A CLASS OF LINEAR OPERATORS IN PERIODIC FUNCTION SPACES INCLUDING DIFFERENCE-DIFFERENTIAL OPERATORS (*)

by MARINO ZENNARO (in Trieste) (**)

SOMMARIO. - Si fa uno studio degli operatori lineari definiti negli spazi di Banach C^p_T delle funzioni T-periodiche e di classe C^n, $u: \mathbb{R} \to \mathbb{C}$, $n \geq 0$, per i quali la composizione con gli operatori di traslazione $u \to u(.+\xi)$, $\xi \in \mathbb{R}$, è commutativa. Si trovano gli autovalori e si dà una rappresentazione del tipo $Lu = \int_0^T u(x+.) \, dG(x)$ per mezzo di funzioni a variazione limitata. I risultati teorici sono applicati ad operatori definiti da equazioni differenziali alle differenze.

SUMMARY. - This is a study of linear operators for which composition with shift operators $u \to u(.+\xi)$, $\xi \in \mathbb{R}$, on Banach spaces C^p_T of T-periodic functions $u: \mathbb{R} \to \mathbb{C}$, $n \geq 0$, is commutative. Eigenvalues are found and representations of the type $Lu = \int_0^T u(x+.) \, dG(x)$ by functions of bounded variation are given. The abstract results are applied to operators given by difference-differential equations.

1. Introduction.

For $T \in \mathbb{R}^+$, the space

$$C^n_T := \{u \in C^n(\mathbb{R}, \mathbb{C}) \mid u^{(i)}(t+T) = u^{(i)}(t) \forall t \in \mathbb{R}, i = 0, \ldots, n\}$$

with the norm $\|u\|_{C^n_T} := \sum_{k=0}^{n} \max_{t} |u^{(k)}(t)|$ is a Banach space.

(*) Pervenuto in Redazione il 2 maggio 1983.
(**) Indirizzo dell'Autore: Istituto di Matematica dell'Università - Piazzale Europa, 1 - 34100 Trieste.
Besides consider the space

\[L_{T}^{2} = \{ u : \mathbb{R} \to \mathbb{C} \mid u(t+T) = u(t) \ \forall t \in \mathbb{R} \text{ and } u \in L^{2}([0,T],\mathbb{C}) \} \]

which, equipped with the usual inner product \((u,v) = \int_{0}^{T} u(t) \overline{v(t)} \, dt \), is a Hilbert space of equivalence classes.

For every \(n \geq 0 \) the space \(C_{T}^{n} \) is continuously embeddable in the space \(L_{T}^{2} \) and, moreover, for every \(m \geq n \) the embedding operator \(I : C_{T}^{m} \to C_{T}^{n} \) is completely continuous.

For each real number \(\tau \) let us define the following shift operator acting on \(T \)-periodic functions

\[S_{\tau} u(t) : = u(t+\tau). \]

It is easy to see that \(S_{\tau} \) is an isometry (isomorphism which preserves the norm) on the spaces \(C_{T}^{n} \) for every \(n \geq 0 \). Since \(S_{\tau} S_{\tau'} = S_{\tau+\tau'} \) for every \(\tau, \tau' \in \mathbb{R} \), the set \(\mathcal{S} \) of all the shifts turns out to be a group.

Next consider the space \(\mathcal{L}^{n,m} : = \mathcal{L}(C_{T}^{n},C_{T}^{m}) \) of the continuous linear operators mapping \(C_{T}^{n} \) into \(C_{T}^{m} \) and define an action of the group \(\mathcal{S} \) onto \(\mathcal{L}^{n,m} \) as follows

\[S_{\tau} x L : = S_{-\tau} \circ L \circ S_{\tau} \quad \forall L \in \mathcal{L}^{n,m} \text{ and } \forall \tau \in \mathbb{R}. \]

Therefore the set

\[\mathcal{LS}^{n,m} : = \{ L \in \mathcal{L}^{n,m} \mid S_{\tau} x L = L \forall \tau \in \mathbb{R} \} \]

is a closed linear subspace of \(\mathcal{L}^{n,m} \), and hence it is a Banach space.

Observe that the operators of \(\mathcal{LS}^{n,m} \) are characterized by the property that they commute with the shifts, i.e.

\[L \circ S_{\tau} = S_{\tau} \circ L \quad \forall \tau \in \mathbb{R}. \]

The spaces \(\mathcal{LS}^{n,m} \) include various kinds of operators given, for example, by linear difference-differential equations (DDE’s) with constant coefficients or by integral equations such as \(u(t) = \int_{0}^{T} K(t-x) u(x) \, dx + f(t) \) with a \(T \)-periodic convolution kernel.

We give an integral representation theorem for the operators of \(\mathcal{LS}^{n,m} \) and hence, in particular, for the \(T \)-periodic solutions of DDE’s. Many representation theorems are known for initial value problems to DDE’s (see for example L.El’sgol’ts-S. B. Norkin [3] and J. Hale [4]) and for ordinary differential equations in Banach spaces with many kinds of lateral conditions (see for example C. S. Hönig [5]). On the contrary similar results do not seem to exist for \(T \)-periodic solutions to DDE’s.
We also obtain again some known results on the spectral theory and on the solvability of DDE's with constant coefficients (see for example L.E. El'sgol'ts-S. B. Norkin [2] and S. Invernizzi-F. Zanolin [6]). Furthermore the representation theorems provide a straightforward estimate of the rate of uniform convergence for the Fourier expansion of the solutions.

This research was suggested by a paper of A. Bellen [1] in which he studies an iterative monotone method for the numerical solution of nonlinear delay differential equations of the type

\[u^{(n)}(t) = f(t, u(t), u(t-\tau)) \quad n = 1, 2, \]

in spaces of \(T \)-periodic functions. An iteration requires the solution of a linear difference-differential equation.

Moreover a maximum principle and the knowledge of upper and lower solutions are needed. The results of this paper are fully used in M. Zennaro [7], where some maximum principles are proved, and in A. Bellen-M. Zennaro [2], where a method for finding upper and lower solutions is given.

2. The spaces \(\mathcal{L}^n \). Eigenvalues and eigenspaces.

Define for every \(k \in \mathbb{Z} \) the function \(e_k(t) := \exp \left(\frac{2k\pi i t}{T} \right) \). The set \(E := \{e_k\}_{k \in \mathbb{Z}} \) is an orthogonal system in \(L^2_T \), and is a fundamental set in \(C^n_T \), since \(\text{span} E \) is dense in \(C^n_T \) for every \(n \geq 0 \).

The spaces \(\mathcal{L}^n \) can be characterized as follows.

Theorem 2.1 - For every \(L \in \mathcal{L}^n \) the statements

(i) \(L \in \mathcal{L}^n \);

(ii) - For every \(k \in \mathbb{Z} \) there exists \(\lambda_k \in \mathbb{C} \) such that \(L e_k = \lambda_k e_k \);

are equivalent.

Proof. Let (i) be true. Since \(S_\tau e_k = e_k(\tau) e_k \) for every \(\tau \in \mathbb{R} \), we have that \(S_\tau L e_k = L S_\tau e_k = e_k(\tau) L e_k \) and then \(L e_k(t + \tau) = e_k(\tau) L e_k(t) \) for every \(t, \tau \). For \(t = 0 \) we have \(L e_k(\tau) = L e_k(0) e_k(\tau) \) for every \(\tau \in \mathbb{R} \). Therefore (ii) is proved, with \(\lambda_k = L e_k(0) \).

Conversely, assume (ii) to be true. It follows that if \(p \) is a trigonometric polynomial, i.e. \(p = \sum_{i=-s}^{s} a_i e_i \), then

\[L \cdot S_\tau p = \sum_i a_i L \cdot S_\tau e_i = \sum_i a_i e_i(\tau) L e_i = \sum_i a_i e_i(\tau) \lambda_i e_i = \]
\[S(\sum_i a_i\lambda_i e_i) = S \circ Lp. \]

Since \(\text{span} \, E \) is dense in \(C_n \) and \(L \) is continuous, (i) holds, too. ■

Throughout the paper we shall mark the dependence of the numbers \(\lambda_k \) on \(L \) by \(\lambda_k \).

It is easy to prove the following three corollaries.

Corollary 2.2 - Let \(L, M \in \mathcal{L} \mathbb{S}^{n,m} \); then we have \(\lambda_k^{L+M} = \lambda_k^L + \lambda_k^M \) for every \(k \in \mathbb{Z} \).

Corollary 2.3 - Let \(L \in \mathcal{L} \mathbb{S}^{n,m} \); if there exists \(L^{-1} \in \mathcal{L}^m, n \), then \(L^{-1} \in \mathcal{L} \mathbb{S}^{m,n} \) and \(\lambda_k^{-1} = (\lambda_k^{-1})^{-1} \) for every \(k \in \mathbb{Z} \).

Corollary 2.4 - Let \(L \in \mathcal{L} \mathbb{S}^{n,m} \) and \(M \in \mathcal{L} \mathbb{S}^{m,p} \); then \(M \circ L \in \mathcal{L} \mathbb{S}^{n,p} \) and \(\lambda_k^{M \circ L} = \lambda_k^M \cdot \lambda_k^L \) for every \(k \in \mathbb{Z} \).

When the continuous operator \(L \), acting from \(C^n_T \) into \(C^n_T \), will be regarded as a continuous operator acting from \(C^q_T \) into \(C^p_T \), we shall still denote it by \(L \).

Theorem 2.5 - Let \(L \) belong both to \(\mathcal{L} \mathbb{S}^{n,m} \) and \(\mathcal{L} \mathbb{S}^{q,p} \) and let \(M \) belong both to \(\mathcal{L} \mathbb{S}^{m,p} \) and \(\mathcal{L} \mathbb{S}^{n,q} \); then they commute, i.e. \(L \circ M = M \circ L \).

Proof. By Corollary 2.4 we have that \(L \circ M \) and \(M \circ L \) belong to \(\mathcal{L} \mathbb{S}^{n,p} \) and \(\lambda_k^{M \circ L} = \lambda_k^{M \circ M} = \lambda_k^M \cdot \lambda_k^L \) for every \(k \in \mathbb{Z} \). Therefore, if \(p \) is a trigonometric polynomial, i.e. \(p = \sum_{i=-k}^k a_i e_i \), then

\[
M \circ Lp = \sum_i a_i M \circ L e_i = \sum_i a_i \lambda_i^{M \circ L} e_i = \sum_i a_i \lambda_i^{M \circ L} e_i = \sum_i a_i \lambda_i^{M \circ M} e_i = \sum_i a_i L \circ M e_i = L \circ Mp.
\]

Since \(\text{span} \, E \) is dense in \(C^n_T \) and \(L \circ M, M \circ L \) are continuous, it follows that \(L \circ M = M \circ L \). ■

Theorem 2.6 - \(L \in \mathcal{L} \mathbb{S}^{n,m} \) implies \(L \in \mathcal{L} \mathbb{S}^{n+k,m+k} \) for every \(k \geq 1 \).

Proof. For \(n = 0 \) and \(m \geq 0 \) this is a consequence of the representation theorems for the spaces \(\mathcal{L} \mathbb{S}^{0,m} \) given in Section 3. In fact we shall see that for every \(L \in \mathcal{L} \mathbb{S}^{0,m} \) there exists a function \(G \), \([G] \in \mathcal{S}^m \) (see Theorem 3.6), such that \(Lf(t) = \int_0^T f(x+t) \, dG(x) \) for every \(f \in C^n_T \). Now, if \(f \in C^n_T \), it is easily seen that the following equalities hold for \(i = 1, \ldots, k \)

\[(Lf)^{(i)}(t) = \int_0^T f^{(i)}(x+t) \, dG(x) = Lf^{(i)}(t)\]

and hence, since \(f^{(k)} \) is continuous, we have that \(Lf \in C^{m+k}_n \).
Moreover let \(||L||_{0,m} \) be the norm of \(L \) as operator from \(C^0_T \) into \(C^m_T \); then

\[
||L||_{C^m_T}^{m+k} = \sum_{i=0}^{k-1} ||(Lf)^{(i)}||_\infty + \sum_{i=k}^{m+k} ||(Lf)^{(i)}||_\infty = \sum_{i=0}^{k-1} ||Lf^{(i)}||_\infty + \\
+ \sum_{i=0}^{m} ||Lf^{(k)}||_\infty \leq \sum_{i=0}^{k-1} ||L||_{0,m} ||f^{(i)}||_\infty + ||Lf^{(k)}||_{C^m_T} \leq \\
\leq ||L||_{0,m} \sum_{i=0}^{k} ||f^{(i)}||_\infty = ||L||_{0,m} ||f||_{C^k_T}
\]

and therefore \(L \) is continuous also from \(C^k_T \) into \(C^{m+k}_T \).

Assume the theorem true for \(n-1 \) and \(m \geq 0 \). It is easy to see that the operator \(J: u \rightarrow u' - u \) belongs to \(\mathfrak{L}^p \) for every \(p \geq 1 \) and that there exists \(J^{-1} \in \mathfrak{L}^p \). By Corollary 2.4 we have \(L_0J^{-1} \in \mathfrak{L}^{n-1,m} \), since \(J^{-1} \in \mathfrak{L}^{n-1,n} \).

By the inductive hypothesis \(L_0J^{-1} \in \mathfrak{L}^{n-1+k,m+k} \) for every \(k \geq 1 \); since \(J \in \mathfrak{L}^{n+k,n-1+k} \), we have that \(L = L_0J^{-1}J \in \mathfrak{L}^{n+k,m+k} \). So the proof is complete.

For every \(L \in \mathfrak{L}^{n,m} \) let us call eigenvalue of \(L \) each complex number \(\lambda \) such that \(Lu = \lambda u \) for some \(u \in C^n_T, u \neq 0 \).

For every \(\lambda \in \mathbb{C} \) and \(L \in \mathfrak{L}^{n,m} \) define the set

\[
K_{L,\lambda} := \{ k \in \mathbb{Z} \mid \lambda^L_k = \lambda \}
\]

which, obviously, may be empty. Besides, define

\[
E_{L,\lambda} := \{ e_k \}_{k \in K_{L,\lambda}}
\]

and denote the sets \(E_{L,0} \) and \(K_{L,0} \) by \(E_L \) and \(K_L \) respectively.

Let \(N_{L,\lambda} \) be the linear manifold of the functions \(u \in C^n_T \) such that \(Lu = \lambda u \). Note that \(N_{L,0} = \text{ker} L \) and \(N_{L,\lambda} = \{0\} \) if and only if \(\lambda \) is not an eigenvalue of \(L \).

Lemma 2.7 - If \(E = E_1 \cup E_2 \) and \(E_1 \cap E_2 = \emptyset \), then we have that

\[
C^n_T = \overline{\text{span } E_1 \oplus \text{span } E_2} \quad \text{for every } n \geq 0.
\]

The proof is standard and is omitted for the sake of brevity.

Now we are able to prove the following theorem concerning the structure of the linear manifold \(N_{L,\lambda} \).

Theorem 2.8 - Let \(L \in \mathfrak{L}^{n,m} \) and let \(\lambda \) be a complex number; then we have \(N_{L,\lambda} = \overline{\text{span } E_{L,\lambda}} \), where \(\text{span } \emptyset = \{0\} \).
Proof. Since \(L \) is continuous, we have \(\text{span} \, E_{L,\lambda}^T \subseteq N_{L,\lambda} \). Conversely, let \(u \in N_{L,\lambda} \); then, by Lemma 2.7, we have that \(u = v + w \), where \(v \in \text{span} \, E_{L,\lambda}^T \) and \(w \in \text{span} \, (E-E_{L,\lambda})^T \).

Consider the operator \(J \) defined in the proof of Theorem 2.6; by Theorem 2.5 we have \(J^{-1} \circ L = L \circ J^{-1} \) and then \(L(J^{-1} u) = J^{-1}(Lu) = \lambda J^{-1} u \). Since \(J^{-1} u \in C_T^{n+1} \), its Fourier expansion \(\sum_{k} a_k e_k \) converges uniformly with all its derivatives up to the \(n \)-th, i.e. in \(C_T^n \), to \(J^{-1} u \). Therefore, since \(L \) is continuous,

\[
L(J^{-1} u) - \lambda J^{-1} u = \sum_{k} a_k (\lambda_k^L - \lambda) \, e_k = 0
\]

and we have \(\lambda = \lambda_k^L \) for every \(a_k \neq 0 \), i.e. \(J^{-1} u \in \text{span} \, E_{L,\lambda}^T \). On the other hand \(J^{-1} \) is an isomorphism of \(C_T^n \) onto \(C_T^{n+1} \) and \(J^{-1} \) maps \(\text{span} \, E_{L,\lambda} \) into itself. Thus we have

\[
J^{-1} v \in \text{span} \, E_{L,\lambda}^T \subset \text{span} \, E_{L,\lambda}^n
\]

and

\[
J^{-1} w \in \text{span} \, (E-E_{L,\lambda})^T \subset \text{span} \, (E-E_{L,\lambda})^n.
\]

Hence, by Lemma 2.7, \(J^{-1} w = 0 \), i.e. \(w = 0 \) and \(u = v \). \(\Box \)

This theorem yields, as a corollary, the following result on the set of the eigenvalues of \(L \).

Corollary 2.9. If \(L \in \mathcal{L}^n \), its eigenvalues are exactly \(\{\lambda_k^L\}_{k \in \mathbb{Z}} \).

Theorem 2.10. Let \(L \in \mathcal{L}^n \); then \(L = 0 \) if and only if \(\lambda_k^L = 0 \) for every \(k \in \mathbb{Z} \).

Proof. If \(L = 0 \), it obviously follows that \(\lambda_k^L = 0 \) for every \(k \in \mathbb{Z} \). Conversely, if \(\lambda_k^L = 0 \) for every \(k \in \mathbb{Z} \), we have \(Lp = 0 \) for every \(p \in \text{span} \, E \) and therefore, since \(\text{span} \, E \) is dense in \(C_T^n \) and \(L \) is continuous, it follows that \(L = 0 \). \(\Box \)

The following theorem can be proved by the same arguments of Theorem 2.8.

Theorem 2.11. Let \(L \in \mathcal{L}^n \) and let \(R(L) \) be the range of \(L \); then \(\overline{R(L)} = \text{span} \, (E-E_L) \).

Since \(\text{span} \, (E-E_L)^T = C_T^n \cap \text{span} \, E_L^2 \), we have immediately the following corollary.

Corollary 2.12. Let \(L \in \mathcal{L}^n \) and let \(R(L) \) be closed; then the equation \(Lu = f \) has a solution in \(C_T^n \) if and only if \((f, e_k) = 0 \)
for every \(k \in K_L \).
3. **Representation theorems for the spaces $\mathcal{S}^{0,n}$**.

First consider the case $\mathcal{S}^{0,0}$.

Lemma 3.1 - The space $\mathcal{S}^{0,0}$ is isometrically isomorphic to C_T^0, the dual space of C_T^0.

Proof. Indeed one can prove by direct arguments that the operator

$$K : \mathcal{S}^{0,0} \to C_T^0$$

such that $K(L) = P_0^* L$,

where P_0^* is the evaluation functional defined by $P_0^* u = u(0)$, is linear and preserves the norm.

On the other hand there exists the inverse

$$K^{-1} : C_T^0 \to \mathcal{S}^{0,0}$$

defined as follows:

for every $F \in C_T^0$ and $u \in C_T^0$, $K^{-1}(F) u(t) = F \ast S_T u$. ■

Let us consider the space $BV_0([0,T], C)$ of the complex functions G defined in $[0,T]$ which are of bounded variation and are such that $G(x + 0) = G(x)$ for every $x \in (0,T)$ and $G(0) = 0$ (see C. S. Hönig [5]).

Let $\Phi(x) = \begin{cases} 0 & \text{if } x = 0 \text{ and } x = T \\ 1 & \text{if } 0 < x < T \end{cases}$

$$S_T^0 := \frac{BV_0([0,T], C)}{span\{\Phi\}}.$$

The following lemma is a trivial consequence of the Riesz theorem.

Lemma 3.2 - The space C_T^0 is isometrically isomorphic to the space S_T^0, and for every $F \in C_T^0$ we have that

$$F^* u = \int_0^T u(x)\,dG(x)$$

for every $u \in C_T^0$,

where $[G]$ is the element of S_T^0 corresponding to the linear functional F^* in the isometry.

Combining the results of Lemmata 3.1 - 3.2, we easily obtain the representation theorem for the operators of the space $\mathcal{S}^{0,0}$.

Theorem 3.3 - There exists an isometry \mathcal{S}_0 between the space $\mathcal{S}^{0,0}$ and the space S_T^0, and for every $L \in \mathcal{S}^{0,0}$ we have that
\[Lu(t) = \int_0^T u(x + t) \, dG(x) \]

for every \(u \in \mathcal{C}_T^0 \) and for every real number \(t \), where \([G] = \mathfrak{S}_0(L)\).

Each function \(G \in \mathfrak{S}_0(L) \) will be called \textit{representative function} of the operator \(L \).

In the space \(S_T^0 \) the norm is given by \(\| [G] \|_0 = \inf_{\lambda \in \mathbb{C}} V(G + \lambda \Phi) \), where \(V(G + \lambda \Phi) \) is the variation of \(G + \lambda \Phi \).

Using Corollary 2.9 and Theorem 3.3 we can derive a result on the representation of all the eigenvalues of the operators which belong to the space \(\mathcal{L}S_{0,0} \).

Corollary 3.4 - All the eigenvalues of \(L \in \mathcal{L}S_{0,0} \) are given by

\[\lambda^L_k = \int_0^T e_k(x) \, dG(x), \text{ where } [G] = \mathfrak{S}_0(L). \]

Proof. Let \(e_k(t) = \int_0^T e_k(x + t) \, dG(x) = \int_0^T e_k(t) \, e_k(x) \, dG(x) = \int_0^T e_k(x) \, dG(x) \, e_k(t) \).

Now consider \(n \geq 1 \) and observe that \(L \in \mathcal{L}S_{0,n} \) implies \(L \in \mathcal{L}S_{0,m} \) for every \(m \leq n \).

Let us denote by \(S_T^n \) the subspace of \(S_T^0 \) of the classes of the representative functions of the operators \(L \in \mathcal{L}S_{0,n} \) for \(n \geq 1 \). In order to characterize the classes of \(S_T^n \), we begin with the case \(n = 1 \).

Theorem 3.5 - The space \(S_T^1 \) is made up as follows:

\[S_T^1 = \{ [G] \in S_T^0 \mid G(x) = \int_0^x F(\xi) \, d\xi \} \]

for some \(F \) such that \(F - F(0) \in BV_0([0,T], \mathbb{C}) \) and \(F(0) = F(T) \).

Proof. If such an \(F \) exists, we have immediately that \([G] \in S_T^1\). Conversely let us consider \(L \in \mathcal{L}S_{0,1} \). The derivative operator \(D \) belongs to \(\mathcal{L}S_{1,0} \) and then \(D \cdot L \in \mathcal{L}S_{0,0} \). According to Theorem 3.3, let \([G] = \mathfrak{S}_0(L)\) and \([H] = \mathfrak{S}_0(D \cdot L)\).

Let \(g(t) = 1 \); it follows that

\[D \cdot Lg(t) = \frac{d}{dt} \int_0^T dG(x) = 0 \]
and also
\[D_* L g(t) = \int_0^T dH(x) = H(T) - H(0) \]
and then \(H(0) = H(T) \).

Now consider the function
\[K(x) := \int_0^x H(\xi) \, d\xi \]
and let \(f \in C^0_T \); it follows that
\[\int_0^T D_* L f(\xi) \, d\xi = \int_0^T \left(\frac{d}{d\xi} \int_0^T f(x+\xi) \, dG(x) \right) \, d\xi = \]
\[= \int_0^T f(x+t) \, dG(x) - \int_0^T f(x) \, dG(x) \]
and also
\[\int_0^T D_* L f(\xi) \, d\xi = \int_0^T \left(\int_0^T f(x+\xi) \, dH(x) \right) \, d\xi = \]
\[= \int_0^T \left(\int_0^T f(x+\xi) \, dH(x) \right) \, d\xi = H(T) \int_0^T f(T+\xi) \, d\xi - H(0) \int_0^T f(\xi) \, d\xi - \]
\[\int_0^T H(x) \left(\frac{d}{dx} \int_0^T f(x+\xi) \, d\xi \right) \, dx = \]
\[= [H(T) - H(0)] \int_0^T f(\xi) \, d\xi - \int_0^T H(x) \left[f(x+t) - f(x) \right] \, dx = \]
\[= - \int_0^T f(x+t) \, dK(x) + \int_0^T f(x) \, dK(x) \]
and then
\[\int_0^T f(x+t) \, d(G+K)(x) = \int_0^T f(x) \, d(G+K)(x) \quad \forall \, t \in \mathbb{R}. \]

By integrating we obtain
\[\int_0^T \left(\int_0^T f(x+t) \, d(G+K)(x) \right) \, dt = \int_0^T \left(\int_0^T f(x+t) \, dt \right) \, d(G+K)(x) = \]
\[T \bar{f} \int_0^T d(G+K)(x), \text{ where } \bar{f} = \frac{1}{T} \int_0^T f(\xi) \, d\xi \text{ is the mean of } f. \]

Moreover
\[\int_0^T \left(\int_0^T f(x+t) \, d(G+K)(x) \right) \, dt = T \int_0^T f(x) \, d(G+K)(x) \]
and therefore we can conclude that
\[\int_0^T f(x+t) \, d(G+K)(x) = \bar{f} \int_0^T d(G+K)(x). \]

If we put
\[\rho := \frac{1}{T} \int_0^T d(G+K)(x), \]
we have that \([G(x)] = [\rho x - K(x)]\) in \(S^0_T\) and hence we can suppose that \(G(x) = \rho x - K(x)\).

Thus the function \(F(x) := \rho - H(x)\) is such that \(G(x) = \int_0^x F(\xi) \, d\xi\), \(F - F(0) \in BV_0([0,T], \mathbb{C})\) and \(F(0) = F(T)\).

The uniqueness of \(F\) is trivial. \(\blacksquare\)

The function \(F\) will be called \textit{main derivative} of the representative function \(G\).

Besides, we shall denote by \(\mathfrak{g}_i\) the restriction of \(\mathfrak{g}_0\) to \(\mathfrak{L}^{0.1}\) and renorm the space \(S^1_T\) by \(|[G]|_1 := ||[G]||_0 + V(F)\). It is easy to verify that \(\mathfrak{g}_i\) is an isometry between \(\mathfrak{L}^{0.1}\) and \(S^1_T\).

For \(n \geq 2\) the following characterization holds for \(S^n_T\).

Theorem 3.6 - The space \(S^n_T\) is made up as follows:

\[S^n_T = \{ [G] \in S^0_T | G \in C^{n-1}([0,T], \mathbb{C}), \, [G^{(n-1)} - G^{(n-1)}(0)] \in S^1_T \} \]

and \(G^{(k)}(0) = G^{(k)}(T)\) for \(k = 1, \ldots, n - 1\).

\textit{Proof.} Let \(L \in \mathfrak{L}^{0.2}\); then \(D \ast L \in \mathfrak{L}^{0.1}\). Let \([G] = \mathfrak{g}_0(L)\) and \([H] = \mathfrak{g}_0(D \ast L)\); we have that \([H] \in S^1_{T'}\) so that \(H\) may be supposed to be continuous. By the same arguments of Theorem 3.5 we obtain \(H(0) = H(T)\) and we can suppose \(G(x) = \rho x - K(x)\), where we have put
\[K(x) := \int_0^x H(\xi) \, d\xi \quad \text{and} \quad \rho := \frac{1}{T} \int_0^T d(G + K)(x). \]

It follows that \(G \in C^1([0,T], \mathbb{C}) \) and that \(G'(x) = \rho - H(x) \), so that \(G'(0) = G'(T) \) and \([G' - G'(0)] \in S^1_T\).

Conversely it is easy to see that a function \(G \) which fulfills these properties defines an operator \(L \in \mathcal{L}^0 \).

For \(n \geq 3 \) the proof can be easily carried out by induction. ■

Like before, \(\mathcal{S}_n \) will denote the restriction of \(\mathcal{S}_0 \) to the subspace \(\mathcal{L}^0_{n} \). The space \(S^n_T \) will be renormed by

\[\| [G] \|_n := \| [G] \|_0 + V(G') + \ldots + V(G^{n-1}) + V(F), \]

where, according to the definitions, \(F \) is the main derivative of the function \(G^{(n-1)} - C^{(n-1)}(0) \). \(\mathcal{S}_n \) is an isometry between \(\mathcal{L}^0_{n} \) and \(S^n_T \). Remark that, if \([G] \in S^n_T \) with \(n \geq 2 \), the main derivative of \(G \) is exactly the ordinary derivative \(G' \).

4. Smooth operators.

It is interesting to consider the subspace of \(\mathcal{L}^0_{n} \) which consists of those operators which have a representative function with certain smoothness properties.

We shall say that \(L \in \mathcal{L}^0_{n} \) is smooth if it has a representative function which is of class \(C^n \), and we shall denote by \(\mathcal{L}^0_{n} \) the set of such operators.

For the operators of \(\mathcal{L}^0_{n} \), the corresponding subspace of \(S^n_T \) is

\[SS^n_T := \{ [G] \in S^n_T | [G] \cap C^n([0,T], \mathbb{C}) \neq \emptyset \}. \]

We have obviously that \(\mathcal{L}^0_{n} \subset \mathcal{L}^0_{m} \) for every \(m < n \).

Theorem 4.1 - \(SS^n_T \) is closed in \(S^n_T \) for every \(n \geq 0 \).

Proof. If \(n = 0 \), it is a consequence of the fact that the convergence in \(BV_0 \) implies the uniform convergence; thus \(BV_0 \cap C^0 \) is closed in \(BV_0 \) and then \(SS^0_T \) is closed in \(S^0_T \).

If \(n = 1 \), assume \(\{ [G_k] \} \rightarrow [G] \) in \(S^1_T \) and \([G_k] \in SS^1_T \). We can suppose \(G_k \in C^1, G \in C^0, G_k \rightarrow G \) uniformly and \(G'_k - G'_k(0) \in BV_0 \cap C^0 \). Let \(H_k \) and \(H \) be respectively the main derivatives of \(G_k \) and \(G \); it
is easy to see that \(H_k(x) = G'_k(x) + \rho_k [1 - \Theta(x)] \), where \(\rho_k := G'_k(T) - G'_k(0) \) and

\[
\Theta(x) := \begin{cases}
0 & \text{if } x = 0 \\
1 & \text{if } 0 < x \leq T.
\end{cases}
\]

Since \(H_k - H_k(0) \to H - H(0) \) in \(BV_0 \) and \(G'_k(T) = H_k(0) \), we have that \(G'_k - G'_k(0) - \rho_k \Theta \to H - H(0) \). On the other hand \(\Theta \) is not a continuous function, and we recall that \(BV_0 \cap C^0 \) is closed in \(BV_0 \). Therefore \(G'_k - G'_k(0) \to F \in BV_0 \cap C^0 \) in \(BV_0 \) (and then uniformly, too) and \(\rho_k \to \rho \in C \). Thus, by integrating, we have that \(G_k(x) - G'_k(0) \to \int_0^x F(\xi) \, d\xi \) for every \(x \in [0, T] \).

Moreover, from the convergence of \(G_k(x) \) to \(G(x) \), it follows that \(G'_k(0) \to \eta \in C \) and so we have \(G(x) = \eta x + \int_0^x F(\xi) \, d\xi \), i.e. \(G \in C^1([0, T], C) \), i.e. \([G] \in SS^1_T \).

If \(n \geq 2 \), the proof is carried out by induction. Assume that the theorem holds for \(n - 1 \). Consider a sequence \(\{G_k\} \) converging to \([G] \) in \(S^n_T \) such that \([G_k] \in SS^n_T \). We can suppose that \(G_k \in C^n \), \(G \in C^{n-1} \) and \(G'_k - G'_k(0) \in C^{n-1} \). Since \(n \geq 2 \), by Theorem 3.6 and by the definition of the norm in the space \(S^n_T \), we can conclude that \([G'_k - G'_k(0)] \in SS^{n-1}_T \), \([G' - G'(0)] \in S^{n-1}_T \) and

\[
\{ [G'_k - G'_k(0)] \to [G' - G'(0)] \}
\]

in \(S^{n-1}_T \); then, by the inductive hypothesis, \([G' - G'(0)] \in SS^{n-1}_T \), i.e. \(G' \in C^{n-1} \) and so \(G \in C^n \), i.e. \([G] \in SS^n_T \).

By virtue of the isometry \(\mathfrak{g}_n \), the subspace \(\mathfrak{g}_{S^0,n} \) is closed in \(\mathfrak{g}_{S^0,n} \).

For \(L \in \mathfrak{g}_{S^0,n} \) with \(n \geq 1 \), the representation given by Theorem 3.3 takes the particular form

\[
Lu(t) = \int_0^T \Gamma_L(x) u(x+t) \, dx \quad \forall u \in C^0_T,
\]

where \(\Gamma_L \) is uniquely determined in \(C^{n-1}([0, T], C) \).

Moreover \(\Gamma_L^{(n-1)} - \Gamma_L^{(n-1)}(0) \in BV_0 \cap C^0 \) and, for \(n \geq 2 \), \(\Gamma_L^{(k)}(0) = \Gamma_L^{(k)}(T) \) for \(k = 0, 1, \ldots, n - 2 \). This is a trivial consequence of Theorems 3.5-3.6 and of the smoothness of \(L \).

The function \(\Gamma_L \) will be called associated kernel to the smooth operator \(L \).

Conversely it is easily seen that every function \(\Gamma \) which fulfills these properties defines an operator \(L \in \mathfrak{g}_{S^0,n} \).
THEOREM 4.2 - Let \(\{L_k\} \) be a sequence of \(\mathcal{L}_2^{0,n}(n \geq 1) \) which converges to \(L \) in \(\mathcal{L}_2^{0,n} \); let \(\Gamma_k \) and \(\Gamma \) be respectively the associated kernels to \(L_k \) and \(L \). Then \(\{\Gamma_k\} \) converges uniformly to \(\Gamma \) with all the derivatives up to the \((n - 1) - \) th.

Proof. Let \([G_k] = \mathcal{S}_n(L_k) \) and \([G] = \mathcal{S}_n(L) \). We can suppose \(G_k, G \in C^n \) and hence we have \(\Gamma_k^{(m)} = G_k^{(m+1)} \) and \(\Gamma^{(m)} = G^{(m+1)} \) for \(m = 0,1,\ldots,n-1 \). Since \(\{G_k]\} \rightarrow [G] \) in \(\mathcal{S}_T^n \), we have that \(V(\Gamma_k^{(m)} - \Gamma^{(m)}) \rightarrow 0 \) for \(m = 0,1,\ldots,n-2 \) and that

\[
V(\Gamma_k^{(n-1)} + \rho_k [1 - \Theta] - \Gamma^{(n-1)} - \rho [1 - \Theta]) \rightarrow 0,
\]

where \(\rho_k := \Gamma_k^{(n-1)}(T) - \Gamma_k^{(n-1)}(0) \) and \(\rho := \Gamma^{(n-1)}(T) - \Gamma^{(n-1)}(0) \) (see the proof of Theorem 4.1, case \(n = 1 \)). It follows that \(\Gamma_k^{(m)} - \Gamma^{(m)}(0) \rightarrow \Gamma_k^{(m)} - \Gamma^{(m)}(0) \) uniformly for \(m = 0,1,\ldots,n-2 \) and that \(\Gamma_k^{(n-1)}(0) - \rho_k \Theta \rightarrow \Gamma^{(n-1)}(0) - \rho \Theta \) uniformly.

Since \(\Theta \notin C^0 \), while \(\Gamma_k^{(n-1)} \) and \(\Gamma^{(n-1)} \) are continuous, we have that \(\Gamma_k^{(n-1)}(0) \rightarrow \Gamma^{(n-1)}(0) \) uniformly, too. We can suppose that \(G_k \rightarrow G \) uniformly and then, since also \(\Gamma_k \rightarrow \Gamma(0) \) uniformly, it follows that

\[
\int_0^x [\Gamma_k(\xi) - \Gamma_k(0)] d\xi \rightarrow \int_0^x [\Gamma(\xi) - \Gamma(0)] d\xi
\]

uniformly, i.e. \(G_k(x) - \Gamma_k(0) x \rightarrow G(x) - \Gamma(0) x \) uniformly, and hence \(\Gamma_k(0) \rightarrow \Gamma(0) \) and \(\Gamma_k \rightarrow \Gamma \) uniformly.

In this way, by \(n-1 \) passages, we can show that \(\Gamma_k^{(m)}(0) \rightarrow \Gamma^{(m)}(0) \)

and that \(\Gamma_k^{(m)} \rightarrow \Gamma^{(m)} \) uniformly for \(m = 1,\ldots,n-1 \), too.

5. **Linear difference-differential equations with constant coefficients.**

In this last section we apply the foregoing theory to linear difference-differential equations with constant coefficients such as

\[
(DDE) \quad u^{(n)}(t) + \sum_{m_k}^{n-1} \sum_{j=1}^{m_k} a_{kj} u^{(k)}(t + \tau_{kj}) = f(t)
\]

where \(n \geq 1, f \in C^0_T, a_{kj} \in C, \tau_{kj} \in R \). We look for a solution in the space \(C_T^n \).

The equation DDE is of the form \(Nu = f \), where \(N \in \mathcal{L}_2^{n,0} \). If \(D^k \) denotes the \(k \) - th derivative operator, we have that
\[N = D^n + \sum_{k=0}^{n-1} \sum_{j=1}^{m_k} a_{kj} D^k \cdot S_{kj}. \]

Lemma 5.1 - The operator \(D^n - \omega I \) (which belongs to \(\mathcal{L}^n \)) is invertible for every \(\omega \in \mathbb{C} \) such that \(\omega \neq \left(\frac{2k\pi i}{T} \right)^n \) for every \(k \in \mathbb{Z} \), and the inverse operator \(J_{n,\omega} \) is smooth.

Proof. Let \(\omega \neq \left(\frac{2k\pi i}{T} \right)^n \) for every \(k \in \mathbb{Z} \). By Theorem 2.8 it follows that \(\text{kern}(D^n - \omega I) = \{0\} \).

Consider the following equation with boundary conditions:

\[
\begin{align*}
 & y^{(n)}(x) - (-1)^n \omega y(x) = 0 \\
 & y^{(k)}(0) = y^{(k)}(T) \quad \text{for } k = 0, 1, \ldots, n - 2 \\
 & y^{(n-1)}(T) - y^{(n-1)}(0) = (-1)^{n-1}
\end{align*}
\]

It is easy to see that this equation has a unique solution \(\Gamma \in C^\infty(\mathbb{R}, \mathbb{C}) \). Since \(\Gamma \), restricted to \([0, T]\), fulfils the properties of the associated kernels, it defines an operator, say \(J_{n,\omega} \), which belongs to \(\mathcal{L}^0 \).

Let \(f \in C^0_T \); then we have

\[
(D^n - \omega I) \cdot J_{n,\omega} f(t) = \frac{d^n}{dt^n} \int_0^T \Gamma(x) f(x + t) \, dx - \omega \int_0^T \Gamma(x) f(x + t) \, dx =
\]

\[
= - \omega \int_0^T \Gamma(x) f(x + t) \, dx + (-1)^{n-1} [\Gamma^{(n-1)}(T) - \Gamma^{(n-1)}(0)] f(t) -
\]

\[
- \int_0^T [\Gamma(x) - (-1)^n \omega \Gamma^{(n)}(x)] f(x + t) \, dx =
\]

\[
= (-1)^{n-1} [\Gamma^{(n-1)}(T) - \Gamma^{(n-1)}(0)] f(t) -
\]

\[
- (-1)^n \int_0^T \omega \Gamma^{(n)}(x) f(x + t) \, dx = f(t).
\]

Hence \((D^n - \omega I) \cdot J_{n,\omega} = I \) (the identity operator) and therefore we can conclude that \(D^n - \omega I \) is invertible and that its inverse \(J_{n,\omega} \) is smooth. \(\square \)

Lemma 5.2 - Let \(L \in \mathcal{L}^{n,m}, M \in \mathcal{L}^{n,m+1} \) and let there exist the inverse \(L^{-1} \in \mathcal{L}^{m,n} \). Then the following properties hold:

(i) - \(\text{kern}(L+M) \) is a finite dimension subspace of \(C^0_T \);
(ii) - \(R(L) \) is closed in \(C^{m}_{T} \);

(iii) - \(L + M \) is invertible if and only if \(\text{ker} (L + M) = \{0\} \);

(iv) - If \(m = 0 \) and \(L^{-1} \) is smooth, then also \((L + M)^{-1} \) is smooth, if it exists.

Proof. The properties (i), (ii), (iii) easily follow from the equality \(L + M = L \circ (I + L^{-1} \cdot M) \) and the complete continuity of \(M \) as operator from \(C^{n}_{T} \) into \(C^{m}_{T} \).

In order to prove (iv), assume \(m = 0 \), \(L^{-1} \) to be smooth and \(L + M \) to be invertible. Since

\[
(L + M)^{-1} = (I + L^{-1} \cdot M)^{-1} \cdot L^{-1} = \\
= (I + L^{-1} \cdot M - L^{-1} \cdot M) \cdot (I + L^{-1} \cdot M)^{-1} \cdot L^{-1} = \\
= L^{-1} - L^{-1} \cdot M \cdot (I + L^{-1} \cdot M)^{-1} \cdot L^{-1},
\]

\(L^{-1} \in \mathcal{S} \mathcal{S}^{0,n} \) and \(L^{-1} \cdot M \cdot (I + L^{-1} \cdot M)^{-1} \cdot L^{-1} \in \mathcal{S} \mathcal{S}^{0,n+1} \subseteq \mathcal{S} \mathcal{S}^{0,n} \), we have that \((L + M)^{-1} \in \mathcal{S} \mathcal{S}^{0,n} \). ■

If we put \(L := D^{n} - \omega I \) and \(M := \omega I + \sum_{k=0}^{n-1} \sum_{j=1}^{m_{k}} a_{kj} D^{k} \cdot S_{\tau_{kj}}, \)

\(\omega \neq (\frac{2k\pi i}{T})^{n} \), equation DDE takes the form \((L + M)u = f \); the hypotheses of Lemma 5.2 are fulfilled for \(m = 0 \) and therefore properties (i), (ii), (iii), (iv) hold.

In particular, by (i) and (ii), we have that \(\dim \ker N = d < \infty \) and that \(R(N) \) is closed in \(C_{T}^{0} \). Moreover, by (iv) and Lemma 5.1, the operator \(N^{-1} = (L + M)^{-1} \) is smooth, if it exists. In this case the solution of DDE has the following form:

\[u(t) = \int_{0}^{T} \Gamma(x) f(x+t) \, dx \]

where \(\Gamma \) is the associated kernel to \(N^{-1} \), which will be called resolvent kernel of DDE.

Now consider the following complex function of complex variable:

\[\varphi(z) := z^{n} + \sum_{k=0}^{n-1} \sum_{j=1}^{m_{k}} a_{kj} z^{k} \exp(\tau_{kj} z) \]

which is called, according to L.E.El’sgol’ts-S. B. Norkin [3], the characteristic quasipolynomial of DDE.

Observe that the eigenvalues of \(N \) are \(\lambda_{k}^{N} := \varphi(\frac{2k\pi i}{T}), k \in \mathbb{Z}, \) and
then the set \(B := \left\{ \exp \left(\frac{2k\pi it}{T} \right) \right\} \) of complex exponential functions is a basis of \(\text{ker} \, N \).

By Corollary 2.12 and Lemma 5.2, equation DDE has a solution \(u \in C_T^n \) if and only if the function \(f \) is \(L^2_T \)-orthogonal to \(B \).

Finally, by Lemma 5.2-(iii), we have that \(N \) is invertible if and only if \(\phi \left(\frac{2k\pi i}{T} \right) \neq 0 \) for every \(k \in \mathbb{Z} \).

If \(N \) is invertible, by Corollary 2.3, we have that \(\lambda_k^{-1} = \left[\phi \left(\frac{2k\pi i}{T} \right) \right]^{-1} \) and then, by Corollary 3.4,

\[
\frac{1}{T} \int_0^T \Gamma(x) \exp\left(- \frac{2k\pi ix}{T} \right) \, dx = \frac{1}{T} \lambda_k^{-1} = \left[T \phi \left(-\frac{2k\pi i}{T} \right) \right]^{-1}.
\]

So the Fourier expansion of the resolvent kernel \(\Gamma \) of DDE is

\[
\sum_{k \in \mathbb{Z}} \left[T \phi \left(-\frac{2k\pi i}{T} \right) \right]^{-1} \exp\left(\frac{2k\pi ix}{T} \right).
\]

Since \(\Gamma^{(n-1)} \) is continuous and of bounded variation in \([0, T]\), the Fourier expansion converges uniformly to \(\Gamma \) with all its derivatives up to the \((n-1)\)-th in every closed subinterval \([a, b] \subset [0, T]\). Since for \(n \geq 2 \) we have \(\Gamma^{(k)}(0) = \Gamma^{(k)}(T) \) for \(k = 0, 1, \ldots, n-2 \), the first \(n-2 \) derivatives of the expansion converge uniformly in \([0, T]\).

In any case the solution \(u \) of equation DDE has the form:

\[
u(t) = \int_0^T \left(\sum_{k \in \mathbb{Z}} \left[T \phi \left(-\frac{2k\pi i}{T} \right) \right]^{-1} \exp\left(\frac{2k\pi ix}{T} \right) \right) f(x+t) \, dx =
\]

\[
\sum_{k \in \mathbb{Z}} \left[T \phi \left(-\frac{2k\pi i}{T} \right) \right]^{-1} \left(\int_t^{t+T} \exp\left(\frac{2k\pi ix}{T} \right) f(x) \, dx \right) \exp\left(-\frac{2k\pi it}{T} \right) =
\]

\[
\sum_{k \in \mathbb{Z}} \left[T \phi \left(\frac{2k\pi i}{T} \right) \right]^{-1} \left(\int_0^T \exp\left(-\frac{2k\pi ix}{T} \right) f(x) \, dx \right) \exp\left(\frac{2k\pi it}{T} \right),
\]

which is nothing but the Fourier expansion of \(u \).

By truncating the expansion to \(2m+1 \) terms, we have the approximation

\[
u_m(t) = \int_0^T \Gamma_m(x) \, f(x+t) \, dx,
\]

where \(\Gamma_m(x) := \sum_{k=-m}^{m} \left[T \phi \left(-\frac{2k\pi i}{T} \right) \right]^{-1} \exp\left(\frac{2k\pi ix}{T} \right) \), which converges
uniformly to \(u \) as \(m \) tends to \(\infty \).

In order to give a bound to the error \(\| u - u_m \|_\infty \), note that

\[
\int_0^T \Gamma(x) p_m(x+t) \, dx = \int_0^T \Gamma_m(x) p_m(x+t) \, dx
\]

for every trigonometric polynomial \(p_m = \sum_{k=-m}^m a_k e_k \), and hence

\[
u(t) - u_m(t) = \int_0^T [\Gamma(x) - \Gamma_m(x)] [f(x+t) - p_m(x+t)] \, dx.
\]

We can choose \(p_m \) equal to \(p_m^* \), the best \(L^2 \)-approximation to \(f \) by trigonometric polynomials of degree \(\leq m \), and denote by \(e_m(f) \) the error \(\| f - p_m^* \|_{L^2} \).

By the Cauchy-Schwartz inequality we have

\[
\| u - u_m \|_\infty \leq \| \Gamma - \Gamma_m \|_{L^2_T} e_m(f) \leq \| \Gamma - \Gamma_m \|_{L^2_T} \| f - q_m^* \|_{L^2_T} \leq \\
\leq \sqrt{TE_m(f)} \| \Gamma - \Gamma_m \|_{L^2_T}
\]

where \(q_m^* \) is the best uniform approximation to \(f \) by trigonometric polynomials of degree \(\leq m \), and \(E_m(f) \) is the error \(\| f - q_m^* \|_\infty \).

We want to estimate \(\| \Gamma - \Gamma_m \|_{L^2_T} \).

To this aim we consider the function \(\Phi(y) := \frac{|\varphi(iy)|^2}{y^{2n}} \) which is defined and continuous in \(\mathbb{R} - \{0\} \). We have immediately that

\[
\lim_{y \to +\infty} \Phi(y) = \lim_{y \to -\infty} \Phi(y) = 1; \text{ therefore, since } \varphi \left(\frac{2k\pi i}{T} \right) \neq 0 \text{ for every } k \in \mathbb{Z}, \text{ there exists } \sigma > 0 \text{ such that } |\varphi \left(\frac{2k\pi i}{T} \right)|^2 > \sigma \left(\frac{2k\pi i}{T} \right)^{2n} \text{ for every } k \in \mathbb{Z}.
\]

Hence

\[
\| \Gamma - \Gamma_m \|_{L^2_T} = \left(\sum_{k=-m}^{m-1} \frac{1}{T} \left| \varphi \left(-\frac{2k\pi i}{T} \right) \right|^2 \right)^{1/2} + \\
+ \sum_{k=m+1}^{+\infty} \frac{1}{T} \left| \varphi \left(-\frac{2k\pi i}{T} \right) \right|^2 \right)^{1/2} \leq \frac{2T^n}{(2\pi)^n \sqrt{\sigma T}} \left(\sum_{k=m+1}^{+\infty} k^{-2n} \right)^{1/2}.
\]

Since \(k^{-2n} \leq \xi^{-2n} \) for every \(k \in [k-1,k] \), we obtain

\[
\sum_{k=m+1}^{+\infty} k^{-2n} \leq \int_m^{+\infty} \xi^{-2n} \, d\xi = \left[(2n-1) m^{2n-1} \right]^{-1}.
\]

We can conclude that there exists a constant \(c > 0 \),
A CLASS OF LINEAR OPERATORS IN PERIODIC etc.

\[c := \frac{2T^n}{(2\pi)^n \sqrt{(2n-1)\sigma}}, \]

depending on the operator \(N \) such that
\[
\| u - u_m \|_\infty \leq c E_m(f) m^{-(n-1/2)}.
\]

REFERENCES

