that there exists T > ( such that

G'(N—-No cN — Ny
and

GT(N — No) c N = N,.
Then [N/No] = [N/No] .

REMARK - The proof of Theorem 1.5 is essentially contained in
Salamon [S]. He gave a short and elegant proof of Conley’s theorem
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of equivalence of index pairs (in the compact contest). Salamon’s
proof can be adepted to our case.

Sketch of the proof of Theorem 1.5. We can suppose that

GT(N = No) < int N — No and that GT(N — No) < int (N — No) (if
not it is enough to replace T by 2T and use Lemma 1.3 (iv)). Now
let f:Ni/No— N/ No be defined as follows

[x-3T]if x-[0,2T] < N1 — No or x - [T,3T] c N1 — Ko,
[No] otherwise.

f(1x) = {
The function f is continuous (for the details of the proof see
[S] Lemma 4.7).
In an analogous way we can define a map
f:N/No X [T,]—>N/No.

We have to prove that 7°f and f°f are homotopic to the identity
in N/No and N/No respectively .

For t€[0,7] define the map #n:[0,T] X N/No— N/N, as
follows

_ ([x-6t]if x-[0,6t] < Ni— No,
h(t, [x]) = {[No] otherwise .
It is easy to show that % is continuous and that
h(T,[x]) =ff and h(0,[x]) = Idw,.

In the same way it is possible to construct an homotopy
7:[0,T] X N/No—-)N/No

COROLLARY 1.6 - If (N,No) and (N,No) are two index pairs for
X, then [N/Nol =[N, Nol. In particular (1.1) (b) holds.

Proof. If (N, No) and (N, No) are two index pairs for X we have

GT(N — No) ¢ GT(X) c N — Ny by Def. 1.1

and

GT(N — No) c GT(X) c N — No.
The conclusion follows from Theorem 1.5.

So at this point k(x) is well defined. Another consequence of
Theorem 1.5 is the following Corollary.

COROLLARY 1.7 - Let X,Y € X and suppose that 3T > 0 such that
(17) G'(X)cY and G'(Y) c X.

Then h(X) = h(Y).



22 VIERI BENCI
Proof. Let (N, No) and (N, No) be two index pairs for X and ¥
respectively. Then
(1.9) G"(N — No) c G"(X) c Y by Def. 1.1 and (1.7).
Since (N, No) is an index pair for Y,3dT; > 0 such that
G™\(Y) cint (N1 — Ny) .

Therefore by the above formula, (1.9) and Lemma 1.2 (iii), we
have that

GT+T1(N —_ No) C N — No.

For the same reason there exists T > > 0 such that

GT+T;(N — No) < N— Nq.

Thus by Theorem 1.5 (replacing T with T + max(T1,T,)) the
conclusion follows. -

CorOLLARY 1.8 - For every T > 0, h(GT(X)) = h(X).
Proof. Trivial.

COoROLLARY 1.9 - If there is T >0 such that G (X) = ¢, then
h(X)=0.

Notice that Corollary 1.9 cannot be inverted as the following
example shows.

ExampLE 1.10 - Take
M=R; n(t,x) =x—1t; X=[0,+ o).
Then h(x) = _1_ but G7(x) = ¢ for every T > 0.

However there is a good test to see if the index of a set is 0.

THEOREM 1.11 - Suppose that X € X and that

(1.10) for every x € X, there is t > 0 such that x - t¢ X.
Then h(x) =0.

We need some lemmas to prove Theorem 1.11.

LEMMA 1.12 - Suppose that (N, No) is an index pair and that <
is a positive constant such that

(1.11) x-[0,7] ©c N — Ny.

Then there exists an open neighborhood V at x such that for
every ye VNN, y-[0,t] c N — N;.
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Proof. We argue indirectly and suppose that the conclusion of the
lemma is not true. Then there exists a sequence Xxp,—> x (X, € N — No)
and a sequence t, € [0,7] such that x, -t ¢ N — No.

We set
t. = sup {t € [0,%,] such that x - [0,¢] c N}

A
t, is a bounded sequence; so we can suppose that it is convergent
to some 7€ [0,7].

A — -
By our construction, x. - t» € No; so x - { € No since Ny is closed.
This last statement contradicts (i-ii); so the lemma is proved.

LEMMA 1.13 - Let (N, No) = (G'(x),T7(x)) be an index pair for
X (cf. Theorem 1.4) and suppose that (1-10) holds.

We set
U={xeN:3te[0,2T] such that x -t € N°},
where N¢ denotes M — N .
Then U satisfies the following properties:
(i) U is relatively open in N;

(ii) given two positive constants t <1 such that x-tie U and
x-[0,t;1c N (i=1,2) then for every t€[ti, 2], x-t€ U;

(ili) Noc U;
(v) (U, No) is an index pair and [U/No] =0.

Proof. (i) and (ii) are easy to check.

In order to prove (iii) we argue indirectly and suppose that
there is x € No such that x - [0,2T] c N. Since N, is positively in-
variant with respect to N,x - [0,2T] ¢ No. Then if we set y=x-T,

it follows that y € No and y € GT(N). Since GT(N) N by Lemma 1.3
(iii) and (iv) and No < dN, by Lemma (1.3) (viii), we have obtained
a contradiction.

Now let us prove (iv). First observe that No C U by (iii). (i) of

Def. 1.1 is satisfied since U — No= U and G¥(U) = ¢ c int (U). To
check (ii), it is enough to observe that U c N. (iii) follows directly
by the definition of U. So (U,No) is an index pair. [U/Noel=h(U)=0

by Corollary (1.9).
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Proof of Theorem 1.11 - Let N, N, and U as in Lemma 1.13. For
every x € N, we choose a #(x) > 0 such that x - [0,t(x)] c N and
x-t(x) eU.

This is possible by (1.10) and Lemma 1.13 (iii). If xe U we
choose t(x) =0. Also if x ¢ U, we can choose #(x) such that
t(x) ¢ No.

Now for xe€ N — Ny, let V. be an open neighbourhood of N
(open in the topology of N) such that

(1.12)  for every ye V,,y - [0,2(x)1]c N and y-t(x) eU.

This is possible by our choice of t(x), Lemma 1.12, and Lemma
1.13 ().

For x € No, set Vo=V. Thus {V.}zen is an open cover of N
(open in the relative topology of N).

Let {Vi}ie1 be a locally finite refiniment of {V:}xen which exists
since N is a metric space.

Observe that, by our construction, for every i € I, there exists
t; 2 0 such that
(1.13)  n(ti,vi) c U and n([0,t],V:) cN.

Now let {Bi(x) }ic1 be a partition of the unity relative to {Vi}ies
i.e. a set of function f;: N— R whose support is V; and X Bi(x)=1
iel
for every x € N. Such partition exists since N is a metric space.
Now set

T(x) = X Bi(x) t;.

iel

Clearly ©(x) is a continuous function. We claim that
(1.14) =x-=(x) e U.

In order to see this, fix £ € N and set

t(Z) =min{t;:X € Vi}; (%) =max{t::% € Vi}.

By (1.13), n(t;,%) €U (i=1,2) and n([0,4],%) c N.

Therefore (1.14) follows from Lemma 1.13 (ii) .

Moreover observe that by our construction
(1.15) <(x) =0 for every xe N.

Now consider the map #:[0,1] X N— U defined by

h(s,x) =n(st(x),x).

h is an homotopy equivalence between N and U, and by (1.15) it is
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also an homotopy equivalence between N/No and U/No.
Therefore, by Lemma 1.13 (iv)
Ii(x) = [N/Noe] =[U/Ne] =0.

REMARK 1.14 - Now, few words to compare the Conley index
with our generalization.

A closed set X is called by Conley [C] an isolating neighbour-

hood if I(X) Cj.( where I(X) ={xeX:x-Rc X} or, using our
notation, I(X) = N GT(X).

t=0

Let E be the family of isolating neighbourhoods in M ; then if

M is compact 2 X. If M is not compact, in generale, X C E So,
in our approach, it was necessary to restrict the class of sets X for
which to define index pairs (and introduce the operator G7( - )).
Now, observe that the relationship (1.7) gives an equivalence relation
on X (which we will denote by =).

Corollary 2.4 states that the index is constant on each equiva-
lence class of =

If M is compact, then X =Y if and only if I(x) =1(Y) (the
easy proof of this is left to the reader).

So, when M is compact, # depends only on the maximal invariant
set I(X) contained in X ; therefore it is an index of isolated invariant
sets. Example 1.10 shows that this is not the case when the com-
pactness is not assumed (in fact h(x) = 1_ but I(X) = ¢).

Concluding, the Conley index is an index of isolated invariant
sets; our generalization is an index of a class of closed set which
has been chosen in order that the main properties of the Conley
theory can be preserved.

2. The cohomologic index

Let H*(-,-) denote the Alexander Spanier cohomology with
coefficients in some field F (cf. [Sp]).

We recall that the Alexander -Spanier cohomology satisfies the
following property which is not shared by the singular cohomology
theory .

THEOREM 2.1 - Let (X,A) and (Y ,B) two pairs of topological
spaces. We suppose that X and Y are paracompact Hausdorff
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spaces and that A and B are closed in X and Y respectively. More-

over suppose that X — A and Y — B are homeomorphic. Then
H(X,A) =~ H (Y,B).

Proof. See [Sp], Th. 5, pag. 318.

Now for every pairs of closed spaces (X, A) we set
p(X,A) = I [dimH9(X,A)] .
g=0

p(X,A) is a formal series whose coefficients are cardinal numbers,
these numbers are known as Betti numbers.

If X is a compact manifold with boundary A, then p(X,A)
reduces to a polynomial called Poincaré or Betti polynomial. p(X,A)
is a topological invariant which carries part of the information
contained in the cohomology algebras H* (X, A).

When A = ¢ we shall write p(X) instead of p(X,A). We shall
denote by S the set of formal series with cardinal coefficients.

The following properties of p(X,A) will be used to study the
cohomological index.

LEMMA 2.2 - Let (X,A) and (Y,B) be couples of closed sub-
spaces of a metric space.

Then
(i) p(X,A) =p(X/A,[A]);

(ii) if XNY = ¢ then
p(XUY,AUB) =p(X,A) + p(Y,B);

(i) p((X,A) X (Y,B)) =p(X,A) - p(Y,B)
where (X,A) X (Y,B) = (X XY,XXBUY x A);

(iv) if B < A then there exists Q(t) € S s.t.
pi(X,A) + p(A,B) =p:(X,B) + (1+1) Q(t).

Proof. (i) Let II:X—X/[A] be the projection map. Then
Ox_4 is a homeomorphism between X — A and X/ [A] — [A]. Thus
the conclusion follows from Theorem 2.1.

(ii) trivial.
(iii) Since (X,A) and (Y,B) are closed pairs, there is an exact
Mayer - Vietoris sequence for the A* cohomology (cf. [Sp] pag. 291).

But every closed pair of Hausdorff - paracompact spaces is a
tout pair for the Alexander - Spanier cohomology (cf. [Sp] pag. 315).
Therefore A" = H* on such pairs. Therefore the Kiinneth formula
can be applied to such pairs (cf. [Sp] pag. 249) and we get
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H((X,A) X (Y,B)) =H"(X,A) H (Y, B).

From the above formula the conclusion follows.
(iv) Let us consider the exact sequence relative to the triple
BcAcCcX:

@1 - EiilHq(X,A):in(X,B)iin(A,B)2. :
and set a, = dim (ker iy),
b, = dim (ker j3),
cqy = dim (ker &,).
By the exactness of (2.1) we get
dim H4(X ,A) = ¢c4-1 + a4 (with the convenction that c_; = 0),
dim H4(X ,B) = a4, + by,
dim H9(A,B) = by + c,.

Then we have

p(X,A) = «Eo (Cqm1 + ag) t9,

P(X,B) = I (ag+bg) 17,

p(A,B) = qi:o(bq+ cg) 19.
Then

p(X,A) + p(A,B) = p(X,B) + S'io (Cqmt + Cg) 11 =
q=
—p(X,B) +(1+1) T cy1.
g=0

The conclusion follows setting Q(t) = X cqt9.
g=90

Notice that the formula (iv) holds even if some of the coef-
ficients are infinite cardinal numbers.

We can now define the cohomologic index:
DEF. 2.3 - The cohomologic index is a map
i:Z(m)—>S
defined by
i(X,n) = p:(N,No)
where (N, No) is an index pair for X.
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When no ambiguity is possible we shall write i(X) instead of
it (X ’ n) .

REMARK 2.4 - By Lemma 2.2 (i), p(N, No) = p(N/No, [Nol); so the
cohomologic index depends only on #(x); thus it is well defined by
(1.1) (a) and (b).

The above remark implies that the cohomologic index carries
less information than the homotopic index. Neverthless is more
usefull since it is much easier to deal with. The following theorem
illustrates the first properties of the cohomologic index.

THEOREM 2.5 - The cohomologic index satisfies the following
properties:

(i) if XeZ and for every x€X, there is t >0 such that x - t¢ X,
then i(X) =0;

(ii) if X € X is contractible and positively invariant, then i(X) = 1;
(ii) if X,YeX and XNY = ¢ then i(XUY) =i(X) +i(Y);

(iv) if wi is a semiflow on M; (i=1,2), then a semiflow m X 12 is
defined on M; X M, as follows

(e X m) (1, (x1,%)) = (m(t,x),m(t,x));
then if X;eX(n;) (i=1,2), we have that
X1 X X,€ Z(Mi1 X Mz, m X m2)
and
X1 X Xa,mXm) =i(X1,n) - i(X2,m).

Proof. (i) follows from Theorem 1.11; (ii) follows by the fact
that H7(X) =1 if and only if ¢ = 0. (iii) and (iv) follow by Lemma
23 (ii) and (iii) respectively.

Next we are going to prove a property of the index w1c:h is a
generalization of the classical Morse inequalities.

DEF. 2.6 - Take X1,X: € X with XiNX2= ¢. We say that X is
over X, if there exists T > 0 such that XiNGT(X1U X>) is positively
invariant with respect to GT(X1UX,).

If X, is over X or X, is over X, then we say that X; and X,
are m-connected. Otherwise we say that they are m-disconnected.

ExaMPLEs 2.7 - I: If X;NX, = ¢, then X; and X, are n-discon-
nected.

II: Let f be a Liapunov function for (M, n) and let ¢ be a con-
stant which is a regular value for f (ie. f(x) =c=f(x) = 0). We
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set Xi={xeM:f(x) <c}; Xa={xeM:f(x) >c}. Then Xi,X:€X
and X, is over X;.

DEF. 2.8 - Let X € =. A family of sets {Xi}xen is called a MORSE
DECOMPOSITION of X, if

N
G X=U Xi;

k=1

(ii) XreZX fork=1,...,N;
(i) XeNXn=¢ for k=h;
h
(iv) Xnss is over U Xy for h=1,...,N — 1.
k=1
EXAMPLE 2.9 - Let f be a Liapunov function for (M ,m) and let
1< c2<...<cn-1 be a sequence of regular values for f.
Let co= — o and cy = + e and
x={xeX:ci-1 <f(x) <ci}
Then X is a Morse decomposition of X .

The next theorem states one of the most important property of
the cohomological index (as far as the applications are concerned).

THEOREM 2.10 - If X1 id a Morse decomposition of X, then there
exists Q € S such that

éli(xk) —iX) + (1+00Q(1) .

In order to prove Theorem 2.10 some lemmas are necessary.

LEMMA 2.11 - Let X = X 1UX, and suppose that X, is over Xi.
Then there exist closed spaces No < Ny Ny such that (N2, No),
(N2, N1), (N1,No) are index pairs for X, X and X respectively.

Proof. Take T big enough in order that

(a) X1NGT(X) is positively invariant with respect to GT(X);
(2.4) (b) (GT(X); TT(X)) is an index pair for X ;

©) GT(Xi) c Xi.

We set
No=T7(X),
Ni= (XiNGT(X))UTIT(X),
N, = GT(X).

We want to prove that Ng, N1, N2 satisfy the required properties.
We now prove that (N1, Ny) is an index pair for X .
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Let is check (i) of Def. 1.1. Since N —No=X1NGT(X)

(2.5) GT(N —N,) = GT(XiNGT(X)) c GT(Xy) C)°(1 by (24) (c).
Also by Lemma 1.3 (i), (iii) and (v)

(2.6) GT(N —No) c GT(GT(X)) = G7(X) c int GT(X).
Then by (2.5) and (2.6).

G'(N — No) c int (N — Ny).

(ii) of Def. 1.1 holds since (XiNGT(X)) is positively invariant in
GT(X) by definition and I'’(X) is positively invariant in GT(X ) by
Theorem 1.4.

Now let us check (iii) of Def. 1.1. If x € N1 and it leaves N; at
some times, it has to leave GT (X) also, since N; is positively inva-
riant in G7(X). Thus there exists #* such that x - ¢ € I'T(X) since
I'"(X) is an exit set for GT(X).

Finally, since GT(X{) c Ny — No, (iv) of Def. 1.1 holds. Let us
check that (N, N;) is an index pair for X,.

N —N1=G"(X) = X1 =G'(X)NX,,
then arguing as we have done for G7 (X)NX;, it follows that
N:—Ni;ex.
(ii) of Def. 1.1 holds since N; is positively invariant in N,
(iii) holds since Ny D IT(X) and IT (X) is an exit set for N,

(iv) follows by the fact that

GT(Xz) c N — N;.

CorOLLARY 2.12 - If X = X,UX; and Xz is over X1, then there
exists Q € S such that

UX1) +i(X) =i(X) + (142) Q(1).

Proof. By Lemma 2.2 (iv) applied to the triple No, N1, N, defined
in Lemma 2.10 we have

P(N2,N1) + p(N1,No) = p(N>,No) + (1+ 1) Q().

The conclusion follows by Lemma 2.10 and the definition of the
cohomological index.

REMARK 2.13 - It is easy to check that if X 1 and X; are 7-discon-
nected, then, for T large enough



A GENERALIZATION OF THE CONLEY-INDEX THEORY 31

GT(X1UX,) = GT(X1) UGT(X,) and GT (X)) NGT(X32) = ¢.
Then
i(X) = i(GT(X1UX,)) by Corollary 1.8
= i(GT(X1)) + i(GT (X2) by Theorem 2.5 (iii)
=i(X1) + i(X2).

Comparing this result with Corollary 2.12 we deduce that Q(t) # 0
implies that X; and X, are n-connected.

Proof of Th. 2.10. We argue by induction. For N =2 it is true
since it is nothing else but Corollary 2.12.

We can suppose that it is true for N — 1; so there exists Q1 € S
such that
N-1 N-1
kzli(Xk) = l(kUle) + (14 1) Qu(2).
N-1

Now, since Xy is over U x «, applying Corollary 2.12 an other time,
k=1

we get

N-1
i(Xn) +i(U Xi) =i(X) + (1 + 1) Qu(t) with Qu(2) €S.
k=1
Then the conclusion follows with Q(?) = Qi(t) + Qzf t).

3. The generalized index and compactness

In this section we analyse some situation usefull in the appli-
cations:

DEF. 3.1 - An index theory is a triple {M,n,T} where (M,n)

is a semiflow and T is a subset of Z such that YcXeTand YeX
implies Y €T.

Axiom A. We say that {M,n,T'} satisfies Axiom A if for every
X,Y eT we have

I(X) =1(Y) = h(X) = h(Y)
where I(Z) = N GT(Z) ={xeZ:x-RcZ}

=0
Axiom B. ‘We say that {M,n,T} satisfies Axion B if
Xel and I(X) =¢=>nh(X) =0.

Observe that Axiom A implies Axiom B. If Axiom A holds then
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we have an index theory for isolated invariant sets as the original
Conley theory (cf. Remark 1.14).

However Axiom A is too strong to be usefull in certain class
of variational problems. Axiom B instead has the right «amount of
compactness» to be applied to the class of problems we have in
mind.

These consideration will be discussed and made precise in this
section.

DEF. 3.2 - If S is an isolated invariant set we define
A
h(S) = lim i(U) where '={XeI:ScX}
A
UeT
if the limit exists (i.e. if h(U) is constant for U «small»).

It is not difficult to check that this is the case if Axiom A is
satisfied. In the same way we can define i (S).

REMARK 3.3 - Let {X1,X:} be a Morse decomposition of X, and
suppose that

Si=1I(Xi); i(S;) is defined and that i((S) =i(X;) (i=1,2).
Thus by Corollary 2.11 we have
{(S1) +i(S) =i(X) + (14 1) Q(1).
Suppose now that Q(z) = 0.
Then, if Axiom A is satisfied, we have that
S=I(X) #S; U S,

and more precisely S1US, = S. If we set C — S — (S1US;) we can
state that if X; and X, are n-connected, then S; and S, are «con-
nected» by an invariant set C.

This is not the case if only Axiom B is satisfied. In fact in this
case it might happen that X; and X, are n-connected but C = 4.
Intuitively, we can say that the connection C «lies at infinity».

REMARK 3.3’ - By Def. 3.2 and Lemma 2.2 (ii) if S =S,US; and
SiNS; = ¢ we have that i((S1USy) =i(S1) + i(Sz2). Now let us inve-
stigate some criteria to know if Axiom A or Axiom B are satisfied.

LEMMA 3.4 - Let {M,n,T} be an index theory and suppose that
for every X €T and any neighbourhood U of I(X) there exists T> 0
such that

GT(X) eU.
Then {M,n,T} satisfies Axiom A.
























